f/ COMPUTER SCIENC ES
DEPARTMEN

University of Wisconsin -
Madison

Rule-Based Query Optimization
in Extensible Database Systems

by
Goetz Graefe

Computer Sciences Technical Report # 724
November 1987







RULE-BASED QUERY OPTIMIZATION
IN EXTENSIBLE DATABASE SYSTEMS

by

GOETZ GRAEFE

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN — MADISON

1987






Table of Contents

AcKDOWIEdEINENTS ......ccvueueernrcerrrnrrerererneresesssessnesrsssessssssenssensane
L. INtTOAUELION ....covireeierrrernenerenrisstenetreeae e sesessesenssssasnssnssnne

.....................................

1.1. Extensible Database SyStems ......cocccceeeeoeeeeeereeeseresreerenns

1.1.1. Proposed Concepts .......cccevverrune.e

.....................................

.......................

1.1.2. The EXODUS Concept ....c.ceeveveeeerenerrensuencn.

1.1.2.1. The Database Implementor .........cecevevernennn.

1.1.2.2. EXODUS Tools and Libraries .......

...............

1.2. Database Query Optimization ..

1.3. Outline of the Thesis ..ccccvvevecervvrcomrrennnn..

.................................

1.4. A Remark on Examples .
2. An Overview of Previous Work

--------------

2.1. Relational Query Optimizers .................

2.1.1. System R . .
2.1.2. INGRES tresesereresecesannaesnaresnaneen

2.1.3. MICROBE .............

2.2. Extensible Query Optimizers ........ccoeeeeeeeeiecescenesnnenes

2.2.1. Freytag’s Rule-Based Optimization ...

.....................................

2.2.2. NF2-Relations .......o.oovvooo.....

......

3. Extensibility in Query Optimization ....

..............

.............................

3.1. Tree-Based Optimization .
3.1.1. Cost Model ............

8.1.2. Search Strategies

38.1.3. Modularization of DBI Code .

8.1.3.1. Data Model Dependent Data Structures

8.1.3.2. Rules and Conditions .

8.1.3.3. Cost Functions

8.1.3.4. Property Functions
3.1.3.5. Argument Transfer Functions ..

3.1.3.8. Promise Estimation Functions .

8.1.4. Limitations of Our Work on Tree Based Optimization .......cceceeeereeeeurnnns

8.2. Relation to Other Database Functions

8.2.1. User Interface, Preprocessing, and Parsing
3.2.2. Run-Time Systems

8.2.3. Schema and Data Dictionary Support .
3.2.3.1. Abstract Data Types

vi

O O Ot i O DD = e

C2 C9 C0 OO OO OO 00 00 CO OO €0 €3 &3 KD DD DD D DO DO KO e bt pei bt jek pe
T O T A R G OO 00 TR e O T O



3.3. Implementation Considerations ..........cveereerevecesvessnnessecronensens

8.3.1. Generator vs. Interpreter ....c..cccceeveeveeveveecerseenenne

..........................

.....

3.3.2. Rule LAngUARE ...coeeeieeeerreercenceeereeeereesesnsseessesnesasssnnessenees

..........................

4. The EXODUS Query Optimizer Generator: Design and Implementation ................

...........

4.1. Optimizer Generation .......cceceeeeues
4.1.1. The Model Description File ...ccccoevrrerceevorccnnennane

4.1.2. Code Generation from Rules .

.......................

4.1.3. Support FUunctions .......ccceeeccerercmscrerseerseessseesnenes

.........

4.2. Optimizer Operation .........c.ceeeceecrercecsecensneseecans

4.2.1. Data Structures .. eesnesssessssatesenssasansssantsessrsennnee
4.2.2. Tracing a Transformation ..........ceceeeeoeesenenenasecs

..........................

..........................

4.2.3. Search Strategy and Learning ..
4.2.4. Management of OPEN

4.2.5. Stopping Criteria sremsraesesnnisesssnsuiasssses

..............

.................

4.3. Extending an Existing Optimizer

.....................

5. Experiences with the EXODUS Query Optimizer Generator Prototype .......ccceee....

6.1. Prototypes Designed Within EXODUS
5.1.1. Implementation

5.1.2. Experimental Databases and Queries

5.1.3. Validation of Expected Cost Factors

5.1.4. Performance ..........

5.1.4.1. Comparison with Exhaustive Search .
5.1.4.2. Handling of Large Queries

6.2. Optimizer Generator Usage Outside of EXODUS .
5.2.1. Relational Query Evaluation Using Horwitz’s Method
5.2.2. The Alpha-Extended Relational Algebra

8. A Comparison of Alternative Optimization Strategies .

8.1. Left-Deep vs. Bushy Execution Trees

8.1.1. Experiments and Results ..
8.2. Two-Phase Optimization .

7. Summary, Future Work, and Conclusions

7.1. Summary

7.2. Future Work

7.3. Conclusions cemversseesasesserasaessnssenesanasnnresasanases
A. An Example Model Description File .

-----

References

Table of Contents

vii

38
38
40
42
42
44
49
57
60
81
63
67
71
72
74
77
77
80
88
89
93
94
08
104
104
107
109
109
112
120
127
127
129
130
132
136
vi




Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:
Figure 6.9:

List of Figures

Optimizer Generation .........eeceveeeeereeecerseecenns

......

............

Example Tree Transformation ..........c.coeveeeeeerseneeseeesesssssessssssessesessessssessenes
Situation needing Rematching ..........cccceveeeecereererirercccncsseeeereesesssnceronsesnns
Transformation by Rematching .......cccoeeecereeevereereereeereeeescereseeesseeeeseesesenns
Example INput t0 OPTL ..ot setnccsteneeesesssssesesssssessssnsasnens
Example Output of OPTL ...ooeceeuirieereeereecereceneeeseseseseeeeeeeeseasesssssessssesessssesns
Example INput t0 OPT2 ..ot esaesesseseseasessesnsssasasesenes

Join Associativity Rules .......ccceceeveuervvrerennenene.
Select-Join Rule ....ucceeeeeereeeereereeeceeeceeencsenen

.....

........

Original Predicate TIee ......ccceceeceerereecseneeeeesssesseeescsesensassssessssesesssses
Predicate After SPHE ...cccooeueveeercerrenieeeeeere s e eneneseseseses e ns

Predicate After Optimization ....

........

.............

Average MESH Size .....eeeeuecvereevennnn.

2 AVErage CPU TIME ...coooreeeiorriereetrireetee e crescee e eassssesesse et seseneensssenes
: Average Plan Execution COst ....c.ccccceveeeveeeeeeeereeerenencnesiesesessscssossssssesenes
: Average Plan Execution Cost ......cvceeeeeereeeereeeceeeeeeseieceeeseensesssecesnessenes
D Artificial OPerators ........civiviveneeceeccetrie et eesse e seescse e ressesesaossesssane
Left-Deep vs. BUSHY TT€ES ....cceeeeeeeereeceeceeniieecreseeseeteseeseemesssesessessesssssassnen
Average of MESH SIZ8 ....ccccveivrneerereercenrereerntesesstessseesseessssescssssesssssesesssssnens
Average of CPU TIMEe ...cccoceeeieereeeeeenerercrneecetesissrsaeseesessesssesnes e sesmassessnesns
Average of Plan Execution Cost .........ceceeivueercvermveresieieeeeseeecseeseesensesseesenes

Average of Plan Execution Cost .......cceeceeveereremererenseeecresenenessseeessessssesses
AVerage of MESH SIZe ......evvvveeeeeriirireceesisntsossesssseeeseenesasssesssessnsssssssssssens

Average of CPU Time ....cccocecevrmervvrerevnnnne.

Average of Plan Execution Cost .......ccoeurun..

...........

------------

Average of Plan Execution Cost .........cceevveeeemeeeneeeeenniecneeeetseeeeesassanennns

viii

43
62
65
66
78
79
80
81
81
85
85
85
100
101
102
103
106
110
115
116
117
118
122
123
124
125



Table 4.1:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:
Table 5.8:
Table 6.1:
Table 6.2:

List of Tables

Learning FOPMUIAS ......cceeoceecrruerrernerneeesensssessnesssesnsssnsnsrnesssssnasnsssssasasassssssasase 69
Learning Formulas ... eeresrresatesstessnsnesneeneeanteesatrerieste st teberab e s et besn e s b s eas 80
Confidence of Rejection after 25 Times 400 Queries .....ccccceeceeveescneierrirsnnene 91
Abbreviations for Rule Names . woeeressensssstesosarassnes 92
Abbreviations for Averaging Methods .......ccccccveveveenenccnseccrccnsensensoccencenananes 92
Confidence of Rejection after 50 Times 200 Queries .......cocovvevevcnenrircennrennns 93
Average MESH Size ... terteeesrecesmesesseeesseeesaeresastressaressarisantteatessanttosastetnes 95
Average CPU TIME ...ccccceevvircreeeersrersseesnsernessanssssssnsesssssnsssassssssssanssnsanas 96
Average Plan Execution Cost . Leverescerecsssaeesarenanrasons 96
Constants used in the Cost Calculations .......cccoveeeenne aestrossassassnassssenssnsen 112
Formulas used in the Cost Calculations . reebeessasaneesessasrossssrssntas 113




List of Examples

Example 1.1: Effect of Query Optimization .
Example 2.1: System R Query Processing ...

--------

...........

Example 2.2: INGRES Query Processing
Example 2.3: Microbe Query Processing ...

Example 4.1: Declaration Part .
Example 4.2: Simple Rules

.....

..............

Example 4.3: Join Associativity Rule ....

Example 4.4: Rule with Condition Code

Example 4.5: Phase Restriction in Rules .

Example 4.6: Rule with Phases and Support Functions

Example 4.7: Operator Correspondence .

------------

Example 4.8: Code Generation in MATCH .

Example 4.9: Code Generation in APPLY .

Example 4.10: Code Generation in ANALYZE
Example 4.11: Method Input in MESH

Example 4.12: Example Tree Transformation
Example 4.13: Situation needing Rematching .

Example 5.1: Predicate Splitting

Example 5.2: Predicate Optimization .....

Example 5.3: Trivial Select Elimination ..

........

Example 5.4: Moving Projections
Example 5.5: Horwitz s Query Evaluation ..

Example 5.6: Artificial Operators ........

13
15
19
44
46
46
47
48
49
51
51
54
56
58
62
65
84
85
86
86
105
106






i

Abstract

This thesis presents the problems of query optimization in extensible database systems
and proposes a soiution. It describes the design and an initial evaluation of the query
optimizer generator developed for the EXODUS extensible database system. The goal of the
EXODUS system is to provide software tools and libraries to structure and to ease the task -
of implementing or extending a database system for a new data model. Our basic model of
optimization is to map a query tree, which consists of operators at the nodes and stored
data at the leaves, to an access plan, which is a tree with implementation methods at the
nodes and scans at the leaves. The optimizer generator translates algebraic equivalence
rules into an executable optimizer. The equivalence rules are specific to the data model.
The generated optimizer reorders query trees and selects implementation methods according
to cost functions associated with the methods. The search strategy of the optimizer avoids

exhaustive search by learning from past experience.

We report on two operational optimizers. Experiments with a restricted relational sys-
tem show that the generated optimizer produces access plans of almost the same antici-
pated execution cost as those produced by exhaustive search, with the search time cut to a
small fraction. Another set of experiments shows that a generated optimizer is able to han-

dle large queries.

An optimizer currently under development for a new query evaluation method shows
the power and flexibility of the approach. Other researchers have decided to use the optim-

izer generator for their database implementation work.

Independently from the EXODUS project, the optimizer generator proved to be a valu-

able tool for exploring the trade-offs between left-deep execution trees and general execution



iii

trees in relational database systems. Our experiments show that for bushy trees, the higher
optimization cost and the cost for creating and reading temporary files can be more than

compensated by the reduction in processing cost.
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CHAPTER 1

Introduction

1.1. Extensible Database Systems

In recent years, a number of new data models have been proposed in the database
literature that extend the modelling and query processing power of the relational model
(Codd, 1976). For business style applications, the relational data model has been used very
successfully. Services provided by relational database systems have significantly enhanced
programmer and data processing productivity. Such services include high level query and
data manipulation languages, transparent maintenance of secondary search structures, data
independence, data sharing, control of access privileges, concurrency control, and recovery
from program, media, and system failures. While the relation-tuple paradigm with fixed-
format records provides sufficient modelling flexibility for most record-keeping applications,
it is not well-suited for other database application areas which are starting to emerge. Con-
sider, for example, the database needs of an interactive programming environment (Reps,
1984,Horwitz, 1985). Large program segments are stored for extended periods of time, and
need to be manipulated efficiently during an editing session. To store a program segment, it
is necessary to store the source text, which is usually not in a fixed format; to support a
software tool like a syntax-based editor, it is desirable to maintain a parse tree in the data-
base which is manipulated while the program is edited. It is obvious that fixed-format
records cannot support these operations with high performance and low resource consump-
tion. Relational database systems are too limited in their capabilities to store, manipulate,
and query data structures that are not easily encoded in fixed-format records. Other appli-

cation areas, like CAD/CAM (Lorie, 1983), office automation (Tagg, 1984), and text process-



ing (Pavlovic-Lazetic, 1986), also need to store massive amounts data permanently on secon-
dary storage devices. The file systems typically used for these application areas, however,

do not provide the desired services or do so ony in rudimentary form. .
1.1.1. Proposed Coneepts

To provide the database services mentioned a.bove to non-traditional apphcamon areas,

several approaches have been proposed in recent years.- We-call’ %'Eeg;af)proaches the bndgeu

approach, the extended relational-approach,-and-the.toolkit-approach.--

The bridge approach is based on the observation that there are several relational data-

base systeins available and ready’ to use. Instead of 1mplementmg a new database system, it

is proposed to desxgn an mterface layer that serves as a bridge between the data modelling
desired for the application and a relational database. The advantages of such an approach
are obvious: The largest part of the data management software can be used reliably without
modifications, and functionality like concurrency control and recovery is immediately avail-

able. The cost, however, can be substantial. Depending on the application, t,he translation

between application specific data structures and relations can be quite cumbersome. If the

e e

i T

application has performance constraints, as in the interactive programming environment

mentioned above, this approach might be unacceptable.

The extended relational approach is taken by two project teams. The POSTGRES

data model and database system (Stonebraker, 1986) and the Starburst system (Schwarz,

1986) are two designs that are based on the relational model. Seve;;l‘s—i?n;hcanﬁ“extensions,
however, are incorporated in the designs. The hope is that these extensions will suﬂice for
the application domains that have been identified for the next generation of database sys-
tems. Both systems, however, allow for some amount of extensibility. It is possible to define

new abstract data types and to mtroduce new access methods into- the run-time system

- Np——

/M— .
(Stonebraker, 1983, Schwarz, 1986). These extensions provide for much of the desired flexi-




bility and are not trivial to implement. Besides the obvious changes to the run-time system,
such extensibility poses new problems for the user interface, the schema or data dictionary
management, and the query optimizer design. At this point, it is unknown whether the
extended relational systems will be the most successful of the three approaches to extensibil-
ity in database systems. On one hand, it seems very likely that the systems will exhibit
good performance, since most of the design for the query execution components can rely
heavily on the experiences with relational systems. On the other hand, using the record
based relational model as a the starting point might turn out to be the biggest obstacle for

providing all desired data modelling capabilities.

The third approach, which we call the toolkit approach, is the approach to database

extensibility taken by the EXODUS project.
1.1.2. The EXODUS Concept

Instead of having a single database system and refitting it for different application
domains, the principal idea in EXODUS is to design and implement a new database system
for each application domain, possibly by using existing parts. This has some clear advan-
tages. First, the database system can be made to fit exactly to the situation’s needs. Con-
cepts of the application domain can be built into the database system and do not have to
be provided by some interface or added-on extension. Second, only those capabilities that
really are needed are implemented. There is no unnecessary code to be written, maintained,
stored, or executed. Third, the database system can be tuned according to the application’s
requirements and characteristics. Finally, the user interface and the query optimizer can be
designed with a maximum amount of knowledge about the application domain. The user
interface is most important to the acceptance of the final product, and query optimization
needs all the help it can get to estimate parameters of the stored data and the query, e.g. to

anticipate a predicate’s selectivity or an operator’s execution cost.



The apparent disadvantage of this approach is that it requires substantial effort to
implement a database system. It is certainly a conservative estimate that a database sys-
tem consists of more than 50,000 lines of code, which corresponds to about $2,500,000 at $50
per line of code (Gray, 1987). The goal of the EXODUS project is to ease the implementa-
tion of a database system for a new data model. We plan to provide several software tools
and program libraries that structure and simplify this immense task. The initial idea was
outlined by Carey and DeWitt (Carey, 1985) and an overview is given in (Carey, 1986). The
basic idea is that all database systems consist of a fairly standard set of modules. Building
a database system should be significantly simplified if these modules are standardized, and if
there are software tools to assist in implementing each module. The optimizer generator

presented in this dissertation is one of these EXODUS software tools.

Before we outline more of the details of the EXODUS concept, we would like to address
a general concern that arises whenever the EXODUS cbncept is presented. What happens if
there are two application domains that need to share data, e.g., manufacturing data used
for both accounting and technical product management? If there are two specialized data-
base systems that are designed independently, how is it possible to share data? The answer
is that with EXODUS, it is possible to design and imple‘ment a database system that is
capable of serving both purposes at the same time. Furthermore, it is possible to implement
the elements of this combined database system almost as if one is designing the two systems
independently. This is possible because the EXODUS approach leads to a modular design.

We will see how this is true for the optimization component.
1.1.2.1. The Database Implementor

The EXODUS software is not a database system in itself. Rather, it assists in building
a database system. Clearly, the person who uses the EXODUS software to build a new

database system has a crucial role in this concept. We envision a person with some back-




ground in database technology and a fair amount of understanding of the application
domain. It is important that only familiarity with database concepts, not sophisticated

database expertise, is necessary.

To implement a new database system, the database implementor, henceforth called the
DBI, invokes EXODUS software tools with appropriate description files and links the gen-
erated code with EXODUS libraries and some of her or his own code into an executable

database system, ready to assist the users.
1.1.2.2. EXODUS Tools and Libraries

This is only a short overview of the pieces of EXODUS software under development; a
more detailed overview is given in (Carey, 1986). Besides the optimizer generator, there is
the implementation language E (Richardson, 1987), the storage system (Carey, 1986), the

type and dependency manager (Frank, 1987), and the planned user interface generator.

E combines programming concepts helpful for database implementation which are not
found in a single language today. Persistent objects, i.e. objects that are stored per-
manently on secondary storage, are accessible directly through program variables. Pro-
cedure calls to an I/O or buffering system are not required in E, since the compiler inserts
calls to the EXODUS storage system at appropriate places. Persistent objects can be
updated through program variables, and concurrency control and recovery are provided for
such updates. Type generators are provided in E to allow the DBI to write access methods
for a variety of key and object types, without rewriting or recompiling the access method
code. Iterators are a way of writing loops in a more natural way. Since scanning and pro-
cessing of object sequences play an important role in database run-time systems, we felt

that a more structured notation would simplify writing database systems.

The storage system provides the run-time support for E. It manages files of objects of

arbitrary size, and allows recoverable updates, deletions, and insertions in such objects.



Besides high performance, the major emphasis in the design of the storage manager is to
reduce space requirements as much as possible, both disk space for versions and log files and

buffer space in the running program.

The type manager is a software management tool used to keep track of versions of pro-
grams, definition files, etc.. It runs continuously as a daemon process, and ensures that pro-

gram segments and query code dependent on one another are always up-to-date. It employs

a pattern-based technique similar to, but more general than, the UNIX make facility®.

The user interface generator concept is inspired to some extent by compiler generators,
e.g. YACC (Johnson, 1975), and by concurrent work on generating object-oriented user
interfaces, e.g. (Maier, 1986). The user interface work in the EXODUS project is just get-

ting started.
1.2. Database Query Optimization

One of the fundamental innovations that made the relational approach to databases a
challenge in the beginning and a success today are the query languages based on predicate
calculus. In earlier database systems, namely those based on the hierarchical and the net-
work data models, the application program must navigate through the database, which
includes links and pointers between data records. When using a relational calculus
language, a user only specifies a predicate that the retrieved data should satisfy, and the
database system determines the necessary processing steps a.uto-ma.tica.lly. Since there might
be many possible processing strategies which differ by orders of magnitude in processing
costs, the task of the query optimizer is to find the cheapest and fastest query processing

strategy.

To illustrate the degree of actual savings that can be obtained by query optimization,

we give here an example taken from Jarke and Koch (Jarke, 1984).

! UNIX is a trademark of AT&T Bell Laboratories.




Example 1.1: Consider the relational schema of a database that describes employees

offering computer lectures to departments of a geographically distributed organization:

departments (dname, city, street address)
courses (cnr, cname, abstract)
lectures (cnr, dname, enr, daytime)

Key attributes are given in italics. Assume that a user is interested in

"the names of departments located in New York offering courses on database
management.”

There are 100 departments, 5 of which are located in New York. A physical block con-
tains 5 department records. There are 500 courses, 20 of which are on database manage-
ment. The physical block size is 10 records. There are 2000 lectures, 300 are on database
management, 100 are held in New York, and 20 (from 3 departments) satisfy both condi-

tions. The physical block size is 10 records. -

Assume that the sorting time is N*loggN, where N is the file size in blocks, and that
there is a buffer of one block for each relation. All relations are sorted by ascending key

values.

Jarke and Koch give three example strategies. Only the I/O cost is considered here.

Each step has the number of read (r) and write (w) disk accesses indicated.
Strategy 1

(1) Form the Cartesian product of the courses, lectures, and department relations (r:

200000), and

(2) Retain the dname column of those department records, for which the cnr of courses and
lectures match, the dname of lectures and departments match, cname = "database

management”, and city = New York (w: 1).



total: approximately 200,000 accesses.

Strategy 2

(1) Merge courses and lectures (r: 50+200, w: 400).

(2) Sort the results by dname (r+w: 400 log,400).

(3) Merge the result with departments (r: .400+20, w: 4004-400).

(4) Select the combinations with city = "New York" and cname = "database management"

(r: 800), and
(5) keep only the dname column (w: 1).
total: approximately 6000 accesses.
Strategy 8
(1) Merge courses with lectures (r: 50+200), and
(2) keep only the dnames of combinations with cname = "database management” (w: 2).
(3) Sort the dname list generated (r+w: 2).
(4) Merge the result with the departments relation (r: 2420), and
(5) keep only those with city = "New York" (w: 1).
total: 277 accesses.
Jarke and Koch compare strategies 1 and 3 and conclude:

"Thus a reduction by a factor of approximately 700 has been achieved. For larger
databases and more complex queries, more sophisticated techniques may result in
even higher reductions.”

