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Abstract. Let G be a proper subgroup of Z7}, the multiplicative group of units modulo n. Many number
theoretic algorithms assume that an element in Z}, — G can easily be found. In this context, an element in
Z%, — G is often called a “witness.” Ankeny’s theorem states that, assuming the ERH, the smallest witness
is O(log2 n). The purpose of this paper is to examine a “randomized” Ankeny’s conjecture. Consider the
following experiment. Choose a € Z, at random. Examine the elements a,a + 1,...,a + k — 1, where
k = O (log® n) for some constant c. We would like the probability that none of these are witnesses to be
small. The randomized Ankeny conjecture is that this probability is O (1/n®) for some constant 0 < o < 1.
We show that if the randomized Ankeny conjecture is true, then a deterministic Ankeny conjecture, which
allows us to efficiently find witnesses deterministically, is already true. We also prove some partial randomized
Ankeny results, which state that we can bound the probability of not finding a witness by O(1/ pt/2-¢€), where

p is a prime divisor of n that is “nontrivial” on G.

0. Introduction

The Half-Cost of a Randomized Algorithm

It is customary nowadays to consider problems that are solvable in random polynomial time to be tractable.
However, this point of view relies on the availability of a source of independent, uniformly distributed random
bits. No such source exists, so the status of problems solvable in random polynomial time is dubious at best.
We would like to eliminate the need for random bits—i.e., find deterministic polynomial time algorithms for
problems that are currently known only to have random polynomial time algorithms. In lieu of eliminating
random bits altogether, we might tackle the intermediate problem of reducing the number of random bits.
We are therefore lead to viewing random bits as a scarce resource. Let’s restrict our attention to
probabilistic Turing machines that either accept or reject their input, such that for any particular input, the

probability that the machine accepts is either 0 or > 1/2. That is, we restrict our attention to probabilistic
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Turing machines of the kind that characterize RP. Let M be such a machine. Suppose that on input z, the
number of random bits used is at most b(z) and that the error probability is 2-%=), We define the half-cost
of M on input z, denoted h(z), to be the ratio b(z)/t(z). Intuitively, the half-cost measures the number of
random bits required to cut in half the probability of making a mistake.

We argue that the half-cost is a good measure of an algorithm’s use of random bits. Simply using b(z)
as a measure of random bit use is inadequate, since it ignores the effectiveness of the random bits in reducing
the error probability. It is important to consider the relationship between the number of random bits and
the error probability. The half-cost does this. One nice property of the half-cost is that it does not change
if we iterate M to reduce the error probability.

We observe that if the half-cost is nonzero (if it is zero, M is actually deterministic), the best possible
half-cost is O(1) and the worst is polynomial in the length of the input. In our quest for better algorithms,

as an intermediate step in eliminating random bits altogether, we should strive to minimize the half-cost.

The Subgroup Paradigm

We now consider a collection of number theoretic problems that can be solved in random polynomial time
using what we’ll call the subgroup paradigm. These problems are characterized as follows. Given an integer n
as input, a search is conducted for an integer a that lies outside some proper subgroup G of the multiplicative
group of units modulo n. Such an integer a is then used in further computations, or is simply used to signal
acceptance of the input. Examples include the congruence solving algorithm in [AMM], the problem of
finding primitive elements modulo primes p given the prime decomposition of p—1, the problem of factoring
n given the Euler totient function ¢(n) [M], and the primality tests of Solovay and Strassen [SS] and Miller
Given the abundance of algorithms that employ the subgroup paradigm, we are compelled to take a
closer look at it. Let Z, be the ring of integers modulo n, Z,ﬁ be the set of nonzero elements of Z,,
and Z}, be the multiplicative group of units of Z,. Let’s restrict our attention to membership problems
for languages I C Z that can be characterized as follows: for every n there exists a subgroup G of Z7,
such that (1) membership in G can be determined in polynomial time, and (2) n € L if and only if G is
a proper subgroup. The set of composite integers is such a language (see [SS] or section 3). An algorithm
that employs the subgroup paradigm to recognize L relies on the hypothesis that we can efficiently find an
element of Z7, — G, assuming G is a proper subgroup of Z%. Actually, it often suffices to simply find an
element of Z} — G. Such an element is often called a “witness,” since it testifies to the fact that n € L.
How are witnesses to be found? One approach is to use a version of Ankeny’s theorem which states that,
assuming the Extended Riemann Hypothesis (ERH), the least element in Z7, — G is O (log?n) (see [B2]).
This gives rise to the following efficient procedure: examine the numbers 1,2,...,k, where k = O (log2 n)——
one of these must be a witness. The problem with this approach is that the ERH has never been proved.

