EFFICIENT ALGORITHMS FOR
POLYHEDRON COLLISION DETECTION

by
Deborah A. Joseph

and

W. Harry Plantinga

Computer Sciences Technical Report #738
December 1987

Efficient Algorithms for Polyhedron Collision Detection*
Deborah A. Joseph — W. Harry Plantinga

Department of Computer Sciences
University of Wisconsin - Madison

Abstract

In this paper we present efficient algorithms for determining whether
polyhedra undergoing linear translations will collide. We present algorithms
for a finding collisions between a pair of moving convex polyhedra and among
several moving non-convex polyhedra. With the non-convex algorithm we
also show how to determine when the objects will collide. The algorithms
work by considering time to be a fourth dimension and solving the related 4-D
polytope separation problem. In the convex case we present an algorithm
that runs in O(n) time where n is the sum of the sizes of the objects. The
algorithm is a generalization of an O(n)-time polyhedron separation algo-
rithm of Dobkin and Kirkpatrick to 4-D convex prisms. In the non-convex
case we present an algorithm that runs in O(n2)-time. The algorithm is a
generalization of the naive polyhedron separation algorithm. We generalize
the naive algorithm to finding the separation of d-polytopes in E< for any d,
although we use only the 4-D case for collision detection. Both algorithms use
O(n) space. In the process of finding the separation in the non-convex case we
must determine whether a point is in a polytope in EZ, and we present an
algorithm for doing that.

* This work was supported in part by the National Science Foundation under grants DCR-
8520870 and DCR-8402375 and a faculty development grant from AT&T.

1. Introduction

Determining whether moving objects will collide is important for applications
that involve the simulation of physical systems. For example, we may want to
determine whether the parts of an automobile engine can move freely or whether
moving objects such as airplanes will collide. We can determine these things with a
collision detection algorithm. Collision detection is also important for motion
planning, since the motions of an object must not cause it to collide with any
obstacles. In robotics, task-level languages for describing motions of a robot must
include a collision detection algorithm if they are to prevent motions that would
cause the robot to collide with an obstacle. In addition to knowing whether objects
will collide, we may want to know when and where they collide in order to modify the
engine part, alert the pilot, or stop the motion of the robot at an appropriate time.

Previous work on collision detection has taken three main directions. For a
single object moving among stationary obstacles, it is sufficient to determine the
volume of space that the object sweeps out as it moves. The object collides with an
obstacle if the swept volume intersects the obstacle. Boyse (1979) introduces this
method, dealing separately with the cases of object rotation and translation, but he
does not analyze the time complexity of the algorithm. Ganter (1985) constructs an
approximation to the swept volume by constructing a “skin” over a finite number of
copies of the object at points along its path. However, neither of these algorithms
determines the time of collision, and no algorithm using this method can handle the
case where more than one object is moving. If more than one object is moving, such

an algorithm will report an intersection even if two objects pass over the same point
at different times.

Another direction that researchers have taken is to simulate the motion of an
object or objects by checking for intersections at closely-spaced points in time.
Examples include work by Meyer (1981), Cameron (1985), Culley and Kempf (1986),
and Hayward (1986). One disadvantage of this approach is that it is time-consuming
to do so many intersection tests. Another disadvantage is that it is not completely
accurate—the algorithm may not detect collisions that occur between intersections
tests if special precautions are not taken in the choice of time intervals.

The third approach is that of solving the problem in configuration space
(Lozano-Perez, 1983). A configuration-space algorithm is one in which a point in the
configuration space represents the configuration of the problem—for example, the

location and orientation of the moving object. Obstacles in configuration space
correspond to regions of forbidden configurations—that is, configurations in which
the object intersects an obstacle. Canny (1986) uses a configuration-space algorithm
to find collisions among obstacles and objects that may be translating and rotating.
The algorithm runs in O(n2 log n) time where n is the sum of the sizes of the object
and obstacles. However, in order to work within that time bound his algorithm is
limited to a collection of convex objects and obstacles. Therefore, he assumes that
objects and obstacles are given as a collection of possibly overlapping convex pieces.
Chazelle (1984) has shown that decomposing a non-convex polyhedron can require
Q(n2) convex pieces. Thus, Canny's algorithm may require time Q(n4 log n) for
general polyhedra.

In this paper we take an approach proposed by Cameron (1985). We consider
time to be a fourth dimension and determine the volume of space-time that the
moving objects occupy. The collision detection problem then becomes a 4-
dimensional intersection detection problem. Although Cameron proposes the idea as
one of three possible approaches to the problem, he does not present an algorithm for
this approach. We present algorithms using this approach and analyze their
complexity.