This potential for savings, or from another perspective, of waste, was realized soon
after the relational model was proposed by Codd (Codd, 1970). Smith and Chang wrote in

1975: "In the long run, the worth of the relational model will be measured by how efficiently

\




a relational view can be implemented” (Smith, 1975). We believe that this statement is

equally true for new data models today.
1.3. Outline of the Thesis

In the following chapter, we review related previous work. One section is devoted to

optimization in relational systems, the other section to extensible database systems.

In Chapter 3, we introduce the general problem of extensibility in query optimization.
We propose tree-based optimization as a general model for optimization in extensible data-
base systems and present a suitable optimization strategy. Rules are used as the principal
means to describe query optimization in this model, augmented with some code to connect

the optimizer with the other components of the database system.

In Chapter 4, we present. the prototype that was implemented in the EXODUS project.
A generator produces executable code from the rules; the code is then compiled and linked
with the other components to form a complete database system. Special attention is given

to the search strategy and its parameters.

Experiences with this prototype are reported in Chapter 5. An optimizer implementa-
tion for a restricted relational model shows the validity of the generator approach, and the
effectiveness of the parameterization of the search strategy. The optimizer for a new query
evaluation method, developed independently of the EXODUS project, shows the versatility

of the proposed optimization model.

The flexibility of the EXODUS optimizer generator inspired us to compare optimization
and execution costs for bushy (e.g. INGRES) and left-deep (e.g. System R, GAMMA) trees in

relational database systems. The experiments and their results are reported in Chapter 6.

In Chapter 7, we summarize our findings, suggest future work in the area, and offer our

conclusions.
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The appendix provides a complete example of a model description file.
1.4. A Remark on Examples

The examples in this thesis are mostly taken from the relational model. This is not
because the concepts presented pertain only to this model, but because we expect that most
of the readers are familiar with the relational data model, and the examples can readily be
understood. After studying an example, the reader is asked to con;ider whether the exam-

ple can be generalized to other data models as well.
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CHAPTER 2

An Overview of Previous Work

Many database query optimization strategies have been proposed and implemented
over the past 12 years. A recent survey of optimization algorithms and techniques is given
by Jarke and Koch (Jarke, 1984). Most of these algorithms are designed for the relational
data model, with some restrictions and extensions. Typical restrictions include omitting
universal quantification and requiring the query predicate to be in conjunctive or disjunctive
normal form. Typical extensions are nested queries, aggregate functions, and distributed
execution. More recently, recursion and transitive closure have attracted significant

research interest.

All relational query optimizers perform basically the same task. Given a user query,
find the optimal access plan, e.g. the one with the smallest number of disk accesses.
Nevertheless, optimizer designs differ considerably. In this chapter, we will review some
existing optimizer designs. After looking at two well known optimizers, those of System R
and INGRES, we describe an query optimizer design that has some commonality with the
optimizers generated by our optimizer generator. Then we will review two other approaches
to extensible relational query optimization, Freytag’s work at IBM Almaden and a design
done for the AIM project in Germany. Finally, we will take a brief look at work on search
strategies in the context of Artificial Intelligence, since we borrowed some ideas from this

area.

2.1. Relational Query Optimirers
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2.1.1. System R

System R was developed at the IBM San Jose Research Laboratory as an experimental
relational research vehicle beginning in 1975 (Astrahan, 1976). Numerous publications
describe various aspects of the system, e.g. the query language SEQUEL (Chamberlin, 1974)
(which was later revised and renamed to SQL), the view and authorization system
(Chamberlin, 1975), query compilation into executable access modules and the management
of those for application programs with embedded queries (Chamberlin, 1981), and the
recovery system (Gray, 1981). An overview and an evaluation of the system is given by
Chamberlin et al. (Chamberlin, 1981). More recent research work include extending the sys-

tem to a distributed relational database system called System R* (Lohman, 1985).

It was one of the objectives of the project to support repetitive queries embedded in
application programs without recompilation or reoptimization for each execution. Hence,
the optimizer works independently from the query execution system. No intermediate query
execution results were to be used in the optimization, and all optimization decisions had to
be based on catalog information. The System R optimizer (Selinger, 1979) proceeds in five
steps. In the first step, catalog information about the relations referenced in the query is
cached. The second step determines interesting sort orders. A sort order of a relation is
called interesting if it is on a join column or if it is explicitly requested in the query. The
third step determines scanning strategies for all relations in the query, for results in each
interesting sort order and for unsorted results. In the fourth step, scanning and join
methods are combined to form the complete access plan. If the query is a simple query, i.e.
it references only one relation and has no nested queries, the query can be executed with a
single scan. In this case, step four is trivial. Generating code for the selected access plan in

the access specification language is the fifth step.
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Scanning is done in System R by the Research Storage System (RSS). The RSS pro-
vides segment scans and index scans. In segment scans, all blocks in a contiguous disk area
are scanned, whether or not they contain tuples of the scanned relation. Index scans are
possible on clustered and on non-clustered indices. They can be specified with lower and
upper bounds, and are guaranteed to return tuples sorted on the index key. All scans sup-
port "sargable predicates”, which are Boolean expressions in disjunctive normal form with
clauses of the form "column comparison-operator value". Thus, simple selection predicates
can be evaluated by the RSS. Tuples can also be retrieved in an interesting sort order by a

scan with arbitrary sort order and a subsequent explicit call to the sort utility.

After scanning strategies have been determined for all relations and for each interest-
ing sort order (including the unsorted case), join strategies are selected. System R uses two
join methods, called nested loops join and merge join. Blasgen and Eswaran found these
methods close to optimal among the cases examined in almost all cases (Blasgen, 1977). In
the first pass, join methods for all pairs of relations with a join predicate are considered.
Next, groups of three relations, four relations, etc., are optimized until all relations are com-
bined. For each decision, results for smaller group sizes can be used. Combinations without

a join predicate are not considered, because Cartesian products tend to be large, expensive,

and unnecessary.

The cost of access plans is calculated as a weighted sum of disk I/O’s and CPU time.
The CPU cost is estimated as the number of calls to the RSS under the assumption that
most of the time is spent in the RSS. Both measures are modeled more precisely in the
newer System R*.
Example 2.1: Let us assume a database with two relations, "professor” and "course". We
want to know the subjects of all courses in the physics department which are taught by a

professor 30 years old or younger. A SQL query to retrieve this information is:
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SELECT subject

FROM course

WHERE department = "physics" AND

teacher = SELECT employee-no FROM professor
WHERE age <= 30

The interesting orders are professors sorted on employee-no and courses sorted on the
teacher attribute. The scans selected are the least expensive ones to return the relations
unsorted or sorted in their respective interesting orders, each with a search predicate on age
or on department respectively. If suitable indices exist, they would be considered for scan-
ning. The four possible join strategies are nested loops join of the unsorted relations and
merge join on the sorted ones, with professors as the outer relation and courses as the inner
relation, or vice versa.

o

A more exhaustive example is given by Selinger et al. (Selinger, 1979).
2.1.2. INGRES

The relational database system INGRES (Interactive Graphics and Retrieval System)
and its query and data manipulation language QUEL were developed at the University of
California at Berkeley (Stonebraker, 1976). It was first developed for use under the UNIX
operating system on Digital Equipment Corporation PDP-11 computers. A significantly
modified version is now commercially available for a variety of computers and operating

systems.

The original query optimization of INGRES is called Decomposition (Wong, 1976). It
was designed at approximately the same time as the System R optimizer, but a number of

decisions were made differently.

The optimization strategy is intertwined with query execution. The algorithm
simplifies the query predicate by "one variable detachment” and "tuple substitution”. It is

applied recursively to the query until the resulting predicate has only one range variable.
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Queries with one range variable can be executed by a special module, the "One Variable
Query Processor”. The one variable query processor includes file scans and indexing
methods. It roughly corresponds to scans in the System R model, and one variable detach-

ment corresponds to simple queries.

If a range variable has a selection predicate associated with it, e.g. "p.age <= 30" in a
QUEL version of the example above, one variable detachment can be applied. A temporary
relation is created from the original one, containing only the qualifying tuples. After one
variable detachment, the query predicate can be simplified. The range of the variable is
changed to be the temporary relation, and the selection clauses applied to create the tem-

porary relation can be removed.

When no further one variable detachment is possible, the algorithm resorts to tuple
substitution. First, one of the range variables in the query predicate is selected for substitu-
tion. This selection is made by a prediction of further processing cost; it is not necessarily
the range variable over the relation with the lowest cardinality. This selection is very
important, in fact, variable selection "is the heart of optimization" (Wong, 1976). The rela-
tion associated with the selected range variable is scanned, and for each tuple a modified
query is executed. Since the attribute values of each tuple are known at this time, all refer-

ences to the range variable in the query predicate can be replaced by constants.

This simplified query has one less range variable and at least one selection clause. If
there is only one variable left, the query can be handled by the one variable query proces-
sor. Otherwise, the decomposition algorithm consisting of one variable detachment and
tuple substitution is applied to it.

Example 2.2:

Consider the previous example of a query referring to a professor and a course relation.

The equivalent QUEL statement is:
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range of p is professor

range of ¢ is course

retrieve (c.subject) where
c.department = "physics" and
c.teacher = p.employee_no and
p.age <= 30

The first step is variable detachment. This can be done for both variables. The above

query is transformed into

retrieve into p_temp (p.employee_no) where
p.age <= 30

retrieve into c_temp (c.teacher, c.subject) where
c.department = "physics"”

range of p is p_temp
range of ¢ is c_temp

retrieve (c.subject) where
c.teacher = p.employee_no

Further one variable detachment is not possible in the simplified query predicate. Thus,
tuple substitution is applied. One of the variables ¢ and p is selected, say p. Then for each

tuple in p_temp, if its employee_no is value, the query
retrieve (c.subject) where c.teacher = value

is executed and all resulting tuples are returned to the user.

a

Wong and Youssefi (Wong, 1976) give a more extensive example.

There are several significant differences between the optimization strategies of System
R and INGRES. System R starts with processing strategies for simple relations, and builds
access plans "bottom-up”. INGRES starts with the complete query predicate and decom-
poses it "top-down", selecting the scan mechanisms as the final step. The System R optim-
izer considers all reasonable processing strategies (meaning all except those involving a

Cartesian product). The number of possible processing strategies is exponential in the
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number of relations involved. INGRES Decomposition only considers a linear number of
processing strategies. Finally, System R considers two join procedures, nested loops join and
merge join. INGRES has only one join mechanism, tuple substitution, which is in effect very

similar to nested loops join.

The designers of INGRES are now well aware of the fact that merge join tends to be
much faster for large relations, and that query decomposition does not always find the
optimal join strategy (Stonebraker, 1980). For the commercially marketed version of
INGRES, several changes were implemented. The decomposition procedure was replaced by
an optimizer based on Kooi’s thesis work (Kooi, 1980). In the new optimizer, a large collec-
tion of join trees is enumerated and evaluated. A join tree is a binary tree where each leaf
node is a relation or index and each interior node is a join. For each join node, not only are
nested loops join and merge join algorithms considered (if necessary with preceding sort),
but also the use of permanent or temporary hash or ISAM indices. Since the number of join
trees can be extremely large, it seems justified to preempt optimization in some cases before
all possible trees are enumerated. When the time spent on optimization reaches a certain
fraction of the time estimated for the best access plan found so far, optimization is not

further pursued and the best plan found so far is executed.
2.1.3. MICROBE

A very different approach to query optimization has been taken for the MICROBE dis-
tributed relational database system. The query language of MICROBE is MIQUEL, which
incorporates ideas from both QUEL and SQL.

After a query is entered by a user, the predicate is transformed into a parse tree, which

is then transformed into an initial operator tree!. The optimization proceeds in two steps

! A trivial algorithm for the second transformation is given by Ullman (Ullman, 1982):
Build the Cartesian product of all relations involved, let it be followed by appropriate selec-
tion clauses, and finally do a single project. The MICROBE algorithm is more sophisticat-
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(Nguyen, 1982). First, the operator tree is restructured so that the expected amount of
data which is transferred between operators is minimized and the total number of opera-
tions inﬁ_volved in the query is reduced. This can be done independently from the distribution
of data over the sites participating in the distributed system, and is done before execution
of the query. Second, the operators are assigned to sites dynamically during query execu-

tion. This aspect of the MICROBE system is not of interest here.

The transformation rules used during optimization are a set of quadruples (X,Y,C,A),
where X is the subtree to be transformed, Y is the transformed subtree, C is a condition on
X, and A is a set of side effects of the rule. The rules are coded in Pascal, and cannot be

modified by the user. Nguyen et al. (Nguyen, 1982) describe the rule application:

"The optimizer works recursively on the query tree. The top-down scan is used to
label the nodes in the tree with Xi and Ci elements of the rules Ri, and the
bottom-up scan to apply the appropriate rules. This is repeated on the tree until
no more transformation rule applies. This process converges in o(n) scans, where n
is the depth of the query tree."

The rules designed for MICROBE are not general algebraic equivalence rules. Rather,
they are directed transformation rules which do not allow the reproduction of a query tree

from itself, i.e. no composition of rules equals identity.

A more specific description of the rules is given by Nguyen et al. (Nguyen, 1982). They
also give an example of rules that would not be allowed. Typical examples for legal rules
include pushing selections and projections down in the tree, reordering joins to achieve less
data transfer between operators, and combining select and project operators on a single

relation to a special procedure called proselect.

ed, avoiding Cartesian products where possible.
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Example 2.3:

Let us consider the courses and professors in the physics department one more time. In

MIQUEL, the query reads

SELECT subject
FROM course
WHERE department = "physics" AND
teacher = SELECT employee-no FROM professor
WHERE age <= 30

which is exactly like the SQL query. This is transformed to the initial operator tree

project [subject]
i

H
select department = "physics”
i
}
join teacher = employee_no
/ \
course project [employee_no]
1
i
select age <= 30
1

1
professor

and to the final, optimized tree

proselect [subject]

join teacher = employee_no
proselect [employee_no, teacher]  proselect [employee_no, subject]

! dept. = "physics" ! age <= 30
course professor

The MICROBE optimizer differs radically from the first two optimizers. The System R
optimizer and the INGRES Decomposition build on properties that follow indirectly from
the properties of the relational data model and the file organizations employed. MICROBE,
on the other hand, is designed rather closely along the mathematical properties of the rela-

tional model and its operators (Codd, 1970,Codd, 1972). The rules are almost independent
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from one another. This modularization, we believe, not only simplifies design, implementa-

tion, verification and maintenance, but it also facilitates extensions without major redesign.

Flexibility and the ability to extend the data model and the databa.sé software are the
major themes in the design of each of the extensible database system projects. This is why
the optimizers of database systems based on EXODUS are similar to the MICROBE optim-
izer. However, EXODUS provides more flexibility tha;l MICROBE. In MICROBE, the user
cannot modify the Pascal implementations of rules. Producing Pascal code from the
abstract transformation rules, a task performed manually by the MICROBE designers,

should be eliminated or automated.
2.2. Extensible Query Optimizers

As pointed out earlier, each of the optimizers reviewed so far were designed to work for
a particular data model, query language, and run-time system. Extensibility of the
EXODUS optimizer generator means to support query optimization without making restric-

tive assumptions about the data model, the query language, or the run-time system.

Besides the work presented in this thesis, to the best of our knowledge there are
currently two other projects attempting to use rule-based techniques for query optimization.
Both are being designed for extensions of the relational model. Freytag is working on rule-
based query transformation and optimization at IBM Almaden (Freytag, 1987), and Moeller
and Bartels have worked on rule-based optimization for the NFZrelation model which is

being developed at IBM Heidelberg (Moeller, 1986, Bartels, 1986).

Other researchers have identified extensibility as a requirement for the query optimiza-
tion component, e.g. for PROBE (Dayal, 1985,Manola, 1986) and POSTGRES (Stonebraker,
1986), and have suggested rule-based or description-driven designs, but no implementation

has been reported to date.
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2.2.1. Freytag’'s Rule-Based Optimisation

Concurrent with the work presented in this thesis, Freytag began to explore rule-based
techniques to transform relational calculus predicates into execution plans (Freytag, 1987)
as an extension to his thesis research on translating access plans into iterative programs

(Freytag, 1986,Freytag, 1985).

The optimization task is divided into several phases. Each phase has a different pur-
pose and a different rule set. The input into the system is a sorted list of predicates, which
are assumed to be connected by AND’s in the query. Notice that this requires the transfor-
mation of the query into disjunctive normal form. The first phase establishes which rela-
tions have to be scanned. The second phase distributes the selection predicates from the list
of predicates to the appropriate scans. The third phase examines the indices that could
assist in the scans. Then, the possible join orders are generated and the processing costs of
the implemented join methods are calculated and compared. Freytag suggests to compile

the rule set to achieve faster optimization (Freytag, 1987).

It seems that there are several problems with this approach when it is used in an exten-
sible system. First, it is not clear that the general algorithm is applicable to other data
models. In particular, there might be data models and query languages for which there is
no normal form that could be used as a starting point for the optimization. For example,
Moeller claims that there is no normal form for the NF?2 data model (Moeller, 1986). But it
seems that this problem pertains only to the part of the algorithm which is concerned with
transforming a relational calculus expression into relational algebra. More importantly, the
rules are still a procedural description of the optimization process. We claim that the hard
part of specifying an optimizer is not to code it in a particular language, like C or PL/1,
but to invent and design the steps and procedures that implement the optimization. In that

respect, it is not clear how much is gained by describing the optimization steps in a pro-
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cedural rule language instead of in a systems implementation language. Finally, it is not
clear how extensible this optimization concept is. Freytag motivates and describes his
approach with extensions to the relational model, and uses only conjunctive relational

queries for examples (Freytag, 1987).
2.2.2. NF2-Relations

The Advanced Information Management project (AIM) at the IBM Scientific Center
Heidelberg is based on non-first-normal-form (NF2) relations. The data in a NF* database
are stored in relations in which an attribute value can be a another (nested) relation. For
their Diplom thesisses, Moeller and Bartels designed a rule-based optimization component

for this project (Moeller, 1986, Bartels, 1986).

The query language, called NF-SEQUEL, allows the nesting of AND, OR, and NOT
operators and existential and universal quantifiers for both tuples at the top level and for

nested tuples.

Query evaluation in AIM is done by the walk manager. A walk is a generalized form of
a scan. It can result either in materialized tuples or in a list of tuple identifiers, called a
filter exztension table. A tuple identifier can consist of more than one address, reflecting the
nesting of tuples and relation valued attributes. A filter extension table associates a predi-

cate with a list of tuples, or tuple pairs, triplets, etc.

For joins, AIM does not use merge join or nested loops join. Instead, the walk manager
intersects filter extension tables or performs nested walks. A nested walk is similar to a nes-
tled loops join, but it does not require the DBMS to materialize the (potentially deeply

nested) tuples in main memory.

The optimizer builds the access plan bottom-up from the search predicate. The
development of the plan from the predicate is performed in a semantic network called the

unit net. Originally, the unit net is very similar to the parse tree of the predicate. In the
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first step, bindings of variables are determined, and appropriate pointers are inserted into
the net. Next, the unit net is augmented with relevant information from the catalogs.
Finally, in a bottom-up traversal of the tree, two plans are created for each node in the
predicate tree. One of the plans is designed to produce the tuples that satisfy the predicate,

and the other would produce a filter extension table for the predicate.

The logic governing the transformation of predicates into plans is expressed in rules. A
rule compiler compiles the rules into Pascal. Before the rule set is applied to a predicate,
the predicate is matched against a set of predicate fragments kept in a library for this pur-
pose. If a matching fragment can be found, the precomputed plan associated with the frag-

ment is used.

The purposes of capturing the optimization process in rules are modularity, extensibil-
ity, and uniformity. While the goals of modularity and uniformity are well served with this
design, we believe that the system provides only limited extensibility. In particular, we
believe that requirements frequently mentioned in the current database literature, e.g. tran-
sitive closure and other recursive operators, cannot easily be integrated into this design. It
is, probably, extensible within the NI"‘2 relational model, e.g. to include new access methods
in the system. It seems that the design of the AIM data model was not finalized when the
optimizer was developed. Whether the optimizer satisfies the needs of AIM is not clear,
because this software developed at the university in Darmstadt was not integrated with the

AIM software at IBM in Heidelberg.
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CHAPTER 3

Extensibility in Query Optimization

The goal of the EXODUS project is, as mentioned earlier, to make it as easy as possi-
ble to implement a new database system, or to augment one which has been implemented
using EXODUS. The challenge is to provide software tools and libraries that make few or
no assumptions about the data model to be implemented. For the optimizer component,
this means we do not want to restrict the number of operators, or prescribe the operators in
the system. This distinguishes EXODUS from other extensible database projects, namely
POSTGRES and Starburst. Consequently, it is impossible to provide a single, final query
optimizer with the EXODUS software. Since the optimizer is one of the most intricate sub-
systems of a database system, however, we felt that it is essential to support the DBI in
designing and implementing the optimizer.

The design goal of the EXODUS optimizer component is twofold. First, it is imperative
to provide a very general and powerful model of optimization. Second, it should be easy to
specify the optimization, and the DBI should be encouraged to use a modular design in his

or her implementation efforts.

The number of access plans can be very large for a complex query. For example, the
number of possible join orders for a multi-relation query in a relational system is O (SN),
where N is the number of equi-join operators in the query (Muralikrishna, 1986). The com-
binatorial explosion of possible access plans might be even more significant for more
advanced data models. Hence, it is necessary to give the DBI a means to limit the search,

without requiring too much sophistication from the DBI.
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8.1. Tree-Based Optimization

While pondering what a suitable model of optimization would be, we let ourselves be
guided by the model of execution that we anticipate for future data models. Incidentally,
this model of execution also received special attention in the design of the E programming
language (Richardson, 1987,Richardson, 1987). A run-time system for a database typically
consists of a limited set of procedures. Each of these procedures transforms a data stream
according to an argument which was derived from the original query. A typical example is
a selection operator which eliminates from a stream those tuples or records that do not
satisfy a predicate provided in the query. To evaluate complex queries, such procedures can
be nested, i.e. the output of one of them can be the input of another one. The transfer of
data between such procedures we call a data stream or simply a stream, without making
assumptions about how this transfer is physically arranged, e.g. by temporary files, shared

memory, or messages, and how the procedures are synchronized.

If we assume that this is how queries will be evaluated in EXODUS based databases,
we can infer that queries can always be expressed as trees of operators. For the relational
model, a trivial algorithm to transform a relational calculus query into an execution tree is
given by Ullman (Ullman, 1982). In this algorithm, it is obvious that the tree which is easi-
est to derive from the original query is not the optimal tree to execute. But it is desirable
to leave it to the optimization step to find the cheapest equivalent execution tree, as this

minimizes the work required from the user interface.

