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Abstract

DECOMPOSITION OF STRUCTURED LARGE-SCALE
OPTIMIZATION PROBLEMS
AND
PARALLEL OPTIMIZATION

Deepankar Medhi

Under the supervision of Professor Stephen M. Robinson

In this dissertation, we present serial and parallel algorithms to solve effi-
ciently the problem : inf {3, fi(z:) | SN, A;z; = a}. Here, a € R™, and
fori = 1,...,N, A; € R™* ", z; € IR™, and, fi’s are closed proper convex
functions ( not necessarily differentiable ) taking values in the extende;d real line
(—00,00]. For example, block-angular linear programming problems and linear
multi-commodity network optimization problems can be cast into the above form.
In our approach, we take the Rockafellar dual of the problem to arrive at an un-
constrained nonsmooth maximization problem. The difficulty arises from the non-
smoothness of the dual objective. Traditional subgradient methods are not good
enough as they do not have implementable stopping criterion and are reported to

have slow convergence. One also may not obtain a primal optimal solution at the
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end. Instead, we apply a modified bundle algorithm, which has an implementable
stopping criterion, and more importantly, one can recover an approximate primal
optimal solution. We also obtain some theoretical a posteriori error information
on the approximate solution. We have implemented this algorithm on randomly
generated block-angular linear programming problems of size up to 4,000 equality
constraints and 10,000 variables. Our implementation ran up to seventy times
faster than MINOS version 5.0, and did substantially better than an advanced
implementation of the Dantzig-Wolfe decomposition method. Thus we think that
for this type of problem, our algorithm is very promising,.

A nice feature of the dual problem is that it breaks up the original problem
into smaller independent subproblems. Exploiting this fact, we present parallel
algorithms implemented on the CRYSTAL multicomputer. We considered two
groups of test problems for these algorithms, one in which the subproblems re-
quired approximately equal amounts of time to solve, and another in which the
solution times varied. In the first group, we obtained 70% - 80% efficiency with
up to eleven processors. In the second group, we obtained 60% or more efficiency

with relatively small problems and with up to five processors.
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Chapter 1

INTRODUCTION

Large-scale optimization problems arise in various real-life situations, for ex-
ample airline scheduling, transportation, logistics, production and economic de-
cision making. Because of immense size of these problems a general algorithm
that is used for a smaller-scale problem may not be suitable for these larger prob-
lems. However, very often large-scale optimization problems have special struc-
ture. Since a general algorithm for a smaller-scale problem may not be able to use
effectively the special nature of a large problem in solving it, one hopes to arive at
a specialized algorithm by exploiting the structure of the large-scale problem and
one again hopes this algorithm is better than general algorithms or other existing
algorithms. For example, multi-period modeling gives rise to a linear program-
ming problem whose technology matrix has block-angular structure or staircase
structure. Using the specific information about the technology matrix, special
algorithms have been proposed to solve these optimization problems; for example,
the Dantzig-Wolfe decomposition algorithm ( [Dan60], [Dan61a] ), and the nested

decomposition algorithm [Ho74].
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In this dissertation, we present sequential and parallel algorithms to solve
efficiently a certain type of large-scale optimization problem. This type of large-

scale problem can be put in the following form :

T, TN

N
inf > fil=i) (1.1a)
i=1
subject to

N
> Aizi=a, (1.1b)

=1

where ¢ € R™, and for i = 1,...,N, A; € R™*™,z; € IR",and, fi’s are
closed proper convex functions taking values in the extended real line (—oo, oo].
We shall call the constraints (1.1b) coupling constraints.

Our interest in this type of problem arises from the following three facts.

1) Several well-known optimization problems, like the block-angular linear pro-
gramming problem ( [Dan60], [Dan6la] ), the discretized stochastic linear
programming problem with recourse [Kal79] and the linear multicommodity
network optimization problem [Ken80] can be expressed in this form.

2) Usually, problems of type (1.1) are attacked by the well-known Dantzig-Wolfe
decomposition method ( [Dan60], [Dan6la] ). However, the computational
experience with the Dantzig-Wolfe decomposition method is somewhat dis-
appointing ( [Las78], [Dir79], [Ho83] ).

3) We can develop parallel algorithms which can exploit the special nature of
these problem, and thus solve the problems considerably faster.

In the next section, we give an overview of the work that we have done in this

dissertation where we have addressed these issues.



1.1 Overview

In Chapter 2, we give examples of problems mentioned in (1) above and show
how they fit into the model (1.1). We also discuss previous work on solution of
these problems.

We present, in Chapter 3, an alternative decomposition algorithm for the
problem type (1.1). In our approach, we take the Rockafellar dual of the prob-
lem (1.1) to arrive at an unconstrained maximization problem. For this type of
problem, this duz;lization results in a problem which is usually much smaller in
dimension compared to the original problem. Though the fact that it is uncon-
strained tempts one to try some existing algorithms from nonlinear optimization,
one cannot apply them as the transformed problem turns out to be nonsmooth.
Another possibility is the traditional subgradient methods [Pol78]. However, the
disadvantage with this approach is that it does not have an implementable termi-
nation criterion, and it is reported to have slow convergence. Moreover, though
one may obtain a dual optimal solution, one may not be able to obtain a primal
optimal solution at the end. Our approach is based on a relatively recent method,
known as the bundle method ( [Wol75], [Lem78a], [Lem81] ), for nonsmooth op-
timization problems. In this approach, we apply a modified bundle algorithm to
the nonsmooth dual problem. The advantage of this algorithm is that it has an
implementable termination criterion, and more importantly, one can recover an
approximate primal optimal solution. We also obtain some theoretical a poste-

riori error information on this approximate primal optimal solution. Unlike the
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memoryless nature of gradient-type methods in smooth optimization, the bundle
method needs to keep some information from previous iterations. However, the
nice feature is that one does not need to store all the previous information, and
one can work with finite storage by deleting some of the old information.

To investigate this algorithm and to compare it with existing solution meth-
ods, we have implemented it in Fortran 77 on block-angular linear programming
problems ( [Dan60], [Dan61a] ). We present our experience in Chapter 4. First, we
investigate this algorithm by varying factors of a block-angular linear programming
problem, e.g., the size of the whole problem, number of coupling constraints and
the number of subproblems ( i.e., N of (1.1) ). From our investigation, we found
that if the problem size and N are kept fixed, then the solution time grows linearly
as the number of coupling constraints increases. We observed that when the size
of the whole problem and the number of coupling constraints are kept fixed, the
time grows between linearly and quadratically as the density of the no'n~coupling
part ( which is essentially 1/N ) increases. We also observed that, contrary to the
best known theoretical result that the bundle method is sublinear [Lem86a,p.229],
it behaves in practice more like a linearly convergent method. For some of the
randomly generated test problems, our implementation, which is still in an experi-
mental stage, turns out to be in the range of fifteen to seventy times faster than the
MINOS 5.0 package [Mur83]. Our implementation did substantially better than a

sparse implementation of the sparsity preserving LPSOR2 algorithm [Man84] for
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linear programming, and its proximal point variant ( [Del85], [Del87] ). Our im-
plementation also did substantially better than an advanced implementation [Ho]
of the Dantzig-Wolfe decomposition method. So we conclude that for this type of
problem the bundle-based algorithm is very promising.

A nice feature of the decomposition technique described in Chapter 3 is that
it breaks up the original problem, obtaining the dual as a collection of smaller
independent subproblems. Exploiting this fact, in Chapter 5, we present parallel
algorithms and our computational experience on the CRYSTAL multicomputer
[DeW84] for the problem type (1.1), specifically, for block-angular linear program-
ming problems. In that chapter, we briefly review the CRYSTAL multicomputer
and the communication package, SAP, that we use for sending/receiving informa-
tion to/from one processor to another and/or to/from the host machine, and give a
description of how the parallel algorithms are implemented. If we call subproblems
which take almost equal amounts of solution time subproblems of even size, and
subproblems which take different amounts of solution time uneven subproblems,
we can classify the problem (1.1) into two classes, and we have proposed different
parallel algorithms for these two classes. In the first one, where the subproblems
are of even size, the scheduling of the subproblems among different processors of
a multicomputer is relatively simple. We allocate the subproblems by ‘equally’
dividing them among the available processors ( For a precise statement of the
‘equal’ division, please refer to §5.1.1 ). On implementation of this scheme, we

found that for large problems we have obtained about 70% - 80% efficiency with
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up to eleven processors. For problems with uneven subproblems, we identified
the problem of allocation of the subproblems to different processors with the in-
dependent task-scheduling problem [Gar78] for scheduling independent jobs in a
number of identical processors. There are well-known algorithms available for the
independent task-scheduling problem. However, these algorithms require knowl-
edge of solution time of the subproblems beforehand, which we do not have in
our case. Instead, we estimate the solution time of subproblems and then apply
these algorithms. With this estimation approach, our implementations of these
algorithms give 60 % or more efficiency with relatively small test problems and
with up to five processors.

Finally, in Chapter 6, we propose an extension of the decomposition algorithm
( of Chapter 3 ) to a doubly-coupled linear programming problem [Rit67]. In this
approach, the bundle-based decomposition algorithm is applied at two stages.

In the next section, we give notations and definitions that will be used

throughout this dissertation.

1.2 Notations and Definitions

Most of the definitions given in this section can be found, for example, in
[Roc70]. We first give some notations.

IR" is the n-dimensional Euclidean space.

The usual inner product is denoted by (:,-), i.e., if z,y € IR", then (z,y) :=

> ¢=1Ttyt, where z¢ denoted the £h component of the vector z.
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The Euclidean norm of vector z is given by || z ||z or || z |. The p-norm of z
is denoted by || z ||,

For a vector z € IR®, z, denotes the vector whose £'* component is z, if
z¢>0,and 0 if z, < 0.

In literature, usually subscripts are used for component of a vector; but here,
in most cases, z; € IR™, i.e., z; is an n;-dimensional vector, and z = (z1,...,ZN) €
RrttRN

The transpose of an m X n matrix A is denoted by AT. Unless otherwise
stated, the matrix A; is an m X n; matrix, and the matrix B; is an m; X n; matrix.

If « is a real number, then we write || to denote the greatest integer less
than or equal to a ( the ‘floor’ of @ ), and we write [a] to denote the least integer
greater than or equal to a ( the ‘ceiling’ of a ).

The end of the proof of a theorem or a lemma is denoted by L

Definition 1.1. Convex set. A subset C of IR" is convexif Az +(1—A)y € C

for every A € [0,1] and every z,y € C.

Definition 1.2. Convex hull  The convex hull of a subset A of IR", written

conv A, is the intersection of all convex sets containing A.

Definition 1.3. Affine set. A subset M of IR" is affine if for each x,y € M and

anyA €R, Az+(1-ANyeM.

Definition 1.4. Affine hull. The affine hull of a subset S of IR", written aff S,

is the intersection of all affine sets containing S.
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Definition 1.5. Relative interior. Let C be a set in IR". The relative interior of
Cis
riC={rxe€ af C | forsomee >0,(z+eB)n (aff C) C C},

where B is the Euclidean closed unit ball in IR".

Definition 1.6. Effective domain of a function. Let C C IR™ and f be a function
such that f: C — [—o00,+00]. The effective domain of f on C, written dom f, is
given by
dom f := {z € C | f(z) < +oo}.

Definition 1.7. Convex function. Let f:IR™ — [—o00,+00]. Then f is convex if
its epigraph, given by

epi f :={(z,p) | z € R",u € R,pu > f(2)},
is a convex set. f is concave if —f is convex.
Definition 1.8. Proper convex function. Let f:IR" — [—o0,+00] be a convex
function. Then f is proper convex if f(z) < +oo for at least one z € IR", and

f(z) > —oo for every z.

Hereafter, we shall restrict ourselves to proper convex functions.

Definition 1.9. Strongly convex function. Let f:IR® — (—o0,+00]. Then f is
strongly convex with modulus § if there exists § > 0 such that for each z,y € IR"

and each A € (0,1),

FA =Nz +2y) < Q= Nf(2) +Af(y) —r1 =N |z -y |I*.
Definition 1.10. Closed proper convex function. A proper convex function

f:IR™ — (—00, +00] is closed if the epigraph of f is a closed set in R+,
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Definition 1.11. Conjugate of a convex function. The conjugate of a convex

function f, denoted by f*, is given by

f*(z) = sup {{(z,z) — f(z)}.
zGIR."
Note that f* is a closed convex function, and f* is proper if and only if f is

proper. If f is closed convex, then f** = f, where f** denotes the conjugate of

the conjugate of f.

Definition 1.12. Subdifferential of a convex function. For a convex function f,

the subdifferential of f at Z is given by
of(z):={reR"|Vz, f(z)=f(Z)+(m,z—17)}
Definition 1.13. Subdifferential of a concave function. For a concave function

g, the subdifferential of g at § is given by
99(9) :={r e R" |Vy, g(y)<g(@)+ (my—}
An element of the subdifferential set will be called a subgradient.

Definition 1.14. e-subdifferential of a convex function. For a convex function f,

the e-subdifferential of f at Z ( where e > 0 ) is given by
O f(z):={reR" |V, f() =2 f@)+(r,z—Z)—c}.
Definition 1.15. e-subdifferential of a concave function. For a concave function

g, the e-subdifferential of g at § ( where e > 0 ) is given by

Beg(§):={reR"|Vy, g(y)<g@+(my—7) +e}
An element of the e-subdifferential set will be called an e-subgradient. Note
that the 0-subdifferential is the standard subdifferential defined in Definitions 1.12

and 1.13.
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Definition 1.16. Locally Lipschitzian. A function h : IR® — IR is said to be
locally Lipschitzian if for each bounded subset S of IR" , there exists L < oo sucil
that

|h(z!) — h(2?)| < L | z* —2? ||, forz’, 2% € S.

Definition 1.17. Weakly semi-smooth. [Lem78b] A convex function f is weakly
semi-smooth if it is locally Lipschitz continuous and for scalar t and = € 9f(z+1d),

(r,d) has exactly one cluster point as t-— 0.
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Chapter 2

EXAMPLES AND PREVIOUS WORK

In our introductory chapter, we mentioned that in this dissertation we inves-
tigate a decomposition algorithm and parallel algorithms for the problem (1.1). In
latter chapters we develop these algorithms and present computational éxperience.
In this chapter we give examples of problems that fit into the model (1.1). We
also give an example which does not directly fit into the form (1.1), but whose
subproblems have a structure similar to (1.1). Finally, we briefly discuss previous

algorthims for solving these examples.
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2.1 The problem

For convenience, we display the problem (1.1) again :

N
,nf ;f;(xe) (1.1a)

subject to

N
Z A;z; = a, (l.lb)
=1

where a € R™, and for i =1,...,N, A; € R™*" z; € IR",and the f;’s are
closed proper convex functions taking values in the extended real line (—oo, ool
We do not assume the f; to be differentiable.

The problem (1.1) can be visualized as follows : each f; represents the cost of
some activity using m shared resources. How should the shared resources, a, be

allocated so as to minimize the sum of the total costs of all the activities ?

We first present here some examples that fit into the model (1.1)..
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If we now consider instead of £ a discrete random vector ¢ attaining values :

£ = (hy, T1) with probability n; > 0,

62 = (hz, Tg) with probability n2 > 0,

¢N = (hn, Tw) with probability gy > 0,

where

then the problem (2.2) takes the form

N
1'[;111 (C’ .’B) + ;m‘Q(w,f ) (2.30)
subject to
Az =b, 20, (2.3b)
where, for: =1,...,N
Q(z,€') = min{ (¢,y) | Wy=hi—Tiz, y2 0} (2.3¢)

Putting together the first stage problem (2.3a)-(2.3b) and each realization of the

second stage problem (2.3c), we get a large-scale linear programming problem
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min (¢, z) + n{g,y1) + - +1n{g, yn)

Y1y YN
subject to
Az =b
Tve+Wuy = hy
T = + Wy, = hs
Tn =+ W yn =hn

Its linear programming dual is

max  (b,v) + (h1,u1) + -

Uy, UN

subject to
(751 w

U2W

vA 4+ u i+

£>0,y;,>0,i=1,...,N.

+ (hn,un)
< mg
< 129
(2.4)
un W < nng
+unTn <c
v, u; (1 =1,...,N) unrestricted.

This dual problem is of the type (1.1) except that minimization has been replaced

by maximization.
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2.4 Linear Multicommodity Network Problem

Another special instance of a problem with structure (2.1) is the linear multi-
commodity network problem. Consider a directed graph G = [N/, A] with nodes N
and arcs A. Let E be the (| V| x | 4| ) node-arc incidence matrix for the graph
G. Here, | N | and | A | represent the number of nodes and the number of arcs in

the network, respectively. Then the linear multi-commodity network problem is

N
L, 2 e
subject to
Ez;=b,i=1,...,N (2.5)
N
> Aizi<a,
=1
where A;,i = 1,..., N, are diagonal matrices [Ken80]. Here, z; € R are flows
in the network for commodities z = 1,...,N.