Our approach differs from the configuration-space approach in that a point of
configuration space represents the location and orientation of the object while a point
of space-time represents a point of space at a particular time. Solving the problem in
configuration space reduces the problem to one of determining whether a one-
dimensional manifold of points intersects a volume of configuration space, but the
configuration space is 6-dimensional, and it is difficult to construct the constraints
for non-convex moving objects. Solving the problem in object space enables us to
work in a 3-dimensional space, but the problem is complicated by the fact that the
objects are moving. Our approach of solving the problem in space-time is in a sense a
compromise: the space is 4-dimensional and the problem to be solved is a static
intersection problem.

We restrict our attention to polyhedral objects undergoing linear translation,
and within this setting we deal with two cases: two moving convex objects and
several moving non-convex objects. We present an O(n)-time algorithm for the
former case and an O(n2)-time algorithm for the latter case. Both algorithms use
O(n) space. The algorithm for the convex case is a generalization of the polyhedron
separation algorithm of Dobkin and Kirkpatrick (1983) to convex 4-prisms. The
algorithm for the general case is a generalization of the naive algorithm for finding
the separation of polyhedra, by finding and minimizing the separation of every pair
of faces. We generalize this algorithm to finding the separation of polytopes in Ed (d-

dimensional Euclidean space), although for the collision detection algorithm we
make use only of the 4-dimensional case. We also show how to determine the time
location of the first collision of the objects.

Higher-dimensional cases of the polytope separation algorithm may prove
useful in algorithms for various problems using a configuration-space approach. The
polytope separation algorithm uses two auxiliary algorithms, one for determining
whether a point is in a d-polytope in E< and one for determining whether a line
segment intersects a (d—1)-polytope in Ed. We present mutually recursive
algorithms for these problems that run in time linear in the number of incidences of
the polytope (as defined below). These algorithms are of interest in themselves.

In Section 2 we present the algorithm for the convex case. In Section 3 we
present the algorithm for the general case. In Section 3.1 we discuss the
representation and size of polytopes. Section 3.2 contains the algorithm for finding
the separation of polytopes in E€ and discusses using the polytope separation
algorithm for polyhedron collision detection. In Sections 3.3 and 3.4 we present two
auxiliary algorithms that are used by the separation algorithm. In Section 3.5 we
show that we can use the results of the previous sections to find collisions among
moving general polyhedra in O(n2) time. In Section 4 we discuss extending the
results of Section 3 to objects rotating and undergoing other nonlinear motion.

2. Determining Whether Two Moving Convex Polyhedra will Collide

Suppose a convex polyhedron P undergoes linear motion, that is, motion
along a line at a constant speed. If we consider time to be a dimension, then for any
translation along a line segment there is a corresponding convex 4-prism with basis
P in space-time representing that motion. The ends of the 4-prism are copies of the
original object at the initial and final times and locations. Thus, for a translation
along the vector (dx, dy, dz) taking time dt, the 4-prism is the Minkowski sum of the
polyhedron at the initial time and location in E4 and the vector (dy, dy, dz, dt). The
problem of determining whether the two moving convex polyhedra will collide
becomes a 4-dimensional intersection problem: the related 4-prisms share a point in
space-time if and only if the objects collide.

There are no linear-time algorithms for separation of polytopes of dimension 4
or higher. However, Dobkin and Kirkpatrick (1983) present a linear-time algorithm
for determining the separation of two convex polyhedra in E3 that generalizes to
finding the separation of convex 4-prisms. The Dobkin-Kirkpatrick algorithm
involves two steps: constructing a hierarchical representation of the polyhedra and

finding the separation of the polyhedra at progressively more detailed levels of the
hierarchy. The only part of the algorithm that is specialized to three dimensions or
less is the construction of the hierarchical representation, and that is done because
in higher dimension it is not necessarily of linear size. However, we will show that
the size is linear for convex 4-prisms.

The algorithm for constructing the 4-prisms representing the motion of a
polyhedron P from times ¢ to ¢ is the following: begin with two copies of P, one at
the initial location and one at the location after the translation. Add to each vertex
of the copy of P at its initial location a fourth coordinate, ¢, representing the initial
time. Add the time coordinate ¢; to each vertex of the copy of P at its final location.
Then connect each corresponding pair of vertices of the two ends of the prism with an
edge. Connect corresponding pairs of edges with a 2-dimensional face or 2-face (in
fact, a parallelogram). Finally, connect corresponding pairs of faces with a 3-face (a
3-prism).