For EXODUS, we decided to require the user interface to produce a tree of operators
that represents one correct sequence of operations to answer a query. The optimizer will
transform the presented query tree into one that promises a more efficient execution of the
query. This is done step by step, with each step being the transformation of a query tree or

a part of it into an equivalent query tree. These transformations include replacement of
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operators (e.g. Cartesian product and selection by a join), insertion of new operators (e.g. an
additional project to eliminate fields as early as possible), and rearrangement of operators

to achieve lower processing cost.

Frequently, there is more than one implementation procedure for a given operation.
For example, a number of join methods have been developed for the relational equi-join
(Blasgen, 1977), and most database systems have a repertoire of more than one of them.
Therefore, the optimizers for EXODUS based database systems will distinguish between
operators and methods. Operators are on the logical level, i.e. an operator and its argu-
ment determine the mapping from the input stream(s) to the output stream. Methods are
on the physical level, i.e. a method specifies the algorithm employed. For example, a rela-
tional equi-join is an operator, and nested loops join, merge join, and hash join are
corresponding methods for this operator. Part of the optimization process is to find the

cheapest set of methods to implement a particular operator tree.

It is important to notice that the correspondence between operators and methods can
be complex. A single method can implement more than one operator, or a single operator
can require more than one method. Consider a relational equi-join as an example. If dupli-
cate elimination is not considered part of the project operator, it is easy to include a projec-
tion in any procedure that implements the join. A single method (algorithm, procedure) can
perform more than one operator. Similarly, a merge join is only possible if both inputs are
sorted, otherwise extra sort procedures are required. This potentially complex relationship
between operators and methods must be captured in the optimization process. In EXODUS,
it is part of the optimization to select which of several implementation methods for an

operation is the most suitable in each case.

The easiest way to describe tree transformations and the correspondence of operator

trees and method trees is by means of rules. Rules for operator reordering are termed
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transiormation rules, and rules for method selection implementation rules. In our
framework for optimization, the data model of the target DBMS is described by a set of
transformation rules and implementation rules together with a set of cost functions to

predict the processing cost for implementation alternatives.

The rule set must have two formal properties — it must be sound and complete.
Sound means that it allows only legal transformations. If a rule is not correct, no optim-
izer working with this rule can work properly. It is impossible for a software tool such as
the EXODUS optimizer generator to determine whether a set of rules is sound; this can only
be determined by the DBI who defines the data model by specifying the rules. Verifying the
soundness of the rules would only be possible if the data model could be described indepen-
dently, and the two descriptions could be compared. Complete means that the rule set
must cover all possible cases, such that all equivalent query trees can be derived from the
initial query tree using the transformation rules. If the rule set is not complete, the optim-
izer will not be able to find optimal access plans for all queries. Again, this cannot be
verified automatically, because the set of equivalent query trees and access plans is defined

only once.

To summarize our optimization model, our optimizers map trees of operators into
equivalent trees of methods by operator reordering and method selection. The set of opera-
tors and the set of methods are data model dependent, and hence must be specified by the
DBI. Similarly, the rules that govern the tree transformations and the operator to method

mappings must also be specified by the DBI.
3.1.1. Cost Model

The purpose of the optimization step is to find the cheapest query evaluation plan for a
given query. Clearly, the cost model plays a crucial role in the optimization process. It is

very important that the cost model accurately anticipates execution cost for a given query.



28

Cost measures (CPU, 1/0, network transfer) and formulas to anticipate query processing
cost in database systems have received significant attention (Selinger, 1979,Lohman,
1985,Mackert, 1986, Mackert, 1986). Since we do not want to make assumptions about the
operators in the data model, the methods, and the implementation of data streams, we can-

not, unfortunately, assist the DBI very much in specifying the cost calculation.

In a database run-time system, cost occurs by processing data, i.e. by executing a pro-
cedure or method. Hence, the DBI wishes to associate with each method a cost function
which calculates its processing cost as a function of its argument, e.g. join predicate, and
the input data stream(s). This design also gives the DBI the flexibility to design his or her
own cost measure, e.g. a weighted average of the number of disk I/O’ and the number of

CPU instructions (Selinger, 1979).

The cost calculation for an entire access plan is rather straightforward in this design.
For the methods that are applied in a query evaluation plan, the appropriate cost function
is invoked to calculate the cost for this method with the particular arguments and inputs,

and the sum of the costs of all methods in a plan is the cost of the entire plan.
3.1.2. Search Strategies

To provide a significant help to the DBI in implementing query optimizers, we believe
that it is important to assist in choosing and tuning the search strategy used to find the
best query execution plan. Even for the relational model, which is not considered advanced
or semantically rich, the number of equivalent operator trees for a given query grows very
fast. Considering that there might be more than one method available for each operator,
the number of feasible query execution plans can easily become unmanageable, even for only

moderately complex queries.

A number of search algorithms has been reported in the literature (Barr, 1981). It is

unclear, however, which of the algorithms used in database query optimization is most
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suitable for extensible query optimization. Consider the query optimizers reviewed in the
last chapter. The System R optimizers build access plans bottom-up, integrating more and
more clauses and relations of the query in the plan. INGRES Decomposition, on the other
hand, décomposes the query predicate top-down, splitting off and substituting one variable
after the other. Microbe, finally, uses transformations of the query tree and specific proper-
ties of the data model and the transformations, without regard of the order with which the

transformations are applied.

In order to achieve the desired generality, we needed to design an algorithm which does
not preclude either one of these approaches, and which requires only the absolute minimum
of formal properties from both the data model and the transformation rules. Hence, the
desired search strategy allows query tree transformations in any order but also allows a

directed search.

The search strategy adopted for EXODUS is a best first search (Barr, 1981). A state in
the general formulation of the search strategy is a query tree. Every state can, in general,
be expanded (for a query tree, we prefer to say transformed) in several directions. It is
quite likely that the benefits of the various expansions differ considerably, hence we decided
that not all states will be expanded fully in our search strategy. At any time during the
search, there will be states which have been exhaustively expanded, others which are par-
tially expanded, and some which are unexpanded. The expansions which are possible but
not applied yet are called the OPEN set. Each entry in OPEN is a pair consisting of a

query tree and a transformation.

At each step in the search, the transformation performed is the one which carries the
most promise that it will eventually, via subsequent transformations, lead to the optimal
query evaluation plan. The crucial element in this search strategy is the promise calcula-

tion, called the promise evaluation function. In the problem at hand, it must include the
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current query and plan, possibly others which have been found already, and information
about the transformation rule involved. The most natural measure for promise is cost

improvement of the access plans.
3.1.3. Modularization of DBI Code

In an extensible database system, there are always some parts in the optimizer (and in
other components as well) which cannot be expressed in a restricted, e.g. rule-based
language. We propose to allow these parts to be written in the DBI’s implementation

language, and to provide a software tool to combine the rules and the DBI’s source code.

For easy extensibility, it is very important to assist the DBI in dividing the code into
meaningful, independent modules. Not only is a modular optimizer easier to implement, but

we also envision this as a help for a database management system that evolves over time.

In this section, we will briefly review optimizer parts that are data model dependent
and hence must be provided by the DBI. Furthermore, we propose how to break them into
modules. We generally suggest to associate these procedures with one of the concepts that
we have introduced earlier, namely operators, methods, and rules. In Chapter 4, we will

show how these concepts are realized in the EXODUS optimizer generator.
3.1.3.1. Data Model Dependent Data Structures

There are two kinds of data model dependent data structures which are important in
the optimization process. First, there are arguments for operators and methods. Second,
in almost all cases it is desirable to maintain some dictionary information for intermediate
results in a query tree. We term such dictionary information properties of the intermedi-
ate results. Since defining these data structures is part of customizing an extensible data-
base system, the optimization component of such a system must treat these structures as
"black boxes”. In this thesis, we propose the use of a procedural interface to maintain and

query these properties. Furthermore, we distinguish between operator and method
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arguments, and between operator dependent and method dependent properties. As an
example from a relational system, cardinality and tuple width are operator dependent pro-

perties, whereas sort order is a method dependent property.
3.1.3.2. Rules and Conditions

In the EXODUS optimization concept, the set of operators, the set of methods, the
transformation rules, and the implementation rules are the central components that the DBI
specifies to implement an optimizer. The rules are non-procedural; they are given as
equivalence laws which the generator translates into code to perform tree transformations.
Each of these rules should be self-contained. Only then is it possible to expand the rule set

safely as the data model evolves.

The transformation rules express equivalency of query trees. Tree expressions, i.e. alge-
braic expressions, embody the shape of a tree and the operators in it. For some rules, how-
ever, applicability does not depend on the tree shape and the operators alone. For example,
some transformations might only be possible if an operator argument satisfies a certain con-
dition. Since operator arguments should be defined by the DBI, such conditions cannot be
expressed in a data model independent form. We allow the DBI to augment rules with

source code to inspect the operator arguments, the data dictionary, etc.
3.1.3.3. Cost Functions

As mentioned earlier, processing cost occurs by executing a particular algorithm. The
cost calculation is closely related to the processing method being executed. Hence, we pro-
pose to associate cost functions with the method:;., and calculate the cost of a query execu-
tion plan as the sum of the costs of the methods involved. The parameters of a cost func-
tion are the characteristics of the data streams serving as inputs into the method, e.g. the
number of data objects in each input data stream, and the method argument, e.g. a predi-

cate.
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3.1.3.4. Property Functions

The characteristics of the data stream, which are needed as parameters to the cost
functions, are data model dependent. Thus, they must be defined by the DBI. We attach
characteristics, which we call properties, to both the operators and the methods. Operators
(and their arguments) determine the logical properties of a node in a query tree, e.g. cardi-
nality. The choice of a particular algorithm or method defines physical properties of the

intermediate result that this node stands for, e.g. sort order.

Besides the conceptual differentiation of operator and method properties, there is also a
practical reason why the two should be separated. The operator properties should be com-
puted as early as possible, in particular before the cost functions are invoked. Determining
the cost can be easier if the operator properties, e.g. cardinality, have been derived already.
The method properties, on the other hand, can only be computed after the method has been

determined, which is after the cheapest method has been found using the cost functions.
3.1.3.5. Argument Transfer Functions

Arguments to operators and methods, e.g. predicates, are also data model dependent,
and can, therefore, only be modified by DBI code. If a transformation involves only opera-
tor reordering, there is a correspondence between operators in the old query tree and in the
new query tree. In these cases, arguments can be copied between corresponding tree nodes.
If this is not possible, we suggest that the DBI be allowed to provide a function along with
the transformation rule which is called when the rule is applied and which determines the
arguments of the new operator nodes. For example, if 2 complex selection predicate must
be broken up into smaller pieces, a function provided by the DBI should be associated with
the transformation rule. When the rule is applied, this function is called to perform the

necessary manipulations on the argument data structure.
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3.1.3.8. Promise Estimation Functions

In the search strategy, a promise evaluation or estimation function is used to antici-
pate how beneficial the application of a rule will be and to decide which transformation to
apply next. It is not easy to design a general scheme to do this, and any general scheme
will suffer from its generality; sometimes it might be necessary to conmsider data model
dependent aspects of the query tree to be transformed. For example, join commutativity
will, on the average, have a neutral effect. If there are asymmetric join methods like hybrid
hash join (DeWitt, 1984), however, the benefit of join commutativity depends on whether
one or both of the relations will fit into a main memory hash table. Therefore, an extensible
database system should provide a general scheme to estimate the benefit of applying a
transformation to a query tree, and leave the option to the DBI to augment this scheme

with specialized estimation procedures.
3.1.4. Limitations of Our Work on Tree Based Optimization

The optimizers discussed in this thesis have only limited scope. They optimize a single
query at a time, base their decisions solely on information available prior to execution, and
are meant for a centralized system. Most existing relational query optimizers have the same
restrictions, and we feel that more research needs to be done before it is warranted to

remove these restrictions in an extensible query optimizer design.

Regardless of the data model, we would like to recognize and exploit common subex-
pressions. This is the essential feature for global optimization, i.e. optimizing several queries
at a time to achieve greater savings in answering the queries. Therefore, it is essential to
find common subexpressions, and to optimize and to execute them only once. It is not clear,
however, how to decide when to transform a subexpression that is used more than once in a
query. Consider two subtrees in a query that share a common subexpression. If, after a

transformation, only a small part of the common subexpression is shared among the queries,
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the cost reduction that has been achieved for one of the uses might be more than offset by

the reduction of sharing.

For distributed database systems, we offer as an initial idea to include a "transfer"
operator in the algebra, which would represent data transfer from one site to another and
which could be moved in the query tree by appropriate tree transformation rules. If data
are replicated in the system, we suggest an operator similar to the "choosel” operator used

in System R* (Selinger, 1980).
3.2. Relation to Other Database Functions

There are a number of functional units that are typically found in all database systems

with which the optimizer interacts. In this section, we would like to outline some general

assumptions about the relationship of the optimizer to these components.
3.2.1. User Interface, Preprocessing, and Parsing

The optimizer components of EXODUS based database systems expect the query to be
transformed into an initial query tree before it is passed to the optimization procedure.
There are several advantages and disadvantages to this design. The main reason for this
decision is that it isolates the optimizer from all interface design issues. For optimizing a
query, it does not matter whether the query was entered using an interactive interface, be it
graphical (Zloof, 1977, Wong, 1982,Cruz, 1987) or command oriented (Chamberlin,
1974,Stonebraker, 1976), or whether it was part of a program with an embedded query
(Chamberlin, 1981). There are, of course, issues involving the thoroughness of the search,

but those can be communicated to the optimizer in other forms as well.

A disadvantage might be that there are optimizations that can be applied easily before
the query is transformed into an operator tree, e.g. semantic optimization of the predicate
(King, 1981). While we recognize this fact, we believe that a major emphasis of query

optimization will remain with choosing from among many access plans.
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After a query has been parsed successfully, the database is queried to ensure that the
query is permissible in the sense that it only references existing database objects, and access
protection is not violated. We envision that a facility similar to relational views will be
provided by most database systems because this a proven way to realize an external schema
on top of the conceptual schema. If a view is queried, it has to be combined with the query.
Hopefully, other data models and query languages allow for the use of the techniques

developed for relational systems (Stonebraker, 1975, Hanson, 1987).
3.2.2. Run-Time Systems

Clearly, the run-time system and the optimizer of a database system have a close
correspondence. The optimizer should consider exactly those query execution plans that the
run-time system can execute. A significant change in the run-time system almost always
requires a change to the optimizer to take advantage of the new or improved features.
Even though these two subsystems of a dailtabase system are closely related, there are very

good reasons to keep them separated.

For commercial database systems, it is a requirement that queries can be run many
times without changes or with different parameter values only. In these cases, it is usually
not worthwhile to reoptimize the query every time. In fact, in many cases, this would be
prohibitively slow. Consider, for example, a high-performance banking application. The
money transfers performea by the tellers are equivalent except for the account numbers and

the amounts involved. Optimizing each of these transactions separately would make no

sense, since it would only waste resources!.

! In other cases, in particular when range queries are involved, the situation is more
complicated. The author suggests that the data structure that represents the access plan
include the original query, possibly in parsed form (Chamberlin, 1981), and a predicate on
the actual parameters. When a compiled query is invoked, the predicate is evaluated with
the actual parameters. If it is satisfied, the query is reoptimized. Since this predicate can
be prepared just as database search predicates are that operate on database records, e.g.
compiled into machine language, this method gives a maximum of flexibility for hardly any
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Another reason why we would like to separate the query optimizer from the run-time
system is that it is not clear on which level these subsystems should communicate. The
run-time system could "walk the tree", or the plan might be put into a special data struc-
ture, as is done for example in GAMMA (DeWitt, 1986), or it could invoke a procedure
which was generated from the plan. Mixed forms are also possible. If the run-time system
is not able to interpret directly the output of the optimizer, there is another component in
between that transforms a query execution plan into a program in machine language.
Interesting research on how to do this step with a rule-based system has been done by Frey-
tag (Freytag, 1986,Freytag, 1985). In EXODUS, query execution plans will be transformed
into programs in the database implementation language E (Richardson, 1987,Richardson,
1987), which is a very convenient target language because its iterator construct was

designed with this application in mind.
3.2.3. Schema and Data Dictionary Support

As pointed out above, the optimizer depends solely on information about the database
which is available prior to execution of the query. That means that schema and data dic-

tionary support is very important to optimizers in EXODUS.

In this thesis, we do not suggest which information should be kept in the data diction-
ary, or any particular implementation. First, since we do not know the data model that a
DBI might want to implement using EXODUS, it is impossible to specify exactly what data
dictionary information is required. Second, even for the relational model, for which the
alternative execution strategies and the decision rules are reasonably well understood, there

is currently no standard as to what information should be kept in the data dictionary or in

cost. Designing the algorithms used by the optimizer to build this predicate is an interest-
ing problem that, to the best of our knowledge, has not been investigated yet. In fact, the
stability of access plans, i.e. the range of query parameters and database states in which an
access plan represents the best choice, has yet to be addressed. Another, possibly comple-
mentary, solution to the problem is to produce several access plans or scanning strategies
and choose one of them depending on the actual parameters of the query.
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the schema, and how closely it should reflect the state of the database®.

For these reasons, the optimization component of EXODUS must be designed in a way
that allows the DBI to use sophisticated data dictionary support without requiring it. The
optimizer actually does not depend on the data dictionary itself, it depends on information
found in or derived from the dictionary. Instead of concentrating on the data to be kept in
the dictionary, we propose a functional interface. For example, we do not require that the
data dictionary or schema of an EXODUS based database system contain cardinalities. All
the optimizer really depends on are the cost calculations. If the DBI wishes to support the
cost calculations with information typically found in the data dictionary, e.g. cardinalities
and data distributions, we suggest that the DBI provide property functions that provide this
information. The EXODUS software ensures that these functions are called by the optim--

izer,
3.2.3.1. Abstract Data Types

Frequently, abstract data types (ADT’s) to be defined by database users are viewed as
an essential component of extensible database systems, e.g. in (Dayal, 1985,Stonebraker,
1986) and (Schwarz, 1986). In programming languages, ADT’s are defined externally by
their procedural interface, i.e. the interface specifies only how to manipulate and query an
ADT. This roughly corresponds to the run-time system in the database world. For query
optimization purposes, this presents a problem, because the optimizer has to anticipate pro-
cessing costs, selectivities, etc. Dayal and Smith suggest to make the optimizer parts that

need to know about ADT’s description-driven (Dayal, 1985). Stonebraker and Rowe propose

2 The author suggests more investigation of statistical moments for estimating selectivi-
ty factors. There are two reasons why moments can be very useful in database systems.
First, it is also possible to use co-moments that describe the correlation between attributes,
and this could help in estimating join selectivities (Yang, 1985). Second, moments can be
maintained quite easily. They can be maintained in a transaction consistent state, and in-
corporated into the data dictionary in a very efficient manner, e.g. using Escrow methods
(O’Neil, 1986).
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to include functions in the ADT definition to assist the optimizer in these needs (Stone-

braker, 1986).

For extensible optimization, however, ADT’s are an orthogonal problem. The extensi-
ble optimization component uses a procedural interface to the operators and methods in the
system, e.g. join and hash join. Whether or not a selection predicate involves an ADT is of
no interest to the extensible optimization component. The extensibility required to deal
with ADT’s is located in the condition code, the cost functions, the property functions, etc.,

but not in the actual optimization code.

Therg is another way to look at ADT’s in extensible optimization. The optimization
component is not interested in what is stored in the data dictionary; it only needs access to
a set of procedures to derive information from the dictionary, e.g. processing costs or selec-
tivities. These procedures are the cost functions and property functions described above. If
the data dictionary is only specified by its functional interfa(:e, as we propose for the
EXODUS optimization component, ADT’s are not visible to the optimizer. Rather, they
present themselves as schema maintenance and schema interpretation problems. The exten-
sibility required to handle ADT’s in the optimizer is located in the data dictionary routines.
It rests with the DBI to implement it, and it does not require special action by the actual

optimization procedures.
3.3. Implementation Considerations
3.3.1. Generator vs. Interpreter

The concepts outlined so far can be implemented in many different ways. From a prac-
tical standpoint, it is an important decision whether to interpret or to compile transforma-
tion and implementation rules. An interpreter has one potentially significant advantage.
Typically, interpreters allow augmention of the rule set at run-time. For example, the

optimizer could be designed in a way that it observes which combination of rules occurs
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frequently. To speed up a combination of rules, a new rule representing a combination of

these rules could be created by the running optimizer and used in further transformations.

Before we designed the optimizer generator, we experimented with interpretative rule-
based optimization. The initial idea was to use one of the languages used in artificial intel-
ligence which typically incorporate rules, pattern matching, and a search engine. We con-
sidered Prolog (Warren, 1977,'Clocksin, 1981), OPS5 (Forgy, 1981), and Loops (Bobrow,
1983). Based on local availability and expertise, we chose Prolog. We designed two Prolog
rule files. One contained those rules to guide the search for the optimal access plan, and to
keep track of the cheapest access plan found. The other contained the rules describing the
data model, i.e. the operators, the methods, and the cost calculations. While this prototype
successfully rearranged relational algebra expressions, it also showed Prolog’s limitations for
our purpose. Surprisingly, its most proﬁinent disadvantage is the search strategy. At any
point, only the current plan can be considered, and the applicable rules are tried in their
syntactic order. This is a result of the fact that the search strategy is largely implicit in
the Prolog interpreter, and the actual implementation task consisted of writing code to let
the interpreter backtrack through the promising expressions, keeping track of the best
expression encountered. The invocation of rules by the interpreter also makes it hard to
gather information needed to improve the optimizer performance. Implementing and experi-
menting with alternative search strategies is one of the main objectives of our optimizer
research work. For this reason, we decided not to use Prolog in the EXODUS system.
Another practical problem is the execution speed of our local Prolog implementation (the

C-Prolog interpreter).

As one alternative to using an existing language, we considered briefly to design and
implement our own interpreter, possibly by modifying source code of the Prolog interpreter.

While this would have alleviated some of the problems encountered, we anticipated that the
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performance would still be unsatisfactory. Consequently, in order to achieve maximum per-
formance, we decided to build a program generator. The rules describing the data model
(for optimization purposes) would be translated into C code, which in turn would be com-
piled and linked with other EXODUS components. We believe that the higher execution
speed of compiled rules more than outweighs the benefits of being able to create new rules

at run-time.
3.3.2. Rule Language

Since the design of the generator is not bound to any particular rule language, we
designed a new rule syntax for query tree equivalence. The rules from which the optimizer
generator produces code consist of two trees and an optional condition. In the case of a
transformation rule, both trees are query trees. In the case of an implementation rule, one

tree is a query tree and other is the corresponding part of the access plan.