This problem can be generalized to have different node-arc incidence matrices

for different commodities, instead of just one.
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2.5 A Doubly-coupled Linear Program

A second type of problem can be thought of as an extension of problem (2.1).
Suppose that, instead of the divisions having control over all of their internal
resources, each of them shares the internal resources only with the headquarters.

Then the problem has the form

min  {cp,zo) + {c1,%1) + - + {cn, T N)

Loy ZN
subject to
Dy zo+ B 1 = b
D, zo + B; z, = by
(2.6)
Dy zo + By zn =bn
Ayzo+Ai1zi+ - +AvzN=ga

The above problem does not fit into the form (1.1). Later we shall mention
how problem (2.6) can be decomposed so that the subproblems associated with it

have the form of problem (1.1).
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2.6 Previous Work

Dantzig and Wolfe ( [Dan60], [Dan6la] ) first suggested a decomposition tech-
nique, well known as the Dantzig-Wolfe decomposition, to solve the problem (2.1).
It builds upon the notion of column generation, which means the nonbasic columns
of the whole matrix needed for computing the reduced cost coefficient are generated
only when they are required. The idea of Dantzig-Wolfe decomposition is appeal-
ing, but the implementation, application and refinement of this method have been
somewhat disappointing in terms of computational efficiency ( [Kut73], [Las78],
[Dir79] ). There have been attempts to improve the efficiency of this method, in-
cluding the advanced implementation of Ho and Loute ( [Ho81], [Ho83], [Ho84] ).

Another approach to solve problem (2.1) has been to exploit the special struc-
ture of the problem, and use the revised simplex method. There are ways to re-
duce computational effort and the storage requirement of the inverse of the basis
at each pivot. Notable among them are the generalized upper bounding technique
by Dantzig and Van Slyke [Dan67], basis factorization [Win74] , and approaches
based on LU decomposition by Bartels and Golub [Bar69], Forrest and Tomlin
[For72], Saunders [Sau76]. The partitioning method of Rosen [Ros64] is another
way to solve the problem (2.1).

For the stochastic linear programming problem (2.2), the first solution method
was proposed by Dantzig and Madansky [Dan61b] using the Dantzig-Wolfe decom-

position principle applied to the dual problem (2.4). Van Slyke and Wets [Van69]
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suggested the L-shaped algorithm which is based on a cutting hyperplane algo-
rithm ( outer linearization ) and is a partial decomposition method in naturé.
Another method, known as the compact basis technique or the basis reduction
technique, was developed by Strazicky ( [Str74], [Str80] ) and further treated by
Kall [Kal79]. This method takes advantage of the special structure of the basis
of the dual problem to obtain a working basis with fewer elements than the stan-
dard simplex method would require. Recently, Ruszczynski [Rus86] suggested a
method which followed the general principle of the Dantzig-Wolfe principle but
used a quadratic regularizing term in the approximate problem ( which is close to
the idea behind the proximal point algorithm [Roc76] ) and restricted the number
of columns that needed to be stored. All the above methods for solving prob-
lem (2.2) are based on the discretization of the problem. Another approach to
solve the problem (2.2) is the stochastic quasi-gradient method [Erm83] based on
the stochastic approximation method. The main idea of this method is to make
random steps in directions calculated on the basis of some statistical information
about the problem gained at each step. For a summary of various methods for
solving the stochastic linear programming problem (2.1), see Wets [Wet83].
There are several approaches for solving the linear multicommodity network
problem. The primal partitioning method is based on partioning the basis so as
to exploit the network structure and is a specialization of the primal simplex algo-

rithm. Another approach is based on the Dantzig-Wolfe decomposition method.
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A third approach is based on subgradient optimization [Hel74]. A discussion of
the different approaches can be found in Kennington and Helgason [Ken80].

Finally, for problems of the structure (2.6), there are two different methods

based on the above ideas : the algorithm of Ritter [Rit67] which is a generalization

of Rosen’s partitioning method, and the algorithm of Hartman and Lasdon [Har70],

which is an extension of the generalized upper bounding technique.

2.7 What is ahead

In the preceeding discussion, we have given different examples of problems
that fit into the model (1.1), and also an example which does not directly fit into
the model (1.1). Also, we have briefly discussed previous work associated with
these examples.

In the next chapter, we will present a decomposition algorithm based on the
bundle method for solving the problem (1.1). Our computational experience with
this approach for solving instances of the block-angular linear programming prob-
lem (2.1) will be presented in Chapter 4. Then, in Chapter 5, we will discuss par-
allel algorithms for solving the problem (1.1) based on the decomposition method
described in Chapter 3, and will present computational experience with block-
angular linear programming problems on the CRYSTAL multicomputer [DeWg4].
Finally, in Chapter 6, we will give an extension of the decomposition method of

Chapter 3 to the doubly-coupled linear programming problem (2.6).
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Chapter 3

A DECOMPOSITION ALGORITHM
BASED ON THE BUNDLE METHOD

3.0 Introduction

In this chapter, we present a decomposition method based on the bundle
method to solve the general problem (1.1). The decomposition technique arising
from duality is described in § 3.1. We apply this technique in the hope that
the transformed problem will be easier to solve. One major difficulty with the
transformed ( dual ) problem is that it is nonsmooth. In § 3.2 and § 3.3, we
present existing methods to address this situation for the problem (1.1) ( different
approaches for solving various examples described in § 2.1 were mentioned in
§ 2.2 ). Then, in § 3.4, we describe the bundle-based approach to solve the problem
(1.1). Finally, we present the algorithm in § 3.5.

For expositional convenience, we present the problem (1.1) here again :

N
inf > filz:) (1.1a)

L1y N =1

subject to

N
ZA,- T; = a, (1.1d)

=1
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where ¢ € R™, andfor 7 = 1,...,N, A; € R™*", z; € R",and, fi’s are

closed proper convex functions taking values in the extended real line (—oo0, co].

3.1 A Decomposition Method

Here, we present a decomposition technique that has been developed in Robin-
son [Rob78] and Ha [Ha80]. We present it here somewhat differently than did
Robinson and Ha. This decomposition method is based on the Rockafellar dual,
and exploits the special structure of the problem.

For the problem (1.1), we define a perturbation function F(z,p) as :

N N
Y fi(zi), f a— ) Aizi=p;
i=1

F(z,p)={ i=1 (3.1)

00, otherwise.

Note that inf; F(z,0) is the same as the problem (1.1), and that F(z, p) is jointly

convex in (z,p). The Lagrangian L(z,y) is defined as

L(z,y) := inf {{y,p) + F(z,p)}

N N
=" fil@) +(ya— ) Aizi)
i=1

i=1

N
= (y7a> + Z {fl(z!) - (yaAi II:,)}

Under the constraint qualification,

N
a€ Y Ai(ri dom f}),
i=1
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the infimum in problem (1.1) is equal to

max 9(y) (3.2)

where

g(y) := inf L(z,y)
N
= (y,a) — > _sup{(AT y,2:) — fi(z:)}

i=1 %i

N
= (y,a) = Y _ f1(AT ).

i=1
The problem (3.2) is known as the dual problem. Notice that the dual maximum
value is attained. This dual is a nonsmooth concave maximization problem in m
dimensions and usually m is much smaller than n ( = n; +---+ny ), the number

of variables of problem (1.1). For given y, we have
fi(AT ) = sup{{AT v, z:) — fil=:)} (3.3)
z

fori =1,...,N, which are N smaller subproblems. We shall call the dual problem
(3.2) the master problem. A general scheme for solving this unconstrained dual
problem can be stated as :

Choose a value of y and for this fixed y solve the N subproblems (3.3).

Ify is an optimal solution of (3.2), stop;

Otherwise, update y and solve (3.3) again.

Repeat until an optimal solution is found.
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Since the master (dual) problem is a nonsmooth problem, we cannot directly apply
any unconstrained methods for solving smooth optimization problems. If we Wish
to apply a subgradient-type algorithm, we should be able to compute at least one
subgradient of g(-) at each y. Rockafellar [Roc70,p.223,p.225] showed that under

the condition

N
ﬂ( im AT Nridom f} ) # ¢,
=1
one has
N
dg(y) =a— Y _ A df (AT y),
=1
where

oft (AT y) = argmin {f;(z:) — (AT y, i)}
i
Thus, if z;(y) is a solution of the :** subproblem
min {fi(z:) — (A7 v, 1)}
then
N
a— Ai(zi(y)) € 9g(y)-
=1
So, a subgradient of g(-) can be computed at a point y by solving the N subprob-
lems (3.3) at that y.
Now the next question is : can we get a primal optimal solution at the end ?
Note that for given y, the problems (3.3) may not have unique solutions. Suppose

we know a dual optimal solution §. Then for this §, the corresponding solutions

z;(§) of the subproblems may produce

N
a— ZA,‘ zi(g) # 0.

i=1

Then, z = (z1(7), - - . , 2~ (F)) would not be a feasible solution of the problem (1.1).
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3.2 Ha’s approach

To overcome the difficulties mentioned in the previous section, Ha [Ha80]
in his dissertation applied the proximal point algorithm [Roc76] to the primal
problem (1.1). We give a brief description of his approach here.

Let z° = (z%,...,2%) be a given starting point, which may not be feasible.
Suppose, we choose a bounded sequence of positive numbers {y¢}. Consider the

following modified problem :

N
inf Y (file) + T Lo =2 P) (3.4%)

TN = 2

subject to

N
ZA,-:B,-=(1.

i=1

Given z¥~1, the problem (3.4%) produces the solution z*. Under certain conditions
( [RocT76] ), the sequence {z*} converges to a solution Z of the original problem.
If the norm of solutions of two successive modified problems is less than some

preassigned tolerance, then the procedure is terminated; else, z*=1 is replaced by

z* in the modified problem and the procedure is repeated. The modified function
f. k— -
Filzi) == fi(zd) + 3’._5_1_. | zs — 251 |2

is strongly convex, and using the following result :
The conjugate of a strongly convex function is a Lipschitz continuously dif-

ferentiable function,
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the modified dual objective, §, is now Lipschitz continuously differentiable. The

gradient of g, Vg, is given by
N
Vi(y) =a— ) AiEi(y),
t==1
where #;(y) are the unique solutions of the modified subproblems
n:m{f,(m,) - (A:T%mi)}’

for i = 1,...,N. After making the dual objective differentiable Ha applied the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [Gil81] to solve the modified
dual problem.

The disadvantage of this approach is that, instead of solving one optimization
problem, one needs to solve a sequence of them ( cf. 3.4F ). This is due to the
incorporation of the proximal point algorithm, and it may increase the solution

time considerably.
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3.3 Subgradient methods

Another approach to solve problem (3.2) would be to use a subgradient
method. Typically, a subgradient algorithm can be stated as follows :

At kth iteration, compute a subgradient of g at y*; call it n*. Find y*+1 =

y* + 0%, where 0y, is a step length determined by some step size rule,
[Pol78]. There are many disadvantages of this method. This is not an ascent
algorithm and so there is no line search to obtain a better iterate. There is no
implementable termination criterion and the convergence rate is reported to be
poor. Another problem is that, even if a dual optimal solution can be found, we
want to obtain a primal optimal solution such that E'N=1 A; z; = a. Thus we need
a method to solve the dual master problem so that we can get a primal optimal
solution which satisfies primal feasibility (1.1b). For a summary of subgradient
methods, see [Pol78], [Zow84].

Marsten et al [Mar75] introduced an approach known as the boxstep method.

In this method, at each dual iteration, the problem
P(y*;8): max g(y) subjectto [y —y* [l <A

is solved. Since g is concave, it is clear that if the solution to P(y¥;A) is in
the interior of the box, then it is the global solution. Otherwise, a new box is
considered with the updated dual iterate y¥+1. Sometimes, it is easier to solve the
problem P(y*; ) than the dual problem as a whole. Again with this method, a

primal optimal (feasible) solution may not be obtainable.
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3.4 The bundle-based approach

In this section, we present our approach to solve the problem (1.1). Our
approach is based on solving the nonsmooth concave dual problem (3.2) by the
bundle method ( [Wol75], [Lem78a], [Lem81] ). Using this bundle-based approach,
one can obtain an approximate primal optimal solution. To solve the dual problem,
the bundle method uses the concept of an e-subdifferential of a function. We first

state and prove an important result.

Theorem 3.1. [Zow84] Let g be locally Lipschitzian. Then for every y there exist

a neighborhood N of y, and some & > 0 such that

U 9g(v) C de9(y), for € > &.
veN

Proof :

Let y be given. Let B, be a closed ball of radius r with center at y in int dom
g. Let g be Lipschitzian on B, with constant K. Choose A/ small enough so that
it is contained in B,. Then for every v € N, and 7 € 9¢(v), we can always find w
iﬂ B, such that for some suitable scalar a > 0, 7 = a(v — w).

Thus,

Ixll-lo-—w| = {mv-—w) < g(v) —g(w) ( as 7€g(v))

<K [lv-w].

So,

= max | 0(4) — 9() | + Il mas o |

max
r€dg(v),vEN

< Kr+ Kr =2Kr.




30

Now, let v € A and 7 € 9g(v). Then V z,

(m,z2—y) = (m,z—v)+ (7,0 —y)
> g(2) — g(v) + (mv —y)
= g(2) — g(y) +{9(y) — 9(v) + (m,v —y)}
= g(2) — 9(y) — {9(v) — 9(y) + (m,y — v}}
> g(z) — g9(y) &,

and so,

7 € 8.9(y), for e>¢ B

This implies that the set 8.g(y) contains the subgradient information from a
neighborhood of y. In practice, this set is replaced by some inner approximating
polytope.

First, we define here a weight function that we shall be using frequently. For

two points y,u € IR™, define

a(y,u,m) = g(u) — g(y) + (7(u),y —u).

Here, n(u) is a subgradient of g at u. Note that a(y,u,m) = 0.

Suppose, for a sequence of iterates y/,j = 1,2,...,k, the computed subgra-
dients are 74,7 = 1,2,..., k, respectively. Here, 77 is of the form
N 3
7w i=a - ZA,-:I:,J-,
i=1

where :cf is the computed solution of the i** subproblem at the j*! iteration. A

consequence of the above result is the following.
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Corollary 3.2. Ifm/ € 9g(y?), then
™ € Oyt i wi)9W")-

Proof:

n) € 8g(y’) implies that

Vy,  g(y) < 9+ (x),y—v’)

9(*) + (md,y = o*) = g(u*) + g(v’) + (n7,y* — 7).
Using the definition of a, we can rewrite
Vy,  9(y) < g(u*)+(?,y —¢F) +aly* ¥’ 7).

This, by the definition of the e-subdifferential, implies that
w1 € B,y 4i xiy9(y)- 1

For brevity, we shall write aji 1= a(y*,y?, ). -

This says that for some suitable € ( i.e., ajx ), the subgradients at the previous
iterates ( y',y2,...,y¥"1 ) are aji-subgradients at the current iterate y*. Now,
consider the convex polyhedron

k k k
Pk(ek) = {7r = Z Aj'n" ‘ Z)\j =1,); > O,Z Ajaje < €k}- (3.5)
j=1 7=1 7=1
Lemma 3.3.

Pi(ex) C 0e, 9(v¥).
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Proof:
Let Aq,...,Ax be convex weights. By lemma 3.2, we know that
vy, g(y) < g(yk)+<ﬂjay”yk)+ajk, for 7= 1,...,k.

Multiplying the above j*® inequality by Aj, and then adding for j = 1,..

get

k k
Vy, 9@ < g@)+O_ Nmhy—vB )+ Ajau

=1 i=1

which shows that

Pi(er) S O 9(y*). B

In practice, we replace 9., g(y*) by P(ex) as given in (3.5).

.k, we

Now, we can find an ascent direction by finding the least ex-subgradient of g

at y* in Px(ex); this means we need to solve the following quadratic programming

problem :

1 -
min 5 | > ot |13

k
Z Ozjk}\j < €k.
J=1

Let the solution of problem (3.6) be A¥ = (¥, ... Ak). Then, we set

K
dF = Z )\fwj
=1

(3.6)

(3.7)
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as the ascent direction. Also, we would like to get an estimate for the increase

in the objective function. This estimate, which we call vx and is used in the line

search procedure, is obtained as follows :

If vi is the dual multiplier vector associated with the convexity constraints of

problem (3.6), sk is associated with the last constraints of problem (3.6), and w; is

associated with /\f, then the optimality conditions for the quadratic programming

problem (3.6) are

k

(rj,Z)\fTr‘)+skajk—vk =w; 20, j=1,...