The hierarchical representation for 4-prisms is constructed in the same
manner that Dobkin and Kirkpatrick construct the representation for polyhedra.
The hierarchical representation is a sequence of approximations to the shape of the
polyhedron, each less detailed (i.e. with fewer of the vertices of P) than the last.
Each successive approximation of the shape is formed by removing an independent
set of vertices from the current approximation of the shape and taking the convex
hull of the remaining vertices. Formally, the hierarchical representation is defined
in the following way: if P is a d-polytope with vertex set V(P), a sequence of
polytopes H(P) = Py, . . ., Py is said to be a hierarchical representation of P if

(1) Py =P and P} is a d-simplex;

(2) PjicPiforl<i<k;

(3) V(Pj,1) c V(P;); and

(4) The vertices of V(P;) — V(P;,1) form an independent set (i.e. are non-
adjacent) in P;.

The height of H(P) is k and the size is the sum of the sizes of the levels. The degree of
H(P) is the maximum degree of any vertex removed at any level.

Dobkin and Kirkpatrick prove that a hierarchical representation for a
polyhedron has height O(log n) and size O(n) where n is the size of the polyhedron, if
the vertices removed to form each successive level of the hierarchy form a maximal
independent set of the vertices of degree at most b for some b. The algorithm for
constructing such a representation is to repeatedly remove a maximal independent
set of the vertices of degree at most b from the polyhedron (with the next level of the

hierarchical representation consisting of the convex hull of the remaining vertices)
until all that remains is a tetrahedron.

For polytopes of dimension greater than 3, the hierarchical representation
has maximum size greater than O(n), however. The reason is that the skeleton (or
vertex-edge graph) for a 4-polytope is not necessarily planar, so that vertices may be
adjacent to more of the other vertices in the skeleton. As a result, the maximal
independent sets may be smaller than they are for planar graphs, so that the number
of vertices removed at each level of the hierarchical representation may be smaller,
resulting in a larger representation. In fact, for the “cyclic” polytopes in E4 (defined
as the convex hull of the points (n, n2, n3, n4) for n > 5 (Griinbaum, 1967)), every
pair of vertices is connected by an edge, so the skeleton is a complete graph. Thus
only one vertex is removed at each level of the hierarchical representation. The size
of a cyclic polytope is ©(n2) and the representation has &(n) levels, so its size is

o(n3).

The skeleton for a convex 4-prism is not in general planar. However, since
both ends of the prism are convex polyhedra and the remaining faces are in one-to-
one correspondence with the faces of one of the ends, the skeleton for a convex prism
is not much more complex than that of the convex polyhedron. We construct the
hierarchy for the 4-prism in the same manner: repeatedly choose and remove
maximal independent sets of the vertices of degree at most . The following lemma
(which is a modification of Dobkin and Kirkpatrick's Lemma 3.1) shows that we can
construct a hierarchical representation for 4-prisms that has height O(log n) and size
O(n) where n is the size of the 4-prism.

Lemma 1. There exist constants b > 1 and ¢ < 1 such that for all convex 4-prisms P,
the algorithm above produces a hierarchical representation of P, H(P) =Py, ..., Py,
with degree at most b such that IP;1 | <clP; I,1<i<k.

Proof. First we show that the lemma is true for polyhedra; the result for 4-prisms
will follow. The skeleton of any polyhedron Q is connected and planar. Let e be the
number of edges, v the number of vertices, and k the number of vertices of degree >b.
Every vertex has degree at least 3, so the number of edges satisfies

e = (3v + (b-3) k)2

Each element of the maximal independent set can cover at most itself and b other
vertices, so

A—-c)v = (v R)(b+1)

Together with a choice of b = 11, these imply that e = v (48 ¢ — 85/2). But by Euler's
formula, any connected planar graph has e <3 v — 6. Thus for a choice of b = 11, the
consequence of the lemma is satisfied for polyhedra when ¢ = 19/20.

P is a 4-prism, not a polyhedron. However, the skeleton of P consists of two
copies of the skeleton of the ends of P, say S; and Sy, with corresponding vertices
connected. All of the vertices of P are in S; or Sy, so half of them are in 8;. Since a
maximal independent set of vertices of 81 is an independent set in P, the constants
b =11 and ¢ = 39/40 satisfy the conditions of the lemma for 4-prisms. B

Thus the algorithm above produces a hierarchical representation for an
arbitrary convex 4-prism P with degree at most b, height O(log(|1P 1)), and size
O(IP1). This hierarchical representation can be constructed in linear time in the
same manner that Dobkin and Kirkpatrick's algorithm constructs the representation
for polyhedra. In practice, the fraction of vertices removed at each level of the
hierarchy will usually be much larger than 1/40.