Another approach is to use randomization. Assuming we can generate a “random” sequence



a1, a3, ..., a of elements from Z,, the probability that all of these lie in G is at most 2-%. To see this, note
that |G| < é(n)/2 < n/2, and so the probability that a randomly chosen element from Z, lies in G is at
most 1/2. This approach will, with very high probability, quickly find an element in Z}F —G. It will also
quickly find an element in Z% — G. This follows from the fact that ¢(n) = Q(n/loglogn) (see [HW], p.
267). The problem with this approach is that it uses many random bits, and in fact uses them in a possibly

suboptimal way. The half-cost of an algorithm using this approach could be as bad as Q(logn).

The Randomized Ankeny’s Conjecture

Our goal is to minimize the half-cost of randomized algorithms that use the subgroup paradigm. To this
end, we examine a “randomized” Ankeny’s conjecture. Consider the following experiment. Choose a € Z»
at random. Examine the elements a,a 4+ 1,...,a+ k — 1, where k = O (log° n) for some constant c. We
would like the probability that none of these are witnesses to be small. The randomized Ankeny conjecture
is that this probability is O (1/n®) for some constant 0 < & < 1. If the randomized Ankeny conjecture is
true, then randomized algorithms that use the subgroup paradigm can be modified so that they have an
optimal half-cost, i.e. O(1). It has been shown in [B1] that when 7 is prime, the probability of not finding
a witness using such a procedure is O (l/nl/g‘f) for all € > 0. Thus, the focus of this paper is composite n.
We have two main results:
(1) We show that if the randomized Ankeny conjecture is true, then a deterministic Ankeny conjecture,
which allows us to efficiently find witnesses deterministically, is already true.
(2) We prove a partial randomized Ankeny result, the usefulness of which depends on the factorization of n
and the structure of G. This result states that we can bound the probability of not finding an element
in Z} ~ G by 2logp//p where p is a prime divisor of n that is “nontrivial” on G (see section 2 for the

technical definition of “nontrivial”). We also prove an analogous result for finding elements in Z7, — G.

These results are discussed in sections 1 and 2, respectively. Section 3 sketches some applications of the results
in section 2, including a half-cost analysis of the Solovay-Strassen prime test, which is an improvement of

the error bound of Kranakis [K]. Section 4 discusses some open questions.

1. Negative Results

Let G be a proper subgroup of Z%. Suppose we perform the following experiment: choose a € Zy, at
random and examine a,a + 1,...,a +k — 1, where k& = O (log® n) for some constant c. We want to know
the probability that none of these are in Z} — G (or better, Z}, — G). We would like this to be O (1/n%)
for some 0 < a < 1. Tt turns out that if we can make the probability this small, we can in fact reduce it to
zero by looking at longer (but still polynomial bounded) sequences. We begin with some definitions to make
things more concise.

Let n be an integer, G a subgroup of Z7, and k a positive integer. Define P(n, k, G) to be the fraction of
a € Zn, such that none of a,a+1,...,a+k—1arein Z, —G. Wesimilarly define P*(n,k,G) and P*(n, k,G)
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by replacing Z, — G by Z} — G and Z}, — G, respectively. We then define P(n, k) = maxg P(n,k, G),
where G ranges over all proper subgroups of Z;,. P*(n,k) and P*(n, k) are defined similarly by replacing
P(n,k,G) by Pt(n, k,G) and P*(n, k, G), respectively.

We know formally define three randomized Ankeny conjectures: RA, RAT, and RA*.

Randomized Ankeny Conjecture (RA). There exist positive numbers b and ¢, and 0 < o < 1 such that
P (n, [b(logn)*]) = O (
n, [b(logn = —

We define RAT and RA* by replacing P by P+ and P*, respectively. In each of these definitions, we
can replace O(1/n%) by o(1/n®), since 1/n® = o0 (1/n%/?). Also note that RA «+ RAT. This is because
P (n, [b(logn)°]) < P* (n, [b(logn)°|) < P (n, [b(logn)°]) + b(logn)®/n

We know define three analogous deterministic Ankeny conjectures: SA, SAT, and SA*.