£=1

(w, A¥) = 0.

k
sk(z ajk/\f —eg) =0.
J=1

(3.8a)

(3.8b)
(3.8¢)
(3.84)
(3.8¢)
(3-8f)

(3-89)

Multiplying (3.8a) by A% and adding, and using (3.8b) and (3.8f), we get

k
I d* |1 +sx ) Afaje —ve =0,

i=1
which means
k
vk = || d* 1?45k ) Mai

J=1
= || d* ||* +skex > 0. ( using (3.8¢9))

(3.9)
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Once the direction is decided and an estimate vy is obtained, we need to do

a line search along this direction. This line search procedure is due to Lemaréchal
[Lem78b]. We briefly describe it here.

Let 3, v, u be given numbers such that

0<y<f<l, B4+pu<l, p>0.

By doing line search, we try to get a dual trial point uk*tl = yF 4 ¢ d* and its

subgradient w¥+1 so that

(r*+1,d¥) < Box (3.10)
and, either
g(u**) 2 g(y*) + v trvk (3.11)
called a serious step, or
oy, uF Tl ok ) < ey (3.12)

called a null step.

If we have (3.10) and (3.11), then the dual iterate y* is updated to y*+! =
w**+1, and the weights ajr to ajrt1 = a(yF,yf,n**1), j =1, ..., k, with
ak+1,k+1 = 0 and pick a new eg41.

On the other hand, if we have (3.10) and (3.12), we stay at y* ( i.e, yF*1 =
y¥ ), the weights aj; remain the same, and we add 7*+! to the bundle. ( Note

that akt1 k+1 < pek, so the subgradient at the trial point, 7F+1 is an element of

aekg(yk)' )
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Set t;, + 0,tg « 400, t; «— 1
and k « 1.
At the trial point u**! = y* 4 ty 7k,
compute g(u¥*t!) and rkt+1;
If { (3.11) is true } then
if { (3.10) is true } then
serious step : yF+1 — yF+1
k—k+1
else
tr «— tx
if {tp = 400 } then
tx +— extrapolate (1)
gotol
else
tx + interpolate (t1,tR)
gotol
endif
endif
else
tp «— tk
if {t, =0 } then
if { (3.12) holds } then
if { (3.10) holds } then
null step : stay at y* and enlarge bundle
else
tr + interpolate (t,tRr)
gotol
endif

else
tx + interpolate (tr,,tRr)
gotol
endif
else
tx + interpolate (tL,tr)
gotol
endif
endif

Figure 3.1 Line search method
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The line search method is presented in Figure 3.1. In this method, for extrap-
olation one may use any formula that increases tx in such a way that ¢ — oo if
the number of cycles ( i.e., the number of tries to go from one serious or null step
to the next serious or null step ) is unbounded. Similarly, for interpolation one
may use any formula so that (g —t1) — 0 if the number of cycles is unbounded.
This line search is proved to reach either a null step or a serious step in finite
number of iterations if ¢ is weakly semi-smooth [Lem78b).
Finally, we get an approximate optimality condition for the dual from the

following result, when both e and || d* || are small.

Theorem 3.4. Forall y € IR™,
g(y) < g(v*) +ex + (d*,y — ¥*)

< gWF) e+l d - Hy-v* 1.
Proof:

From Cor. (3.2), we have, for each y,

9(y) < 9(v*) + aji + (7, y — y*).

Multiplying by the solution A\¥ = (A¥,...,Af) of (3.6), and adding, we get

k k
a@) < 9"+ Maj+ (D Mad,y —¢).

=1 i=1
Using (3.7) and the last constraint of the problem (3.6), we have

a(y) < 9(¥*) +ex + (dF,y — v*)

< g +ext |- ly—-v* 1. B
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Thus, the algorithm terminates, when for preassigned & > 0, and § > 0, we

have

er<é and | d*|<6,

and y* is an approximate optimal solution for the dual problem.

Now, how do we get a primal optimal solution ? Before we discuss that we
need the following two lemmas.

Recall that :z:f is the computed solution of the i** subproblem at the jt&

iteration.

Lemma 3.5. Fori=1,...,N,

! € afr(ATyY)

implies
&} € 8y, F1(AT YY),
where
ajki = F7(ATY*) = £1(ATv)) — (ATy* — ATy 2]) > 0.
Proof :

It suffices to show the result for a particular ;. By definition, x;’ € of* (A?yj)
implies that
Vi, fi(z)= f1(ATY) + (5 — ATy, <)
= f1(ATY*) + (=i — AT y*, )

— {Fr(ATy*) - fr(ATy) — (AT y* — ATy, 2])}.
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Again, by the definition of the subdifferential,
0 < fr(ATy®) - f1(ATy?) — (ATY* — ATy, 2l) == ajus.
Thus,
Va,  fi(z) 2 fHATYR) + (== ATYR, 2]) = g,
which implies that
z] € By FH(ATYY). B

Lemma 3.6. Let aji; be as defined in the previous lemma. Then

N
Zajki = Qjk.

=1

Proof:

ajr = a(y,y?, )
= g(y?) — g(v*) + (¥* — 7, )

N
= (y/,a) = ) fH(ATy) — (v*,a) + £1(AT¥")

=1

N
+(y*—yla - Aix])

=1

( using the definitions of g and 77)

N
=Y _{f1(ATv*) - fr(ATy?) — (ATy* — ATy, 2l)}

i=1

N
= ap.
i=1
Now we are ready to prove the main result regarding obtaining a primal
optimal solution. We assume that a dual iterate has been obtained which satisfies

the termination criterion and we write this approximate dual optimal solution y*

as {.
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Theorem 3.7. Let ajxi and ajx be as defined before. Let A = (A1,...,);) be

the solution of the quadratic programming problem (3.6), and

k
Z /—\ja_,-k < E.
J=1

Then z = (Z1,...,EN), given by

8

k
=2 el
=1
is an approximate primal optimal solution such that for each (z1,

YL, dici =a,
N N ~
Z fi(wi) 2 Ef'(i') + (d7 g) — &,
=1 =1
N —
> f@)-Udl gl +e),
f=1
_— N - k — .
whered =a — 3 ;1) Aifi = ), A7l
Proof:
By Lemma 3.5, we have
o] € Bay; f7(AT D)

which says that for each z;,

f1(z) = f1(AT9) + (= — AT, -Tf) - Qjki-

(3.13)

...,ZTN) with

Multiplying by }A;, adding over j = 1,...,k, and using (3.13), we get for each z,

k
f1(z) 2 fFHAT9) + (2 = AT 9, 2:) - Z AjQjki-
=1
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ertmg Vs = E :_,;._1 Xjajki, we can write
. a ‘f?( !.l _.).
zi € ViJi i Y

This can be rewritten as
ATy e d, fi(z:).

By definition, this means that for each z;,
fi(zi) > fil@:) + (=i — i, AT G) — vi.
Summing over i = 1,..., N, we find that for each z = (21,...,2xa), .

N N N
> filz) 2 ) fi@) + (Z Ai(zi — 2:),7) — &,

i=1 i=1

since ( using Lemma 3.6 ),

N

Now consider all ¢ = (z1,...,zN) such that Y ;_, Aiz; = a. Then, we have

N N
S filz) 2 Y fi@)+(a—a+dg)—¢

i=1 i;l
= Zfi(ii)+ (d,g)—¢
v
S ORETHEDN

Note that the error bound given by Theorem 3.7 is computable a posteriori,

since d, , and € will all be known.
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Thus we can obtain an approximate primal optimal solution to the problem
(1.1) using the modified bundle method, and it is given by the expression (3.13).
This means that along with the dual iterates we need to store the corresponding
‘primal’ iterates to obtain an approximate primal optimal solution at termination.
This modified bundle method also adapts to the situation wherein the bundle
becomes too large. In that case, the bundle can be reduced by removing some of its
elements and keeping one or more artificial elements. For details, see Lemaréchal
et al [Lem81]. Thus we need only finite storage for storing dual and ‘primal’
iterates.

Finally, we get the following result regarding the duality gap.

Corollary 3.8. Let & = (%1,...,Zn) and § be a pair of approximate optimal
solutions to the primal and the dual, respectively. Let d be as given in the Theorem

3.7. Then,

N
3 fi(z:) - 9(9) < € (5, d).

i=1

Proof:

While proving the Theorem 3.7, we obtained the result
ATg € 8, fi(z:).

This implies that

vi > fi(@:) + f7(AT9) — (A9, %:).



Summing over, ¢t = 1,...,N, we get
N N N N
w2 Y f@E)+ ) fHATn - O Az g).
=1 =1 =1 =1

Using the fact that, Z;N=1 v; < € and that, d = a — Zf\_’__l A; T;, we get

N N
£ > Zfi(-'zi)_ (g,a)—Zf:‘(A?y) + (7, d).

This implies that

N
Y fi@)—g(@) <e-(g,d). B

=1

Thus, we obtain an e posteriori bound on the duality gap.

3.5 The Algorithm

42

In the context of our problem, we need to mention some nomenclature we

will be using here and in the subsequent chapters. By a dual bundle, we mean the

bundle of dual subgradients computed at dual iterates. A pseudo-primal point is

the primal “solution” obtained by solving the subproblems (3.3); for a given y.

So, if, for a given y, z;’s are solutions of the subproblems (3.3);, fori =1, ..., N,

then = = (z1,...,2zN) is a pseudo-primal point. Finally, a primal bundle is the

bundle containing the pseudo-primal points obtained from different dual iterate y.

Now we present the method just described formally as the following algorithm.
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Algorithm ALG 3.1

Step 0.

Step 1.

Step 2.

Initialization
Select initialization parameters, §,& > 0. Also, an initial € > &, and a

number b for maximum size of the bundle. Choose §, ¥ and u such that
0<y<pf<l, B+p<l, u>0.

Pick a starting dual point y*. Set k «— 1,e! «— ¢, and a3 « 0.
Compute the dual function and a subgradient
For given y!, solve the N subproblems (3.3). Let z; be an optimal solution
and z; be the optimal objective function value for the i*h subproblem
(3.3);. Compute the dual function and a subgradient

N

9" = (a,y") - > =

i=1

N
!l =a— Z Aiz; € 9g(y')

=1

and store the pseudo-primal point z = (21, -,z N) in the primal bundle.
Compute a search direction

ex + max{&, min{ex,e}}.

Solve the quadratic programming problem (3.6) to obtain the solution
AF oo Xk and ve (cf. (3.9)).

Let the direction be d* = ELI Abrd,




Step 3.

Step 4.

Step 5.

44
Test for convergence
If || & ||< 6, and ¢ = Y A*aj < &, then we are done. Compute
an approximate primal optimal solution by using the optimal convex
weights /\f’s with the pseudo-primal points in the primal bundle ( as
given in (3.13) ), and then compute the primal objective function, and
stop.
Else, if | d¥ | < 6§ but e = > Ak > &, then e + pe, and go to step 2.
Else, go to step 4.
Reduction of bundle
If the bundle has reached its maximum number b, then remove the dual
subgradients and the pseudo-primal points from the dual bundle and the
primal bundle, respectively, corresponding to /\;g = 0. If the bundle
is still too large, keep only the singleton element 7% = d* in the dual
bundle ( and the corresponding aggregated pseudo-primal point in the
primal bundle ) and its associated weight axx(= ZL] a _,-k/\;?)‘.
Perform line search
Compute a point u¥+t1 = y* 4 tkdF,  ¢F > 0, by the line search method.
For given ufF*!, compute the dual objective, g(uF*1), and a subgradient,
mF+1 ( same as in step 1 with u**! instead of y' ).

If it is a serious step ( cf. (3.10) and (3.11) ), update

k+1 k+1
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ajre1 — ajk + g(F) — g(¥* ) + (nd, y* 1 = oF),

ok+1,k+1 < 0,
ke—k+1,

store the computed subgradient in the dual bundle and the corresponding
pseudo-primal point in the primal bundle, and go to step 2.

If it is a null step ( cf. (3.10) and (3.12) ), stay at y* (i.e. y**! —y* and
Qjk+1 — Qjk,J = 1,...,k ), however, add the computed subgradient

k1 at uk+1 to the dual bundle, with associated weight

k41 , k+1 k+1
Qk+1,k+1 ("'a(y + y U + ) + )

Set k «— k + 1, and go to step 2.
Remarks
(1) The quadratic programming subproblem in step 2 is solved by an efficient
method due to Mifflin [Mif79]. -
(2) For a detailed description of the line search method, refer to Lemaréchal’s
paper on line search [Lem78b].
(3) Note that ajr can be computed recursively, so there is no need to store the

dual iterates explicitly.
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3.6 Summary

In this chapter, we presented a decomposition technique for the problem (1.1)
based on duality. We discussed some existing methods to solve this problem.
Then we presented our approach based on the bundle method. We showed how
we can obtain both approximate primal and dual optimal solutions by applying
the modified bundle method. The success of an algorithm of course depends
on how it performs when it is implemented. In the next chapter, we describe
implementation and present computational experience for a particular example of

the problem (1.1), and make comparison with other existing methods.
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Chapter 4

BLOCK-ANGULAR LINEAR PROGRAMMING :
IMPLEMENTATION AND
COMPUTATIONAL EXPERIENCE

In this chapter, we investigate the application of the algorithm described in
§3.5 to block-angular linear programming problems. First we review the decom-
position method of the previous chapter in the context of block-angular linear
programming problem in §4.1. After describing a variant of ALG 3.1 in §4.2, we
describe implementation of the method in §4.3. In §4.4, we report how we gen-
erate test data. We were interested in observing the behavior of the algorithm
depending on the size of the whole problem, the number of subproblems and the
number of coupling constraints. So, we report our computational experience with
these factors in the first part of §4.5. Also, we were interested in knowing how
this algorithm behaves compared to other methods. So, in the second part on
computational experience, we compare this algorithm with MINOS version 5.0, a

standard linear programming package [Mur83], and with Mangasarian’s sparsity
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preserving SOR based method for solving large LPs [Man84], and its proximal
point variant ( [DeL85], [Del87] ) and finally with DECOMP, an implementation

of the Dantzig-Wolfe decomposition method.

4.1 Block-angular Linear Programming

The block-angular linear programming problem [Dan60] has the following

form :
Qi {cr,z1) + -+ + {en, zN)
subject to
B =1 = b
By 79 = by
(4.1)

By zn = bn

A1+ -+ +AnvzN=a

Here, ¢; € R™, b € R™, B; € R™*™, 4; € R™*™,i=1,...,N.
Assume that the problem is feasible and bounded. As mentioned before in §2.1, if

we define

(eiyzi), if Bizi=bjzi 20
fi(zi) =

+00, otherwise,
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then, clearly, each fi(z;) is a closed proper convex function. Now, the block-
angular linear programming problem (4.1) fits into the form of the model (1.1).

Here, the subproblems (3.3) become

subject to (4.2);

fori=1,..., N.
Applying the decomposition technique described in the previous chapter, we

get the following dual problem :

max 9(y),

where the dual objective, g(y), is given by
N
9(y) = (y,a) + En;i,n {{ci —yAi, z:i) | Biwi = bi,z; =20}
i=1
As before, if for given y, z;(y) is a solution of the :* subproblem (4.2);, then a
subgradient of g(-) at y is given by

N
a=) Aiwi(y) € d9(y)-

=1
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4.2 The Algorithm

An interesting fact to note about the subproblems (4.2); is that for a change
in y, the feasible regions of the subproblems remain the same; only the objective
functions are changing. We capitalize on this fact by using parametric program-
ming at subsequent dual iterates to reduce computational time considerably.

We present a slight variant of the algorithm ALG 3.1 for block-angular linear
programming problems, taking into account parametric programming for solving
the linear programming subproblems. It differs from ALG 3.1 in step 1 and step
5. However, for the sake of completeness, we present here the entire algorithm.

Here the parameters and variables are the same as the ones defined in Chapter 3.

Algorithm ALG 4.1

Step 0. Initialization
Select initialization parameters, 6, > 0. Also, an initial ¢ > &, and a

number b for maximum size of the bundle. Choose 3, v and p such that
0<y<fB<l, B+u<l, p>0.

Pick a starting dual point y!. Set k — 1,e! «— ¢, and a1; « 0.

Step 1. Compute the dual function and a subgradient
For given y!, solve the N linear programming subproblems (4.2) from
scratch. Let z; be an optimal solution and z; be the optimal objective
function value for the it® subproblem (4.2);. Compute the dual function

and a subgradient

N
g(y") = (a,y") + }: 2 (4.30)



Step 2.

Step 3.

Step 4.

51

N
™ =a- ZA,’:IJ,' € 9g(y") (4.3b)
i=1
and store the pseudo-primal point = = (z1,- -,z N) in the primal bundle.

Compute a search direction

Ek max{ &, min{eg, €} }

Solve the quadratic programming problem (3.6) to obtain the solution
Xk Ak and v (cf. (3.9) ).