The remainder of Dobkin and Kirkpatrick's algorithm is not specialized to two
and three dimensions and works also for 4-polytopes. Thus, the algorithm for
determining whether two convex polytopes P and Q undergoing linear translation
will collide proceeds as presented below. In the third step, the closest pair is found in
linear time using the method of Dobkin and Kirkpatrick.

Construct the 4-prisms corresponding to the motions of P and Q. Call them
P'and Q'

Construct the hierarchical representations Py, ...,P.for P'and Qy, . . ., Qg
for Q'.

i < min(r,s)

(p,q) « closest_pair(P;,Q;)

while p#q and i >1 do begin
lei-1
(p,q) « closest_pair(P;,Q;) end

separation(P,Q) « |p-q!

Algorithm 1. Determining whether convex polyhedra will collide.

3. Determining Whether Several General Polyhedra will Collide

We can transform the problem of finding collisions among several translating
objects into a four-dimensional intersection problem in the same manner as the
convex case. However, the 4-polytopes related to the motions are general 4-prisms
rather than convex 4-prisms. Thus, in this case we cannot generalize an algorithm
designed for convex objects, but we can generalize the naive algorithm for finding the
separation of two polyhedra. To find the separation of several polyhedra we find the
separation of every pair and minimize.

The naive algorithm for finding the separation of two polyhedra finds the
separation of every pair of faces of the polyhedra and minimizes. If the minimum
separation is zero, the objects intersect; if it is greater than zero, it is also necessary
to test whether one object has a point inside the other. If so, then one object is
completely inside the other; if not, then the objects do not intersect. This algorithm
generalizes in a straightforward way to Ed, except that it is also necessary to
generalize other auxiliary algorithms that are relatively easy in E3. These
algorithms determine (1) whether a point is in a d-polytope in E< and (2) whether a
line segment intersects a (d-1)-polytope in Ed. We call these the point—polytope and
segment—facet algorithms and present them below.

We find the time of intersection by noting that at the instant that the objects
first collide, even though they may collide in many points at once, some pair of faces
intersects in a single point. (We prove this below.) Thus to find the time of collision
it suffices to find every one-point intersection of a pair of faces and find the one that
occurs first. The location of the point is a point of the collision.

In this paper we will call a (d-1)-dimensional affine subspace of Eda
hyperplane. Functionally, it is the set of points { x | x-u = a }, where u is a direction
and g is a constant. We call the intersection of a polytope with a supporting
hyperplane a face, and we call a d-dimensional face a d-face. We call a (d-1)-face a
facet. The affine subspace spanned by a face f, denoted AfRf), we call a flat. Thus, a
flat of dimension d—1 in E€ is a hyperplane.

We say that two flats are partly parallel if they are linearly dependent; in
that case, when translated to the origin their intersection is more than a single point.
Thus, for example, two planes in E3 are always partly parallel. Otherwise the flats
have a unique mutual normal line (unique in the smallest affine space containing
both flats) and are skew or intersect in a single point. We call the intersection points
of this normal line with the flats the feet of the normal. We will also speak of a pair
of faces of polytopes as having a mutual normal; in this case we refer to the normal
between the flats spanned by the faces. We say that a line segment s realizes the

separation of two polytopes when it is a minimal-length line segment that meets both
polytopes. In the case of two skew lines in E3, the unique mutual normal is the line
containing the shortest line segment joining them, and the feet of the normal are the
intersection points. The line segment joining them realizes the separation.

3.1. The Representation and Size of Polytopes

Since this algorithm is defined for polytopes in E€ for any d, we first discuss
ways of representing polytopes and the size of such representations. There are at
least three different measures of the size of a polytope that at first seem reasonable.
All of these measures are asymptotically within a constant factor of each other for
polygons and polyhedra, but they differ for polytopes of dimension 2 4. The first
measure is only reasonable for convex polytopes: the number of vertices. In the
convex case, a list of vertices is sufficient to reconstruct any other representation of a
polytope since the polytope is the convex hull of those vertices. However, this
measure is not sufficient in dimension 2 4 since the number of edges of a polytope
of n vertices may be &(n2).