It seems natural to formulate a tree as an algebraic expression. For our purposes, we
decided to use prefix notation. The ox;erators are used as function names, and the input
streams appear as function arguments. If the specific characteristics of an input do not
matter, a variable is used in its place. It is assumed that multiple occurences of the same
variable designate the same subtree. Using variables, it is possible to express equivalence
laws easily and concisely. A special symbol separates the two expressions. For example,
join commutativity can be expressed as:

join (X, Y) <-> join (Y, X)
In order to distinguish transformation rules from implementation rules, different special sym-

bols are used between the expressions.

In general, it should be sufficient to state equivalence as a logical law without pro-
cedural aspects being incorporated in the rule. In those cases in which a rule makes sense

only in one direction, a different symbol (arrow) is used. It is important, however, that the
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correctness of the system does not depend on procedural instructions. Otherwise, the rules
are procedural rules. The purpose of using algebraic equivalence laws to specify the optimi-

zation is to free the DBI from designing the control of the optimization.

The rule conditions typically include accesses to dictionary information. Since the DBI
designs the dictionary, it is easiest for the DBI to code these conditions in her or his imple-
mentation language. Since the rules are translated into the DBI’s implementation language,

it is easy to include the condition code in the generated code.

In Chapter 4, we will see the exact definition of the rule syntax, and how an optimizer

is generated from the rules and the support functions written by the DBI.
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CHAPTER 4

The EXODUS Query Optimizer Generator:

. Design and Implementation

We implemented a prototype of the optimizer generator. It was intended to serve
several purposes. First, it shows the feasibility of the approach. Second, it is used to get
preliminary performance figures. Third, it helps to identify the important parameters, their
influences, and their ranges. Finally, it will constitute the optimization component of the

EXODUS extensible database system.

In this chapter, we present the design and prototype implementation of the optimizer
generator. The first section describes the generation of an optimizer from a description of
the data model, as well as required and optional complementary code written by the DBL
The second section concentrates on how a generated optimizer works, how it searches for
the best access plan, and what the parameters of the search strategy are. Most of the issues
that were introduced in the last chapter are found here again, together with the chosen

solution.

In addition to the concepts introduced in Chapter 3, we also allowed the DBI to organ-
ize the optimization into several phases. For each phase, there can be a different rule set,
different search parameters, and different stopping criteria. The query tree corresponding to

the optimal access plan of one phase serves as the input tree of the next phase.
4.1. Optimigzer Generation

To produce an optimizer, the DBI invokes the generator on a model description file.

This is done only once, at database system generation time.
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The resulting query optimizer can then be used indefinitely. Figure 4.1 illustrates this
paradigm. The output of the generator consists of two files: one with C code and one with
C definitions to be included in other source code files written by the DBI. From the model
description file, the generator produces 5 procedures. At the end of the code file, approxi-
mately 40 more procedures are appended. Providing source code and not a library of com-
piled object code seemed the most practical approach because much of this code depends on

constants defined by the optimizer generator while processing the model description file.

We will describe only those aspects of the system that are essential to understanding
the overall operation of the optimizer generator. Further details about the content of the

model description file, the translation process, and the DBI code are given in Appendix A.

model description file
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Figure 4.1.
Optimizer Generation.
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4.1.1. The Model Description File

The input of the optimizer generator is designed in a style similar to that of YACC
(Johnson, 1975). The output file is a set of C procedures. The model description file has
two required parts and one optional part. The first required part is used to declare the
operators and. the methods of the data model. It can include C code and C preprocessor
declarations to be used in the generated code. The second required part consists of transfor-
mation rules and implementation rules. The optional third part contains C code which is

appended to the output file.

The first part of the input file is called the declaration part. It is used to declare the
number of optimization phases and the operators and methods in the data model. If the
number of phases is not explicitly declared, there is only one phase in the generated optim-
izer. Operators are declared with the keywords Z%operator followed by a number to indi-
cate the arity and by a list of operators with this arity. Methods are declared in the same

way using the keyword %method.

Besides operator and method declarations, the first part of the description file can also
include C code which will be copied into the optimizer code file before the generated code.
In particular, it is possible to put type, constant, and macro definitions into these code sec-
tions. There are three names that the optimizer sets to a default value if they are not
declared in the description file. These are ARGUMENT, OPERATOR_PROPERTY, and
METHOD_PROPERTY. They are data model dependent types. Their use will be
explained later in this chapter. The order of the entries in the declaration part is imma-
terial, as is the position and the number of code sections.

Example 4.1:

%%operator 2 join

%method 2 hash_join merge_join
%

typedef char string [50];
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# define ARGUMENT string
%}

This fragment of a declaration part shows the definition of the binary operator join and the
binary -methods hash_josn and merge_join. The code section, limited by %{ and %]},
includes a type definition for the type string and the C preprocessor definition of the name
ARGUMENT.

]

The second part of the description file, called the rule part, contains the transforma-
tion rules and the implementation rules. In Chapter 3, we required that the rule set be
sound and complete. On the other hand, the rule set can be redundant. In fact, if the DBI
foresees that a certain combination of rules will be used frequently, it is recommended (but
not required) that this combination be specified as a single rule. While this will speed up
the optimization process, it will not affect the access plan produced by the optimizer, unless
the search parameters (described below in the section on the search strategy) are set too

restrictively.

Transformation and implementation rules can be mixed freely within the rule part.
The main part of a rule consists of two expressions and an optional condition. Between the
expressions is the keyword by for implementation rules, or an arrow for transformation
rules. Typically, the arrow is double-sided. A double-sided arrow means that the rule is an
equivalence that can be used for transformations in both directions. We also call it a
bidirectional rule. If the DBI wishes to ensure that the rule is used in one direction only, the
arrow can be one-sided in this direction. If a one-sided arrow has an exclamation mark
with it, the transformation is a once-only transformation, i.e. it cannot be applied to a
query tree generated by this transformation. This feature is useful for enhancing optimizer
performance, but it should never be necessary for correctness. A typical situation where it

can improve the optimizer performance is a commutativity rule. Using commutativity twice
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results in the original query treel.

An expression consists of an operator and an argument list. Each argument can either
be another expression or an input. An input is indicated by a number. It stands for a sub-
tree that is not affected by the transformation or implementation. For an implementation
rule, the second expression consists of a method and a list of inputs. In the current proto-
type, methods cannot be nested in implementation rules.

Example 4.2:

join (1, 2) ->1 join (2, 1);
join (1, 2) by hash_join (1, 2);

The first line of this example is the join commutativity rule. Since applying it twice results
in the original form, the once-only arrow (with exclamation mark) is used. The second line

indicates that hash_join is a suitable implementation method for josn.

m]

Sometimes the same operator name appears twice in the same expression, e.g. in an
associativity rule. In this case, it is necessary to identify the operators so that arguments,
e.g. join predicates, can be transferred correctly when the transformation is applied. Opera-
tors in an expression can Be followed by a number, called identification. If the same
identification appears with an operator in the other expression of the rule, the arguments
are transferred between these two operators. The operator numbering is independent from
the input numbering.

Example 4.3:
join 7 (join 8 (1, 2), 3) <-> join 8 (1, join 7 (2, 3))

Example 4.3 shows a join associativity rule. The input streams not affected by the rule are

1 When a query tree is generated that is exactly like one generated earlier, the duplica-
tion is detected and the new query tree is removed. Thus, allowing commutativity to be ap-
plied twice is only a performance and not a correctness issue.
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numbered 1, 2, and 3. The jotn nodes are distinguished by the identifiers 7 and 8. Since the
input numbering and the operator numbering are independent, 1 and 2 could have been used
without confusion with the inputs. When this rule is applied in either direction, the join

predicates are transferred between the nodes numbered 7 and those numbered 8.

0

Both transformation rules and implementation rules can have a condition. Conditions
are written as C code. When the generated optimizer determines which rules are applicable
to a given query tree, this code is executed after the pattern match succeeds. Special
actions ACCEPT and REJECT are provided for use in this condition code. If no REJECT
is executed, it is assumed that all conditions have been met. The condition code can access
the arguments and properties of the operators and the inputs of the expression via pseudo-
variables defined by the generator. These variables are called respectively OPERATORL_1,
OPERATOR.2, etc., INPUT_1, INPUT_2, etc. The numbers in the pseudo-variables are
the same as those used to identify operators and to represent the inputs in the rule expres-
sions. Since a bidirectional rule counts as two rules in the generated optimizer, the condi-
tion code is inserted twice into the code file. To distinguish the two directions, one of the
names FORWARD or BACKWARD is defined above the condition code in each case.
Example 4.4: The associativity rule in Example 4.3 lacked the condition code. The com-

plete rule with the condition code is:

join 7 (join 8 (1, 2), 3) <-> join 8 (1, join 7 (2, 3))

{
# ifdef FORWARD
if (NOT cover_predicate (OPERATOR._7.oper_argument,
INPUT_2.oper_property, INPUT_3.oper_property))
REJECT;
# endif
# ifdef BACKWARD
if (NOT cover_predicate (OPERATOR_8.oper_argument,
INPUT_1.oper_property, INPUT_2.oper_property))
REJECT;
# endif
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3 g
Example 4.4 illustrates the join associativity rule and the use of conditions to control the
application of a transformation. Since the join operator appears twice in each expression,
the numbers 7 and 8 are appended to distinguish the two instances of the operator. This
allows the optimizer to transfer correctly the join predicates between the two operators as
the transformation rule is applied. The condition code, the lines between {{ and 1}, is
copied twice into the optimizer code. Nevertheless, only one if statement from the condition
code is executed for each direction; the other one is removed by the C preprocessor. The
Boolean function cover_predicate is assumed to determine whether all attributes occurring
in a predicate are in one of two relation schemas. The predicate is given as first argument,

the schemas are given as second and third argument to the function cover_predicate.

m}

A rule can be preceded by the keyword phase and a number to indicate that this rule
is only valid in one of the optimization phases. If a rule is to be used in several, but not all,
phases, a range can be indicated with the keywords phase and to.

Example 4.5: The rule

phase 1 to 2
join (1,2) ->! join (2,1);

will be applied only in the first two phases of the optimizer.

a

When a transformation is applied, argument fields are transferred between operator
nodes in the "old" tree (the one that was transformed) to nodes in the "new" tree (the one
resulting from the transformation). By default, the transfer is performed by copying. If an
action other than copying is desired, an argument transfer function can be specified fol-

lowing the "new" expression in a rule. The new expression is the one that describes the
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query tree after the transformation. This function is invoked whenever the rule is applied

to fill in the argument fields in the new query tree.

Finally, the DBI can choose to assist the optimizer in estimating the benefit that can
be expected from applying a certain rule. The standard method of estimation is described
below in the section on the search strategy. To replace the default, the DBI appends the

keyword estimate and a function name to the new expression in a rule.

Example 4.8:

join (1, 2) ->! join (2, 1)
flip_join_argument
estimate join_comm._benefit

After a query tree has been determined to match this rule, the function josn_comm_benefit
is called to estimate the execution cost of the query after the transformation. When the
join commutativity rule is applied, the procedure flip_join_argument is called to reverse the
join predicate. Using this function allows the DBI to ensure that join predicates are always
maintained in a way that attribute on the left of the equation predicate refer to the left
input, and right side attributes to the right input. Example 4.4 shows a case where this
convention makes it easier to specify condition code for rules. The arguments to benefit
estimation functions and argument transfer functions are described below in the section on
DBI support functions.

a
4.1.2. Code Generation from Rules

The principal purpose of the optimizer generator is to translate the rules into execut-
able code. A generated optimizer consists of about 45 procedures, three of which are gen-
erated from the rules, two of which are generated from the declarations, and the others of

which are library procedures.
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In this section, we will describe the code that is generated from the model description
file, indicating only briefly the purposes of the generated procedures. Section 4.2 will outline

the optimization algorithm, and show how the generated code is used.

When the optimizer generator is invoked, it creates a file for the generated source code
and three temporary files into which the code for the procedures generated from the rule;s
will be collected. Code sections are directly copied from the model description file into the
source code file. After reading the declaration part, the generator appends constant
definitions for the operators and the methods, and type definitions for the data structures

QUERY, PLAN, and a number of internal data structures. QUERY and PLAN are used to

build the initial query tree and the final plan tree respectively.

The transformation rules are translated into the procedures MATCH and APPLY.
The former determines which rules can be applied to a particular query tree, the latter per-
forms a transformation. The implementation rules are translated into the procedure
ANALYZE. This procedure selects the cheapest implementation method for a given query
tree. Theée procedures are created in the temporary files mentioned above, and the code for
each rule is appended immediately after the rule has been read from the model description
file. Bidirectional rules are considered as two rules in MATCH and APPLY. The generated
procedures are built to work on a network of nodes called MESH which contains all query
trees and access plans explored so far. MESH is described in detail in the section on optim-

izer operation.

After a rule is parsed, the correspondence between operator nodes in the two expres-
sions is established. Operator nodes with an attached identification can readily be associ-
ated. Other operator nodes are associated only if they contain the same operator, e.g. the

generator does not associate a join node with a select node.
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Example 4.7: Consider the following transformation rule, which has been designed for this

example only.
join 7 (join (1, select (2)), 3) <-> select (join (1, join 7 (2, 3)))

First, the join operators with identification 7 are associated. Afterwards, there is only one
join operator left in each expression, and the generator assumes that there is a correspon-
dence between them. Finally, there is only one select operator in each expression, and they
become associated.

o

In the procedure MATCH, the generator produces a number of tests for each transfor-
mation rule. When a query is optimized, if all tests for a given rule succeed, the query tree
and the rule are inserted into the set of possible transformations. This set is called OPEN
and is described in the section on optimizer operation. If any one of the tests fails, the

macro REJECT is executed which is actually a GOTO to the first test of the next rule.

Only the tests that are necessary are inserted into the code. The first test ensures that
the rule is applicable in the current optimization phase. The second test considers the rule
that created the query tree. In a bidirectional rule, this ensures that the query tree pro-
duced by one direction of a bidirectional rule will not simply be transformed back in the
opposite direction. In a once-only rule, a node will not be transformed by the same rule
that created it. The next tests match the pattern of operators in the rule with those in the
actual query tree. The operators are encoded as integers in the tree node, ensuring that
pattern matching is very fast. Finally, if the rule has condition code attached to it, this
code is appended as the final test(s).

Example 4.8: Consider the following transformation rule.

phase 1 to 2 join 9 (1, join 8 (2, 3)) -> join 8 (join 9 (1, 2), 3) join_assoc
{{

if ( /* the right side of join predicate 9 refers to input 3 */)
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REJECT;

After reading this rule, the generator appends the following code to MATCH. (The code

lines are numbered in this and the following examples for illustration purposes only; the

numbers are not generated by the optimizer generator.)

1 TRANS_2:

2 # define REJECT goto TRANS_3

3 # define ACCEPT goto TRANS_2_ACC

4 if (opt_cur_phase < 1) REJECT;

5 if (level > 2) REJECT;

6 if (node->operator != join) REJECT;

7 if (node->oper_input(1}->operator != join) REJECT;

8 # define OPERATOR_9 (*(node))

9 # define OPERATOR_8 (*(node->oper_input[1}))

10 # define INPUT_1 (*(node->oper_input[0}))

11 # define INPUT_2 (*(node->oper_input(1}->oper_input|0}))
12 # define INPUT_3 (*(node->oper_input(1}->oper_input(1]))
13 {

14 # line 11 "model.opt”

15 if ( /* the right side of predicate 9 refers to input 3 */ )
16 REJECT;

17 }

18 # undef OPERATOR_9

19 # undef OPERATOR_ 8

20 # undef INPUT_1

21 # undef INPUT_2

22 # undef INPUT_3

23 # undef REJECT

24 # undef ACCEPT

25 TRANS_1_ACC:

26  open = (OPEN *) alloc_slot ();
27 open->rule = 1;
28  open->oper_nodes [0] = node;
29  open->oper_nodes [1] = node->oper_input{l];
30  open->input_nodes [0] = node->oper_input|0];
31  open->input_nodes (1] = node->oper_input|1]->oper_input[0];
32 open->input_nodes 2] = node->oper_input[1]->oper_input|1];
33 add_to_OPEN (open);

The first line is a label indicating that this is transformation rule 2. This label is used if the

preceding rule is rejected. The next two lines (lines 2-3) show the definition of the macros

REJECT and ACCEPT. If the current phase is not phase 1 or 2, the transformation rule is

rejected (line 4). Since this rule is neither a bidirectional nor a once-only rule, there is no
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test for the rule which produced the query tree under consideration. Next, the level of
reanalyzing is checked (line 5). Levels of reanalyzing are described in the section tracing a
transformation. The following two lines (lines 6-7) perform pattern matching. The variable
node is an argument to the procedure MATCH and points to the root node of the query tree
to be matched. To make pattern matching fast, the name join was defined to be an integer
constant after the declaration part was read. The next five lines (lines 8-12) are definitions
of pseudo-variables that can be used in the condition code. The condition code follows with
a line indicator to ensure that syntax errors in the condition code will be reported by the C
compiler with the correct line number (lines 13-17). After all pseudo-variables and the mac-
ros REJECT and ACCEPT have been "undefined” (lines 18-24), an OPEN record is allo-
cated from the heap (line 26), filled with the rule number and pointers to the operator nodes
and the input nodes of the query tree (lines 27-32), and added to OPEN (line 33). For a

bidirectional rule, a similar piece of code would have been appended

[wi

Notice that all transformation rules are tested sequentially. Other strategies could be
devised, e.g. using a case statement based on the root node’s operator. However, the
machine code produced for the generated tests is extremely short. For the code in example
4.8, the C compiler generates 7 machine instructions before the DBI's condition code. Run-
time profiles of an operational optimizer show that only a small fraction of the time is spent
in the procedure MATCH, indicating that a more sophisticated algorithm would not result
in significant savings.

The procedure APPLY is called whenever a transformation, i.e. a query tree and a
rule, is selected from the above-mentioned set OPEN. This procedure consists of a case
statement with one case for each rule. First, new tree nodes are allocated for the new query

tree and connected with their inputs. Then, arguments are transferred from corresponding



54

nodes in the old query tree. Finally, in a bottom-up pass through the new nodes, the pro-
cedure REPLACE is called for each new node. This procedure either replaces a node by an
existing equal node or integrates it into MESH, which includes calling the procedure
ANALYZE. Two nodes are equal if they have the same operator, the same argument, and

the same input stream(s).

If there is at least one new node which cannot be replaced by an existing one, the new
and the old root node are linked into the same class of equivalent nodes, and statistics
about rule usage are updated. Notice that the root of a new query subtree is always in this
set of nodes, or the set is empty. An equivalence class of nodes consists of the root of all
equivalent subqueries, i.e. those that produce the same intermediate resuits.

Example 4.9: For the join associativity rule in Example 4.8, the generator inserts the fol-

lowing code into APPLY.

lcasel:

2 new = alloc_node (join);

3 new->oper_input[0] = alloc_node (join);

4 new->oper_input(0}->oper_input(0] = open->input_nodes [0];
5  new->oper_input[0]->oper_input(1] = open->input._nodes [1];
6  new->oper_input{l] = open->input_nodes [2];

7

8

9

void join_assoc ();
join_assoc (open->oper_nodes, open->input_nodes, new);
10}
11 new->oper_input(0] = replace (new->oper_input[0], (NODE *) NIL, 0, 0);
12 eql = replace (new, open->oper._nodes [0], open->rule, 0);
13 if (eql == new) {

14 update_rule_stat (open->rule, (REAL)

15 ((new->oper_input[0]->local_cost + new->local_cost + TINY_COST) /
16 (open->oper_nodes [1]->local_cost +

17 open->oper_nodes [0]->local_cost + TINY_COST)), 0);

18 if (open->oper_nodes [0]->rule != 0)

19 update_rule_stat (open->oper_nodes [0]->rule, (REAL)

20 ((new->total_cost + TINY_COST) /

21 (open->oper_nodes [0]->total_cost + TINY_COST)), 2);
22 new_equiv (new, open->>oper_nodes [0], 1, 0);

23}

24  else if (eql = (NODE *) NIL &&

25 eql->class != open->oper_nodes [0]->class)

26 unify (eql, open->oper_nodes [0]);
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Since this was the second rule in the model description file, it is case 2 in the case statement
in APPLY (line 1). First, two new nodes are allocated which are the join nodes in the new
query tree (lines 2-3). In the next three lines, the new join nodes are linked to their inputs
(lines 4-6). Then, the argument transfer function which was indicated with the rule is called
(line 7-10). In a bottom-up pass over the new nodes, the procedure REPLACE is called for
each node (lines 11-12). If the new root node cannot be replaced, the rule statistics are
updated in a way explained in the section on the search strategy (lines 13-21). A constant
cost TINY_COST is added to the costs to prevent numeric problems in the case that the
cost functions return zero costs. Also, the new root node is inserted into the equivalence
class of the old root node (line 22). If the root node can be replaced, but the equal node is
not in the same equivalence class as the old root node, then the two classes can be unified
into one class (lines 24-26). For a bidirectional rule, two such cases would have been
appended to APPLY.

D

The procedure ANALYZE matches a query tree with the implementation rules and
calls the cost functions for each of the matching methods to determine which is the least
expensive implementation method. Code generation for implementation rules is somewhat
simpler than for transformation rules because the method expressions in implementation
rules cannot be nested. After an implementation rule has been read, the generator produces
code to match the rule pattern with the actual query tree. At optimization time, if the pat-
terns do not match, the macro REJECT is executed which results in a goto to the next
implementation rule. If the patterns match, ANALYZE builds the appropriate plan tree
and calls the cost function associated with the implementation. If the calculated cost is less
than the best cost found so far in ANALYZE, the method and the plan tree are stored in

the current node of MESH.
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The argument transfer from the operator argument field to the method argument field
must be delayed until the method has been determined, i.e. at the end of ANALYZE. If an
argument transfer function was specified with the implementation rule, and if the method is
the cheapest one found so far, the address of this function is assigned to a pointer variable.
At the end of ANALYZE, arguments are transferred to the method argument field. As for
transformation rules, the default is copying. Another default function can be declared using
the name COPY_METHOD_ARGUMENT. If the an argument transfer function was expli-
citly refered to in the implementation rule chosen, this function is called.

Example 4.10: Since the code generation for ANALYZE is similar to that of MATCH and

APPLY, we show a fairly short example. Consider the following rule.
join (1, 2) by hash_join (1, 2);
For this rule, the generator produces the following code.