Let the direction be df =3 Akxd.

Test for convergence

If | dF ||< &, and € = Y Akajx < &, then we are done. Compute
an approximate primal optimal solution by using the optimal convex
weights Af’s with the pseudo-primal points in the primal bundle ( as
given in (3.13) ), and then compute the primal objective function, and
stop;

Else, if || d* || < 6, but € = Ak > &, then e «— pue, and go to step 2.
Else, go to next step ( step 4 ).

Reduction of bundle

If the bundle has reached its maximum number b, then remove the dual
subgradients and the pseudo-primal points from the dual bundle and the
primal bundle, respectively, corresponding to /\f = 0. If the bundle s still
too large, keep only the singleton element 7% = dF in th edula bundle
( and the corresponding aggregated pseudo-primal point in the primal

bundle ) and its associated weight ark(= Zf;:l ajk}\f).
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Perform line search
Compute a point u*+! = y*¥ + t¥d¥ ¥ > 0, by a line search method.
For given u*t1, solve the linear programming subproblems (4.2) by para-
metric programming, starting from the last basis for the new objective
functions. Compute g(u*+!) and 7*+1, using (4.3) with y* being replaced
by u¥*!, and z; and z; being the new objective function value and the
solution, respectively, of the ¢*t subproblem (4.2);.

If it is a serious step ( cf. (3.10) and (3.11) ), update

k41 k41

—Uu y

Y

ajre1 — ajp + g(yF) — g(yF ) + (nd, gt — yF),

ag41,k+1 — 0,
k—k+1,

store the computed subgradient in the dual bundle and the corresponding
pseudo-primal point in the primal bundle. Go to step 2.

If it is a null step ( cf. (3.10) and (3.12) ), stay at y* ( i.e. yF+! « ¢*
and a;jk+1 « ajk, j =1,...,k ), however, add the computed subgradient

7k+1 at uk*1! to the dual bundle, with associated weight

. k41 k+1 k+1
ak+1k+1 — aly REITLAR N o + ).

Set k « k + 1, and go to step 2.
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4.3 Implementation of the algorithm

We have implemented the algorithm ALG 4.1 in Fortran 77. We shall
call our code BUNDECOMP. It is written using two available routines, one for
solving the dual master problem by the bundle method, and the other for solving
a linear programming problem by the revised simplex method.

The code for the bundle method, M1FC1, is made available to us by
C. Lemaréchal [Lem85]. M1FC1 is written for solving a convex minimization
problem. The user needs to provide two subroutines which are passed as argu-
ments to M1FC1 and so needs to be declared as external in the routine which
calls M1IFC1. One of the subroutines is SIMUL, which computes the function
value and a subgradient of the dual objective function at a given point y. The
other routine, PROSCA, is a subroutine which computed the inner product of two
vectors. Besides these, the user needs to provide the following main parameters :
N, DX, DF1, EPS, ITER, NSIM, MEMAX. We describe below what they stand for.

N — the dimension of the problem, In our case, it is the dimension of the dual
problem or equivalently, the number of coupling constraints (1.1b),
DX - the required accuracy on the dual variable y,

DF1 — a positive number which is used for expected change in the objective
function at the first iteration. It is also used for initializing the stepsize
and the ¢ of the theory,

EPS — the required accuracy on the objective function,

ITER — the maximum number of dual iterations allowed,
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NSIM - the cumulative maximum number of calls to the subroutine SIMUL.
MEMAX - the maximum number of subgradients allowed to be stored in the bundle
at any time.

In the original version of the code, M1FC1, the calculations were performed
both in single and in double precision. The main working space required for
M1FC1 is (1) 2 x MEMAX + 2 for integers, (2) 5 x N + (N + 4) x MEMAX for single
precision numbers, and (3) (MEMAX + 9) x MEMAX + 8 for double precision numbers.
In our modified version of M1FC1, we have changed all the computation to double
precision along with changing all the variables to double precision variables. Thus,
for this modified version, the array for (2), mentioned above, is also changed to
double precision.

The other available routine we used is ZXOLP from the IMSL library [Imsl84].
The routine, ZXOLP, solves a linear programming problem by the revised simplex
method. We use this routine to solve the linear programming subproblems (4.2);.
It can handle both equality and inequality constraints. But, we restrict it to
equality constraints as we generate only equality constrained problems. In this
routine, the coefficient matrix of a linear programming problem is stored in its
entire matrix form. By this, we mean, it does not use any special data structure
to store only the non-zero data of the coefficient matrix. Also, the inverse of the
basis is stored in its entire form. Thus, as far as we are concerned, this routine

is indifferent to the structure of the subproblems. Thus, almost in all the test
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problems we generated for testing algorithm ALG 4.1, the matrix, B;, generated
for the subproblem is fully dense. |

We decided to use the routine ZXOLP for its availability, reliability and flex-
ibility. We have tested linear programming problems of size up to 100 by 160
on this routine, and it seems to be reliable. Besides that, we especially needed a
routine which can solve a parametric programming subproblem. In our case, this
is crucial. Recall that, for changes in y, the feasible region of each subproblem
(4.2);, by itself, remains the same; only, the objective function changes. So, only
in the very first computation of the function value and a subgradient for the dual
objective function, do we need to solve the linear programming subproblems (4.2);
from infeasibility by doing both phase I and phase II of the simplex method. Af-
terward, we solve each subproblem for a new objective function by doing phase II
starting from the last basis. This can be done by parametric programming. Thus,
we needed a code, which can solve a parametric linear programming problem given
the information about the solution for the last objective function. If we can use
this, it will reduce the computational time considerably, as on average, for doing
the parametric programming part only a few pivots are needed to reach at a new
solution from the last vertex, compared to solving a linear programming problem
by doing both the phase I and phase II of the simplex method. From our com-
putational experience, we have observed that, using parametric programming, the
computation of the dual objective and its (sub)gradient is reduced by a factor of

about seven to ten. This is a significant amount when one has to compute the
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function and the subgradient sometimes about a hundred times ( though it varies
depending on number of dual variables ). For example, suppose in computing the
function and the gradient from scratch, it takes, on average, about 50 seconds.
In subsequent steps, suppose that it takes, on average, about 7 seconds when we
use previous information and do parametric programming. Further, suppose, for a
particular problem, it needs, say, 60 function and gradient evaluations. If we solve
from scratch every time to compute the function and the gradient, the total time
will add up to 50 x 60 = 3000 seconds, whereas if we compute from scratch the first
time and then employ parametric programming at the subsequent steps, the total
time needed will be 50 + 59 x 7 = 463 seconds. This represents a considerable
saving. We found the routine ZXOLP flexible enough to implement parametric
programming and save computational time.

In our package, BUNDECOMP, we have made some modifications to the
original code, M1FC1, to suit our situations, thanks to the suggestions made by
Lemaréchal [Lem86b]. Recall that for our problem we want to obtain an approxi-
mate primal optimal solution to the original problem at the end. For this, we need
to store the pseudo-primal poinis in a primal bundle, corresponding to the dual
subgradients stored in the dual bundle. Thus, whenever, a subgradient is stored
in the dual bundle at an iterate, we store the corresponding pseudo-primal point.
Also, whenever we remove members of the subgradients from the dual bundle as we
have reached the maximum size of the bundle MEMAX, we remove the corresponding

pseudo-primal point ( cf. step 4 of the algorithm ALG 4.1 ). Finally, when we are
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done, we compute an approximate primal optimal solution by using (3.13). We
shall call the modified code M1FC1M.

As a part Qf BUNDECOMP, we also wrote the routine, SIMUL, which com-
putes and returns the value of the dual objective function and a subgradient of
this objective function for the master dual problem. SIMUL calls the IMSL rou-
tine, ZXOLP, to solve the linear programming subproblems. The data structure
we used to store the non-zero elements is easy to implen;erlt, as we generate fully
dense matrices, By, A;, i =1, 2, ..., N. All the elements for the matrices, By, Ba,
..., Bn, are stored in a long array, vec, in which the first m; X n; locations contain
the matrix, B;, the next mz X ng locations contain the matrix, Bz, and so on. In
Fortran, a matrix is stored by column-major. So, here, in the first m; x n; entries
of vec, the elements, vec(i), 1 = 1, ..., my, correspond to the elements, B1(,1),
i =1, ..., my, of the matrix, B;, respectively; the elements, vec(m; + 1), ¢ = 1,
..., my, correspond to the elements, B;(¢,2), ¢ =1, ..., my, respectively; and so
on. The same situation is repeated for each matrix, B,, B;, ..., By, starting in
locations vec(my X ny + 1), vee(T o, mi X ni + 1), ..., vec(zib’;l m; X n; + 1),
respectively. We use a similar data structure to store the elements of the matrices,
A1, Aa, ..., AN, of the coupling constraints using another array.

Recall that M1FC1 is a code for solving a convex minimization problem. In
our situation, we are maximizing a concave function. We made the changes in
computing the function and a (sub)gradient by using the fact : if g is a concave

function, then —g¢ is a convex function and similarly, for its gradients. Also, we
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used the single precision version of the routine ZX0OLP for most of our calculation
as we did not have access to the double precision version in the machine on which
we did most of our testing. However, in the procedure SIMUL of BUNDECOMP,
the dual objective and the computed subgradient are returned in double precision
by computing the inner product and the matrix multiplication in double precision
(cf. (4.3)).

The program can terminate in any one of several ways. The most desirable
one is where the termination criterion of the theory is met for preassigned values
of EPS, DX, and DF1; we shall call this Normal End. The other termination criteria
are : a) when the maximum number of iterations is reached ( MaxIter ), b) when
the maximum number of calls to SIMUL ( to compute dual function and subgra-
dient ) is reached ( MaxSim ), c) when the accuracy DX ( i.e., input on required
accuracy on successive y's ) is reached without making any more improvement on
g ( DxEnd ). We added another termination criterion after observing outputs from
sample runs. We noticed that, on average, it takes two to three calls to SIMUL to
go from one dual iteration to the next one. Very rarely does it require more than
nine or ten. Sometimes when the program tries to compute a new dual iterate
from the last iterate, it keeps calling SIMUL in the line search procedure again and
again. This happens only when the procedure has almost converged. We think
that this occurs due to round off errors. So, instead of letting the computation

continue, we have put a limit of maximum number of 15 calls to SIMUL in the
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line search procedure. We call this termination criterion, Max15. In any event,
we compute the absolute and relative accuracy of the final dual gradient.

Our implementation is system dependent in the sense that it uses the IMSL
routine ZXOLP. So, our code can run on any system that has the IMSL library. We
have compiled our program on a DEC VAX 11/780 and on a DEC VAXstation II
workstation, both running under the Berkeley UNIX ( 4.3 bsd ) operating system,
using the f77 compiler invoking -O option (optimizer). The version on these two
machines uses the single precision ZXOLP. We have also compiled our code on
a DEC VAX 11/780 running the VMS operating system using the VMS Fortran
compiler ‘FOR’. This one uses the double precision ZXOLP. T /l

Our implementation is mainly designed to study the performance of the al-
gorithm. We are mostly interested in observing the CPU time for various factors,
depending on the size of the whole problem, the number of subproblems and the
number of coupling constraints, and in observing its performance compared to ex-
isting methods. So, our code is still in the experimental stage, and it does not have
all the sophistication of a commercial code ( like storage conservation, numerical
stability and accuracy etc. ).

In the next section, we describe how we generated the test data.
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4.4 Generation of test data

The data for the test problems are generated using a uniform [0,1] pseudo-
random number generator. Then, different sections of the input data are mapped
to the desired range. Initially, we decide on the different sizes of the subproblems.
Next, we generate a feasible solution for the subproblems in the interval [0.0, 4.0].
Then, the data for the coefficient matrices, B;,of the subproblems are generated
in the interval [-8.0, 9.0], except for the last row. The last row is generated
in the interval [5.0, 13.0]. We did this to keep the subproblems bounded. We
multiply B; by the generated feasible solution to obtain the right hand side, b;.
Next, we generate the objective coefficients, c;, in the interval [-7.0, 7.0]. Finally,
we generate the matrices in the coupling constraints, A;, Az, ..., An, in the
interval [-8.0, 8.0]. The multiplication of A; with the generated feasible solution
is cumulated to obtain the right hand side of the coupling constraints, a. Please

note that we do not have a priori knowledge of the solution of the problem.

4.5 Computational experience

We undertook two sets of experiments. In the first, we observed the behavior
of the algorithm ALG 4.1 when different factors are varied; in the second set, we
compared BUNDECOMP with other existing algorithms to solve large-scale sparse
linear programming problems : MINOS [Mur83], LPSOR2 [Man84], PROSOR

[DeL85), [Del87] and DECOMP [Ho.
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4.5.1 Experiment I

We had several questions in mind. How does the algorithm behave when
you increase the number of coupling constraints for fixed number of subproblem ?
How does the time grow as the number of subproblems varied when the number
of coupling constraints is kept fixed 7 How is the density related to time ? What
is the convergence behavior of the bundle method for our type of problem ?

To help answer these questions, we selected five different sizes of the whole
problem. They are 350 x 500, 850 x 1500, 1250 x 2800, 1500 x 4000 and
2050 x 5000. Though these problems are not extremely large, we worked with
them mainly as we wanted to find out whether our method was workable, by
LP standards, and how it behaved. Due to limitation of machine memory, we
restricted most of our computational testing to the first three sizes. However, we
did testing for certain cases for the last two sizes, which we shall report in our
comparison with the other methods. We also ran a problem of size 4000 x 10000.
Once we decided the sizes of the problems, we restricted our attention to two
factors : number of coupling constraints and number of subproblems. First, we
decided the number of coupling constraints. The ones we have chosen are 10, 20,
30, 40 and 50. Then we decided the sizes of the subproblems by trying various
number of subproblems. We attempted four cases for number of subproblems :
10, 25, 40 and 100. Once we had the number of coupling constraints and the
number of subproblems, we decided the size(s) of the subproblems by ‘equally’

dividing the size of the whole problem minus the coupling part, by the number
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of subproblems. To illustrate this, let us consider a problem of size 350 x 500.
Suppose we decided that the number of coupling constraints is to be 20 and the
number of subproblems is to be 40. Now, 350 x 500 minus the coupling part
gives us the reduced size 330 x 500. If we divide 330 x 500 by 40, we get 8.25
x 12.5. Since, the subproblems cannot be of non-whole number of rows and/or
columns, we rounded off to the nearest two whole numbers. Thus, we can get
the following four sizes : 9 X 13, 8 x 13,9 x 12, 8 x 12. Then fractional parts
0.25 and 0.5 ( from 8.25 and 12.5, respectively ) for 40 subproblems tell us that
0.25 - 40 = 10 subproblems can have 9 rows each ( and the rest 8 each ), and
0.5 - 40 = 20 subproblems can have 13 columns each ( and the rest 12 each ). We
allocated the bigger numbers to the first few problems. Thus, here, the first 10
subproblems have 9 rows each, and the last 30 have 8 rows each, and the first 20
subproblems have 13 rows each and the rest have 12 rows each. So, we now have
that first 10 subproblems are of size 9 x 13, the next 10 of size 8 x 13, and the
last 20 of size 8 x 12. We used this scheme so as to decide easily about the sizes of
the subproblems. An important point to remember is that since the subproblems
are of almost equal size, we can estimate the density of the coefficient matrix
for the non-coupling part just by the number of subproblems. Suppose m;, n;
denote the size of subproblems ( rows and columns ), and N denotes the number
of subproblems. Then the number of non-zero elements in the non-coupling parts
is N - m; - n; and the total number of elements is (N - m;) - (N - n;). Thus the

fractional density is (N - m; - n;)/(N - m; - N - n;) = %. So, the density ( for
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non-coupling part ) depends (almost) solely on the number of subproblems. Thus,
10 subproblems means 10 % dense, 25 means 4 % dense, 40 means 2.5 % deﬁse
and 100 means 1 % dense for the non-coupling part.

In Table 4.1, we give the parameter specifications of the problems that we
considered for testing. In this table, the sizes of the subproblem is a rough esti-
mate. For instance, with the example mentioned above ( size 350 x 500, coupling
constraints—20, number of subproblems——40 ), we write 9 X 13, under the column
for ‘size of subproblems’.

We designate the different test problems by names consisting of three char-
acters. The first number stands for the different sizes of the whole problem : 1
for 350 x 500, 2 for 850 x 1500, 3 for 1250 x 2800, and so on. The second letter
( letter in the middle ) stands for number of coupling constraints : a for 10, b for
20, ¢ for 30, d for 40 and e for 50. The third and final number stands for number
of subproblems : 1 for 100, 2 for 40, 3 for 25 and 4 for 10. Thus, the problem
name 3b2 stands for a problem of size 1250 x 2800 with 20 coupling constraints
and 40 subproblems.