Another measure of size that at first seems reasonable is the total number of
faces, which for a d-polytope with v vertices can be Q(v'—d / 2J) (Griinbaum, 1967).
However, this size is not necessarily sufficient even to write down all of the faces of
the polytope in dimension > 4. In order to write down a k-face, one must represent
the boundaries of the face in some manner. Even pointers to the bounding (2-1)-
faces require too much storage, since for d-polytopes, d>4, the total number of
incidences of k-faces with (k—1)-faces can be Q(n2) where n is the number of (k-1)-
faces of the d-polytope (Griinbaum, 1967).

A measure of size that is more reasonable than the previous two is the total
number of incidence relations of the form [d-face, (d-1)-face, . . ., edge, vertex] of the
polytope, where d-face, (d-1)-face, etc. are names of specific faces of the polytope. For
example, the size of a triangle is six under this measure, since there are six [triangle-
edge-vertex] incidence relationships. The size of a polyhedron is the total number of
[polyhedron, face, edge, vertex] incidence relationships. This measure of size is
reasonable because with this amount of storage one can list the faces of a polytope
together with their boundaries by representing each k-face as a list of pointers to
bounding (k—1)-faces. In addition, this representation enables us to recover incidence
relations, which we must be able to do for the algorithms below. We will denote the
number of such incidence relations of a polytope P by I(P).

A consequence of defining the size of a polytope to be the number of incidences
is that

I(P) = ¥ I(facets of P)
That is, the number of incidences of a polytope is equal to the sum of the number of
incidences of its facets. This is true because the incidence relations of the polytope
are the incidence relations of the facets with the name of the whole polytope
prepended. It is not true that the number of faces of a polytope is equal to the sum of
the number of faces of its facets, since in the latter case faces get counted repeatedly
when they are shared by more than one facet.

With the number of incidences of a polytope as a measure of size, we can
construct algorithms that are recursive in dimension and take linear time in the size
of the polytope. Suppose an algorithm is defined recursively to work on a polytope by
working on each facet of the polytope. If the sum of the sizes of the facets of the
polytope is the same as the size of the polytope, then such an algorithm works in
linear time whenever the time for one level of the recursion is constant. However, if
the sum of the sizes of the facets is larger than the size of the polyhedron, such an
algorithm cannot work in linear time. Using the number of incidences, I(P), of a
polytope as a measure of size, we will now show how to find the separation of two
polytopes in O(I(P)-1(Q)) time for polytopes of size I(P) and I(Q).

3.2. The Separation Algorithm

In order to find the separation of two polytopes in EQ it is sufficient to find the
minimum separation of pairs of faces. However, as we show below, we do not need to
find the separation of every pair of faces—we can restrict our search to a subset of
the pairs and still guarantee that we find the separation of the polytopes. In
particular, we claim that we only need to consider the separation of pairs of faces
that are not partly parallel, that is, not linearly dependent. If the faces are not
partly parallel, then they intersect in a point or have a mutual normal line, and we
claim that we need only consider faces where this intersection point or the feet of the
normal lie in the faces. Also, we need only test pairs of faces such that the sum of the
dimensions dy + dg <d, since otherwise the faces must be partly parallel. We prove
these claims below.

The algorithm for finding the separation of polytopes P and Q in E4 is the
following:

e For each pair of faces f and g of dimension d; and dg where dj +dg<d and
Aff(H)=F and Aff{g)=G do:

e Determine if the faces are partly parallel, that is, whether F and G are
linearly dependent. If so, skip to the next pair of faces.

e Ifd; +dg = d then F and G intersect in a single point p. Find p and
determine if p € f and p € g using the point-polytope algorithm. If so, the
polytopes intersect.

e Find the unique mutual normal to F and G in the space that they span.
Find the feet of this normal and determine whether they arein fand g
respectively (using the point-polytope algorithm). If so, the distance
between the feet is a candidate for the separation. Remember this
distance if it is smallest so far.

o If the separation is non-zero, determine if one polytope is inside the other by

using the point-polytope algorithm on a point of each.
Algorithm 2. Finding the separation of polytopes.

Determining whether two moving polyhedra collide is done by constructing
the 4-prisms corresponding to the motions and using the polytope separation
algorithm above to determine whether the prisms have a non-empty intersection. In
order to determine whether any of several moving polyhedra collide, we test them
pairwise for collision.