Strong Ankeny Conjecture (SA). There exist positive numbers b and ¢ such that

P(n,|b(logn)¢]) =0 for all sufficiently large n.

Again, we define SA™ and SA* by replacing P by P+ and P*, respectively. Note that SA « SAT, since
P (n, |b(logn)°|) = 0 implies that P* (n, |2b(logn)¢]) = 0. Also note that SA — PRIMES € P.

Proposition 1.1. RA* — SA*.  In particular, P(n,[b(logn)°]) = o(1/n®) implies that
P (n, |b(logn)*tt]) = 0 for all sufficiently large n.

Proof. Assume P (n, |b(logn)°*'|) > 0 infinitely often. We want to show that P(n, [b(logn)°]) is
not o(1/n%). Now, there are infinitely many integers no with a proper subgroup Go < Zy,, such that
P(ng, ko, Go) > 0, where ko = [b(log no)°+1J. For each such sufficiently large ng, we cook 'up an n; such
that P (ni, |b(logn1)°]) > D/ng, where D is a constant,.

There is a constant 4 such that for any = > 1 there is a prime p satisfying z < p < Az (see [HW], p.
343). Let = be defined by (log no)°*! = (log(noAz))°, and notice that ¢ — oo as ng — co. Let p be the least
prime > z. For ng sufficiently large, < p < Az. Put ny = ngp. Now,

(logno)°*! = (log(noAz))®
> (logny)®
Also,
(log no)*! = (log(noAdz))®
< (logng Ap)©
< 0 ((logmns)?)
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Hence, there is a constant B such that for sufficiently large no,
(logn1)° < (logno)**" < B(logm)"

Let &6 > 0. Then we have

ng < exp (Bl/(c+1)(lognl)c/(c+1)>
= nlBl/(°+1)(logn1)”1/(6+l)

< nd for sufficiently large no.

We can set 6 = 1/2 so that ngp > nd, i.e. p > no. It follows that ged (p, 7o) = 1, and by Chinese Remain-
dering, Zn, = Zpn, X Zp. We define the subgroup Gy = Go x Z;;. Put k; = |b(logn1)°|, and note that ky <
ko. By the Chinese Remainder isomorphism, it is easy to see that P(ny, k1, G1) = P(no, k1, Go) P(p, k1, Z;‘,).
Since k; < ko, P(no, k1,Go) is nonzero. Therefore, P(ng, k1, Go) > 1/no. Also, P(p,kl,Z;) = (p—k1)/p,

since there are only k; elements a € Z, such that one of a,a+1,...,0r a+k; — 1 are not in Z;‘,, It follows
that P(ny, k1, G1) is at least
(5) (557)
ng P .

Since (p— k1)/p — 1 as p — oo, for sufficiently large no, we have P(ny, k1) > D/ng for some constant D.

Now put 6 = o and we obtain P(nq, k1) > D/nf. B
A similar result holds relating RA* and SA*.

Proposition 1.2. RA* — SA*.  In particular, P*(n,|b(logn)®]) = o(1/n*) implies that
P* (n, |b(logn)e*!]) = 0 for all sufficiently large n.

Sketch of proof. The proof is almost identical to the proof of Proposition 1.1. The only difference is
that P*(n1, k1, G1) > P*(no, k1, Go). This is because for any integer a, a mod ny € Zy,, — Gi implies that

amodng € Z;, —Gop. m

At this point, the reader might complain that we have just set up a “straw man.” Indeed, it would
be nice to extend the results of this section to a more general setting. For example, instead of considering
sequences a,a-+1,...,a+k — 1, we might consider a, f(a),..., f¥=1(a), where f is a fixed function chosen
from some interesting family of functions.

One interesting case is to let f be any fixed polynomial with integer coefficients. Propositions 1.1 and
1.2 handled the special case f(z) = x + 1. It is easily seen that the proof of Proposition 1.2 does not rely on
this restriction, and so it generalizes to any fixed polynomial. An open question is whether or not proposition

1.1 can be generalized in a similar manner.



2. Positive Results

In this section, we prove a weak form of the randomized Ankeny conjecture, which is useful in cases where
we have some information about the factorization of n and the structure of the subgroup G < Z7,. The
main results of this section are Propositions 2.1 and 2.6, which deal with witnesses of the form Z} — G and
Z} — G, respectively.