So far, we have discussed what problems sizes we consider, how we decide the
sizes of subproblems and so on. We already discussed in §4.4 how we generate
data once we have subproblem sizes. Next we discuss the values we tried for the
three main input parameters for M1IFC1M, the code for solving the dual master
problem. They are EPS, DX, and DF1. For most of the test problems, we did three

runs where we kept DX and DF1 fixed, and tried different values of EPS. We did
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try different values of DX and DF1. However, in a particular set of three runs for a
problem, we varied only EPS. The values of DX we tried are 107 or 10~7. When we
first started testing, we used small values for DF1, say, 1.0, 2.0 or 4.0. Then, due
to suggestions by C. Lemaréchal [Lem86c| that bigger values of DF1 might help in
convergence, we started trying bigger values of DF1 ( mostly, 1000 or 10000 ). His
suggestion turned out to be helpful as this increased number of times we achieved
Normal End. The values of EPS we tried are mostly 0.5, 1.0, 2.0, 5.0 for smaller
number of coupling constraints ( 10, 20 ), and 1.0, 5.0, 10.0, 20.0, 50.0 for larger
ones ( 30, 40, 50 ).

In Table 4.2, we present the solution time in CPU minutes with other pertinent
information for some of the problems of Table 4.1. Output information for most
of the rest of the problems can be found in Appendix A. We report the number
of dual iterations and the number of dual objective function ( and subgradient )
evaluations to reach the final solution, the final primal and dual objective value, the
absolute and relative accuracy of the final dual subgradient, and the termination
criterion. The table shows three different times : the total CPU time in minutes
for solving the whole problem, the time for solving all the subproblems for the
first time ( from scratch ), i.e, first call to SIMUL, and the average of the times
for calls to SIMUL at subsequent steps. This shows how much faster it is to use
parametric programming at subsequent steps. The absolute gradient accuracy is
the inf-norm, ie., | 7 || = maxi<i<m{|7i|}, where m is the dimension of the

vector 7. The relative accuracy is the measure ra = max;<i<m{|Zt|}, where a is

i



Problem

Name

lal
1la2
1la3d
la4
1bl
1b2
1b3
1b4
1cl
1c2
1d1
1d2
lel
le2
le3
le4
2al
2a2
2ad
2a4
2bl
2b2
2b3
2b4
2cl
2c2

Size of
whole
problem

350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
350 x 500
850 x 1500
850 x 1500
850 x 1500
850 x 1500
850 x 1500
850 x 1500
850 x 1500
850 x 1500
850 x 1500
850 x 1500

Number of
coupling
constraints

10
10
10
10
20
20
20
20
30
30
40
40
50
50
50
50
10
10
10
10
20
20
20
20
30
30

Number of
sub-
problems

100
40
25
10

100
40
25
10

100
40

100
40

100
40
25
10

100
40
25
10

100
40
25
10

100
40

Size of
sub-
problems

I xS
9 x 13
14 x 20
34 x 50
I x5
8 x 13
14 x 20
33 x 50
I x5
8 x 13
I3 x5
8 x 13
I x5
8 x 13
12 x 20
30 x 50
8 x 15
21 x 38
34 x 60
84 x 150
8 x 15
21 x 38
34 x 60
83 x 150
8 x 15
21 x 38

Table 4.1 Problem Specifications

(Continued on the nezt page)

Density
%

3.829
5.291
6.743
12.571
6.657
8.074
9.486
15.143
9.488
10.857
12.314
13.646
15.143
16.434
17.714
22.857
2.165
3.647
5.129
11.059
- 3.329
4.794
6.259
12.118
4.494
5.942
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Problem
Name

2d1
2d2
2el
2e2
2e3
2e4
3al
3a2
3a3
3bl
3b2
3b3
3cl
3c2
3d1
3d2
el
3e2
4al
4bl
5al
5bl
6al

Size of
whole
problem

850 x 1500

850 x 1500

850 x 1500

850 x 1500

850 x 1500

850 x 1500

1250 x 2800
1250 x 2800
1250 x 2800
1250 x 2800
1250 x 2800
1250 x 2800
1250 x 2800
1250 x 2800
1250 x 2800
1250 x 2800
1250 x 2800
1250 x 2800
1500 x 4000
1500 x 4000
2050 x 5000
2050 x 5000
4000 x 10000

Table 4.1 Problem Specifications

Number of
coupling
constraints

40
40
50
50
50
50
10
10
10
20
20
20
30

30
40
40
50
50
10
20
10

20
10

Number of
sub-
problems

100
40
100
40
25
10
100
40
25
100
40
25
100
40
100
40
100
40
100
100
100
100
100

Size of
sub-
problems

8 x 15
21 x 38
8 X 15
20 x 38
32 x 60
80 x 150
13 x 28
31 x 70
50 x 112
13 x 28
31 x 70
50 x 112
13 x 28
31 x 70
12 x 28
30 x 70
12 x 28
30 x 70
15 x 40
15 x 40
20 x 50
20 x 50
40 x 100

Density

%

5.659
7.089
6.824
8.235
9.647

15.294
1.792
3.280
4.768
2.584
4.060
5.536
3.376
4.840
4.168
5.620
4.960
6.400
1.660
2.320

- 1.483
1.966
1.247

66
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the right hand side of the coupling constraints. The starting dual point is arbi-
trarily chosen. For most of the problems, we report output information from three
rumns.

Graphs _and Interpretation

We first plotted CPU time against number of coupling constraints when the
number of subproblems was kept fixed. Figure 4.1 corresponds to the number
of subproblems being fixed at 100, while Figure 4.2 corresponds to the number
of subproblems béing fixed at 40. From the graphs, we can see that the time
is increasing linearly as number of coupling constraints increases, with slope less
than one. So, we can conclude that for increase in number of coupling constraints,
computing time would probably increase linearly with slope less than one.

Figure 4.3 and 4.4 correspond to time plotted against density ( % ) when the
number of coupling constraints are kept fixed at 10 and 20, respectively. Here
density means the density of the non-coupling parts. It appears from the graphs
that for smaller problem ( 350 x 500 ), time is increasing linearly with density,
while for bigger problems ( 850 x 1500, 1250 x 2800 ), time is increasing quadrat-
ically. To see why this difference is appearing consider Table 4.2 and Table A1 ( of
Appendix A ). It is clear that once the dual function and subgradient are com-
puted ( calling SIMUL ), the rest of the work in the modified bundle algorithm
takes about one percent of the total computing time. This means most of the time
is spent in computing the dual function and a subgradient. Inside SIMUL most

of the time is spent in solving the subproblems by the simplex method. For a
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particular subproblem, we denote m for number of constraints and n for number
of variables. From our computational experience, we have observed that to solve

a subproblem from scratch, it takes about
cm*n

units of time, where ¢ is a constant ( refer to §5.4.2 ). Again from Table 4.2, we
can see that to compute the function and a subgradient in subsequent steps it
takes, on average, 1/10 of the time of the first call to SIMUL. In our experiments,
all the subproblems are of almost equal size. If N denotes number of subproblems,
and K is the average number of calls to SIMUL to compute the function and a
subgradient to solve the whole problem ( after the very first call ), then total time

to compute the whole problem will be :

time = cNm?n + K-l%Nmzn +e

K 2
=c(1+ -l—O-)Nm n+e,

where e is the error amount.

The above expression gives us a rough estimate of the time required to solve
the whole problem. Suppose we fix the size of the whole problem, say, at 850
x 1500. Now, if we have 100 subproblems, the size of the subproblems is then
8 x 15. On the other hand if we have 25 subproblems, the size of the subproblems

is 34 x 60. In any case, it is clear that, for the fixed size of the whole problem,
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N -n is fixed ( e.g. 1500 = 100-15 = 25-60 = 10 - 150 ). Hence, if in the above

expression we replace N - n by a constant ( « ), then time can be expressed as :

time = ac(l+ i{{(—))m2 +e.

Thus, we can infer that, for fixed size of the whole problem, time increases quadrat-
ically as density increases ( note : density is proportional to m ). Thus, we think
that though the plots for 350 x 500 problem appear to be linear in Figures 4.3 and
4.4, it may be so because (i) the coefficient with the quadratic term is very small
compared to that of 850 x 1500 and 1250 x 2800, and (ii) the scale in the graphs.
So, to understand it better, we plotted 350 x 500, for both coupling constraints 10
and 20 in Figure 4.5 with different scale. From this graph, we can see that time
is increasing almost quadratically ( at least not linearly ) as density increases for
this size problem too.

Finally, we observed the convergence behavior of the modified bundle method.
We plotted log(error) against the number of iterations for some of the-test prob-
lems, where error stands for the difference in the value of the dual objective at a
specific dual iterate and at the dual optimal solution ( refer to Figures 4.6, 4.7, 4.8,
4.9 and 4.10 ). From the graphs, we can conclude that, though the bundle method
is a finitely convergent method, it behaves like a linearly convergent method for

the type of problems we tested.




Prob-

lem

Name

lal

lal

lal

1a2

la2

1cl

1cl

lcl

Size of
whole

DF1

problem

350 x

350 x

350 x

350 x

350 x

350 x

350 x

350 x

500 0.05

1.5
500 0.5
1.5
500 1.0
1.5

500 1.0

100

0.1
100

500

500 1.0

1000
500 5.0
1000
500 20.0
1000

EPS/ Objective

value :

primal/dual

-1066.0138
-1066.0502

-1065.9044
-1066.3411

-1065.5763

-1066.5763

-1260.5870

-1261.5869

-1260.3163

-1261.3693

-1083.2228

-1084.1033

-1082.9426
-1086.8215

-1073.8361
-1092.4553

ITER/ Gradient
EVAL Accuracy/

35
92

29
67

24

59

29

73

28

78

102

221

122
221

142
237

Relative

0.519 x 10~14
0.103 x 1071

0.152 x 10~14
0.121 x 1071®

0.569 x 10~14
0.291 x 10~18
0.104 x 10~13
0.113 x 10718
0.397 x 102
0.649

0.217 x 10!

0.799 x 107!

0.296
0.359 x 101

0.758 x 101
0.875 x 10~2

Time
in

Min.

1.37
0.07
0.01
1.03
0.07
0.01
0.94
0.07
0.01

1.81
0.19
0.02
1.81
0.19
0.02

6.14
0.06
0.02
6.57
0.06
0.02
6.82
0.06
0.02

Table 4.2 Output information from BUNDECOMP
* _ DX is set at 10~%; rest are set at 1077

(Continued on the nect page)
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Stopping
Rule

Normal
End

Normal

End
Normal
End
Normal

End

Max15

Max15

- Max15

Max15



Prob-

lem

Name

2al

2al

2al

2a2

2a2

2a2

2cl

2cl

2cl

Size of
whole
problem
850 x 1500

850 x 1500

850 x 1500

850 x 1500*

850 x 1500*

850 x 1500*

850 x 1500

850 x 1500

850 x 1500

EPS/ Objective ITER/ Gradient
EVAL Accuracy/

DF1

0.5

1000

1.0
1000

1.0

1000

1.0

1000

5.0
1000

5.0

1000

1.0

1000

5.0
1000

20.0
1000

value :

primal/dual

-6362.6378
-6363.1406

-6362.1887
-6363.1885

-6358.4196
-6363.4194
-7067.6398

-7068.6396

-7064.2126
-7069.2124

-7061.2687
-7070.9414
-6453.8673

-6454.3823

-6451.0178
-6456.0029

-6439.6217
-6458.4658

30
91

23
59

17

41

20

51

20
46

26

59

60

147

86
143

83
143

Relative

0.212 x 10!
0.101

0.266 x 10~14
0.127 x 10™1°

0.918 x 10~14
0.601 x 10~15
0.151 x 1013

0.557 x 1016

0.133 x 10~13
0.515 x 10~16

0.124 x 10713
0.666 x 1016
0.324 x 10*

0.552

0.266 x 10~2
0.920 x 10~3

0.451 x 10~2
0.145 x 10~2

Time
in

Min.

6.82
0.70
0.07
5.14
0.70
0.07
4.16
0.70
0.08

18.75
3.23
0.31

18.18
3.23
0.33

19.80
3.24
0.29

13.85 .

0.60
0.09
13.88
0.60
0.09
14.05
0.60
0.09

Table 4.2 Output information from BUNDECOMP
* _ DX is set at 1079; rest are set at 1077
(Continued on the next page)
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Stopping
Rule

Max15
Normal
End
Normal
End
Normal
End

Normal
End

Normal
End
Max15
Normal
End

Normal
End




Prob-

lem

Name

3al

3al

3al

3a2

3a2

3a2

3cl

3cl

3cl

Size of
whole
problem
1250 x 2800

1250 x 2800

1250 x 2800

1250 x 2800

1250 x 2800

1250 x 2800

1250 x 2800

1250 x 2800

1250 x 2800

EPS/ Objective

DF1
1.0
1000

5.0
1000

10.0
1000
1.0

1000

5.0
1000

10.0
1000
5.0

105

20.0
10°

50.0
108

value :
primal/dual

-17194.2746
-17195.2734

-17191.4618
-17196.2770

-17186.5065
-17196.5059
-16687.6813

-16688.6406

-16684.2314
-16689.2305

-16679.3584
-16689.3574
-16926.6433

-16931.6289

-16916.8087
-16935.4180

-16889.5623
-16939.3730

ITER/ Gradient
EVAL Accuracy/

14
42

17
38

17

36

22

63

19

20
46

42

105

64
106

55
87

Relative

0.239 x 10713
0.177 x 1071%

0.440 x 10714
0.390 x 10~16

0.130 x 10~13
0.292 x 10~15
0.379 x 10!

0.206 x 10!

0.156 x 10~13
0.224 x 10715

0.469 x 10~13
0.490 x 10~15
0.437 x 10!

0.675 x 101

0.111 x 107!
0.602 x 10~%

0.102 x 10~12
0.221 x 10~14

Time

in

Min.

11.55
2.05
0.23

11.15
2.06
0.24

10.96
2.05
0.25

70.05
13.13
0.92
65.79
13.10
1.34
66.92
13.09
1.19

26.47 -

2.12
0.23
27.29
2.12
0.23
24.30
2.18
0.25

Table 4.2 Output information from BUNDECOMP
* _ DX is set at 10~ rest are set at 1077,
(Continued on the nest page)
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Stopping
Rule

Normal
End

Normal
End

Normal

End

Max15

Normal
End
Normal
End
Max15
Normal

End

Normal

End



Prob-

lem

Name

4al

4al

4al

4bl

4bl

4bl

bal

5bl

Size of
whole
problem
1500 x 4000

1500 x 4000

1500 x 4000

1500 x 4000*

1500 x 4000*

1500 x 4000*

2050 x 5000

2050 x 5000

EPS/ Objective ITER/ Gradient
EVAL Accuracy/

DF1

1.0

1000

5.0
1000

10.0

1000

1.0

1000

5.0
1000

20.0

1000

50.0
1000

20.0
1000

value :
primal/dual

-29111.0577
-29112.0566

-29107.2103
-29112.2090

-29102.6495
-29112.1914
-29010.7416

-29011.7305

-29007.4947
-29012.4766

-28993.0379

-29013.0371

-33305.2326
-33355.2305

-33639.6700
-33659.6680

19
46

25
50

23

47

33

86

38
85

37
65

15
29

32
48

Relative

0.159 x 1013
0.694 x 1016

0.621 x 10712
0.236 x 10715

0.119 x 1013
0.373 x 1016
0.420

0.482 x 10™2

0.492
0.292 x 102

0.291 x 10713

0.562 x 1016

0.372 x 1013
0.120 x 10™15

0.488 x 10~13
0.139 x 10714

Time
n

Min.

290.54
4.72
0.55

30.24
4.71
0.52

29.91
4.73
0.55

39.86
4.75
0.41

39.75
4.75
0.41

35.69
4.77
0.48

45.74
9.10
1.31

54.10
9.64
0.94

Table 4.2 Output information from BUNDECOMP
* — DX is set at 107%; rest are set at 1077,

73

Stopping
Rule

Normal
End

Normal

End

Normal

End

Max15

Max15

Normal
End

- Normal

End

Normal
End
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4.5.2 Experiment II

In this set of experiments, we compared the algorithm ALG 4.1 with other
available methods for large-scale linear programming, namely, MINOS, a stan-
dard simplex method package [Mur83], LPSOR2 [Man84], PROSOR [DeL85], and
DECOMP [Ho]. We briefly describe them here.

MINOS [Mur83] is a set of routines to solve large scale optimization prob-
lem, developed at the System Optimization Laboratory, Stanford University, by
B. Murtagh and M. Saunders. It also solves linear programming problems using
a reliable implementation of the simplex method maintaining a sparse LU factor-
ization of the basis matrix. MINOS takes input data for LP in MPS format. Thus
we generate our test problems first in MPS format, and then MINOS reads it from
the MPS file.