To determine the time and location of collision, we claim that it is sufficient to
check every pair of faces that intersect in a single point and find the first one, i.e. the
point of intersection with the lowest time-coordinate. We prove this with Lemma 2,
below. The only necessary modification to the algorithm above is to keep track of
time and location of every one-point intersection of a pair of faces.

Lemma 2. If two moving polyhedra collide, then at the moment of their collision a k-
face of each, k<2, will intersect in a single point.

Proof. Suppose the polyhedra collide in such a way that at the moment they hit, they
intersect in a line or a polygon. Then a vertex of this line or polygon is the point of
intersection of a face of each polyhedron. ®

In order to prove that the polytope separation algorithm works we must prove
our claim that it is sufficient to find the separation of a subset of the pairs of faces.
We do so with a series of lemmas. For the following lemmas assume that P and Q

10

are polytopes in EZ and s is a line segment connecting them that realizes their
separation. Assume also that of all the faces of P and Q that s intersects, p and q
respectively are the faces of lowest dimension. The first lemma is the observation
that s intersects p and q in interior points, provided that we allow a vertex to be an
interior point of itself.

Lemma 3. s intersects p and q in interior points.

Proof. Suppose s intersects p or q in a boundary point. Then s intersects a lower-
dimensional face of Por Q. B

The next lemma shows that we need only consider faces whose containing
flats have a mutual normal, provided that we say a line is normal to a point that it
intersects.

Lemma 4. sis normal to p and q.

Proof. Suppose that s is not normal to p or to q. By Lemma 3 we have that s
intersects p and q in interior points, and if 8 is not normal to p or q then p or q must
not be a vertex, so we can slide an endpoint of 8 in some direction and shorten s.
Therefore s does not realize the separation. M

Thus, we need only consider pairs of faces that have a mutual normal.
However, faces that are partly parallel can have many mutual normals; we want to
show that it suffices to test faces that have a unique mutual normal. To do so, we
must show that if two faces that realize the separation of the polytopes are partly
parallel, then the separation is realized by a pair of faces of lower total dimension.

Lemma 5. If two faces are partly parallel, then their separation is realized by a line
segment connecting a boundary point of one and a point of the other.

Proof. The separation is realized by a normal line segment, which degenerates to a
point of intersection when both faces are translated to the origin. However, since the
faces are partly parallel, they intersect in at least a line segment, so a boundary
point of one intersects a point of the other. Thus a line segment from a boundary
point of one of the untranslated faces to the other realizes the separation. W

Finally, of the pairs of faces that have a unique common normal, we show that
we need only consider pairs for which the feet of the normal are in the faces.

Lemma 6. If Afp) and AfRq) have a unique common normal but the feet of the
normal are not in p or q, then the separation of P and Q is realized by a different
pair of faces.

11

Proof. The separation is not realized by interior points of p or q since if it were, it
could not be normal to the points. Ifit is realized by boundary points, then it is
realized by another pair of faces. W

Thus, in order to find the separation of polytopes we need only consider the
separation of pairs of faces that are not partly parallel and such that the point of
intersection of the flats or the feet of the mutual normal lie in the faces. Also, we
need only test pairs of faces such that the sum of the dimensions dy + dg <d.
Therefore the algorithm finds the minimum separation of a subset of the pairs of
faces that is sufficient to guarantee that the separation found is also the separation
of the polytopes.

In the algorithm above we make use of an auxiliary algorithm for determining
whether a point is in a d-polytope in E<, which we call the point—polytope algorithm,
and an algorithm for determining whether a line segment intersects a facet in Ed,
which we call the segment—facet algorithm. These algorithms are mutually recursive
in dimension: the point-polytope algorithm for dimension d makes use of the
segment-facet algorithm for dimension d; the segment—facet algorithm for dimension
d makes use of the point-polytope algorithm for dimension d-1; and so on. We first
present the point—polytope algorithm.

3.3. The Point-Polytope Algorithm

Given a point p and a d-polytope P in Ed, we now present an algorithm for
determining whether the point is in the polytope. The problem is easy in the case
d=1. In this case the problem is to determine whether a point p lies in some closed
interval of the real line [ab].

For higher-dimensional cases, we use a straight-forward generalization from
E2 and E3 to E2 of a well-known algorithm based on the Jordan Curve Theorem.
The algorithm is to consider a ray r from the point in any direction and count the
number of times that the ray intersects the boundary of P using the segment-facet
algorithm (below) on r and each facet of P. Since the polytope is bounded and each
intersection with the boundary of P means entering or leaving P, the number of
intersections is odd if and only if p € P.