Suppose p is a prime dividing n, and G is a subgroup of Z},. Split n into coprime factors p® and m.
We say that p is nontrivial on G if for some integer y, y = 1 (mod m) and y mod n € Z}, — G. Otherwise,
p is trivial on G. By Chinese Remaindering, Z}, = Z}, X Zy.. It is easy to see that p is trivial on G if and
only if G is of the form H x Z;c where H is a subgroup of Z7,. Notice that if G is a proper subgroup of

7%, then at least one prime divisor of n is nontrivial on G.

Proposition 2.1. Let n be an integer, and p be an odd prime dividing n. Let k = [log, VB|. Let G be a
proper subgroup of Z}. Assume that p is nontrivial on G. Then the fraction of € Z, such that none of

z,z+1,...,o+k—1arein Z} — G is less than 2logp/\/P.

Proof. It will suffice to show that the fraction of x € Z,, such that all of z,...,z+ k — 1 are in G is no
more that log p/\/p. For then the fraction of z € Z, such that z,...,z + k — 1 are all outside Z} — G is
no more than log p/\/p + k/n, which is easily shown to be less than 2logp/.\/p.

By Chinese Remaindering, we have Z, = Z, X Zpe. Let h be the natural homomorphism from Zj,
to Z%/G. Define hy: Z%, — Z%/G by a — h(a,1), and hy: Z;. — Z,/G by b+~ h(1,b). So we have
h(a,b) = hi(a)ha(b). Furthermore, since p is nontrivial on G, hy is nontrivial, i.e. ha(d) # 1 for some b.

Let € € Zm. For y € Zpe, let B(y) be the condition that if z = (z,y) then z,z+1,...,and z+ k ~1
are all in G. Let o be the fraction of all y € Z,. satisfying B(y). We will show that o < logp/./p. Since
this holds for all choices of £ € Z,, the result will follow.

Suppose that z + j — 1 ¢ Z}, for some j = 1,...,k. Then z ¢ Z;, for any choice of y. In this case
o = 0. Otherwise, let v; = hy(w +j—1) for j =1,...,k. We want to know the fraction of y € Zp- such
that y +j— 1 isa unit and ha(y+j—1) =77  for j=1,..., k. If ;" is not in the range of hy for some j,
there are no such y, and again o = 0.

Otherwise, let K be the kernel of hy. Choose &1,...,6 € Zp. such that ho(€;) = 'yj“l. Then B(y) is
equivalent to the condition that y+j—~1€ &K for j=1,..., k. Let ¢ = [Z;c : K]. We know that ¢ # 1
and ¢ | ¢ (p®) = (p— 1)p*~1. If ¢ does not divide p — 1, then we must have ¢ > p. But in this case, the
fraction of y satisfying y € £ K is already no more than 1/p, and so a < 1/p < logp/\/p.

Otherwise, assume that ¢ | p— 1. Since K = {1 : t € Z}.}, B(y) is equivalent to the condition that
there exist ty,...,t; € Z;c such that y + j — 1 = &t for j=1,...,k. So we have reduced the problem to
the following:

CLAIM. Let p be an odd prime, and let ¢ | p—1, ¢ # 1. Put k = flogz \/]ﬂ Let e > 0. Let
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£1,6, ..., & € Z%.. Then the fraction of y in Zpe such that there exist £y,%3,...,%; € Z;‘,a which satisfy
y=&t,y+1=86t,. .., y+k—1=¢§t] is at most logp/\/p.

Lemmas 2.2 to 2.5 will establish this claim, and complete the proof. m
The following lemma, which is really the key to this result, is proved in [B1].

Lemma 2.2. Let p be an odd prime, ¢ | p—1, ¢ # 1, 2 < k < p. Let &,&,...,& be integers relatively

prime to p. Then the number of distinct solutions mod p in z,y1,...,yr to the system of equations

z=&6y] (modp)
z+1=6y) (mod p)

x+k—1=¢&yl (modp)
is at most p+ ¢*(k — 1),/p.

We now give a “power raising” lemma which relates the number of solutions to a system of polynomial

equations mod p and mod p®.

Lemma 2.3. Let p be a prime number. Let fi,f2,...,fm € Z[z1,22,...,2,) where m < n. Let
J (%1,...,2,) be the matrix
Ofm/O0zy ... Ofm/Ozyn

Assume the following “nonsingularity” condition: For any aj,...,a, € Z, if
filay,...,ap)=0 (modp) (i=1,...,m)

then the rows of J (a1, ..., a,) are linearly independent mod p.