1 IMPL_1:

2 # define REJECT goto IMPL_2

3 # define ACCEPT goto IMPL_1_COST

4  if (node->operator != join) REJECT;

5 # undef REJECT

6 # undef ACCEPT

7 IMPL_1_COST:

8  meth_input [0] = node->oper_input[0];

9  meth_input (1] = node->oper_input|1];

10 local_cost = total_cost = cost_hash_join (node, meth_input);
11  total_cost += meth_input [0]->total_cost;
12 total_cost += meth_input [1]->total_cost;
13 if (total_cost < node->total_cost) {

14 node->method = hash_join;

15 node->meth_input {0] = meth_input [0];
16 node->meth_input (1] = meth_input [1];
17 node->local_cost = local_cost;

18 node->total_cost = total_cost;

19 transfer = (TRANSFER) NIL;

20 }

The first lines are just as they are in MATCH. The macros REJECT and ACCEPT are
defined (lines 2-3). The pattern of the query tree is matched (line 4), and the macros are

undefined (lines 5-8). A local array meth_snput is filled with pointers to the input streams
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as they would appear in the access plan (lines 8-9). The cost function is invoked to deter-
mine the local cost, i.e. the cost that would occur in this operator, and its return value is
stored in a local variable (line 10). The total cost is summed up in a small loop over all
inputs (Aiine 11-12). If the total cost compares favorably with the best cost found so far
(which is stored in the node and was initialized to a constant HUGE_.COST), the access
plan provided by this implementation rule is copied into the node in consideration (lines 13-
18). The pointer to the argument transfer function is set to NIL to indicate that no argu-

ment transfer function was provided with the rule (line 19).

(m]

After all rules have been processed, the generator appends the temporary files with the
procedures MATCH, APPLY, and ANALYZE to the generated source code file which until
then had only type and constant definitions in it. Subsequently, it produces two procedures
called OPERATOR_PROPERTY and METHOD_PROPERTY. Each of them consists of a
case statement to invoke the property functions which are associated with the operators
and methods. The purpose of property functions and other support functions is described in

the following section.
4.1.3. Support Functions

The third part of the model description file is optional. It can be used to append
source code to the optimizer code. For instance, it is a good place to put cost functions and
other support functions. It is also possible, however, to put the cost functions and the other
support functions in separate files. This section describes the support functions and their

purposes. For more detailed descriptions, the reader is referred to Appendix A.

A cost function is associated with each method. The name is built by the generator by
concatenating the word cost and the name of the method. To find the cheapest implemen-

tation method for a query tree, the procedure ANALYZE matches the query against the
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implementation rules, and calls the cost functions of the matching methods. The input
arguments are the root node of the query tree in MESH and the nodes in MESH which pro-
duce the input stream(s). These nodes, called method input nodes, are not necessarily equal
to the child nodes in the query tree. They will be different if the method under considera-
tion implements more than one operator. These pointers correspond to the data streams in
the access plan.

Example 4.11: Consider the following implementation rule.
project (hash_join (1, 2)) by hash_join_project (1, 2)

This rule indicates that a special form of hash join, called hash_join_project, can implement
a join plus a subsequent projection operator. The function cost_hash_josn_project is called
with pointers to the project node and to the nodes corresponding to the inputs numbered 1

and 2 in the rule.

a

Argument transfer functions are used to assist the optimizer in maintaining and mani-
pulating the argument fields. With each operator or method, the argument field specifies
how the operator or method should be applied to the input streams. An argument field
appears once in every node in the original query (for the operator) and in the access plan
(for the method), and twice in every node in MESH (for the operator and for the method).
Its type is defined by the DBI in a code section of the declaration part in the model descrip-

tion file. Typically, this field will have a unfon-type.

When an argument transfer function is included in a transfo;mation rule, this function
is called to set all the argument fields in the new query tree. When this function is called,
duplicates have not yet been removed from the tree. Recall that duplicates were defined as
nodes with equal operators, operator arguments, and input streams. To compare argu-

ments, the DBI must provide a Boolean function called DIFFERENT_ARGUMENTS.
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When a duplicate is removed, the function UNDO_NODE is called to allow the DBI to do
some housekeeping if necessary, e.g. deallocate space that a pointer in an argument field
points to. In the case of an argument transfer function with an implementation rule, the

function is called after the method has been determined.

By default, argument fields are copied from the initial query tree into MESH, between
corresponding nodes in MESH, and from MESH to the final access plan. If this is inap-
propriate for some reason, these defaults can be overwritten. To do so, the DBI defines
function names COPY_IN for transfers from the initial query tree into MESH, COPY_OUT
for transfers from MESH to the final access plan, COPY_OPERATOR_ARGUMENT for
use in transformation rules, and COPY_METHOD_ARGUMENT for use in implementation

rules in a code section of the declaration part.

In each node in MESH, there are two fields called OPERATOR_PROPERTY and
METHOD_PROPERTY which allow the DBI to store data dictionary information about
intermediate results, for example cardinality and sort order. The types of these fields are
defined by the DBI in a code section of the model description file. Information which can be
derived from the operator, the operator argument, and the properties of the input stream(s)
belongs in the operator properties, whereas information that depends on the chosen imple-
mentation method belongs in the method properties. These two are distinguished, as this

allows the cost functions to use operator properties before method properties can be derived.

To derive the properties of MESH nodes, the DBI associates a property function with
each operator and each method in the system. The names of these functions are the word
property concatenated with the name of the operator or method respectively. The genera-
tor inserts calls to these functions into the generated code at the appropriate places in the

procedure REPLACE.
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As mentioned earlier, the DBl may wish to assist the optimizer in estimating the
benefit of a transformation before the transformation is performed. A function name given
in a transformation rule with the keyword estimate will be called by the optimizer when the
rule has been matched successfully to anticipate the cost of a query tree after the transfor-
mation. Arguments to the benefit estimation functions are the query tree, the arguments,

and the properties.

At first sight, there seems to be a lot of code for the DBI to write. Not all of the fune-
tions outlined above, however, are required. Only the cost functions are absolutely neces-
sary. If no type for operator property fields is specified, operator property functions are not
necessary. Similarly, calls to method property functions are only inserted into the generated
code if a type for method property fields has been specified. Argument transfer functions

and estimation functions are only used if they are indicated in a rule.

Some or all of the functionality provided by these procedures is required in any optim-
izer. Since they are data model dependent, they cannot be provided for the DBI. What we
have done, though, and what we consider important, is to provide a framework that breaks

the data model dependent code in a query optimizer into small but meaningful pieces.
We expect that our system will allow the incremental development of database sys-

tems. Hopefully, even small subsets of operators, methods and rules can be designed, imple-

mented, and tested independently.
4.2. Optimizer Operation

In this section, we describe how the optimizer finds an access plan for a query. We only
give as much detail as is necessary to understand the optimization process, and refer the

reader to Appendix B for further technical details.

The generated optimizer transforms the initial query step by step, maintaining infor-

mation about all the alternatives explored so far in a data structure called MESH. For




61

each query tree it contains, MESH also contains the cheapest associated access plan found.
At any given time, there might be a large set of transformations which can be applied to

query trees in MESH. They are collected in the data structure OPEN, as mentioned earlier.
The general optimization algorithm is:

transfer the initial query tree into MESH
while (OPEN is not empty)
Select a transformation from OPEN
Apply it to the correct node(s) in MESH
Do method selection and cost analysis for the new nodes
Add newly enabled transformations to OPEN
extract the final access plan from MESH

Before we describe the optimization process and the procedures involved in more detail,

we will outline the principal data structures that are employed.
4.2.1. Data Structures

There are four data structures that are important during optimization. Two of them,
OPEN and MESH, have been mentioned before. EXP is an array of expected cost fac-
tors, one for each transformation rule in each direction, which is used to anticipate the
benefit of applying rules. PHASE is an array of records which contains parameters of the
search for each optimization phase. If there is only one phase, this array contains only one

element.

MESH is a network of nodes that represents both alternative query trees and access
plans. It is anchored with a special pointer called TOP which initially points to the root
node of the query tree. Since each node can be as large as several hundred bytes, and since
there can be many query trees to consider, it was important that MESH be designed to
avoid any unnecessary redundancy. Also, since we wish to avoid redundant processing, it
seems natural to share as many nodes as possible between query trees. To achieve this, the
optimizer allocates nodes only when necessary during a transformation, sharing copies when-

‘ever feasible. With this implementation, typically as few as 1 to 3 new nodes are required
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for each transformation, independent of the size of the query tree. More precisely, a node is
created for each operator that appears in the transformation rule on the "new" side. This
process is described in the sections below on how a transformation is actually performed.
Example 4.12: Consider Figure 4.2. The bold arrows denote transformations, solid lines
show the data streams (which flow upward), and dotted lines point to subtrees that are
being reused. The first transformation pushes the selection down the query tree. The
second transformation applies join associativity.

a

Each node in MESH contains a number of pointers to other nodes and to entries in

OPEN. These will be discussed shortly when it will be more obvious why they are desirable.

OPEN is used to keep track of transformations that can be applied to query trees in
MESH but which have been delayéd in favor of other transformations. OPEN is organized
as a priority queue and is implemented as a binary tree. Each element in OPEN is a record
that describes a transformation by specifying the rule number and all operator nodes and
input nodes involved. In addition, it contains a cost field which reflects the total cost of the

query tree before the transformation, and a benefit field where the anticipated benefit is

select A.a <100 —> join Ab=B.b = joinB.c =C.c

l / N

join A.b = B.b select A.a <100

/7N

A join B.c = C.c

\ /

B C

join‘A.b = B.b

Figure 4.2.
Example Tree Transformation.
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stored, i.e. the cost reduction anticipated for applying the transformation to the query tree.
The elements in OPEN are ordered by the value of the benefit fields such that the transfor-
mation with the biggest benefit is selected first. The formula used to calculate the benefit

field is described and justified in the section on the search strategy.

EXP is an array which is used in the promise evaluation. It has one entry, called the
expected cost factor, for each transformation rule and each direction. The expected cost
factors are a crucial element of the benefit calculation. Since they are hard to estimate,
they are learned automatically by the optimizer; the approach used for this learning is also

described in the section on the search strategy.

PHASE is an array of records, one for each phase in the optimization process. Each
record contains values that control search and pruning in one optimization phase. The
parameters and their value ranges are described in the sections on pruning and on stopping

criteria.
4.2.2. Tracing a Transformation

The general algorithm of the optimizer was outlined at the beginning of this section.
As long as there are transformations in OPEN that can be applied, one is selected, removed
from OPEN, and applied to MESH. In this section, we describe in a step by step manner
what happens when a transformation is applied. The management of OPEN, i.e. selecting

and adding entries, will be treated in its own section.

After a transformation has been selected, it is passed to the procedure APPLY which
was generated from the transformation rules. As explained above in the section on code
generation, APPLY creates a new query tree, links the operator nodes and the input nodes

together, and transfers operator arguments into the new nodes.

The optimizer then traverses the new nodes bottom-up and calls the procedure

REPLACE for each new node. REPLACE tries to replace the node by an existing equal
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node. Two nodes are equal if they have the same operator, the same operator argument,
and the same input(s). To make the search for equal nodes fast, all nodes in MESH are
inserted into a hash table, hashed on the operator and (the main memory address of) the
child nodes. This scheme to detect equal nodes is already used when the initial query tree is
transferred into MESH, so that common subexpressions in the query are recognized as early

as possible.

If a new node can be replaced by an existing duplicate node, REPLACE deallocates
the new node and returns the address of the equal node to APPLY. All pointers in the

query tree that point to the replaced node are changed to point to its duplicate node.

If there is no equal node, the new node must be integrated into MESH. This happens
in several steps. First, the operator properties are determined by calling the procedure
OPERATOR._PROPERTY, which in turn calls the operator property function supplied by
the DBI. As mentioned earlier, operator property functions and method property functions
are optional. If one or both of these types are not declared, these functions calls are
skipped. Next, the generated procedure ANALYZE determines the cheapest implementa-
tion method for the new node and determines the method arguments as discussed in the sec-
tion on code generation. If the node under consideration is the root node of the new query
tree and the cheapest implementation is more expensive than a predefined threshold, the
entire new query tree is abandoned and removed from MESH. Otherwise, the node is put
into the network of pointers that ties MESH together. Next, the method properties are
determined by calling the generated procedure METHOD_PROPERTY. Finally, the new
query tree is matched against the transformation rules by the procedure MATCH, and any

applicable transformations are added to OPEN.

After the procedure REPLACE has been called for all new nodes, the procedure

APPLY updates the statistics about rule applications by calling the procedure
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UPDATE_RULE_STATISTICS and links the root of the newly created query tree into the

transformed query tree’s equivalence class by calling the procedure NEW_EQUIVALENT.

When a new query tree is inserted into an equivalence class, it is possible that a parent
of a node in this class could now be implemented less expensively or transformed further if
the new subquery were substituted for an existing member of this class. Thus, one function
of the procedure NEW_EQUIVALENT is to match all parent nodes of the transformed
subquery (those that point to the transformed subquery or an equivalent subquery as one of
their input streams) against the implementation rules to propagate the cost improvement
obtained by the transformation performed. We call this reanalyzing. In addition, the
parent nodes are matched against the transformation rules, as there may now be some
(new) possibilities for further transformations. This is termed rematching. For reanalyz-
ing and rematching, NEW_EQUIVALENT calls the procedure REANALYZE.

Examﬂple‘ 4.13: Consider Figure 4.3. The transformations push the selection down the
query tree, reusing nodes where possible. To apply join associativity, the node labeled I
must be rematched with the node labeled II as its right input, resulting in an entry in

OPEN that will eventually lead to the transformation shown in Figure 4.4.

a
I
select B.a < 100 ' jOiP Ab =B.b
| II

join A.b =B.b 7/ seleet Ba<100 —»  joinB.e=C.c

A join B.e =C.c select ]?».a <100 |

Vo '
B C

Figure 4.3.
Situation needing Rematching.
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joinAb=Bb —T————* join B.c = C.c
2 /
A Jjoin B.c ——-\C.c join A.b =B.b :
"""""""" i i
1 \ 7 i

select B.a < 100C

B

Figure 4.4.
Trapsformation by Rematching.

In each equivalence class, there is one designated node called the class node which
contains pointers not found in the other nodes. First, it points to the cheapest alternative
subquery in thg class. Second, it serves as an anchor for a linked list of parent nodes of
members of this class. To find the class node for a node quickly, each node in MESH con-

tains a pointer to its class node.

For each possible parent node of the new query tree, the procedure REANALYZE
creates a copy of the parent node with the same operator, operator argument, and input
strea.m(s) except that the new subquery is used instead of an old equivalent subquery. The
procedure REPLACE is called with this node, and will call all other necessary procedures
like OPERATOR_PROPERTY, ANALYZE, METHOD_PROPERTY, MATCH, and
NEW_EQUIVALENT. Finally, REANALYZE calls the procedure NEW_EQUIVALENT
because the copy of the parent node belongs to the same equivalence class as the parent
node itself. Notice that the procedures NEW_EQUIVALENT and REANALYZE invoke
each other, i.e. there can be several levels of recursion, as many as there are levels in the
query tree. In this way, cost advantages are propagated upwards in MESH until the TOP
node is reached. While it is required that parent nodes be reanalyzed on all levels, rematch-
ing is only required depending on the level of recursion and the depth of nesting in the rule

expression that is being matched. The level of recursion is tested for each transformation
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rule before the pattern is matched, as was shown in Example 4.8.

Reanalyzing is not always worth the effort. For example, if a query has become much
more expensive by replacing a subquery with a new alternative, it probably is not worth the
effort. Notice that this is a heuristic, because replacing the old subquery with the new
subquery might allow a very beneficial transformation to be applied to the parent node.
Therefore, we introduce a factor, called the reanalysing factor, that limits when reanalyz-
ing should be done. If it is set to 1.5, for example, parents of a subquery are reanalyzed
only if a new subquery is not more than 50%% more expensive than the cheapest equivalent
subquery.

4.2.3. Search Strategy and Learning

Since the number of possible transformations in OPEN can be very large for a complex
query, it is critical that the optimizer avoid applying most of these transformations if such
queries are to be optimized in anreasonable amount of time. To find the optimal access plan
quickly, the search must be directed (Barr, 1981). To do this, the "right" transformation
must be selected from OPEN at each step of the optimization process. The ideal situation
would be to select only those transformations that are necessary to transform the initial
query into the query tree corresponding to the optimal access plan. Unfortunately, this is
not feasible since the optimal access plan and the shortest sequence of transformations are
not known. Instead, the optimizer selects the transformation which promises the largest
cost improvement. Promise is calculated using the current cost (before the transformation)
and information about the transformation rule involved. To measure the promise of a
transformation rule, an expected cost factor is associated with each transformation rule.
Bidirectional transformation rules have two expected cost factors, one for each direction.
The interpretation of this factor is as follows: if the cost before the transformation is ¢ and

the expected cost factor of the transformation rule is f, then the cost after the transforma-
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tion is ¢®f. If a rule is a good heuristic, such as pushing selections down in the tree, the
expected cost factor for the rule should be less than 1. If, however, a rule is neutral on the

average, (e.g. join commutativity), its value should be 1.

The concept of expected cost factors raises two important issues. First, are such fac-
tors valid? That is, is it really possible to associate such a value with a rule independent of
the database and the queries to be optimized? Second, how can these factors be deter-

mined? We will address the second question first.

We decided that it would be too difficult (and too error prone) if the DBI were asked to
set the expected cost factors. On the other hand, since we do not know the data model and
the rules that a future DBI might implement, we cannot provide these cost factors either.
Thus, our belief is that they should be determined automatically by the optimizer by learn-
ing from past experience. An adequate method is to use the average of the observed cost
quotients for a particular rule. Recall that the expected cost factor is an estimate for the
quotient of the costs before and after applying the transformation rule. Thus, it is reason-

able to approximate the expected cost factor with the observed quotients for the rule.

The simplest averaging method is to take the arithmetic average of all applications of
the rule since the optimizer was generated. However, if the query pattern or the database
changes, using the average of all observed quotients might be too rigid. One alternative
would be the average of the last N applications (for some suitable N). This is fairly
cumbersome to implement, however, as the last N values must be stored for each rule. A
second alternative is to calculate a sliding average for each rule. The sliding average is the
weighted average of the current value of the expected cost factor and the newly observed
quotient, and is quite easy to implement efficiently. Finally, since we average over quo-

tients, a geometric average might be more appropriate than an arithmetic average.
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We evaluated the following four averaging formulas:

sliding geometric average geometric mean
K KX+1 +1
S —(s"*) f—(f°%)°
sliding arithmetic average | arithmetic mean
[*K+q [*c+q
f—— f -
K41 c+1
Table 4.1.

Learning Formulas.
In these formulas, { is the expected cost factor for the rule under consideration, q is the
current observed quotient of new cost over old cost, ¢ is the count of how many times this

rule has been applied so far, and K is the sliding average constant.

In many cases, we will find that a beneficial rule is possible only after another (perhaps
even negatively beneficial) rule has been applied. To reflect this in the search strategy, the
optimizer actually adjusts the expected cost factor of two rules after an advantageous
transfor:mation. First, it recalculates the factor for the rule that was just applied using one
of the techniques described above. This is called direct adjustment. Second, it also
adjusts the factor of the rule that was was used to created the query tree just transformed,
using the same formula but with only half the weight. We call this indirect adjustment.
It ensures that a rule which frequently enables subsequent beneficial transformations will
have an expected cost factor lower than 1 (the neutral value), and will be preferred over
other neutral rules which do not provide this indirect benefit. Finally, if a cost advantage is
realized while reanalyzing the parent nodes after a transformation, the transformation
rule’s expected cost factor is also adjusted with half the normal weight. We call this pro-
pagation adjustment. The weight ;'or direct, indirect, and propagation adjustment can be
set by the DBI if desired. In our experiments (which are reported in the next two chapters)

we obtained satisfactory results using half the weight used for direct adjustment for indirect
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and propagation adjustment.

Ordering the transformations in OPEN by the expected cost decrease has a negative
effect in some situations. If OPEN contains two equivalent subqueries with different costs,
each of which can be transformed by the same rule with an expected cost factor less than 1,
the transformation of the more expensive query tree will be selected first. This is, of course,
counterintuitive, and not a good search strategy. To offset this effect, the optimizer sub-
tracts a constant from the expected cost factor when estimating the cost after a transfor-
mation of a part of the currently best access plan. The lowered expected cost factor
increases the expected cost improvement, such that the currently best subquery is

transformed before the other equivalent subquery.

The expected cost factors are used to direct the search, so the optimizer finds the
optimal access plan quickly. Once the optimal access plan has been found, the optimizer
could simply ignore all the remaining transformations in OPEN and output the plan.
Unfortunately, it is impossible to know when the currently best plan is indeed the optimal
one. Our solution is to let the optimizer keep searching, but to limit the set of new
transformations that may be applied. To do this, the cost improvement expected by apply-
ing a transformation is compared with the cost of the best equivalent subquery found so far.
If this improvement is within a certain multiple of the current best cost, the transformation
is applied; otherwise, it is ignored and removed from OPEN. Using the analogy of finding
the lowest point in a terrain, but sometimes having to go uphill to reach an even lower val-
ley, we termed this technique hill climbing. The multiple mentioned above is the hill
elimbing factor. Typical values are 1.01 to 5, depending on the data model, the rule set,
and the cost functions. If it is less than 1, neutral rules will never be applied, even though
they might be necessary to explore the complete search space. On the other hand, the

experiments described later show that, at least for the relational model, hill climbing factors
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close to 1 work well.

Unfortunately, the appropriate values for the hill climbing and reanalyzing factors
seem likely to depend on the data model. Thus, like the expected cost factors, they too

should be learned by the optimizer. We have not yet implemented this feature, however.
4.2.4. Management of OPEN

OPEN is a priority queue implemented as a binary tree. Each entry in OPEN contains
the number of a transformation rule and the query tree to be transformed. There are three
basic operations performed on OPEN, namely insertion, selection, and adjustment of entries.

We will discuss them in that order.

The procedures that insert an entry into OPEN and select an entry from it also prune
parts of the search space by ignoring transformations. As mentioned before, pruning is
necessary to avoid exhaustive search. The decision about whether a transformation is
pruned or not is based on the hill climbing limit. The hill climbing limit is calculated as
the product of the cost of the best equivalent subquery and the hill climbing factor. The
hill climbing limit is defined for each equivalence class and decreases as better access plans

are found.

Entries are added to OPEN by calls to the function ADD_TO_OPEN from the pro-
cedure MATCH. First, the cost after the transformation is anticipated using the cost
before the transformation and the expected cost factor of the transformation rule. If a part
of the currently best access plan is transformed, the expected cost factor is lowered as
described above in the section on the search strategy. If the resulting value is within the
range defined by the current hill climbing limit, the expected benefit is calculated and the
entry is inserted into the binary tree. Otherwise, the entry is ignored, i.e. this transforma-

tion is pruned from the search tree.
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The next transformation to be applied is selected by the procedure
SELECT_FROM_OPEN. Before an entry is returned by this procedure, it is checked again
whethe; it is still within the hill climbing limit, as the hill climbing limit might have
decreased while this transformation was being delayed and stored in OPEN. In this case,

the transformation is pruned and the next transformation in OPEN is considered.