In general r will intersect the interior of the facets that it intersects.
However, if it intersects the boundary of facets then there are special cases to be
handled. If r intersects the boundary of a facet at a point, then we can find the

12

lowest-dimensional face f that it intersects at that point by following the links from
the facet to the incident faces. Once we have found f, we can check the sense of the
intersection of r with each facet incident upon f, since we know the inside and
outside of a facet. If the sense of the intersection is the same for every facet incident
upon f, then we count one intersection with the boundary of P. If the sense of the
intersection is not the same for every facet incident upon f, then we count two
intersections: the ray enters and exits P at that point (or touches P but does not
enter or exit it). We mark the faces incident upon f as “done” so that we do not count
the intersection twice.

If r lies in the hyperplane spanned by some facet, we use the segment-facet
algorithm recursively to count the number of intersections of the segment with that
facet. At the boundaries of the facet, we must determine whether the ray is
entering/exiting the polytope or just the boundary. That is, we do not count
intersections where the ray passes from the interior into the boundary. We count
only cases where the ray enters or exits the polytope.

An alternative to handling all of the special cases is picking a random
direction and counting the number of intersections of the ray in that direction with
the interior of facets. If the ray intersects the boundary of any facet, pick a new
random direction and repeat. This takes a small constant expected number of

“stabs” for any “reasonable” polytope—i.e. any polytope whose facets are not almost
completely boundary.

3.4. The Segment-Facet Intersection Algorithm

Given a line segment s and a facet f (that is, a (d-1)-polytope) in E<Z, we now
present an algorithm for determining whether the segment intersects the facet. If
d =1, the problem is to determine whether a given line segment contains a point on
the line. To do this we check whether the point is between the endpoints of the line
segment.

In higher dimensions, we first test whether the line segment lies in Aff(f) or is
parallel to it. Ifitis parallel, s and f do not intersect; if the line segment lies in
Aff(f), then we test s with the boundary faces of f using the segment-facet algorithm
recursively. If s and f do not intersect we must determine whether s is completely
inside f using the point-polytope algorithm on an endpoint of s. Otherwise, the line
containing s intersects the hyperplane containing fin a single point. It remains to
check whether the intersection point of s and fis in s and f. We do this using the
point-polytope algorithm for dimension 1 and d-1.

13

We show with the next lemma that the point-polytope and segment-facet
algorithms require linear time in the number of incidences of the polytope, if we
consider the dimension of the problem to be a constant.

Lemma 7. The runtime of the point-polytope and segment-facet algorithms for a
polytope P is O(I(P)).

Proof. The algorithms are mutually recursive in dimension. The point-polytope
algorithm for dimension d calls the segment-facet algorithm for dimension d or less,
and the segment facet algorithm for dimension d calls the point-polytope algorithm
for dimension d-1 or less. Therefore the algorithms halt.

In determining whether a point is in a d-polytope or a line segment intersects
a d-facet, the recursion occurs only a constant number of times since at each
recursive call the dimension is reduced. Therefore in order to determine the runtime
of the algorithms we need only consider the runtime of one level of recursion of the
algorithms. At the top level of recursion, the point-polytope and segment-facet
algorithms both consider each facet only once. Thus, the algorithms take time
oI(P)). &

3.5. Collision Detection

Using the results of the previous sections, we can show that the polytope
separation algorithm takes quadratic time in the number of incidences of the two

polytopes:

Lemma 8. The polytope separation algorithm for polytopes P and Q takes
o(I(P)1(Q)).

Proof. The polytope separation algorithm uses the point-polytope algorithm at most
once for every pair of faces of the polytopes. Since the sum of the number of
incidences for each face is the number of incidences for the whole polytope, the whole
algorithm takes time O(I(P)-1(Q)). ®

Therefore we can find collisions among several polyhedra in quadratic time:

Theorem. Using the polytope separation algorithm we can find the time and location
of the first collision among several polyhedra undergoing linear motion in O(n?) time
where n is the total number of vertices of the polyhedra.

14

Proof. The polytope separation algorithm requires O(I(P)1(Q)) time. However, for 4-
prisms, I(P) = O(n) since the bases of the prism are polyhedra and the additional
faces are in one-to-one correspondence with the faces of a basis. In fact, the total
number of faces of the prism is 3 times the total number of faces of the polyhedron.
Thus, finding the time and location of intersection of two polyhedra takes O(n2) time
where n is the total number of vertices. Determining whether several polyhedra
collide is done by finding collisions of all pairs, which therefore requires O(n2) time
where n is the total number of vertices. W

4, Extensions

The approach of detecting collisions by considering time to be a dimension
also works for polyhedra that are rotating or otherwise moving in a non-linear path.
However, the volumes of E4 corresponding to the motions are not polytopes; the
vertices trace out curved paths depending on the motion and rotation. Thus there is
no notion of skew faces and we cannot find the separation as described above.