LPSOR2 is a successive overrelaxation ( SOR ) based sparsity preserving
algorithm for linear programming problems, due to Mangasarian [Man84]. It is

based on the fact [ManT79] that the quadratic program

min (¢, z) + g—(m,x) subject to Az =b,z >0 (4.4)
z

is solvable for all ¢ € (0,£ ) for some € > 0 if and only if the linear program
min (¢,z) subjectto Az =b,z2>0 (4.5)
T

is solvable. Also, the unique solution of (4.4) is the least 2-norm solution of the
linear program (4.5), independent of € for ¢ € (0,&). The solution of (4.5) is given
by

& = ~(ATu(e) +v(e) - o),



85

where (u(e),v(¢)) is a solution of the Wolfe dual

min -;— | ATu+v—c|? —e(bu) subjectto v>0 (4.6)

(u,v

of the problem (4.4) for ¢ € (0,&). Note that (u(e),v(¢)) may not be a solution
of the dual of the linear program (4.5) for ¢ € (0,). The LPSOR2 algorithm is
as follows.

Algorithm LPSOR2 [Man84]

Choose u® € R™, v* € R}, w € (0,2) and ¢ > 0.

Having (uf,v') determine u't1,v*+1 as follows :

‘ll:"--’.1 = ui. — __f:}__
! 745 ]2
]—1 . m . ‘
< (4; (3 (AT i 4 D (AT 4 0F — ) — eb)
=1 I=j
i>1

v+l = (o — w(ATu ! 4 vf — c))+_

Here, w is the relaxation parameter, A; denotes the j*® row of A,-and A, is
the It column of A.

A nice feature of this algorithm is that the sparsity of A is preserved as there
is no need to compute AAT directly. Also, it requires much less storage compared
to a pivotal method like the simplex method. The major difficulty we faced with
this method is picking €. We shall comment about this later. A Fortran package
to solve the LPSOR2 algorithm, to be called LPSOR2 also, was provided to us by

R. De Leone. Note that in our case the matrix A looks like
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B,
B,

By
A, Ay - Apn

We generated our test problems so as to fit the data structure in the package,
LPSOR2. The user is required to provide the input parameters : €, w, maximum
iterations and tolerance. w is updated at subsequent iterations. The termination
criteria for this package are (i) if the inf-norm of subsequent (u,v)’s is less than
tolerance ( exit status - 0 ), (ii) maximum number of iterations reached ( exit
status - 2 ).

PROSOR. ( [DeL85], [Del87] ) is the application of the proximal point algo-
rithm [Roc76] to the quadratic program (4.4). Using this approach if we choose
a sequence of positive number {7x}, and a starting point z% ( not necessarily
feasible ), and we generate z¥, then zF*+! is the unique solution of the problem

min (e,z) + %(z,w) + jzi(x —z* ¢ — )

(4.7)
subject to Az =b,z 2 0.

Now, instead of solving the problem (4.6) once, one needs to solve a sequence
of problems of the above form. One advantage of this approach is that it sta-
bilizes the LPSOR2 algorithm as in the LPSOR2 algorithm one does not have
a priori knowledge of ¢ whereas in the PROSOR algorithm the knowledge of v

compensates this fact. Note that here

1
k+1 _ A1 . k
T = e( u+v—c+yzt),
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where u,v are solutions of the Wolfe dual of the problem (4.7) ( similar to the
problem (4.6) ) for given e, v, z*. The package to solve PROSOR algorithm, to be
called PROSOR also, was also provided to us by R. De Leone. The data structure
is the same as that of LPSOR2. The user needs to provide ¢, v, tolerance and
maximum number of iterations. An initial value for w is decided by the package.
The termination criteria are (i) the inf-norm of the difference between successive
z’s is less than tolerance ( exit status - 0 ), (ii) maximum number of iterations
reached ( exit status - 2 ), and (iii) relative error in the primal-dual objective is
less than tolerance ( exit status - 3 ).

Finally, DECOMP [Ho] is an implementation of the Dantzig-Wolfe decom-
position method to solve the block angular linear programming problems which
was provided to us by J. K. Ho. The input data for DECOMP needs to be in
MPS format, and so we generated test problems first in MPS format in files, and
DECOMP then read them from the files ( as we did with MINOS ). One major
limitation of this version of DECOMP is that it can handle only up to 6 subprob-
lems. Each subproblem in DECOMP can have up to 400 rows and 5000 nonzero
elements. For documentation on DECOMP, see [Ho]. Computational experience
with DECOMP can be found also in Ho and Loute [Ho84].

Due to limitations of DECOMP, we performed two different experiments. In
the first one, we ran MINOS, LPSOR2 and PROSOR for the problems tried with
BUNDECOMP and listed in Table 4.2, except for the problems 4al, 4bl, 5al and
5bl. In the second experiment, we compared DECOMP and BUNDECOMP for

a totally different set of problems.




Prob-
lem
Name
lal
1la2
lcl

2al

2a2

2cl
2cl

3al

3a2

3cl

Size of
whole
problem
350 x 500
350 x 500
350 x 500
850 x 1500

850 x 1500

850 x 1500
850 x 1500

1250 x 2800

1250 x 2800

Objective
value :
primal

-1066.0164

-1261.0509

-1083.3470

-6362.8862

-7068.3768

-6453.7552
-6453.7552

-17195.1337

-16688.2157

Iterations
total
(Phase I)

630 (425)
926 (625)
1107 (653)
2896 (1606)
4181 (2332)

4386 (2349)
4298 (2293)

5799 (2713)

8472 (3812)

Time

in

Min.

8.824

16.201

36.106

130.871

330.937

465.963
378.374

790.781

1336.533

1250 x 2800 -16896.6143 10008 (4493) 1785.035!

1 _. program stopped as the mazimum iterations reached

Table 4.3 Output information from MINOS

Partial Price/
Factorization

Frequency
10/50
10/75
10/50

10/100
10/75

4/75
10/100

4/50
10/100

10/100

88



Prob-

lem

Name

lal

lal

lal

1la2

1a2

1a2

lcl

1cl

lcl -

2al

2al

2al

2a2

Size of
whole
problem
350 x 500
350 x 500

350 x 500

350 x 500*

350 x 500

350 x 500

350 x 500

350 x 500

350 x 500

850 x 1500

850 x 1500

850 x 1500

850 x 1500

eps
tol

0.1
103
0.05
103
0.005
1073

0.1
10—4
0.05
1073
0.005
103

0.1
10—3
0.05
103

0.005
1073

0.1
103
0.05
103
0.005
1073

0.1
103

Objective
value :
primal/dual

-1078.012
-644.415
-1087.249
-867.555
-1094.400
-1064.090

-1257.695

-819.78
-1264.879
-1037.303
-1262.378
-1289.879

-1082.968
-688.616
-1090.559
-884.773
-1142.958
-1079.263

-6334.942
-4701.913
-6352.345
-5511.859
-6408.652
-6292.063

-7045.179
-5284.626

Iter-

ations

2760

899

5234

8535

7038

1898

1464

1831

7574

1042

2421

4373

3575

Relative
Accuracy

0.403
0.116
0.113 x10!
0.114
0.120 x10?!
0.112

0.0
0.592 x 103
0.0
0.606 x 103
0.0
0.630 x 103

0.348
0.175
0.713
0.166
0.121 x 10?
0.208

0.202

0.178 x 10!
0.561

0.179 x 10!
0.431 x 10!
0.198 x 1071

0.861
0.524 x 101

Table 4.4 Output information from LPSOR2
‘Relative accuracy’ := relative primal feasibility and relative dual feasibility

Dual objective value := objective value of the problem (4.6)

( Continued on the nezt page )

89
Time
in
Min.
28.66
9.30

54.18

115.05
94.87

25.59

31.16
38.99

161.26

 41.34

96.18

96.18

217.94




Prob-
lem
Name

2a2

2a2

2¢c1

2cl

2cl

3al

3a2

3a2

3a2

3cl

3cl

3cl

Size of
whole
problem

850 x 1500

850 x 1500

850 x 1500
850 x 1500

850 x 1500

1250 x 2800

1250 x 2800
1250 x 2800

1250 x 2800

1250 x 2800
1250 x 2800

1250 x 2800

eps
tol

0.05

1073
0.005
103

0.1
103
0.05
1073

0.008
1073

0.1
103

0.1
1073
0.05
103
0.005
1073

0.1
10—3
0.05
10—3

0.008
10~3

Objective
value :
primal/dual

-7061.424
-6160.470
-7119.111
-7022.532

-6431.999

-6450.208
-5641.924
-6478.718
-6331.762

17092.121
13191.820

-16593.20
-12731.32
16666.410
-14637.72
16767.490
-16523.30

-16865.66
-13113.29
-16914.18
-14973.80
-16934.59
-16612.39

* — exit status is 2; rest are 0.

Iter-

ations

1989

2018

1138

2426

843

1402

1022

2092

876

892

3365

Relative
Accuracy

0.573 x 10!
0.531 x 10~1
0.394 x 10°
0.561 x 101

0.893 x 101
0.164 x 101
0.767

0.146 x 101
0.314 x 10!
0.114 x 101

0.347
0.271

0.652 x 101
0.366 x 102
0.129 x 10?
0.648 x 101
0.194 x 102
0.734 x 1072

0.324

0.418 x 10!
0.183 x 10?
0.367 x 1071
0.383 x 10!
0.355 x 101

Table 4.4 Output information from LPSOR2
‘Relative accuracy’ := relative primal feasibility and relative dual feasibility

Dual objective value := objective value of the problem (4.6)
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Time
in
Min.
121.08

122.66

83.36

176.92

289.99

70.05

201.08

146.34

299.43

133.601

136.25

516.24



Prob-  Size of eps Objective ITER
lem whole gamma value :
Name  problem tol primal/dual
lal 350 x 500 108,100 -1088.666 1193
103 -1089.138
lal 350 x 500 1078,100 -1087.758 1794
108 -1089.094
lal 350 x 500 107°%,50 -1069.040 2340
10— -1069.085
1a2 350 x 500 10~975  -1271.087 613
10-5 -1267.730
1cl 350 x 500 109,75 -1097.708 8502
10~ -1108.020
2al 850 x 1500 107%,75 -6362.344 6184
106 -6360.713
2a2 850 x 1500 107°,75 -7066.426 2711
103 -7061.095

* — exit status is 2; rest are 3.

Relative

Accuracy

0.105 x 101
0.216 x 102
0.455

0.137 x 103
0.171 x 101
0.343 x 103

0.532
0.218 x10™1

0.122 x 10!
0.767 x10~°

0.158
0.128

0.466 x 10!
0.204

Table 4.5 Output information from PROSOR
‘Relative Accuracy’ := relative primal feasibility and relative dual feasibility
Dual objective value := objective value of the Wolfe dual of the problem (4.7)

( Continued on the nest page )

Time
in
Min.

12.27

18.44

23.96

7.95

169.62

235.68

158.81
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Prob-- Size of eps

lem whole gamma
Name problem tol

2cl 850 x 1500 107°,75
106

3al 1250 x 2800* 107°,100
107

322 1250 x 2800 107975
10~3

3a2 1250 x 2800 107°)75
104

3cl 1250 x 2800 107°,75
106

3cl 1250 x 2800 1079,75
10—4

* — exit status is 2; rest are 3.

Objective

value :

primal/dual

-6453.529
-6452.722

-17192.48
-17192.08

-16683.47
-16675.82
-16675.61
-16632.94

-16927.97
-16925.50
-16915.54
-16883.11

ITER

5348

6500

2391

1439

5375

1692

Relative
Accuracy

0.199 x 1071
0.293 x 1071

0.196
0.196

0.944
0.390
0.310
0.130 x 102

0.255
0.149 x 10!
0.500
0.247 x 10!

Table 4.5 Output information from PROSOR

‘Relative Accuracy’ :=

Time
in
Min.

368.55

539.15

331.19

199.42

791.46

245.36

relative primal feasibility and relative dual feasibility

92

Dual objective value := objective value of the Wolfe dual of the problem (4.7)
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Comparison of BUNDECOMP with MINOS, LPSOR2 and PROSOR

BUNDECOMP, MINOS, LPSOR2 and PROSOR were all compiled using the
f77 compiler with -O (optimizer) option and were run on a DEC VAXstation
II workstation running the UNIX ( bsd 4.3 ) operating system. Computational
results from MINOS, LPSOR2 and PROSOR are reported in Tables 4.3, 4.4 and
4.5, respectively. It is clear that BUNDECOMP is faster than other methods. In
the case of MINOS, we did some further tests to see if we could reduce computing
time. For this, we used different values than the default values for the parameters,
PARTIAL PRICE and FACTORIZATION FREQUENCY, in the SPECS file. For

problem 2al, we obtained the following results :

PARTIAL FACTORIZATION ITERATIONS TIME
PRICE FREQUENCY (min)
10 50 2896 180.70

25 50 3082 195.68

100 50 3324 214.76

10 75 2896 147.81

10 100 2896 130.87

Table 4.6 Problem 2al run on MINOS with different parameters
From the table, we see that by varying parameters, we can reduce number of
iterations by about 14 % and time by not more than a half. Even at the ‘best’ of
both, BUNDECOMP is faster by a factor of 25. Observing that partial price set
at 10 gives the least number of iterations, we tried most of the test problems with
this value of partial price.
The major difficulty we faced with LPSOR2 is choosing e. We did three runs

for each problem, mostly changing the value of . The values we tried are 0.1,
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0.05, 0.005 or 0.008. Note that the dual objective value is not that of the LP dual,
as the dual solutions are those of the problem (4.6). For most of the problems we
obtained exit status 0. However, the relative primal feasiblity was not very good,
while the relative dual feasibility was better. In most cases, we set the tolerance
at 10~3. We have observed that if we decrease the tolerance value, it takes many
more iterations without making much improvement in the objective value.

PROSOR appears to be more reliable than LPSOR2 in the sense that with
PROSOR, in almost all cases, the primal and the dual objective values were closer
to the actual values compared to the ones obtained using LPSOR2. The initial
value of 49 sometimes affects convergence as can be seen for problem 1al. The dual
objective value is quite close to the primal value, and so we may accept the dual
solution u of the modified problem (4.6) to be an approximate solution of the LP
dual. The tolerance value makes a lot of difference in terms of both iterations and
computation time. For example, for problem 3cl, when we decreased tolerance
“from 10~% to 10~¢, the number of iterations and the time increased by a factor of
more than three. Though we did not obtain very good accuracy with PROSOR,
De Leone and Mangasarian [DeL87] have reported better accuracy with bigger
test problems with solution density of less than 33%. PROSOR is designed for
enormous problems which cannot be handled by pivotal methods.

Finally, in Table 4.7, we present timing comparisons of the different meth-

ods. We decided to choose the times for which the primal objective values for
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BUNDECOMP, LPSOR2 and PROSOR are the closest to that of MINOS, ex-
cept for problem 3cl. From the table, we can see that with certain problen;s
BUNDECOMP is about seventy times faster than MINOS. BUNDECOMTP is also

substantially faster than both LPSOR2 and PROSOR.

Problem BUNDE- MINOS LPSOR2 PROSOR
COMP
Name Time Time Factor Time  Factor Time  Factor
lal 1.37 8.82 6.44 28.66 20.92 23.96 17.49
la2 1.81 16.20 8.95 25.59 14.14 7.95 4.39
1cl 6.14 36.11 5.88 31.15 5.07 169.62 27.63

2al 6.82 130.87 19.19  140.25 20.56  235.68 34.56

2a2  18.75 330.87 17.65 121.08 6.46 158.81 8.49

2cl 13.85 465.96 33.64 176.92 12,77  368.55 26.61

3al 11.55 790.78 68.47 70.05 6.06 539.15 46.68

3a2  70.05 1336.53 19.08  299.43 4.27 331.19 4.73

3cl 26.47 1923.83* T72.68* 516.24 19.50 791.46 29.90
* — stopped at maximum iterations

Table 4.7 Comparison of different methods
Time in minutes

Comparison between BUNDECOMP end DECOMP

The test problems we tried both with DECOMP and BUNDECOMP are
different than the once we tried with other methods. This is due to some re-
strictions of the version of DECOMP we used, e.g., the number of subproblems
allowed and the number of nonzero elements in each subproblem. The working
version of DECOMP that we used only allows up to six subproblems. So, with
some test problems where we generated more than six subproblems, we combined

two or more into one ‘bigger’ subproblem so that the ‘modified’ total number of
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subproblems is not more than six. For example, if we originally generated twelve
subproblems, then we put them into six bigger subproblems by combining two
subproblems into one bigger subproblem. This means the first two blocks of the

original subproblems, whose feasible regions were
Sl = {:121 € IR™ IBI Ty = bl,ﬂ?l 2 0}

and

5% := {z, € R™ | By z3 = by, z2 > 0},

are combined into one feasible region in IR®**"2 and the constraints are considered

(2 2)(@)=() (3)=e

Similarly, we combine three and four together, five and six together and so on.

to be

So, a problem with 12 subproblems, each of size 10 x 20, is regarded as a problem
with six ‘bigger’ subproblems, each of size 20 x 40.