Recall that the benefit calculation takes into account whether or not a node is part of
the best access plan. When an access plan is found that is better than the best one known
so far, different nodes in MESH should get priority in OPEN. Hence, when the best access
plan changes, certain transformations must be found in OPEN, their benefit recalculated,
and their positions in OPEN properly adjusted. To find these entries in OPEN quickly, all
entries are also inserted into a list of transformations which is accessible from the root node

of the "old" query tree in MESH.
4.2.5. Stopping Criteria

Our experiments with the prototype implementation indicate that a significant portion
of the search effort is spent after the final access plan has been found. This is due to the
fact that the optimizer has no way of determining whether the currently best access plan is

indeed the final plan. Hence, it keeps transforming query trees until OPEN is exhausted.

We have implemented two other stopping criteria. First, it is possible to limit the
number of transformations applied without improving the best access plan. Second, the size

of MESH can be restricted to a maximum.

In the early part of the optimization process, it will be fairly easy for the optimizer to
find better access plans. As more query trees are explored, it will take longer to find a
better access plan than the currently best one. A graph representing the cost of the
currently best access plan on the vertical and the size of MESH on the horizontal axis will

show steep decrease on the left, corresponding to the fast succession of improvement of the
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overall plan, and a flat line on the right, corresponding to the search for better plans after
the optimal plan has been found. If the optimizer could determine where the flat part of
the curve begins, i.e. whether the currently best plan is indeed the optimal plan, it would be
possible to save a significant portion of the optimization effort. The generated optimizers
approximate this by stopping when the curve has been flat for some period of time, assum-
ing that the flat part after the final access plan has been reached. The DBI can set the
length of this time period by setting a global variable. An alternative to using a number of
nodes would be to use a factor. For example, if 20% of the nodes in MESH have been

created after the best plan was found, the search is aborted.

The second way to limit is to restrict the size of MESH or, almost equivalently, the
number of transformations. We implemented this by comparing the number of nodes in
MESH with a limit each time before a new transformation is applied. This limit is also set

in a global variable.

The global variables pertaining to the stopping criteria can be set once or they can be
set for each query individually before the query tree is handed to the optimizer. More

details are given in the section on tuning in Appendix B.

Query optimization in the commercial version of INGRES is halted when the time
spent on optimization reaches a certain fraction of the anticipated query execution time
(Kooi, 1982). Even though we believe that this is a valid heuristic, we have not imple-
mented this criterion because it assumes that there is a way to compare the query execution
cost with the optimization cost. The former, however, is defined by the DBI, while the
latter is inherent in the optimizer. While it certainly would be possible to provide the DBI
with a handle to limit the search by comparing the optimization effort with the anticipated
execution effort, this would violate the principles that have guided us in separating DBI

code and generated code. If the DBI insists on limiting the optimization by this criterion,

’
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though, she or he can do so by setting the limit for the size of MESH.
4.3. Extending an Existing Optimizer

In this section, we describe briefly what is required to extend an existing optimizer
implemented using the EXODUS optimizer generator. We describe what needs to be done if
a new operator, a new method, a new access method, or a new abstract data type is added

to the optimizer.

To add a new operator, the DBI has to extend the model description file, which was
decribed in Section 4.1.1. First, the new operator must be declared in the declaration part;
second, rules must be added in the rule part; and third, support functions must be written

or updated.

The additions to the rule set must ensure that the extended rule set is sound and com-
plete for the extended optimizer. The extended set of transformation rules must allow the
optimizer to create all equivalent query trees from a query tree. In order to allow the
optimizer to find access plans for queries involving the new operator, one or more implemen-
tation rules must be added to the model description file, associating the new operator with
implementation methods. Quite likely, the new operator requires the addition of new

methods to the system.

If the existing optimizer uses operator properties, a new operator property functions
must be provided for the added operator. Possibly, the argument structure must be
modified to be suitable for the extended operator set, and existing argument transfer func-
tions must be updated to accomodate these changes. If the new rules refer to argument
transfer functions or to benefit estimation functions, these functions also must be added to

the optimizer.

Adding a new method requires that the new method be declared in the declaration part

of the model description file, and that the new method be associated with operators using
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implementation rules. A cost function must be provided for the new method. Update of the
argument data structure and existing argument transfer functions might be required,
depending on whether or not the new method can be supported with the existing argument
data structure. If the existing optimizer uses method properties, a new method property
function is necessary. Finally, new argument transfer functions are required if they are

refered to in the new implementation rules.

Adding a new access method can only be modeled by adding a suitable set of new
implementation methods to the model description. We have given some consideration to
extending our model of optimization from two concepts to three concepts. Currently, there
are two concepts, those of operator and of method. In order to make it more straightfor-
ward to introduce new access methods, our idea is to introduce a third concept, called
method class, which models common characteristics of a set of methods, e.g. ezact mateh
tndez look-up or range indez look-up. Implementation rules could either refer to a method
(as in the existing optimizer generator implementation) or to a method class. A new kind of
rule would associate a method with a method class, e.g. B-tree look-up with range indez
look-up. In this three concept model, adding a new access method would require to associ-
ate a new access method with a method class, which would presumably require only a single

rule. However, we have not yet designed an implementation of this idea.

Finally, to add a new abstract data type, the declaration part and the rule part of the
model description file do not change at all. Recall (from Section 3.2.3.1) that abstract data
types are hidden inside the argument structure. Accomodating a new abstract data type
requires appropriate updates to all support functions that manipulate or inspect operator or
method arguments, namely argument transfer functions, cost functions, property functions,
and benefit estimation functions. If a new database management system is to support the

definition of new abstract data types without recompilation and relinking of the system, the
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support functions must be designed in a way flexible enough to incorporate new abstract

data types instantaneously.
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CHAPTER 5

Experiences with the EXODUS

Query Optimizer Generator Prototype

In this chapter, we review some query optimizers that have been implemented or are
being implemented using the optimizer generator. All these prototypes are based on the
relational data model. This does not mean that the optimizer generator works only for
relational systems. While this research is being conducted, a consensus seemed to form that
new data models should include the relational model as a base. The result is that most
data model proposed recently are extended relational models (Stonebraker, 1986,Manola,
1986). The kind of extensions proposed, however, are diverse, and will probably become
more diverse in the future. To accomodate proposed and future extensions, we believe that
a tool with the generality of the optimizer generator is the best alternative for database

researchers who wish to implement their ideas.

First, we report on two optimizers that we implemented within the EXODUS project to
show the feasibility of the approach. Then, we report briefly on two in-progress efforts to

implement new query optimizers using the optimizer generator.
5.1. Prototypes Designed Within EXODUS

The optimizer generator was used to produce query optimizers for several, quite
different, relational systems. Our first optimizer, called OPTI, uses a small rule set to
optimize select-join queries. Projection was not included in the model because it seems not
to be a major source of difficulty in relational query optimization. OPT1 uses 8 transforma-

tion rules and 7 implementation rules.
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The input to OPT1 is a tree of select and join nodes. The operator in the leaf nodes is
called get. This operator was introduced for two reasons. First, it permits the definition of
rules concerning the select and join operators to be defined independently of their positions
in the tree. Second, its property functions perform the actual look-up in the relation and
attribute catalogs. Since the leaf nodes are never transformed, they are shared among all
query trees in MESH, which ensures that the catalog is consulted only once when the query
tree is copied into MESH but not during the actual optimization. An example query tree

optimized by OPT1 is shown in Figure 5.1.

The output of OPT1 is an access plan with the methods file scan, index scan, filter,
sort-merge join, nested loops join, hash join, and index join. Indez join is a nested loops
join that uses an index. Filter is used for selections which cannot be included in a scan. An
example access plan for the query tree in Figure 5.1 is shown in Figure 5.2. Notice that the
merge-join requires sorting which is assumed to be part of the method, and that the index
look-up is implicit in the index join, hence it is not modelled as an input stream in the

access plan.

The selection predicates are of the form attribute comparison-operator constant. As

comparison operators, the six standard operators plus pattern-matching for strings are
select A.a < 100

join A.c = C.c

/N

join A.b \ b get C

get A get B

Figure 5.1.
Example Input to OPT1.
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index join A.c = C.c

merge join A.b = B.b

index scan A.a << 100 file scan B

Figure 5.2.
Example Output of OPT1.

considered. The selectivity factors are estimated using the formulas used in System R (Sel-
inger, 1979). The join predicates are of the form attribute = attribute. The join selectivity
can be calculated either as a fraction of the product of the input cardinalities or as a multi-
ple of the smaller of the input cardinalities, depending on a run-time switch. In the experi-
ments reported later in this chapter, we calculated the join selectivity as a fraction of the

product of the input cardinalities.

The second optimizer, called OPT2, is used to support a user interface similar to QUEL
(Stonebraker, 1976). It uses 18 transformation rules and 15 implementation rules. The user
interface produces a tree consisting of a projection, a selection, and several Cartesian pro-
duct nodes. The selection predicate consists of the complete where clause, hence it can be
quite large. If there is an aggregate function in the qualification, appropriate aggregation

operators are inserted into the query tree (Klug, 1982). The initial query tree for the query

retrieve (A.a, B.b, C,c) where
Ab =B.b and A.c = C.c and C.d = min (B.d by B.b)

is shown in Figure 5.3. The operator aggregate join performs the aggregation, the subse-

quent join on the by-list, and tests the condition on the calculated aggregate.

This optimizer operates in three phases. The first phase tries to transform the product
nodes into equi-join nodes by breaking the selection predicate into smaller predicates. The

second phase rearranges the tree such that projections will be done as early as possible. A



80

project Plx.a,B.b,C.c

select A.b = B.b and A.c = C.c

aggregate join C.d = min (B.d by B.b)

/N

product scan B
product scan C
scan A scan B
Figure 5.3.

Example Input to OPT2.
projection operator is assumed to include duplicate elimination. The third phase is the

actual optimization phase. Its task is a superset of the work of our first optimizer, OPT1.

The predicates are stored and manipulated in the form of parse trees. The argument
fields in the query trees, in MESH, and in the access plans are pointers to the root of these
trees. This design makes full use of the flexibility provided by argument transfer functions

and the macros COPY_ARGUMENTS, COPY_IN, and COPY_OUT.
5.1.1. Implementation

Implementing the relational optimizers was not particularly hard. Even though the
generator itself and the library programs for the search strategy were still under develop-
ment when OPT1 was built, it took only a few days to get the first version of the optimizer
running. The modularization concept proved to be an important asset in the implementa-

tion effort.

For the transformation rules in OPTI1, we used a subset of the rules given by Ullman

(Ullman, 1982). We selected select and join commutativity, four join associativity rules and
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join A-B  —* join B-C
/N / N\
join B-C join A-B

/N / N\

join A-B " join B-C
/ 0\ /\
join B-C join A-B

/N VA

join A-B > join B-C
/ N\ / N\
join B-C join A-B

/N / N\

Figure 5.4.
Join Associativity Rules.

the select-join rule. The join rules are shown in Figure 5.4, and are called the left-shift rule,
the right-shift rule, the left-to-right-shift rule, and the right-to-left-shift rule. The select-
join rule allows the optimizer to push a select operator beneath a join and vice versa, and is

shown in Figure 5.5.
select «==—*  join

7N

Figure 5.5.
Select-Join Rule.

select
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For the implementation rules, we drew from the experience from WiSS (Chou, 1985)
and from GAMMA (DeWitt, 1986). We considered file scan, index scan, sort-merge join,
nested loops join, hash join, and index join. Index join is a nested loops join that finds
matching tuples using an index on the inner relation. It requires only one input stream, and
the other input of the corresponding join operator must be a get operator. For the other
join methods, the inner relation is modeled as the right input. A method called filter was
introduced which implements the operator select at any position in a query tree by applying
the predicate to each tuple of the input stream. This operator typically does not occur in
the final access plan for a query. It is necessary to include it in the optimization model in
order to allow the optimizer to find access plans with realistic cost estimates for all correct
query trees. If the optimizer cannot find an access plan for a query tree, the cost is assumed

to be infinite, which prevents the optimizer from considering this query further.

The cost model for OPT1 includes I/O cost and CPU cost. I/O cost is split into
sequential I/O and random I/O with different seek times. CPU cost is divided into key com-
parison and copying costs. The cost function for hash join further distinguishes inserting a
tuple into the hash table and probing the hash table with a tuple. Passing data from one
operator to another is considered to have negligible cost, as would be the case if data
transfer between operators were implemented by passing pointers into the buffer pool. The
cost estimates anticipate elapsed seconds for query execution on a 1 MIPS computer with a
disk drive, and no overlap of CPU and I/O activity. Each cost function calculates these
costs separately and then computes a weighted average. The weights were estimated using

our experience and measurements from GAMMA (DeWitt, 1986, Gerber, 1986).

The argument data structure is a union type of a file name for the leaf operator get
and simple predicates which consist of one or two variables and a comparison operator.

Relation attributes are represented by pointers into the database catalog which is kept as
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an in-memory data structure. The only argument transfer function in the system reverses
the join predicate in the join commutativity rule. The default used for the other rules is to

copy the argument records between corresponding nodes.

The operator properties include relation calldinality, arity, tuple width in bytes, and
the list of attributes. The only method property considered is sort order which is used to
determine whether or not sort-merge join must sort an input prior to the merge phase. The
property function for get is the only function to search the catalogs using relation and attri-
bute names. The property functions for join and select use the pointers which were found
by properties_get when deriving the schema for internal nodes of the query trees. Since
properties_get is called only while the initial query is copied into MESH, the time spent
searching the catalogs is minimized. The other operator property functions consist only of a
few calculations for the relation descriptor and pointer copying for the attributes. Deriving
the sort order of the output stream from the sort orders of the input stream(s) and the
method chosen is trivial for the implementation methods under consideration. In summéry,

the property functions are very short and fast.

From the implementation standpoint, the second optimizer, OPT2, was more challeng-
ing. The main reason is that the arguments to the operators and methods are significantly
more complex. This optimizer allows AND’s and OR’s in its predicates, which are stored as
a parse tree. Naturally, the argument transfer functions for transformation rules in this

model are much more involved.

We realize that some will consider it a shortcoming of the EXODUS optimizer genera-
tor that it does not provide sufficient support for predicates. However, support for predi-
cates can only be provided at the cost of generality of the argument data structure. Predi-
cates are a special form of operator and method arguments. Yet, the argument data struc-

ture must be defined by the DBI, since it depends on the set of operators and methods in the
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data model. Furthermore, it is not clear how general the logic governing the predicates in
the data model should be. For statistical or intelligent databases, it might be required to
provide predicates with probabilities and fuzzy logic (Gelenbe, 1986, Ghosh, 1986). It is not
clear on which logic predicate support should be based in order to be sufficiently general yet
efficiently implementable. Similarly, it is not clear whether or not (and how) to include
NULL values. We believe that, in spite of the limited support for predicates, the optimizer
generator makes it much easier to implement an optimizer, because the search engine is
separated from the data model, and because a framework for a modular design of the rules

and the argument transfer functions is provided.

Some of the transformation rules in OPT2 are specifically designed to break up com-
plex select predicates, and to convert them into equi-join predicates. Since the initial tree
contains only one predicate in the selection close to the top of the tree, such transforma-
tions make up the main part of the phase one rules.

Example 5.1: Consider the following transformation rule.

select 9 (product (1, 2)) -> join (select (1), select (2)) to_join

{
if (nojoin_predicate (OPERATOR_9.oper_argument))

REJECT;
3

This rule eliminates a Cartesian product by breaking the selection predicate into a join
predicate and two selection predicates. This rule is applicable only if the select argument
includes an equi-join clause, which is verified by the function nojosn_predicate. Since the
predicate transfer is non-trivial, a special argument transfer function (called to.josin in this
example) must be given with this transformation rule.

o

The argument transfer functions for these rules not only move the comparison clauses of the

predicates into one of the new predicates, but they also try to optimize the resulting predi-
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cates by removing redundant or constant terms.

Example 5.2: Figure 5.6 shows an original predicate tree as could have been found in the
last example. Figure 5.7 shows one of the selection predicates resulting from the split. This
predicate is then optimized by removing redundant terms, as shown in Figure 5.8. The

other select predicate and the join prédicate are built and optimized similarly.
AND
AND A.c = 222

A.a < 100 Ab =B.b

Figure 5.6.
Original Predicate Tree.

SN
VRN

A.a <100 TRUE

Figure 5.7.
Predicate After Split.

AND
/N
A.a <100 A.c = 222

Figure 5.8.
Predicate After Optimization.
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0

Some of the selection predicates generated with these rules are trivial, ie. the predicate con-
sists of a single constant TRUE. Such selection operators can be removed from the query
tree. This is done by the rule in the following example.

Example 5.3: The following rule eliminates redundant select operators.

select 9 (1) -> 1

{{
if (nontrivial_predicate (OPERATOR_9.oper_argument))
REJECT,;
1}

When this rule is activated, no new node is created. The effect of this rule is that the
parent nodes of redundant select nodes are reanalyzed and rematched with the seleet node
eliminated.

a

Besides transforming selections and Cartesian products into joins, phase one of the
optimization process in OPT2 also moves selections as close as possible to the leaves of the
query tree. Phase two moves the projects as far down in the tree as possible. For each of
the operators josn and select there is a rule that moves the projection information beneath
the operator, as shown in the next example.

Example 5.4:
project (select (1)) ->! project (select (project (1))) move_project;

The argument transfer function move_project proceeds in two steps. First, it copies the
projection list to both of the new project operators and the selection predicate to the new
select operator without change. Afterwards, those attributes that appear in the selection
predicate but not in the projection list are added to the projection list of the project opera-
tor closest to input 1. This rule was coded as once-only rule because the final tree matches

the rule, but a second application of the rule would provide no additional benefit. If this
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rule were not a once-only rule, it would be applied two times to each eligible query tree, but
the second time the resulting nodes would be detected to be duplicates and be eliminated
immediately after creation.

0

Some of the project operators created by these rules can be redﬁndant. These operators are

removed from the query tree with a rule similar to the one for redundant selections.

After the projections have been moved as far down in the query tree as possible, phase
three does the main part of the optimization by reordering select and join operators. This

is done with the same rules used in the optimizer OPT1 described above.

The catalogs in OPT2 are maintained similarly to OPT1. To accomodate the use of
QUEL range variables, there are two sets of catalogs. The first set is exactly equal to the
one in OPTI1. The second set stores only entries for active range variables, with the rela-
tion names replaced by the range variable names. The attribute entries in intermediate
schemas and in arguments point to records in the second set of catalogs. This existence of
two sets of catalogs does not have an effect on the optimizer. Inserting and replacing
entries in the second set of catalogs is done by the user interface when range variables are

declared.

The operator properties and the method properties in this optimizer are the same as
the ones used in OPT1. The only difference in the operator property functions is the more
complex argument structure, which includes more intricate formulas for selectivity factors.

We modeled selectivity estimation following the design of System R (Selinger, 1979).

In summary, the implementation of these optimizers was fairly straightforward using
the optimizer generator. The design of the rule sets was easy, and the support functions
(cost functions, argument transfer functions, property functions) are all small and well-

defined in their purpose. Writing these functions was tricky at times because they operate
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directly on MESH. The nodes in MESH include both fields used by the search engine and
fields defined and operated upon by the DBI functions. This requires some discipline in cod-
ing the support functions. On the other hand, dividing the nodes into two data structures
and keeping each pair consistent would most likely have introduced too much processing

overhead into the system.

We believe that most of the problems encountered stem from the fact that we did not
perform a complete database implementation. If the data model and the run-time system
are well-defined, many of the design decisions for the optimizer are fixed (e.g. the cost func-

tions and the form and representation of predicates).
5.1.2. Experimental Databases and Queries

We experimented with the optimizer using two databases. The data for these data-
bases did not really exi§t, as only their catalogs were required to run the optimizer. The
databases were identical except for the relation cardinalities. There were 26 relations with
4 attributes each. The first 3 of these attributes were integers, and the last one was a
string of 88 bytes, giving a total record length 100 bytes. There was a B-tree index on the

first integer attribute.

The cardinalities of all relations in the first database was randomly chosen from a nor-
mal distribution with mean 1,000 and standard deviation 100. The cardinalities ranged
from 802 to 1,219. With very similar cardinalities, many of the join orders resulted in equal
cost, and it was difficult for the search algorithm to distinguish access plans by their cost.
In the second database, the logarithms (base 10) of the cardinalities were randouﬂy chosen
from a normal distribution with mean 3 and standard deviation 1. The relation cardinali-
ties in this database ranged from 60 to 57,549. Varying cardinalities made it more difficult

for the optimizer to reliably estimate expected cost factors for the transformation rules.
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The queries used in our experiments were generated by a recursive procedure. To gen-
erate a query tree, the operator at the root node was selected at random. The probabilities
for both jotn and select were 0.3, while for get it was 0.4. In the case of join or select, the
procedure called itself recursively to generate their child subtree(s). Finally, the argument
was determined as follows. For the get operator, a relation name was selected from the
relations not yet participating in the query. Using a relation twice in a single query would
have required that the condition code for rules could distinguish which usage a certain attri-
bute in a predicate came from. To avoid this problem, range variables were introduced in
QUEL (Stonebraker, 1976). The concept of range variables was used in our optimizer

OPT2.

The argument for a select operator was a comparison of a randomly selected attribute
with a constant using a randomly selected comparison operator. A join predicate was an
equality clause between two attributes randomly selected from the schemas of the two input

streams. Random in this paragraph means equal probabilities for all possible values.

It was practical to build the input trees before the arguments because in the recursive
generation procedure, we used the operator property functions coded for the optimizer to
derive the intermediate schemas; this made it very easy to select attributes for the predi-

cates randomly from the set of feasible attributes.
5.1.3. Validation of Expected Cost Factors

At the core of the search strategy provided with the optimizer generator are the
expected cost factors. They are used to direct the search. An expected cost factor is associ-
ated with each transformation rule in the system. The benefit of a transformation can be
assessed before the transformation is actually performed by anticipating the execution cost

of the transformed query using optimal method selection.



The expected cost factors are learned by the optimizer. Before the first query is optim-
izsed, all expected cost factors are set to 1, the neutral value. With each application of a
transformation, the repective cost factor is updated using an averaging formula. We tried

the four formulas described in Section 4.2.3 and repeated in this table.

sliding geometric average geometric mean
K K+1 +1
[ — (/" %) f— (s %)°
sliding arithmetic average | arithmetic mean
e .
/- [*K+q f - fre+q
K+1 e+l
Table 5.1.