However, if two moving polyhedra collide, at the moment of collision two faces
still intersect in a single point. This can happen in two ways: by vertex-face contact
and by edge-edge contact. Assuming that at the initial time the polyhedra do not
intersect, in order to detect collision it is therefore sufficient to find single-point
intersections of the 1-manifolds and 3-manifolds swept out by vertices and faces, and
of two 2-manifolds swept out by edges.

In the case of edge-edge contact, it is sufficient to find the one-point
intersections of the 2-surfaces containing the edges, find the times at which they
occur, and test whether the edges intersect at those times. In the case of vertex-face
contact, it is sufficient to find one-point intersections of the 1-surface corresponding
to the motion of the vertex and the 3-surface corresponding to the motion of the plane
containing the face. Then test whether the vertex and the face actually intersect at
the time of each intersection point.

5. Conclusion

We have presented an O(n)-time algorithm for determining whether two
convex polyhedra of total size n will collide and an O(n?)-time algorithm for the case
of several general polyhedra. Both algorithms use space O(n). The algorithm for the
convex case is a generalization of Dobkin and Kirkpatrick's O(n)-time convex
polyhedron separation algorithm. The algorithm for the general case is a

15

generalization of the naive separation algorithm for polygons and polyhedra; we
generalize it to find the separation of polytopes in Ed. We also show how to find the
time and location of intersection in this case.

The algorithm for collision detection in the general case takes only a small
constant factor more time than a polyhedron intersection test, since for a polyhedron
with n vertices, edges, and faces, the prism corresponding to a linear motion hasa
total of 3n faces. Since any collision detection algorithm will have to test for
intersections among objects and obstacles at least once, we believe that ours is a
practical approach. Itis certainly more efficient than any algorithm that repeatedly
tests for object/obstacle intersections, and it is not much more difficult to implement
than a polyhedron intersection algorithm.

Since the algorithm for collision detection in the convex case uses O(n) time,
it is clearly order-optimal if we assume that part of the problem is to read in the
description of the object. However, it may be possible to improve the collision-
detection time if we allow the use of a (possibly large) data structure already in
memory. The algorithm for the general case takes the same amount of time as the
best known polyhedron-intersection algorithms. Possible extensions include
developing the mathematics for objects undergoing nonlinear motions and for
extending the method to handle jointed objects such as robot arms. It also may be
possible to improve the expected running time for the general case by using a
hierarchical representation of the polyhedra.

Acknowledgement

The helpful comments of Charles Dyer are gratefully acknowledged.

References

Boyse, J., “Interference detection among Solids and Surfaces,” Comm. ACM 22,1979,
pp. 3-9.

Cameron, S., “A study of the clash detection problem in robotics,” Proc. IEEE Int’l
Conf. on Robotics and Automation, 1985, pp. 488-493.

Canny, J., “Collision detection for moving polyhedra,” IEEE Trans. Pattern Analysis
and Machine Intelligence 8(2), 1986, pp. 200-209.

16

Chazelle, B., “Convex partitions of polyhedra,’f Siam J. Comput. 13(3), 1984, pp. 488-
507. '

Culley, R. and K. Kempf, “A collision detection algorithm based on velocity and
distance bounds,” Proc IEEE Int'l Conf. on Robotics and Automation, 1986,
pp. 1064-1069.

Dobkin, D. P. and D. G. Kirkpatrick, “A linear algorithm for determining the
separation of convex polyhedra,” J. Algorithms 6,1983, pp. 381-392.

Ganter, M. A., Dynamic Collision Detection Using Kinematics and Solid Modelling
Techniques, Ph.D. thesis, University of Wisconsin - Madison, 1985.

Griinbaum, B., Convex Polytopes, Wiley, 1967.

Hayward, V., “Fast collision detection scheme by recursive decomposition of a
manipulator workspace,” Proc. IEEE I nt’l Conf. on Robotics and Automation,
1986, pp. 1044-1049.

Lozano-Perez, T., “Spatial planning: a configuration space approach,” IEEE Trans.
Comp. C-32 (2),1983, pp. 108-120.

17