With DECOMP the strategy parameter used for the Dantzig-Wolfe algorithm
is the one where each subproblem sends one proposal at optimality [Ho]. This
is the only strategy parameter that is working for the version of DECOMP we
used. Also one should note that this version of DECOMP did not obtain a primal
optimal solution whereas BUNDECOMP obtained an approximate primal optimal
solution.

We give the list of the test problems in Table 4.8. All the test problems

with both the algorithms were run on a VAX 11/780 running the VMS operating
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system. The first four test problems have six subproblems each. So, as far as the
first four problems are concerned, both the codes DECOMP and BUNDECOMP,
have six subproblems to begin with. The computational results of these four
subproblems ( i.e., x1, x2, x3, x4 ) with both DECOMP and BUDECOMP are
reported in Table 4.9. For these problems, BUNDECOMP appears to be about
three times faster than DECOMP.

The rest of the test problems ( x5, x6, x7, x8, x9 ) from Table 4.8 have
more than six subproblems each. Since DECOMP can handle only up to six sub-
problems we aggregated in the way described above. With regard to the code
BUNDECOMP, we ran it both ways, i.e., we ran it considering it as having six
‘bigger’ subproblems and also as having the original smaller subproblems. For
example, the test problem x8 is solved considering it as having six subproblems,
each of size 80 x 150, and also, with sixty subproblems, each of size 8 x 15 ( note
that this test problem has twenty coupling constraints ). With both the meth-
ods ( DECOMP and BUNDECOMP ), the subproblems to be solved are linear
programming subproblems of similar size and structure. In DECOMP, these sub-
problems are solved using a sophisticated implementation of the revised simplex
method by J. Tomlin [Ho] and storing only the nonzero entries of the coefficient
matrix. But in BUNDECOMP, the linear programming subproblems are solved
using IMSL routine, ZX0LP, which stores the coefficient matrix in its entire form,
and so is not taking full advantage of the nonzero/zero informati&n. Suppose we

run both the methods considering the problem to have six subproblems. Then
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for the test problem x8 the size of each subproblem is 80 x 150; here, the linear
programming subroutine of the DECOMP code to solve the subproblems takes ad-
vantage of the structure by storing only the nonzero elements, but the subroutine,
7ZXOLP, in BUNDECOMP, is working with the whole size 80 x 150. So, one way
for the BUNDECOMP to take advantage of the nonzero/zero information is to
have it solve the ‘bigger’ subproblems as several small ones together ( with the test
problem x8 this would be ten small ones for each big one ). This means solving
the original smaller linear programming subproblems by ZXO0LP separately.

We ran test problems x4, x5, x6, x7, x8 and x9 from Table 4.8 with DECOMP
and two versions of BUNDECOMP described above. From above discussion, we
think that the comparison of DECOMP solving six ‘bigger’ subproblems ( and
the linear programming routine taking advantage of the structure ) with BUNDE-
COMP solving the same problem ( but solving each of the original subproblems
separately by ZXOLP ) is a more reasonable comparison than BUNDECOMP solv-
ing six ‘bigger’ subproblems ( and ZXOLP not taking advantage of the structure ).
We report both the times in Table 4.10.

The number of iterations with the two versions of BUNDECOMP differ. This,
we think, is due to the fact that the solutions of the aggregated linear program-
ming subproblems may not be the same as the solutions of the smaller linear
programming subproblems put together. Thus the two version may take differ-
ent trajectories to the dual optimal solution. Also, please note that DECOMP

did not reconstruct a primal optimal solution at the end. In the Dantzig-Wolfe
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decomposition method, a primal optimal solution to the original problem is usu-
ally recovered by solving again N LP subproblems, this time each with (m; +m)
constraints ( instead of m; constraints ) and n; variables ( [Dir79], [Ho81] ). This
is done after reaching optimality conditions for the Dantzig-Wolfe decomposition
method. So DECOMP would have taken some more time if it had to solve these
LP subproblems to obtain a primal optimal solution. But with BUNDECOMP,
the time reported includes recovering an approximate primal optimal solution and
computing primal objective value with this solution. From the Table 4.10, we see
that the version of BUNDECOMP solving the original LP subproblems separately

is much faster than DECOMP.

Problem Size of Number of Number of  Size of  Density
Name whole coupling sub- sub-

problem constraints problems  problems %

x1 150 x 300 10 6 23 x 50 22.22
x2 150 x 300 20 6 23 x 50 _27.78
x3 200 x 450 10 6 32 x 75 20.83
x4 200 x 450 20 6 32 x 75 25.00
x5 320 x 550 10 12 25 x 46 11.20
x6 320 x 550 20 12 25 x 46 14.06
x7 500 x 900 10 60 8 x 15 3.63
x8 500 x 900 20 60 8 x 15 5.60
x9 600 x 1200 10 60 10 x 20 3.31

Table 4.8 Problem Specifications
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DECOMP BUNDECOMP
Problem Timein  Numberof  Timein Number of Factor
Name min, Ty Cycles min, T} Iterations =Ty/Th
x1 5.75 26 1.90 35 3.023
x2 9.12 32 2.37 52 3.854
x3 14.14 30 4.78 33 2.959
x4 24.55 43 5.22 38 4.703

Table 4.9 Comparison of DECOMP and BUNDECOMP

Siz subproblems to start with

DECOMP BUNDECOMP
As given As six
originally subproblems
Problem Time Numberof Time Numberof Time  Number of
Name in min Cycles in min Iterations in min Iterations
x5 12.20 27 3.03 18 10.79 19
x6 26.07 48 4.49 50 13.58 52
x7 9.45 28 1.01 23 28.13 19
x8 25.97 55 1.86 41 34.09 . 39
x9 19.94 37 1.31 20 na na

Table 4.10 Comparison of DECOMP and BUNDECOMP
More than siz subproblems to start with

na := not available
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4.6 Conclusion

In this chapter, we presented our experience with the bundle-based algorithm
for block-angular linear programming problems and how it performs in regard to
other methods. In the first set of experiments, we observed the behavior of BUN-
DECOMP as different factors are varied. In the second set of experiments, we
compared it with other existing solution methods. From the performance of the
algorithm on the test problems, we infer that the bundle-based algorithm runs
substantially faster than the other methods tested. We found that with some
problems it runs up to about seventy times faster than MINOS. It appears that as
the problem size grows, our algorithm does increasingly better. Since it has been
reported ( [Dir79], [Ho83], [Ho84] ) that the Dantzig-Wolfe decomposition method
does not run significantly better than good simplex code solving the problem di-
rectly, and since from our computational experience we see that our approach
does substantially better than both MINOS and DECOMP, the bundle-based de-
composition algorithm can be considered as a very promising alternative to other
methods .for solving block-angular linear programming problems, especially when
a sophisticated code for solving the linear programming subroutines is used instead

of ZXO0LP.
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Chapter 5

PARALLEL ALGORITHMS :
IMPLEMENTATION AND
COMPUTATIONAL EXPERIENCE

Parallel computation offers opportunities to perform computations faster than
they can be done with a single processor machine. With the advancement of com-
puter architecture, parallel processors are now available to test parallel algorithms
and to observe the speed up that can be achieved. In this chapter, we propose
parallel algorithms for problems of type (1.1), and present implementation and
computational experience on the CRYSTAL multicomputer [DeW84]. Before, we
go into our main discussion, we give below a brief review of parallel processors and
a review of work on parallel algorithms done in the field of optimization.

Parallel processors can be divided into two main classes : MIMD and SIMD
[Fly66]. In the MIMD ( Multiple Instruction stream, Multiple Data stream )
model, each processor has a separate flow of control. The processors can compute

independently of one another. MIMD can be further divided into two subclasses :
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A maulticomputer consists of several computers connected by a communication
medium ( e.g., the CRYSTAL multicomputer ). A multiprocessor consists of sev-
eral CPU’s with shared access to a common memory ( e.g., the Sequent BALANCE
multiprocessor ). In the SIMD ( Single Instruction stream, Multiple Data stream )
model, all processors execute the same instruction at the same time on their own
data ( e.g., Illiac IV ).

Very often large-scale optimization problems have special structure. Exploit-
ing the special structure, one can hope to propose parallel algorithms and thereby
reduce the computational time considerably. Recently, several authors have pro-
posed and tried parallel algorithms for problems arising in the field of optimization.
Notables among them are Feijoo [Fei85a], Feijoo and Meyer [Fei85b], Chen [Che87],
Chang [Cha86] for large-scale network optimization problems on the CRYSTAL
multicomputer, Zenios and Mulvey [Zen86] for network optimization problems on
the CRAY X-MP/4, Philips and Rosen [Phi86] for concave minimization and lin-
ear complementarity problems on the CRAY X-MP /4, Mangasarian and De Leone
([Man86], [DeL87]) for linear programming problems and linear complementarity
problems on the CRYSTAL multicomputer and the Sequent BALANCE multipro-
cessor, Thompson [Tho87] for linear complementarity problems on the CRYSTAL
multicomputer and the BALANCE multiprocessor.

Here we propose parallel algorithms and present computational experience
for problems of type (1.1). These parallel algorithms are based on the decompo-

sition technique described in §3.2. We have implemented them on the CRYSTAL
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multicomputer for block-angular linear programming problems. This chapter is
organized as follows : Section 5.1 gives different variants of parallel algorithms
and Section 5.2 consists of an overview of the CRYSTAL multicomputer and the
Simple Application package. In Section 5.3, we describe implementation on the

CRYSTAL multicomputer, and we report computational experience in Section 5.4.

5.1. Parallel Algorithms

Recall that the problem (1.1) is :

T13eeyEN

N

inf > filmi) (1.1a)
=1

subject to

N
ZA.- z; = a, (1.1d)

i=1
where a € IR™, and for ¢ = 1,...,N, A; € R™™ z; € IR™,and, fi’s are
closed proper convex functions taking values in the extended real line (—o0, co}.
Using the decomposition technique described in §3.1, we get the following

nonsmooth dual problem :

max 9(y)
where
N
9(y) = (y,a) = Y_ f1(ATy)
=1
and where

ff(ATy) = sup {(AT y,zi) — fi(zi)}.
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We observe that for given y the subproblems are independent of one another.
Thus, by exploiting this fact, we can solve the subproblems in parallel, i.e., we can
solve the subproblems in parallel to obtain the dual objective and a subgradient,
and then update y by the bundle method. Once this is done, we can solve the
subproblems in parallel for this new y to update y again, and we can continue
until the stopping criterion for the bundle method is met. We propose to have a
processor for coordinating the work to solve the subproblems to update y and for
doing the work of the bundle method ( outside function and gradient evaluation ),
and the rest of the processors to solve the subproblems.

We consider here two situations : when the subproblems are of even size and
when they are of uneven size. By even size, we mean that the expected time to
solve each subproblem is almost equal, and by uneven size, we mean that different
subproblems take substantially different amounts of time to solve. We explain in
the discussion on uneven problems ( § 5.1.2 ) why we look separately at the case

of subproblems of uneven size.




106

5.1.1 Subproblems of Even Size

First, we consider the situation where we have (N 4+ 1) processors at hand. As
mentioned before, we are assuming in this section that the expected time to solve
each subproblem is almost equal. Now, for problem (1.1), we can assign the work
of solving the master dual problem to processor (N + 1), and the subproblems
1,2,...,N to processors 1,2,...,N. We present below a parallel algorithm "f‘or
this situation.

Algorithm ALG 5.1

Step 0. Same as the algorithm ALG 3.1.

Step 0.1 Assign the master (dual) problem to processor (N 4 1), and the subprob-
lems 1,...,N to processors 1,..., N, respectively.

Step 1. Send the value of y! to processors 1,...,N. Keep processor (N +1) idle.
Solve the subproblems 1,...,N in processors 1,...,N in parallel. Send
the solution z; and the objective value z; to processor (N + 1). Keep
processors 1,...,N idle.

Step 2. Same as the algorithm ALG 3.1.

Step 3. Same as the algorithm ALG 3.1.

Step 4. Same as the algorithm ALG 3.1.

Step 5. Same as the algorithm ALG 3.1, except for computing the dual objective
and gradient.

Send u**! to processors 1,...,N. Keep processor (N + 1) idle.
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Solve the subproblems 1,..., N in processors 1,..., N in parallel. Send
the solution z; and the objective value z; to processor (N + 1). Keep
processors 1,..., N idle. In processor (N+1), compute the dual objective
and a subgradient.

The above situation can be visualized as a queen-worker situation. Here,
the queen is doing the part of the bundle algorithm, while the workers solve the
subproblems. When the workers are busy, the queen is idle. When the workers
finish, they send information to the queen. Now, queen starts working again, and
the workers are idle, and the process goes on.

Consider the fact that the queen is idle when the workers are busy solving
subproblems. There is no reason to keep the queen idle as we can allocate a
subproblem to the queen to solve simultaneously with the workers. So, this means
that we can use N processors instead of (N + 1) processors by letting the queen do
the job of one worker. This saves us one processor, and the queen will be ‘busy’
all the time. So, a variant of of the algorithm ALG 5.1 for the same problem with
N processors is presented below. Here, we omit steps 0, 2, 3, 4 as they are the
same as in the algorithm ALG 5.1.

Algorithm ALG 5.2

Step 0.1 Assign the master (dual) problem to processor 1 (queen), and the sub-
problems 1,..., NN to processors 1,..., N, respectively.

Step 1. Send the value of y! to processors 2,...,N.
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Solve the subproblems 1,...,N in processors 1,..., N in parallel. Send
the solution z; and the objective value z; from processors 2,...,N to
processor 1. Keep processors 2,...,N idle.

Step 5. Same as the algorithm ALG 4.1, except for computing the dual objective
and gradient.
Send u**! to processors 2,...,N.
Solve the subproblems 1,...,N in processors 1,...,N in' parallel. Send
the solution z; and the objective value z; to processor 1. Keep proces-
sors 2,...,N idle. In processor 1, compute the dual objective and a
subgradient.

Now, suppose we have fewer processors than the number of subproblems. Let
us denote the number of processors available by p. Recall that we are assuming that
expected time for solving each subproblems is about the same. In this situation, we
can try to ‘equally’ divide the number of subproblems, N, among the processors,

p. Suppose that p divides N. Then each processor is allocated
N

—_—=T
p
subproblems. If p does not divide N, then up to ¢ processors, allocate
7|
—|=r 5.1
X =n (5.1

subproblems, where ¢ = N — p[%}, and, for the rest of the processors ( i.e., p—q ),

[ﬁ} = ry (5.2)

p
subproblems. Thus a variant of the above algorithm ALG 5.2 in steps 0.1, 1 and

allocate

5 gives us the following algorithm :
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Algorithm ALG 5.3

Step 0.1 Check if p divides N. If it does, then r; = r, r; = r, else allocate as

Step 1.

Step 5.

defined by (5.1) and (5.2). Assign the master(dual) problem to processor
1, and subproblems 1 to r; in processor 1, r; + 1 to 2r; to processor 2,
and so on up to q processors ( with r; in each ); then subproblems ¢gr; +1

to gry + r2 to processor ¢ + 1, and so on to the last processor p ( with 7,

in each ).
Send the value of y! to processors 2,...,p.
Run processors 1,...,p in parallel to solve the N subproblems, ( solving

the subproblems allocated to each individual processor serially ). Send
the solution z; and the objective value 2; from processors 2,...,p to
processor 1. Keep processors 2,...,p idle.

Same as the algorithm ALG 4.1, except for computing the dual objective
and a subgradient.

Send u**! to processors 2,...,N.

Run processors 1,...,p in parallel to solve the N subproblems, ( solving
the subproblems allocated to each individual processor serially ). Send
the solution z; and the objective value z; from processors 2,...,p to
processor 1. Keep processors 2,...,p idle. In processor 1, compute the

dual objective and a subgradient.
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5.1.2 Uneven subproblems

Now, suppose the solution time required for each subproblem is not expected
to be equal. Then the ‘equal’ allocation as done in ALG 5.3 may not be a good
idea. To illustrate this point, consider the following example. Suppose we have
two processors, and four subproblems A, B,C, D, and each requiring 3, 1, 10 and
5 minutes, respectively, to solve. If we use the algorithm ALG 5.3, then the queen
is in processor 1 with subproblems A and B, and a worker is in processor 2 with
subproblems C and D. So, whenever the subproblems needed to be solved, the
ones in processor 1 get done in 4 minutes whereas the ones in processor 2 take 15
minutes. So, the queen is idle for 11 minutes and it is 15 minutes since start of the
subproblems before she can start working on the master (dual) problems again. In
a parallel computing environment, it is always desirable to reduce both idle time
and total computing time, i.e. to do ‘load balancing’. Clearly, in this example,
we can do better. If we allocated problems A, B and D to processor 1 and only
problem C to processor 2, then we find that the processor 1 gets done with its
subproblems in 9 minutes and processor 2 in 10 minutes. Thus, the qt-zeen needs
to wait only 1 minute, and it has been 10 minutes since the start of work on all
subproblems, before she can do the work of the master (dual) problem again. So,
we can probably do better than equal allocation by using some other allocation
scheme.