Learning Formulas.

In these formulae, f is the expected cost factor for the rule under consideration, q is the
current observed quotient of new cost over old cost, ¢ is the count of how many times this

rule has been applied so far, and K is the sliding average constant.

We generated 25 sets of 400 queries each using the query generation procedure
described above with different random seeds for each sequence, and optimized them four
times with the four averaging formulas. Some of these queries were trivial, but many of
them contained several join and select operators. All queries together included 9,226 join
operators and 15,004 select operators. The database was the database described earlier

with relation cardinalities varying from 60 to 57,549.

If there really is an expected cost factor independent of the queries, the 25 values col-
lected for each of the 6 transformation rules and 4 averaging formulas should be indepen-
dent from the query set. The left shift and right shift rules of Section 5.1.1 were omitted
because the equivalent query tree transformations could be performed using the join commu-
tativity and associativity rules. The rule set contained some redundancy, though, in that

only one form of the join associativity rule is required if the join commutativity rule is
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provided.

Due to the randomized process and arithmetic precision, they expected cost factors will
not be exactly the same, but they will fall in a normal distribution around the true value.
To test this hypothesis, we used a X2 test, comparing the observed distributions with the
normal distribution with the same mean and variance. The range -co to +00 was cut into
12 slices with equal expected frequencies. The breakpoints between slices were determined
as quantiles of the distribution density function, i.e. the width of slices around the mean was
much smaller than at the tails of the density function. The number of slices was chosen to
be as large as possible without making the expected frequencies in each slice too small.
From the observed (Ni for the it'h interval) and expected frequencies (npi) in the 12 slices, a

X2 value was calculated as

12 2
(N —~np )

p)

[ np’

and compared with the X2 table for 12—1 degrees of freedom (one less than the number of
slices). This procedure is recommended in (DeGroot, 1975) and was performed using the S

statistical software package (Becker, 1984).

Table 5.2 shows the levels of confidence (ranging from ‘0 to 1, where higher values

represent higher confidence) with which we can reject the hypothesis that the values have a

Formula SC SJ-D | SJ-U JC JA-LR | JA-RL

Slid. Geom. 0.589 | 0.992 | 0.885 | 0.901 0.039 0.970

Geom. 0.181 | 0.851 | 0.385 | 0.866 0.297 0.385

Shd. Arithm. | 0.810 | 0.473 | 0.751 | 0.027 0.828 1.000

Arithm. 0.385 | 0.487 ! 0.911 | 0.113 0.022 0.436
Table 5.2.

Confidence of Rejection after 25 Times 400 Queries.



92

normal distribution. The abbreviations for the rules used in the top row and the abbrevia-

tions for the averaging formulas used in the left column are explained in Tables 5.3 and 5.4.

Using a 0.95 level of significance, we reject the hypothesis that the values follow a nor-
mal distribution for two of the rules for the sliding geometric and one for the sliding arith-
metic average formulas, namely those where the value indicated is larger than 0.95. We do
not reject thé hypothesis for the other averaging formulas. Notice that rejecting does not
mean that these averaging formulas are "wrong”, it only means that the experiment does
not support our hypothesis for the weights used for direct, indirect, and propagation adjust-

ment, and for the length of the query sequence tested.

In a second experiment, we used again 25 times 400 queries, but ensured that each
query included at least one select or join operator. These queries contained 15,235 join and
21,473 select operators. The result of the experiment was virtually the same; for almost all
of the expected cost factors and rules we cannot reject the hypothesis of ;mrma.l distribu-

tion.

sC Select Commutativity

SJ-D Select Join Rule, push select down

SJ-U Select Join Rule, push join down

JC Join Commutativity

JA-LR  Join Associativity, left-deep to right-deep
JA-RL  Join Associativity, right-deep to left-deep

Table 5.3.
Abbreviations for Rule Names.
Slid. Geom. Sliding Geometric Average, K = 2,000
Geom. Geometric Average
Slid. Arithm.  Sliding Arithmetic Average, K = 2,000
Arithm. Arithmetic Average
Table 5.4.

Abbreviations for Averaging Methods.




93

We tested this hypothesis a third time with more, shorter sequences of queries. Notice
that the shorter a sequence of queries is, the harder it is for the optimizer to approximate
the expected cost factor close to the hypothetical "correct” value. We used 50 sequences of
200 queries each. All queries together contain 9,955 joins and 15,598 selects. We tested a
sequence of 50 values by cutting the density curve into 25 slices. The table for this experi-

ment is given below.

Formula SC SJ-D SJ-U JC JA-LR | JA-RL

Slid. Geom. 0.847 | 0.760 0.990 | 0915 0.538 0.976

Geom. 0.131 0.780 0.480 | 0.672 0.538 0.647

Slid. Arithm. | 0.965 | 0.567 1.000 | 0.831 0.991 1.000

Arithm. 0.197 | 0.015 0.621 0.538 0.798 0.043
Table 5.5.

Confidence of Rejection after 50 Times 200 Queries.
It turns out that more values are to be rejected, but the majority is still on an acceptable
level. In particular, only values for sliding averages are above the significance level. The
reason could be that in this experiment, the parameter K of the sliding averaging process
was set to 1,000 as compared to 2,000 in the first experiment, thus improving adaptability
of the learning process while making the resulting value more susceptible to errors. The

added adaptability was needed because the query sequences were shorter.

For all of the following experiments, we used geometric averages as the adjustment for-
mula because this formula seemed to be the most reliable in all of the validation experi-

ments.
5.1.4. Performance

In this section, we will present some performance figures to show that the optimizers
generated with the optimizer generator find the optimal plans reasonably fast. We will not
claim that the optimizers are extremly fast; we believe that optimizer speed is only of lim-

ited importance compared to the quality of the access plans produced.
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We used only OPT1 for these performance measurements. The main reason is that the
first two phases of OPT2 are very fast and we found it easier to generate test queries

automatically for OPT1.

The access plan execution costs reported in this section are given as estimated by the
cost functions. As mentioned earlier, we did not implement a complete database system.
The cost measures used have been deﬁr.led using our experiences with the database machine
GAMMA (DeWitt, 1986, Gerber, 1986). We believe that comparing our cost measure exactly
with an implementation would not verify the optimizer or the validity of the optimizer gen-
erator approach. Rather, it would only verify the formulas and the constants used in the

cost functions, which are not the focus of our work.
5.1.4.1. Comparison with Exhaustive Search

Since we felt it was necessary to assess how good the access plans generated by our
optimizers really are and since we had decided not to compare the chosen access plans and
their alternatives with an existing database system, we needed another measure. We
decided to explore how much additional effort spent on optimization affected the quality of
the resulting access plan. The higher we set the hill climbing and the reanalyzing factors,
the closer the chosen search strategy comes to being an exhaustive search over the entire
range of possible access plans provided by the transformation and implementation rules.
There are several reason why we believe that comparing our search strategy with exhaus-
tive search is a more appropriate procedure for determining the quality of our search algo-
rithm than a comparison with an implemented query evaluation system would be. First, we
can compare the two approaches on an equal basis. The optimizer generator and the gen-
erated optimizer can use only the rules specified in the model description file. We are
interested how eflectively and efficiently the provided search algorithm chooses an access

plan in the search space defined by the rules. Hence, we should use the same rules and
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search space for the purpose of comparison. Second, we are not interested in verifying our

cost formulas and constants as they are specific for our use of the generator.

Unfortunately, for some queries exhaustive search requires more resources than we were
able to provide. In particular, for very large queries, MESH and OPEN can grow larger
than the main memory of the machines we used for our experiments. Relying on virtual
memory is highly impractical, because the search for duplicate nodes in MESH is based on
hashing, thus providing no locality of reference. Therefore, we had to abort some exhaus-
tive searches prematurely. However, since the optimizer applies the most promising
transformations first, the transformation not applied due to preemption is not expected to

have a very serious effect on the quality of the access plan.

The database used in this experiment is the contains 26 relations with cardinalities
varying from 60 to 57,549. The query set consists of 1,000 queries with up to 5 joins per

query. There are 2,130 joins and 2,811 select operators in all queries.

In the following tables, we compare the optimization effort as measured in the average

101 102 105 1.1 1.2 1.5 2 5 10 1000
1.01| 7.87 8.01 824 8.67 1048 13.96 16.96 19.23 19.47 20.56
1021787 814 827 8.52 10.64 1439 17.74 19.94 20.87 21.02
1.05; 7.87 8.14 8.16 8.64 10.56 14.98 18.43 2048 21.60 22.68
11 | 787 814 816 8.97 13.75 17.07 20.47 21.54 2435 25.11
1.2 | 787 8.14 8.16 8.97 1520 22.30 24.84 22.49 26.97 26.29
1.5 | 7.87 8.14 8.16 8.97 15.20 26.61 30.17 29.03 27.01 28.73
2 7.87 814 8.16 8.97 15.20 26.61 35.21 34.53 31.43 36.40
5 7.87 8.14 8.16 8.97 1520 26.61 35.21 33.41 36.45 38.00
10 | 7.87 8.14 8.16 8.97 15.20 26.61 35.21 33.41 37.40 35.02
1000 7.87 8.14 8.16 8.97 1520 268.61 35.21 33.41 37.40 34.98

Table 5.6.
Average MESH Size.



size of MESH (Table 5.6) and the CPU time' spent on query optimization (Table 5.7) with

the cost of the final access plans as anticipated by the cost functions (Table 5.8). We varied

Average Plan Execution Cost.

101 102 105 1.1 1.2 1.5 2 5 10 1000
1.01| 8.17 9.29 11.08 10.64 11.75 13.34 14.68 16.07 16.84 17.09
1.02] 858 9.29 11.38 10.25 11.84 13.48 15.69 17.19 17.09 17.46
105|798 9.98 11.41 11.48 11.05 14.41 16.35 18.62 17.90 17.71
1.1 | 7.77 9.95 11.78 12.30 13.15 15.37 17.44 17.11 18.09 17.82
1.2 | 821 9.90 11.24 12.49 14.08 17.00 19.14 17.46 20.07 18.26
1.5 | 839 9.98 11.29 12.19 14.52 18.56 20.14 19.63 19.21 20.04
2 8.05 10.06 11.40 12.58 14.30 18.86 23.65 23.97 20.37 24.77
5 8.05 10.12 11.65 12.60 14.25 18.83 23.29 21.71 21.81 24.02
10 [ 8.65 9.96 11.67 12.09 14.44 18.48 23.42 20.80 22.55 22.52
1000 8.50 9.79 11.23 12.71 13.35 18.42 24.71 21.59 23.13 21.07

Table 5.7.
Average CPU Time.

1011 1.02}1.05{ 1.1} 1.2] 1.5 2 5 | 10| 1000
1.0110.39(10.39] 5.63| 5.66| 5.67|10.43| 5.66|5.60/5.60} 5.60
1.021{10.39(10.39} 5.63| 5.66| 5.66| 5.66| 5.66(5.60/5.60| 5.64
1.0510.39110.39{10.39| 5.66| 5.67110.43| 5.665.60|5.60{ 5.61
1.1 {10.39(10.39{10.39/10.38(10.43| 5.67| 5.67{5.60|5.65| 5.65
1.2 {10.39(10.39(10.39{10.38| 5.66! 5.60| 5.66|5.60|5.60| 5.60
1.5 110.39/10.39(10.39(10.38| 5.66] 5.60| 5.66|5.60/5.60| 5.61
2 10.39{10.39110.39/10.38| 5.66| 5.60| 5.66(5.60|5.65| 5.65
5 10.39(10.39110.39}10.38] 5.66] 5.60| 5.665.65|5.61| 5.61
10 |10.39(10.39{10.39/10.38| 5.66| 5.60| 5.66|5.65|5.61| 5.65
1000110.39{10.39{10.39]|10.38} 5.66| 5.60| 5.66{5.65|5.61| 5.61

Table 5.8.
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the optimization effort by varying the hill climbing and reanalyzing factors. The hill climb-

ing factor is indicated in the top row, and the reanalyzing factor in the left column.

It does not make sense to set the hill climbing and reanalyzing factors to a value less

than 1, as this would inhibit cost-neutral rules such as join commutativity, which we know

! The optimizations were performed on a VAX 8600 from Digital Equipment Corpora-

tion, which is rated at about 6 MIPS. The times were measured using the UNIX "getrusage”
system call, which allows users to inquire about the CPU time used in user mode as meas-
ured by the operating system.
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are essential to finding good access plans. A hill climbing factor and reanalyzing factor of
1,000, on the other hand, indicates exhaustive search of all query trees and access plans that
can be generated with the given rule set. We tried the values 1.01, 1.02, 1.03, 1.05, 1.10,

1.20, 1.50, 2.0, 5.0, 10, and 1,000 for each of the two search factors.

Tables 5.6 and 5.7 show that the search effort grows with increased search parameters.
Comparsion of the smallest and largest values in these tables indicate that the effort spent
on searching query trees and access plans can vary by as much as a factor of 5. If more

memory would have been used, the differences would probably been even more significant.

345 of the 1,000 queries were preempted due to memory restraints® when the search factors
were both set to 1,000, whereas only 5 when the search factors were set to 1.01. The plan
execution costs, shown in Table 5.8, decrease with increased search factors. Interestingly,
the plan execution costs do not decrease smoothly as the search factors decrease; rather,
there are distinct thresholds above which the optimal plans are found. The thresholds for
hill climbing and reanalyzing factors are dependent on one another and can substitute for
one another to some extent. In general, however, it is required that both search factors are

set sufficiently high in order to find the optimal access plan.

In Tables 5.6 and 5.7, it is obvious that a larger reanalyzing factor has only a small
effect if the hill climbing factor is low, but has a significant effect for large hill climbing fac-
tors. The reason is that reanalyzing is only done after a transformation; if most of the pos-
sible transformation are prevented by the hill climbing limit, there is no need or opportunity

for reanalyzing.

The best way to look at Table 5.8 is in terms of regions rather than of single values.

In the top left region where both search factors are very low, the optimal access plans are

2 We preempted optimization when the data space of the optimizer had grown to 3.5
Megabytes.
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missed and the anticipated plan execution cost is high. In the bottom right region, less of
the search space is pruned, and the optimal access plans are always found. There are, how-
ever, some exceptions, indicated by values over 10 in places in the table surrounded by
values under 6. We hypothesize that in these cases, query trees with moderate cost were
found early in the optimization process, preventing (through the hill climbing and reanalyz-
ing limits) some transformations that would subsequently have lead to the optimal acces;s

plan.

For our optimizer, we see that the generated query optimizer is fast enough to be used
in production systems. Furthermore, we have learned that it is not a good idea to set the
search factors too low as the optimal access plan will frequently be missed. On the other
hand, setting the search factors too high, i.e. higher than 5, does not improve the resulting

plans.
5.1.4.2. Handling of Large Queries

The experiments in the last section were affected by the fact that query optimization
must be aborted when MESH and OPEN grow very large. In the experiments reported
above, this happened only in the exhaustive search case. If the initial query is very com-
plex, however, it can also happen in a fairly restricted search. In this section, we report

some results with complex queries.

When considering premature abortion of query optimization, it is important to realize
that is not as disastrous as it seems at first. Typically, it takes a large number of transfor-
mations before main memory becomes scarce. Up to that time, the optimizer chooses the
most promising transformations. There is thus a fairly good chance that the best plan pos-
sible for a query has already been found when optimization is aborted, and that aborting

the optimization does not have a significant effect.
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In this section, we report on how the optimizer performs for large queries. We gen-
erated 14 sets of 200 queries each. These queries had no select operators. We decided on
this design because join tree reordering is the major difficulty in relational optimization. In
the it'h set, there were i join operators in each query, i.e. i+1 relations participated in the
query. The database chosen for this experiment was described earlier; the relation cardinal-
ities ranged from 802 to 1,219. Note that using similar cardinalities makes it harder for the
optimizer to improve the access plans significantly, thus making it harder for it to prune

portions of the search space.
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Figure 5.9 shows that the average MESH size grows with the number of joins in a

query, as does the CPU time spent on optimization, shown in Figure 5.10%. This experiment
was performed with the hill climbing and reanalyzing factors set to 1.5. The graphs illus-

trate that the generated optimizer can work on fairly complex queries.

Figures 5.11 and 5.12 show that the plan execution time grows exponentially, which can
be seen best in Figure 5.12 which has a logarithmic scale. The reason is that, with each
additional join, the number of tuples being created in evaluating the query grows. The car-
dinalities of each of the base relations is about 1,000, and the join selectivity for this experi-

ment was set such that a join resuit contains 0.15% of the tuples of the Cartesian product.
5.2. Optimigzer Generator Usage Outside of EXODUS
5.2.1. Relational Query Evaluation Using Horwitz’s Method

A third optimizer is currently being implemented for a new query evaluation method
proposed by Horwitz (Horwitz, 1985, Horwitz, 1986). Even though the model that the optim-
izer generator is based on does not exactly match this new method, the users of the genera-

tor started to use their optimizer fairly quickly.

The key idea of the new query evaluation method is to provide three forms for each of
the operators in a relational system. They are called relation-producing, selective-

retrieval, and membership-test.

A query tree with a relation-producing operator at the root will return the complete
intermediate relation, as specified by the query tree. All of the operators considered in the

optimizers described previously are relation-producing.

A selective-retrieval operator also returns a set of tuples, but only those tuples that

satisfy a certain predicate. However, selective-retrieval operators need information from

3 These experiments were also run on a VAX 8600.
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operators further up in the tree, typically constants for the predicate. For instance, a rela-
tional equi-join using an index would be a method that uses a selective-retrieval operator
for the inner relation. The new aspect of Horwitz’s query evaluation method is that it does
not require that the inner relation be a base relation indexed on the join attribute. Since
all relational operators are available as selective-retrieval operators, this join method can

be used at any position in a query tree.

A membership-testing operator does not return tuples; instead, it determines whether a
given tuple would be produced or not. For instance, to determine the intersection of two
relations, it is convenient to use a relation-producing method for one of the two relations,
and for each of the tuples returned to use a membership-test method for the other relation.
Example 5.5: Consider a join node in a query tree. Methods like hash join or sort-merge
join require relation-producing methods for both inputs. An index join uses a selective-
retrieval method on the inner relation. If the query predicate and the target list are such
that no values from the inner relation are needed, i.e. only the existence of a matching tuple
is required, a membership-test is sufficient.

”C]

Initially, it was not immediately clear how these query evaluation methods would fit
with the optimization model used by the generator. In particular, the existence of more
than one form of each operator was not anticipated in the design of the generator. For the
optimizer generator, each form of each relational operator is declared as a separate opera-
tor. Unfortunately, this requires a large number of rules, because each rule has to be
specified for each combination of operator forms. In order to reduce the number of rules,
artificial operators for relation-producing, selective-retrieval, and membership-test were
introduced into the query trees. Using these artificial operators, the height of all trees is

doubled, with levels of artificial and relational operators alternating.
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Ideally, the relational operator beneath an artificial selective-retrieval operator is of
the selective-retrieval type. Similarly, it is desirable that the relational operator beneath
an artificial membership-test operator is of the membership-test type. However, this is not
always possible, due to the fact that the artificial operators for selective-retrieval and
membership-test can be above a relation-producing relational operator. This is required for
two reasons. First, this is an intermediate step in propagating selective-retrieval and
membership-test down in the query tree. Second, in some situations, particularly when
membership-test is called ve‘ry frequently, such a query tree represents the best way to
evaluate the query. In such cases, the complete intermediate relation is collected using a
relation-producing operator and stored in a temporary file or index; subsequent
membership-tests are performed without refering to operators in lower levels of the tree.
Example 5.8: Consider Figure 5.13. This query tree produces all tuples that belong to the
intersection of A and B. Consequently, there is a relation-producing artificial operator at

the top. The child nodes of the intersection operator node are a relation-producing operator

Artificial
Relation Producing

Relation Producing

Intersection
Artificial Artificial

Relation Producing Membership Test

Relation Producing =~ Membership Test
A B

Figure 5.13.
Artificial Operators.
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and a membership-test operator. All tuples from A are tested to see if they are also
members of B, and qualifying tuples are returned to the top operator of the query.

a

Tht; trees presented to the optimizer do not contain either selective-retrieval or
membership-test operators. Rather, these are introduced step by step during the optimiza-
tion process. For example, the query tree shown in Figure 5.13 is the result of an applica-
tion of a rule that says that an intersection can be performed using a membership-test on

the second relation instead of a relation-producing form.

Some of the problems encountered using the optimizer generator for this model resulted
from the fact that, initially, zero costs were assigned to the artificial operators because
these operators had no equivalent in the corresponding access plans. However, in some cases
the best alternative might be to materialize an intermediate result in a temporary file and
then do repetitive selective-retrievals or membership-tests on this file. To find these cases
correctly, the cost model was changed and real costs were assigned to the artificial opera-
tors. (In some sense, these operators are not artificial anymore.) This change also elim-
inated some numeric problems that the search mechanism had with zero costs. For
instance, special cases arise due to zero costs when updating rule statistics or in benefit esti-

mation.

Other experiences here included the need for higher hill climbing and, in particular,
reanalyzing factors to propagate changes in lower levels of the tree into higher levels, allow-

ing for more efficient query evaluation plans.
5.2.2. The Alpha-Extended Relational Algebra

Finally, the optimizer generator is being used to implement a relational database sys-
tem extended by the "alpha” operator by Agrawal (Agrawal, 1987). The alpha operator is

most easily explained using a graph model of the data in a relation. Imagine a relation that
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stores a graph by storing the start and end points of each edge in a tuple. In its simplest
version, the alpha operator computes the transitive closure, i.e. the reachability graph, for
this relation. Furthermore, it can perform aggregate computations when concatenating two
edges. If there is a cost stored with each edge, the alpha operator can calculate a cost for
all edges in the reachability graph. It also can decided which path to include in the result if
there is more tkhan one path between two vertices. This capability allows the the alpha-
extended relation algebra to solve minimum cost path problems. Finally, tuples in the tran-
sitive closure can be selected depending on their derivation history, e.g. based on which (or

how many) intermediate points a path includes.

Agrawal plans on using results from (Jagadish, 1987) and (Agrawal, 1987) to define a
rule set for the optimizer generator. The implementation rules will reflect results presented
in (Agrawal, 1987). The query tree as provided to the optimizer will contain transitive clo-
sure operators without aggregation or arbitration. First, the optimizer will replace a transi-
tive closure operator with an instance of the alpha operator. Next, it will try to move as
many operations as possible into the alpha operator. In a second optimization phase, stan-
dard relational equivalence rules will be used for operator reordering of projections, selec-

tions, joins, ete.
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CHAPTER 6

A Comparison of Alternative Optimization Strategies

In this chapter, we compare alternative classes of optimization and query execution
strategies for relational database systems. Most relational optimizers prune certain access
plans without evaluation, namely those which require either intermediate files or sophisti-
cated scheduling. The common rationale is that the set of pruned plans never contains the
optimal access plan, and that the optimal plan or one very close to optimal can be found in
the plans that are considered. In the first section of this chapter, we demonstrate that
there are cases in which the optimal plan is among those pruned by most relational optimiz-

ers.