Now, let N, be the number of distinct solutions mod p® in 21, ..., 2, to the system of equations

fi(zy,...,2z,) =0 (mod p°)

fm (@1, 2) =0 (mod p®).

Then Neggq = p?» ™N,, and hence N, = p(e”l)(”‘m)Nl.

Proof. Suppose ai,...,an satisfy f; (a1,...,an) =0 (mod p*t1), for ¢ = 1,...,m, where 0 < a; < p**1.

Let’s write a; = b; + h;p®, where 0 < h; < p and 0 < b; < p®. Then bi,..., by satisfy fi(b1,...,b5) =0
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(mod p#), for i = 1,...,m, We will show that for each such solution b;,...,b, mod p®, we can choose
hi,..., by in exactly p*~™ ways to yield a solution a1, ..., a, mod p®*+!. This will establish the result.

Use Taylor’s formula to write

afi
.fi (bl +h1pea”-7bn + hnpe) = fi (bla'“'abn)+,llpe“°f—(b1)- . :bn)
8.121

ofi
Oz,

+---+hnpe (bl,...,bn)
+ higher order terms

afi
‘—_“~fi(bla-~~;bn)+hlp85§1’(b1;~-wbn)

+ hnpe%:fi (b1,...,b,) (mod p**1)

Now let’s set this quantity equal to zero mod p*+! and divide through by p®, to obtain

e afz afz _
fz(bl,...,bn)/p +]7,15-:1—:-1-(61,...,11”)+"'+hn—a—?c~:(b1,...,bn):0 (modp)

Hence, the h; of interest are the solutions of

hl _fl(bly-“)bn)/pe
J(,...0) | ¢ ) = {mod p)
hn "'fm (bl,...,bn) /pe
Now, the nonsingularity condition implies that the rows of J (by,...,by) are linearly independent. Thus, by

Gaussian elimination, there are n — m degrees of freedom, and p®~™ solutions. m

Lemma 2.4. Let p be an odd prime, e > 1, ¢ p—1,¢# 1, b > 1. Let &,...,& be integers relatively
prime to p. Let F(k) be the fraction of z € Zpe for which there exist y1,...,yx € Z}. satisfying

z =&yl (mod p°)

v+ 1= &yd  (mod p?)

z4+k—1=&yl (mod p®).

Then F(k) < ¢ %+ (k—1)/\/p.

Proof. If k = 1, the result follows from the fact that one out of every ¢ elements in Z}. is a ¢-th residues.

If & > p, F(k) is zero. Hence we may assume that 2 <k < p.
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We can use lemmas 2.2 and 2.3 to count the number of solutions to (*). We need to check the nonsin-

gularity condition of lemma 2.3. Let fj(,41,...,yx) =2 +j—1— ij;l, for j=1,...,k. Then

1 =&yl .
~€2qy§”
J(, 1, Yk) =
1 —&rqyd™!
Assume that xz,yq,. ..,y satisfy (*). Since k < p, at most one y; can be 0 mod p. From this it is easy to

see that the rows of J are linearly independent mod p.

Applying lemmas 2.2 and 2.3, we see that there are at most p*~! (p + ¢*(k - 1)\/17) solutions to (x).
Suppose z,y1, - . ., Yr is a solution to (*) such that y1,...,yx € Zre. Then there are exactly ¢* such solutions
involving z, namely, z,wfiy;,...,w*yy, 0 < i; < ¢, where w is a an element of order ¢ in Z%.. Thus the
number of € Z . for which there exist y1,...,yr € Z}. satisfying (%) is at most p*~* (pg=* + (k - 1)\/p).
Divide this by p® to obtain the result. m

Lemma 2.5. Notation as in lemma 2.4. Let k = [log, \/p]. We have F(k) < logp/\/p.

Proof. Let f(z) = ¢~ + (¢ — 1)/\/p. We know that F(k) is a nonincreasing function, that F(k) < f(k),
and that f(z) is concave up. Hence, it will suffice to show that f (Iogq \/'13) F (logq\/}')'—{— 1) < logp/\/P.