In the second section, we report on a comparison of a two-phase optimizer and an
equivalent one-phase optimizer. In effect, we concatenate the two optimizers compared in
the first section to capture the advantages of both. While this works well in general, the

desired advantages cannot be realized in all cases.

Using the optimizer generator, it was possible to explore the tradeoffs between alterna-
tive optimizers with minimal effort. Using exactly the same the rules, cost functions, and
the same search strategy provides significant benefits for the experiments. The search stra-
tegies and access plans are then directly comparable, both in terms of optimization effort

and query execution time.
6.1. Left-Deep vs. Bushy Execution Trees

When designing the rule sets for our optimizers, we had to consider how the run-time
system would evaluate queries. In particular, we had to decide whether the run-time system

would freely use temporary files for intermediate results. While temporary files are
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considered necessary for successful decomposition for storing intermediate results while the
query optimizer decides on the next processing step (Wong, 1976), System R tries to avoid
the use of temporary files by structuring the query evaluation plan appropriatly (Astrahan,

1976).

In System R, it is required that in any join operation the inner relation be a base table
(ie. a stored, permanent relation). The rationale is that this allows the use of an existing
index to speed up the join. In our optimizer, the inner relation of a join was modeled as the
right input. System R style access plans for queries involving multiple joins thus have one

long left branch in our model, so we call them left-deep trees.

In contrast to System R, the generated optimizer presented in Chapter 5 considers trees
of all shapes. We term the set of all sets the set of bushy trees. Figure 6.1 shows a left-
deep tree and a bushy tree representing the same join query. Both the University version
and the commercial version of INGRES allow access plans in the form of bushy trees (Wong,
1976,Kooi, 1982). In fact, in the Decomposition strategy, the sizes of intermediate results

are used as basis of subsequent optimization decisions (Wong, 1976).

There are advantages and disadvantages to using either deep or bushy tree access

plans. The differences have ramifications both in the optimization and execution phases of

VAN
join

join D / \

/ \ join join
join C / \ / \
/\ A B C D
A B

Figure 6.1.

Left-Deep vs. Bushy Trees.
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a query. Selecting the optimal access plan (or one close to optimal) from the set of possible
access plans becomes more difficult as this set grows. The set of bushy trees is a superset of
the set of left-deep trees, and is possibly larger by several orders of magnitude. The number
of left-deep access plans grows by the order of 2N for N join operations in the query,
whereas the number of bushy trees grows by SN. Hence, there is a strong reason to restrict

the optimizer’s search to left-deep trees.

During query execution, left-deep trees are also easier to manage. Consider a bushy
tree as shown in Figure 6.1. The two lower join operations can be performed either sequen-
tially or concurrently. In the former case, it is necessary to store the results of the first sub-
tree executed until the second tree has been evaluated. This can be done either in main
memory buffers, which increases buffer contention dramatically, or in a temporary file,
which requires additional I/O for writing and reading. In the latter case, it is necessary to
schedule the execution of the two trees so that their results are available exactly when they
are needed for the join operator at the root of the tree. Clearly, this is very difficult to the
point of being practically infeasible. For this reason, temporary files seem the most general

of the three alternative implementation techniques outlined for bushy trees.

In order to compare these two query optimization and execution strategies, we res-
tricted the optimizer implemented with the optimizer generator to producing left-deep trees
only. This could be done quite easily with a simple change of the rule set, i.e. by disabling
three of the join associativity rules shown in Figure 5.4 of Chapter 5, leaving only the left-
shift rule. To incorporate the I/O cost for temporary files, we altered all cost functions for
join methods to determine whether the right input is the result of a scan or an intermediate
result. If it is an intermediate result, the cost for writing and sequential reading is included

in the calculated cost of the query tree.
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8.1.1. Experiments and Results

As mentioned earlier, bushy trees are a superset of left-deep trees. Consequently, the
search space of the bushy tree optimizer is larger. This does not necessarily imply, however,
that the bushy tree optimizer must be slower. This depends on the effectiveness of the
search strategy and on the amount of sharing of nodes in MESH among query trees and
access plans. On the other hand, we certainly expect that the access plans found by the

bushy tree optimizer will be at least as good as those found by the left-deep tree optimizer.

The cost model in these experiments includes both I/O cost and CPU cost. The cost
measure used is the total processing time, i.e. elapsed seconds for query evaluation without
overlap of I/O and CPU activity. The buffer pool is assumed to contain 100 pages of 4,096
bytes. The constants and formulas used in the cost calculations are given in Table 6.1 and
6.2. The #pages parameter stands for the number of pages that an intermediate result
occupies, #tuples stands for the number of tuples in an intermediate relation, and #buffers
stands for the number of pages in the buffer pool. We assign relatively low costs to sequen-
tial read and write operations as we assume that file space allocation is done in a way so as
to minimize disk seeks. For hash join, the spooling cost for the outer relation (in first line of
the cost formula for hash join) is used only if #runs is greater than 1, i.e. if the outer rela-

tion does not fit into the hash table which is kept in the buffer.

activity abbreviation  unit ms
sequential read S_RD page 15
random read R_RD page 30
write WR page 20
memory to memory copy COPY page 2
key comparison COMP tuple 0.05
build hash table BUILD tuple 0.2
probe hash table PROBE tuple 0.5
Table 6.1.

Constants used in the Cost Calculations.
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Method Formula

file scan S_RD * #pages

index scan R_RD * #tuples

filter COMP * #tuples

sort-merge join 2* (#tupleslen + #tuplesright) * COMP +
#pages . * COPY

sorting #pages * loS#buﬁers (#pages) * (WR + S_RD) +

#pages * log #buffers (#pages) * COPY +
2 * #tuples * log  (#tuples) * COMP

nested loops join #pagesright * (WR + #runs * S_RD) +
#tuplesleft * i,‘.tuplesright * COMP +
#pagesresult COPY
#runs = ceiling (#pagesleft / #buflers)

hash join #pages) * (WR + S_Rd) +
#pagesright * (WR + #runs * S_RD) +
#tuplesleft * 13UILD + #:t;uplesri ght * PROBE +
#pagesre sult COPY
#fruns = ceiling (#pages, ., / #buffers)

index join 2* ftuples o *R_RD +
10 * #tuples) .. * COMP +
#pages_ 1. * COPY

spooling #pages * (WR + S_RD)

Table 6.2.
Formulas used in the Cost Calculations.

The database used for these experiments is that described in Section 5.1.2 of Chapter 5.
It contains 26 relations with 4 attributes each. The relation cardinalities are randomly

chosen from a normal distribution with a mean of 1,000 and a standard deviation 100.

We were interested in seeing how bushy and left-deep tree optimization compare for
various query sizes. To explore this issue, we used 200 queries with one join each, 200 with

two joins each, etc., up to 9 joins per query. The queries were presented to the optimizer as



114

left-deep trees. We explored various selectivities for the join predicate. In the following, we
give the results for one particular join selectivity setting. The result relation of a join con-
tains 0.15% of the tuples of the Cartesian product of the two relations. Considering the
cardinalities of the relation; in our database, this means that the result size of a query

grows which each additional join.

We provide four graphs comparing left-deep trees and bushy trees. In each graph, we
give the number of joins per query on the horizontal axis, and show one curve labelled "*"
for left-deep execution trees and one curve labelled "+" for bushy execution trees. First, we
compare the average number of nodes in MESH at the end of the optimization of one query.
This is one way in which we can measure the effort that was spent on optimization. Second,
we compare the average CPU time spent optimizing one query!. Third, we compare the

average plan execution costs as anticipated by the cost functions.

! These experiments were also run on a VAX 8600.
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The search effort, as measured by the final MESH size (Figure 6.2) and by the CPU
time spent on optimization (Figure 6.3), grows with the number of joins in the query, i.e. the
complexity of the query. Since there are many more bushy trees than left-deep trees, the

optimization of bushy trees is more complex, and thus requires more resources.

The plan execution cost seems to be equal for queries of limited complexity, as can be
seen in Figures 6.4 and 6.5. The design decision of the System R and GAMMA projects to
use left-deep trees thus only seems to be justified. The plan execution cost grows exponen-
tially with the number of joins in the query, i.e. with the number of tuples in all intermedi-
ate relations. However, for very complex queries, left-deep execution trees are much more

expensive.

In fact, the results shown here were to be expected. The join selectivity factor and the
cardinalities of the base relations cause the size of the intermediate relations to grow
steadily with each additional relation joined. Hence, the number of tuples in each inter-
mediate relation grow exponentially with the distance from the left-most leaf when using a
left-deep query execution tree. A bushy tree, on the other hand, allows the optimizer to
plan more join operations with moderate cardinalities, putting only one really large join
operation at the top of the tree. The more join operations there are in the query, the more
impact such "balancing” has, and the greater the execution cost advantage of bushy trees.
If a join method requires multiple runs (because the relations are larger than the available
buffer) or sorting of an intermediate result, the cost functions assume that the intermediate
result must be stored on disk anyway for this purpose, and the spooling introduced by the

bushy shape of the tree does not introduce additional cost in this case.

In many practical applications, the size of join results can be estimated more accu-
rately with a different formula than the one used in the experiements reported above. To

ensure that a relational database is in normal form (Kent, 1983), it is frequently required
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that complex objects be stored in tuples from several relations (Lorie, 1985). If relational
joins are used to rebuild complex objects, a more appropriate formula to estimate join result
sizes is the product of the smaller of the two input cardinalities and a constant factor. The
smaller of the two cardinalities is assumed to represent the number of objects to be rebuild.
The constant factor is an estimate of how many components are to be retrieved in a join
operation for each complex object. Experiments indicate the left-deep execution trees are
satisfactory if all complex objects can be stored in main memory. If the main memory is
not sufficiently large, it is more advantageous to assemble non-normalized components in a

right branch of a bushy execution tree.

These experiments cannot be immediately generalized to other cost functions, data-
bases, and queries. However, the assumptions made in our experiments are realistic enough
that they could occur in a real database. If so, the conceptual ease of the execution model
of System R and GAMMA, namely the restriction to left-deep execution plans, must be paid
for in form of higher query execution costs for some queries and some databases. An assess-

ment of this tradeoff should be part of any database implementation effort.
6.2. Two-Phase Optimization

Left-deep tree optimization is faster, whereas bushy tree optimization generates the
better query plans. In this section, we explore whether the advantages of the two methods

can be combined.

The more general formulation of this idea is to perform the optimization in an arbi-
trary number of phases, as we proposed in (Graefe, 1986). In Chapter 4, we reported how
the necessary framework was implemented in the EXODUS optimizer generator. Using this
framework, it was very easy to modify the model description file used for the experiments
reported above such that there are two phases. The first phase does left-deep tree optimiza-

tion, and then the second phase takes the query tree corresponding to the best access plan
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found by the left-deep tree optimizer as input into the bushy tree optimizer and tries to find
a better access plan. Again, the implementation rules, the cost functions, and the property

functions did not need to be changed, making the results directly comparable.

A similar idea was outlined by Rosenthal et al. (Rosenthal, 1986), who called it the
Pilot Pass Approach. The pilot pass is a search pass with a more restricted search that is
done before the main optimization pass. The purpose is to allow the main optimization pass
to find the optimal access plan faster. The hope is that more optimization effort is saved in
the main optimization than is spent on the pilot pass. No implementation was reported by

Rosenthal et al.

We compared the two-phase optimizer with the left-deep and bushy tree optimizers
described in the last section. We used the same queries and database to measure the optim-
ization effort and anticipated execution cost of the access plans. In the following graphs,

the curve labelled "x" represents two-phase optimization.
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The measures for optimization effort, MESH size (Figure 6.6) and CPU time (Figure
6.7), are again very similar to each other. For queries of moderate complexity (4 to 10
joins), we observe that two-phase optimization requires less resources than one-phase bushy
trge optimization, i.e. the left-deep first phase saves more effort in the bushy second phase

than it costs. For very large queries, however, this is not the case.

With respect to the anticipated plan execution cost, shown in Figures 6.8 and 6.9, we
find that the plans resulting from two-phase optimization are just as good as those produced
by bushy tree optimization. Since the second phase is exactly the bushy tree optimizer, this
result was to be expected. For very large queries, the left-deep tree optimizer cannot find
plans as good as the bushy tree opiimizer or the two-phase optimizer. Interestingly, the
range for which the two-phase optimizer is slower than the bushy tree optimizer (more than
12 joins) overlaps with the range for which left-deep trees are not competitive. Further

research might show whether or not there is a connection between these two ranges.

The optimization model of EXODUS provides for any number of phases that the DBI
wishes. Furthermore, what the phases do or what their search parameters (hill climbing
factor, reanalyzing factor, etc.) are is not predetermined. This allows the DBI maximal
freedom to explore alternative ideas in query optimization and execution. The generator
architecture and its modularization framework allow for rapid implementation of these
ideas. Our idea to concatenate the fast left-deep tree optimization and more thorough
bushy tree optimization is but one idea for a multi-phase optimizer; other combinations
might prove to be more effective. We have not yet explored this direction further, however,
because the focus of our research has been to provide a flexible and powerful tool for data-

base query optimization research.
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CHAPTER 7

Summary, Future Work, and Conclusions

7.1. Summary

In this thesis, we have outlined problems and possible solutions for query optimization
in extensible database systems. Our research suggests that a particular solution, namely a
rule-based query optimizer generator, is a practical and powerful alternative. A prototype
implementation for the EXODUS extensible database project was described, and some com-
putational results were reported. Our results demonstrate that optimizers generated with

our software can be valuable parts of new database systems.

To support query optimization in extensible database systems, the data model specific
software components must be separated from the components that can be used for any data
model. The reusable modules are part of the EXODUS effort, whereas the data model
specific software is defined by the Database Implementor (DBI). An optimization model gen-
eral enough to fit most modern data models allows the DBI to specify the data model for
the optimization component. Our optimization model is based on the algebra of the data
model, i.e. on operator trees and method trees. Optimization in this model consists of

operator reordering and method selection.

The data model, for optimization purposes, is captured in a new rule language and in a
set of support functions written in the DBI’s implementation language. The rules are
transformation rules for operator reordering and implementation rules for method selection.
In general, the rules are non-procedural, but the rule language allows the DBI to express
hints on how the rules are to be applied. The support functions can be associated with

operators, methods, or rules. They include the cost functions for methods, property
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functions for operators and methods, and argument transfer and promise evaluation func-
tions for rules. Most of these support functions are optional, thus being a convenience

rather than a burden for the DBIL.

Using the rule set as a-base for the optimizer provides a clear and concise framework
for modularization of the DBI's optimizer code. The benefits include easy incremental

development and testing of database query optimizers.

The rules are translated by the optimizer generator into executable source code, which
is compiled and linked with the support functions and other database software. In the
translation process, self-adapting search procedures are appended to the generated code.
While the optimizer runs, the search engine observes the effects of transformations to guide
further search; an ezpected cost factor is associated with each rule for this purpose. This
self-adaptive search strategy avoids exhaustive search, drastically reducing the time

required for query optimization.

The EXODUS prototype of the optimizer generator demonstrates the feasibility of the
approach. Optimizers built for relational systems were shown to be fast enough to be used
in production systems. The costs of the access plans produced are very close to those found
by an exhaustive search of all possible query trees and access plans. Optimizers designed

for other research efforts show the flexibility and the power of the approach.

Finally, we have shown results obtained with the relational optimizers generated with
the EXODUS optimizer generator. While the comparison of left-deep vs. bushy query execu-
tion trees and single- vs. multi-phase query optimization were not immediate concerns of the
EXODUS project, they are nevertheless issues that must be considered when implementing a
new database management system. The flexibility provided by the EXODUS optimizer gen-
erator enabled us to implement easily several different optimizers that were directly com-

parable. The optimizer generator has thus proven to be a valuable tool for research and
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experimentation in database query optimization.
7.2. Future Work

One interesting design issue that remains is to provide general support for the notion of
predicates, as some form of predicates are likely to appear in most data models. Writing
the DBI code for predicates was the hardest part of developing our optimizer prototypes. In
the current design, the DBI must design his or her own data structures and providé all the
operations on them for both rule conditions and argument transfer functions. It may be
difficult to design a generally satisfying definition of predicates and a scheme for supporting
predicates, but it would be a significant improvement for the optimizer generator. The fact
that predicates are a special case of arguments poses an additional challenge, since the
overall design of the argument data structure must still remain with the DBL. One way to
approach this problem is to provide a library of subroutines which the DBI can choose to

use if they fit the data model.

The hill climbing and reanalyzing factors were seen to have a significant effect on the
amount of CPU time spent optimizing a query. These values are almost surely model and
algebra dependent. Thus, they must either be set by the DBI or they must be determined
automatically. We feel that the former alternative requires a level of sophistication or time
for experimentation that cannot be expected from the DBI, hence we plan on implementing

a scheme for the latter approach.

Furthermore, we realize that the stopping criteria for the generated query optimizers
are not yet completely satisfactory. The inherent problem is that the optimizer cannot
determine immediately when it has found the final access plan, and all search strategies
thus spend some effort that does not influence the optimization result. More research is

needed to identify reliable and precise stopping criteria.
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We also plan on making several changes in the generated optimizers. The first is to
recognize common subexpressions when the final access plan is extracted from MESH. Com-
mon subexpressions are detected in MESH and optimized only once, but the procedure
which extracts the access plan from MESH does not exploit this feature. Furthermore, the
cost of common subexpressions is not spread over their various occurences. Once common
subexpressions are supported satisfactorily, optimization of multiple queries in a single
optimizer run will be easy to implement. The other future change is to allow the definition
of method classes, as discussed in Section 4.3. This would be useful when adding a new
access method to an existing DBMS. In the current design, an implementation rule has to
be added to the model description file once for each rule where the new access method can
be used. Instead, by using a method class, the new access method would have to be added

only once, to the definition of the class.

Finally, we realize that the optimizer generator works largely on the syntactic level of
the query algebra. The semantics of the data model are thus left to the DBI's code. This-
has the advantage of allowing the DBI maximal freedom regarding the type of data model
implemented, but it has the disadvantage of leaving a significant amount of coding work to
the DBI. We would therefore like to incorporate some semantic knowledge of the data
model into the description file. This, however, is a long term goal which we have not begun

to address.
7.3. Conclusions

This thesis has described a first attempt to identify and solve the problems encountered
in extensible query optimization. We believe that we have contributed to database systems
technology both conceptually and practically. The optimization model outlined and used in
this work, based on trees of operators or methods, can be used as a unifying framework for

database query optimization. It is useful for describing the theoretical underpinnings of a
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new data model, which can be captured in the transformation rules; for describing the set of
possible execution strategies, captured in alternative sets of implementation rules; and for
the comparison of optimizer search spaces, which can be defined by the set of trees con-
sidered during optimization. On the practical side, we have designed and implemented a
tool that allows database researchers to experiment with query optimization. For the first
time, alternative optimizers can be implemented with a reasonable amount of programming
effort. We hope that this tool will assist EXODUS users and database researchers to build

semantically richer and more user-friendly database systems.
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This section shows a model description file. Some of the cost functions, operator pro-

perty functions, and method property functions are missing; this appendix is intended as a

source of examples only. The types ARG_TYPE, SCHEMA, and ORDER are assumed to

have been defined in the file defs.h. To learn further details how to use the optimizer gen-

erator, please refer to the user’s manual.

%4
# include "defs.h"

# define ARGUMENT ARG_TYPE
# define OPER_PROPERTY SCHEMA
# define METH_PROPERTY ORDER

extern ATTR_DESC * find_attr ();
%}

%operator 0 get
Tboperator 1 select
T%operator 2 join

% method O file_scan index_scan
% method 1 filter

Z%method 2 merge_join

% method 2 loops_join
%method 2 hash_join

% method 1 index_join

%%

# select commutativity rule

#
select 1 (select 2 (1)) ->! select 2 (select 1 (1))

{«
/* don’t do it if the selections are on the same relations */
if (stremp (OPERATOR_1.oper_argument.select_arg.attr->rel,
OPERATOR_2.0per_argument.select_arg.attr->rel) == 0)
REJECT;

h
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# select join rule
#
select 1 (join (1, 2)) <-> join (select (1), 2)
{{
# ifdef FORWARD

if (ind_attr (OPERATOR._1.0per_argument.select_arg.attr,

& INPUT_1.oper_property) == NIL)
REJECT,

# endif
1

# join commutativity rule

#

join (1, 2) ->! join (2, 1) join_comm;

# left shift rule
# N
join 1 (join 2 (1, 2), 3) ->! join 2 (join 1 (1, 3), 2)

if (find_attr (OPERATOR_1.oper_argument.join_arg.left,
& INPUT_1.oper_property) == NIL)
REJECT;
1}

# right shift rule
#
join 1 (1, join 2 (2, 3)) ->! join 2 (2, join 1 (1, 3))
{{
if (find_attr (OPERATOR_1.oper_argument.join_arg.right,
& INPUT_2.oper_property) == NIL)
REJECT;

1

# join associativity rule
#
join 1 (join 2 (1, 2), 3) <-> join 2 (1, join 1 (2, 3))
{
# ifdef FORWARD
if (ind_attr (OPERATOR_1.oper_argument.join_arg.left,
& INPUT_2.oper_property) == NIL)
REJECT;
# endif
# ifdef BACKWARD
if ((find_attr (OPERATOR_2.oper_argument.join_arg.right,
& INPUT_2.oper_property) == NIL)
REJECT;
# endif

1}

# implementation rules

#




double cost_filter (node, meth_input)

REG NODE *node, *meth_input [J;
{

return (W_comp * meth_input [0]->oper_property.rel_desc.card);
} /* cost_filter */

void properties_select (node)

REG NODE * node;
{
REG SCHEMA * result, * input;
REG int index;
double selectivity;

result = & node->oper_property;
input = & node->oper_input [0]->oper_property;
*result = *input;

strepy (result->rel_desc.rel, "tmp");

switch (node->oper_argument.select_arg.comp)

{

case EQ: selectivity = dbh_select_sel; break;

case NE: selectivity = one - dbh_select_sel; break;

case LE: case GE: selectivity = (one + dbh_select_sel) * half; break;
case LT: case GT: selectivity = (one - dbh_select_sel) * half; break;

}

result->rel_desc.card = input->rel_desc.card * selectivity;
} /* properties_select */

void properties_filter (node)
REG NODE * node;
{

}

node->meth_property = node->oper_input [0]->meth_property;
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