This is in fact the case for p > 7, as can be easily checked. IFor p = 3 and p = 5, one directly checks that

logp/\/pP>1/2> F(1). m

Lemma 2.5 completes the proof of Proposition 2.1, which deals with witnesses of the form Z} —G. The
natural question to ask next is whether a similar result holds for witnesses of the form Z}, — G. To answer
this question, we need to know something about the distribution of the units in Z,. Let a1 < az < ---
be the positive integers relatively prime to n. Let g(n) = max{a;+1 — a;}. g(n) is known as Jacobsthal’s

function. Results in [I] imply that g(n) = O (log? n).

Proposition 2.6. Let n be an integer, and p be an odd prime dividing n. Split n into coprime factors p®
and m. Let k = g(m) [log, \/]ﬂ Let G be a proper subgroup of Z},. Assume that p is nontrivial on G. Also

assume that k£ < p. Then the fraction of x € Z,, such that none of z,z+1,...,z+k —1 arein Z} — G is

less than 2logp/\/p.

Proof. As in Proposition 2.1, we have Z, = Z,, X Zpe. Let h be the natural homomorphism from Z7,
to Zy/G. Define hy: Z}%, — Z3,/G by a — h{a,1), and ha: Zy. — Z7,/G by b+ h(1,b). So we have
h(a,b) = hi(a)h2(b). Since p is nontrivial on G, hy is nontrivial, i.e. ha(b) # 1 for some b.

Let € € Zpm,. Fory € Zpe, let B(y) be the condition that if z = (2,y) then noneof z,z2+1,...,and 2+
k—1arein Z* —G. Let a be the fraction of all y € Z pe satisfying B(y). We will show that v < 2logp/\/P.

Since this holds for all choices of z € Z,,, the result will follow.
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By hypotheses, at least logy \/Fofz,2+1,...,2 4+ k — 1 are in Z},. Let’s call these x +c1,..., 2+ ¢,
where [ = |-Iog2 \/ﬂ, and 0 < ¢; < p.

Let v; = hi(x + ¢;) for j = 1,...,1. It can be shown that the fraction of y € Zy. such that y +¢; is
a unit and ha(y +¢j) = 7]-“1 for j = 1,...,1, is at most logp/\/p. This is just a slight extension of what
was shown in Proposition 2.1. Lemmas 2.2 to 2.5 can be modified to handle this extension, and we omit the
details.

Furthermore, the fraction of y € Zpe such that y+¢; is not a unit for some j = 1,...,! is no more than

I/p. Thus, a < logp/\/p+ !/p. From this, it is easy to show that o < 2logp/./p. m

Note that the requirement that £ < p in Proposition 2.6 is not a practical limitation. If p < k, we
can efficiently split n into m and p®. Using the notation in the proof, we can efficiently reduce the problem
of finding an element in Z}, — G to the problem of finding an element in Z}. — Ker hy. It is not hard to
show that one of 1,2, ..., p? must lie in Z%. — Ker hy. So we can deterministically find a witness simply by

examining no more than k2 numbers.

3. Applications

Applications to Primality Testing

Let n be an odd integer, and let G be the subgroup of Z}, defined by
— « (T — (n=1)/2
G_{mezn.(n)modn_m }

Here, (%) is the Jacobi symbol. The Solovay-Strassen prime testing algorithm [SS] is based on the fact that
n is prime « G = Z%. A witness to the compositeness of n is any @ € Z;} — G. A possible strategy for
searching for a witness is to choose z at random from Z,, and then test if one of 2,2+ 1,...,2+k —1
is a witness, where k is bounded by some polynomial in logn. The following proposition tells us that this

strategy has some merit.

Proposition 3.1. Let n be an odd composite integer, and G the subgroup of Z7, defined above. Let p

be the largest prime dividing n, and let ¥ = ]—%-logz n}. Then the fraction of z € Z, such that none of

z,z2+1,...,2+k~1arein Z} — G is no more than 2logp//p.

Proof. It will suffice to show that all prime divisors p of n are nontrivial on G. Then proposition 2.1 will
apply. Let n = mp® where p does not divide m. By Chinese Remaindering, we can write Zp, & Zm X Zpe.
Let g be a generator for Zj., and let y = (1, g). We will show that y ¢ G.

Suppose e > 1. In this case, we must have g(n=1/2 £ +1 and hence y("~1)/2 £ 41. To see this, note
that ¢(®=1)/2 = £1 implies that p*~(p — 1)/2 | (n — 1)/2 and hence p | n — 1, which is clearly impossible,
since p | n. We conclude that y € G.
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Suppose e = 1 and m > 2. In this case, we have (L) = (%) (%) = 1-(~1) = —1. However,

y(*=D/2 = (1, g(»=1)/2) £ —1. Hence, y ¢ G. m

We want to compare the half-cost of the probabilistic algorithm based on the strategy described in
Proposition 3.1 to the half-cost of the standard Solovay-Strassen algorithm.

The standard Solovay-Strassen algorithm on input n guesses a number = between 1 and n, which takes
log, n random bits. In Solovay and Strassen’s analysis of this algorithm, all we can say is that z is a “liar”
with probability at most 1/2. So the half-cost is O(logn). More recently, Kranakis has shown that if (n—1)/2
is odd, the error probability is bounded by 1/27~!, where r is the number of distinct prime divisors of n [K].
So the half-cost is O(logn/r) when restricted to integers n for which (n — 1)/2 is odd.

The modified Solovay-Strassen algorithm on input n guesses a number & between 1 and n, taking log, n
random bits. By Proposition 3.1, z 1s a “liar” with probability O (1/])1/2“5), where p is the largest prime
divisor of n. So the half-cost is O(logn/ log p). This is obviously better than the half-cost yielded by Solovay
and Strassen’s analysis. In some sense, it is a dual result to Kranakis’ result. Kranakis’ result states that
if n is “very composite,” i.e. has many distinct prime factors, then the Solovay-Strassen method has a
small error probability. Our result says that if n is “abmost prime,” i.e. has few prime factors, then the
Solovay-Strassen method (modified) has a small error probability. Note, however, that “almost all” integers
are “almost prime.” So in some sense, our result is better.

Let’s look more closely at our result. At worst, we can assume that p > %logz n; otherwise, we will cer-
tainly find a proper divisor of n, and the half-cost will be zero. Therefore, the half-cost is O (log n/ loglogn).

Beyond this, we can consider the density of sets of integers n which yield better half-costs. By the
density of a set of integers S, we mean limyco | {n < N :n € S}|/N. It is known (see [HW], p. 356) that
the number of prime factors of n is O(loglogn) on a set of density 1. Therefore, the half-cost is O(loglogn)
on a set of density 1. Compare this to Kranakis’ result. If the number of prime factors of n is O(loglogn),
Kranakis’ analysis yields a half-cost that is O(logn/ loglogn). So on a set of density 1, our half-cost is better
than Kranakis’. In [KT] it is shown that for any k, the density of integers n such that the largest prime
divisor of n is < nl/*, is no more than 1/k!. Thus, for any ¢ > 0, the half-cost is O(1) on a set of density
1—e

We should remark that [B1] gives a randomized prime testing algorithm, based on Miller’s method,

which in fact has a half-cost that is O(1).

Applications to Cryptosystems

Certain algorithms used in cryptosystems use numbers which are the product of two large primes, i.e.
n = pq where p, ¢ &~ n'/2, Thus, any algorithm which requires finding an & € Z}, — G can do so with failure
probability O (;mlT_T) by simply randomly choosing z and testing z,z + 1,...,2 + k — 1 for membership in

G, where k = l-%logz nl.
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4. Open Questions

The obvious question is whether the randomized Ankeny conjecture is true. In section 1, we showed that if
it is true, a deterministic Ankeny conjecture is already true. In section 2, we proved a very much weakened
randomized Ankeny conjecture. Some conjecture in between should be explored. Once again, consider a
proper subgroup G of Z;,. Suppose that we restrict our attention to the situation where all prime divisors
of n are nontrivial on G. The proofs of the results in section 1 don’t work in this situation. The proofs
of the results in section 2 don’t exploit this situation. The subgroup used in the Solovay-Strassen prime
test, discussed in section 3, is an example of this situation. This motivates the exploration of a randomized
Ankeny conjecture restricted to this case.

Another open question is whether the half-cost of a randomized algorithm, discussed briefly in this
paper, has any interesting properties. Pseudo-random number generators are usually analyzed with respect
to cryptographic security, making certain intractability assumptions, e.g. that factoring is “hard.” However,
pseudo-random number generators are used in randomized algorithms. So we should explore connections

between intractability assumptions, pseudo-random number generators, and half-costs.
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