So, now the question is : ‘Is there a good allocation scheme that can be used
in our situation with minimum overall solution time ?’ Recall that our problem is

to allocate N subproblems to p processors efficiently.
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In the literature, this problem is known as the independent task-scheduling
problem [Gar78]. It is known to be NP-complete for p > 2, and except for small
problems, a practical algorithm is not known for p > 3.

Before, we go into some approximation algorithms, we need to define a few
terms. Note that these algorithms require knowledge of solution times of each
subproblems beforehand.

Let the processing time for N subproblems be, t(:),7 = 1,..., N, respectively.
We denote the processors by 1,2,...,p. Note that in our situation, a processor
can solve one subproblem at a time, and it does not work on another problem
until the present one is done.

A feasible schedule F is to assign each problem ¢,z =1,..., N, to a processor,
p(i),i = 1,...,N (1 < p(3) < p), and a starting time s(z) > 0 such that if
p(i) = p(j) and i # j, then the two exclusive intervals (s(2),s(¢) + t(¢)) and
(s(5), s(j) + t(5)) are disjoint.

We use I to denote a specific instance of our scheduling problem, and denote
A(I) to be the value of the schedule obtained by using a scheduling algorithm A
producing a feasible schedule for I. We denote the optimal value for I by OPT(I). {

We present now the largest processing time algorithm due to Graham [Gra69)}.
Let f(j) denote the finish time in processor j.

Algorithm LPT 5.4
Step 0. Reorder the subproblems in decreasing order of execution time, and then

reindex the subproblems.
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Step 1. Initially, set f(j) =0V j. Start withz « 1.
Step 2. jemin {I>1:f(I) < f(k), 1<k<pl
Step 3. p(i) <4, (1) < f(5)-
Step 4. f(j) < f(5) +(3).
Step 5. If i = n, terminate with an overall finish time = max {f(7):1<j<n}k
Otherwise, ¢ «— 7 + 1, and go to step 2.

Here in step 2, we find the processor with the earliest finish time, and then, in
step 3, we assign subproblem i to that processor and start this problem when the
problems assigned earlier to this processor are done. Step 4 is for updating, and
step 5 is to check the completion of the process. Let LPT(I) be the value of the
schedule obtained by the algorithm LPT 5.4. This algorithm can be implemented
to run in O(N log Np) time, and one gets the following performance-guarantee

theorem.

Theorem 5.1. [Gra69]
LPT(D) < (2 - LyoprT(D)
'3 3p )

Proof : See [Gra69]. H

Another approximation algorithm, known as the MULTIFIT algorithm, based
on the first fit decreasing algorithm for the bin-packing problem, has been pro-
posed by Coffman et al [Cof78]. The bin-packing problem may be stated as fol-
lows : Given a number of subproblems, N, and their solution time, and a bound

B, a packing is a distribution of the N subproblems in p bins such that time taken
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to solve subproblems in each bin is less than or equal to B. The goal is to mini-

mize number, p, of bins used in packing. Next we present the first fit decreasing

algorithm.

Let us assume for now that we have N bins ( or processors ). Let f(j5),7 =

1,..., NN denote the finish time in each bin. Let ffd(B) denote the number of

non-empty bins, and T denote the total time required to solve all the subproblems

serially.

Algorithm FFD 5.5

Step 0.

Step 1.

Step 2.
Step 3.
Step 4.

Step 5.

Reorder the subproblems in decreasing order of solution time, and reindex
the problems.

f(§) —0,1<j<N.

Set ¢ « 1.

j e min {12 1: f() + (i) < B)

p(i) « 3, s(2) « £(j).

£G) « £(5) + ().

if i = n, ffd(B) « number of bins for which f(j) > 0,1 < j < N; stop.

Else, i « ¢ + 1, and go to step 2.

In the above algorithm, after reordering and reindexing, a packing is done by

adding each subproblem in succession to the lowest indexed bin into which it fits

without violating the capacity constraints, and finally, f fd(B) gives the number

of nonempty bins.
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In our problem, B is unknown and the number of processors, p, is given. In
the MULTIFIT algorithm, B is guessed by using binary search, and repeatedly

calling the FFD algorithm. The initial upper and lower bounds on B are :

T .

Biower 1= max {—, max {#(i)}}, (5.3)
2T .

Buypper := max {;—, 11511;'%)5\1 {t(2)}}. (5.4)

[Cof78]. Let k be the bound on the number of iterations of the algorithm FFD 5.5.
Initially, the subproblems are reordered and reindexed in decreasing order of exe-
cution time so that in subsequent calls to algorithm FFD 5.5, one need not reorder
again. Now, we present the MULTIFIT algorithm in a precise manner [Cof78] :
Algorithm MF 5.6
Step 1. Initialize Biower and Bypper as given in (5.3) and (5.4). Set ¢ « 1.
Step 2. If: > k, halt.

Else, set B «— (Biower + Bupper)/2.
Step 3. Apply the algorithm FFD 5.5.
Step 4. If ffd(B) < p, then Bypper + B;

Else, Biower «— B.

1« t+ 1, and go to step 2.

The above algorithm, together with sorting, can be implemented in O(N log N
+kN log p) time. Coffman et al [Cof78] suggested that k = 7 is a reasonable choice
for the number of outer iterations. Let MF(I) denote the valued of the schedule
obtained by the algorithm MF 5.6. Then, one gets the following performance-

guarantee theorem.
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Theorem 5.2. [Cof78]

MF(I) < 1.220PT(I).

Proof : See [Cof78].

Thus, in the worst case, the algorithm MF 5.6 gives a better performance
than the algorithm LPT 5.4. However, the algorithm LPT 5.4 takes slightly less
time to run than the algorithm MF 5.6 for k > 1.

Essentially, the algorithm LPT 5.4 and the algorithm MF 5.6 are the two
well-known algorithms for scheduling NV independent subproblems in p processors.
However, we should mention here that Friesen and Langston [Fri86] have improved
the MULTIFIT algorithm to give a better performance guarantee. Also, Leung
[Leu82] proposed another algorithm based on a dynamic programming approach,
but he did not give any performance guarantee result.

From the above discussion, we can see that that we can either apply the
algorithm LPT 5.4 or the algorithm MF 5.6 to schedule the N independent sub-
problems ( uneven ) in p processors. Up to this point, we have assumed that we
know the solution time of each subproblems. But, in practice, we do not have a
priori knowledge of the solution time. Instead, we estimate the solution time. We
will discuss estimation procedures in a later section. Next we present the following
variant of the parallel algorithm ALG 5.3 for uneven problems. Since the step 1
and the step 5 are the same as before, we mention only the step 0.1.

Algorithm ALG 5.7

Step 0.1 Estimate the solution time of each subproblems.
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Rearrange the subproblems in decreasing order of execution time and
reindex the problems.
Apply either the algorithm LPT 5.4 or the algorithm MF 5.6 to allocate
the subproblems in p processors.

Send the data of the subproblems to the appropriate processor.

5.2 The CRYSTAL multicomputer and SAP

We have implemented algorithms ALG 5.3 and ALG 5.7 on the CRYSTAL
multicomputer [DeW84] for block-angular linear programming problems (4.1). Be-
fore going into the implementation on the CRYSTAL multicomputer, we give a
brief description of CRYSTAL and the Simple Application Package (SAP) here.

The CRYSTAL multicomputer is a collection of 20 DEC VAX 11/750’s con-
nected by an 80 megabit/sec Proteon Pronet token ring [DeW84]. Each of the
750’s has 2 megabytes of local memory except for one which has 3 megabytes. We
shall refer to each 750’s as a node or a processor. Some of the nodes have disks
attached to them. One can access CRYSTAL via ‘host’ machines. These host
machines are either VAX 11/750 or 11/780 computers running the bsd 4.3 Unix
operating system.

Multiple users can use the multicomputer by requesting for a subset of the
collection, known as a partition. A partition can be obtained via the nugget
command interpreter (NCI). NCI is also used for linking and loading a program

on the nodes, for pausing or halting a program, to check the status of the nodes,
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to free a partition when done with computation and for various other purposes.
When a partition is acquired, the nodes in that partition are given a virtual node
number from 1 to the number of nodes in that partition. The host is always given
the virtual node number 0.

The CRYSTAL software is written in a local extension of the language, Mod-
ula. Communication between nodes and the host is accomplished by means of
messages. Software for doing inter-process communication in a high level lan-
guage, called the Simple Application Package (SAP), is available to the user. It is
written in Fortran, Modula, Pascal and C. We used the Fortran version. Though
a distributed operating system, Charlotte, is available on CRYSTAL, we did not
use it as 1) SAP was sufficient for our purpose, and 2) Fortran is not implemented
on Charlotte.

As we mentioned before, communication among the nodes is done by means
of messages. Each message ( or packet ) can consist of up to 2048 bytes of infor-
mation. The Simple Application Package supports two queues for communication
buffering in each node and the host, one for incoming packets and the other for
outgoing packets. The user can decide the number of buffers needed for the in-
tended tasks. If the user wants to send an array of length needing more than 2048
bytes, the array must be split in order to send it in two or more packets. Before
loading information to a packet that is going to be sent, the program busy-waits
until a sending buffer is available. Once the buffer is available, outgoing data are

placed in it, the destination is indicated and finally it is sent to that destination by
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calling a “send” routine. The packet is also identified by the virtual node number
of the sending node. When the sending is done, the buffer is freed for further use.
On the receiving side, it busy-waits to check if anything is coming from another
node. The virtual node number of the arriving packet can be checked to see if it
is coming from the node from which it is supposed to come. Once the checking is
over, it accepts the message and then frees the input buffer for later use. Com-
munication between a host machine and a node is the same as that among the
nodes.

The three main routines of the Simple Application Package used for initializ-
ing queues for communication buffering, and for sending and receiving information
are : mkbufr, sendbf, and frbufr. Five integer variables are needed for message
communication. The variables numsen and numrec are used for total number of
output and input buffers, buflth is used for length of each buffer, id is used for
name of the partition and size is used for number of nodes in that partition. Two
dimensional real arrays, bufsen and bufrec, are used for buffering outgoing and
incoming packets, each of size buflth x numsen and buflth x numrec, respec-
tively. For real arrays, buflth could be a maximum of 512 (=2°). Whenever we
want to send a real vector of length more than 512, we split it into more than
one packet of length 512. To identify them correctly, we use the first four bytes
of each packet with a signal number. Then when the packets are received at the
other end coming from the same node, the receiving node checks both the source

it is coming from and the signal number it is expecting for proper identification.
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The logical array, iflag ( incoming ) of length numrec is used for checking
if a message has arrived in bufrec. For example,v for some buffer counter, in,
iflag (in) = .true. indicates that a message has arrived in bufrec ( . ,in).
The entry, source (in), in the integer array, source ( of length numrec ), indi-
cates the source the packet is coming from. Once the receiving is over, the buffer
counter, in, is incremented by 1 modulo numrec. Similarly, there are the logical
array, oflag, and the integer array, dest, both of length numsen on the sending
side. For a buffer counter out, oflag (out) = .true. means that a message in
bufsen ( . , out ) is still being sent, and in dest (out) the user indicates the
destination of the packet. As in for receiving, when sending is over, the buffer
counter, out, is incremented by 1 modulo numsen. Initially, both the variables, in
and out, are set to 1.

In the node machines, the integer variable id is replaced by the variable
me, where me is the virtual node number of that node. Since the bu-ﬁ'er arrays
are declared real, double precision numbers can be sent by declaring two double
precision arrays dbfsen of size buflth/2 x numsen and dbfrec of size buflth/2
x numrec, and then “equivalencing” them with the corresponding real arrays.

The routine, mkbufr, is called only once at the beginning of the host and
the node programs for initialization. The routines, sendbf and frbufr, are used
for sending and receiving messages. We give examples of sending and receiving

messages in Fortran in Figures 5.1 and 5.2. Here the packet is sent from node 0
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( i.e., the host ) and is received at node 1. In Figure 5.1, the data are read from
the array outdata, and in Figure 5.2, the data are placed in the array indata.

There are two other routines available in SAP. The routine run is used in the

host program for synchronizing execution of programs running on different nodes.

The routine pause is called to put a node in pause state, and it will start running

when the host program calls run.

10 if ( oflag(out) ) go to 10

bufsen(l,out) = signal

do 20 i=1, k

bufsen(i+l,out) = outdata(i)

20 continue

dest(out) = 1

call sendbf (out)

out = mod(out,numsen) + 1

Figure 5.1 Sending a message from node 0 to node 1 (in Fortran)

10 if ( .not. iflag(in) ) go to 10
if ( ( source(in) .ne. 0 ) .or. -
( bufrec(i,in) .ne. signal ) ) then
print *, ’ Not the right buffer °’
endif
do 20 i=1, k
indata(i,out) = bufrec(i+i,in)
20 continue
call frbufr (out)
in = mod(in,numrec) + 1

Figure 5.2 Receiving a message at node 1 from node 0 (in Fortran)



121

5.3 Implementation on CRYSTAL

In the previous section we described the Simple Application Package. In this
section, we discuss the implementation on the CRYSTAL multicomputer.

We wrote three programs : one for the host machine for initialization, the
second one for doing the bundle algorithm and solving some of the subproblems,
and the third one for solving subproblems and sending solutions to the second
one. We shall call them the host program, the gqueen program and the worker
program, respectively. The queen program always resides on the virtual node 1.
The host program does initialization and generates data. The availability of a
locally developed command ct ( based on the telnet command to login remotely
to a remote host ) helped us obtain output information directly from the nodes.
So, we did not send the final information back to the host when everything is done.

We give a sketch of our host program in Figure 5.3.

Program Host
Initialize buffers.
Read input data. Let the number of subproblemsbe N.
Generate Data.
Decide where to send which subproblems.
Send data to Queen processor ( Node 1 ) first.
Send data to rest of the nodes ( i.e. to workers ).

End
Figure 5.3 Host Program

The queen program in node 1 solves the main part of the bundle method and
some of the subproblems. She sends y to the workers, and receives the solutions

back from them. An outline of the queen program is given in Figure 5.4.



122

Program Queen

Initialize buffers.

Receive problem data from host.

Receive signal from the last node that it has received
data from host.

Set done = false ; Start solving.

While { not done } do

Begin
Send y to the nodes 2,...,p.
Solve her share of subproblems.
Receive solutions from node 2, ..., p.
Do updating for the bundle method.

If optimality reached, set done = true.

End while.
Send signal to nodes 2,...,p to stop worker programs.
Receive timing information from nodes 2, ..., p.

Print solution and timing information.
End
Figure 5.4 Queen Program

The worker program runs on nodes 2,...,p. It solves its share of the sub-
problems. It receives the dual variable y from the queen processor and sends back
the solutions of the subproblems to the queen processor. We give an outline of
the worker program in Figure 5.5. Here, the worker is expecting to receive y or a
signal from queen to inform him that she is done. However, in the queen program,
we have two separate statements, one with ‘send y to the nodes 2,...,p’, and the
other with ‘send signal to nodes 2,...,p to stop worker programs’. Actually, in

practice we also send a signal with the first statement. So, the worker, on receiving
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a packet, checks which signal it is. If it is the stopping signal, he sets done = true;

else, he solve his share of the subproblems.

Program Worker I
Initialize buffers.
Receive problem data from host.
If I am last node, send signal to queen to start solving.
Set done = false
While { not done } do
Receive y or signal of queen done from Queen.
if { signal of queen done } then
done = true
else
Solve its share of subproblems
Send solution to queen
endif.
End while.
Send timing information to Queen.
End.
Figure 5.5 I** Worker Program

Once the codes for the queen and the workers are ready, they are compiled
using the Fortran compiler f77 linking the library for SAP and Fortran and C
library. Then, the queen and the worker programs are loaded to the CRYSTAL
nodes using the link command in NCI environment. The whole program is started

by executing the host executable and giving the partition number.
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5.4 Computational Experience

We have implemented the algorithms ALG 5.3 and ALG 5.7 on the CRYSTAL
multicomputer for block-angular linear programming problems. We extended the
code, BUNDECOMP, to do parallel computation on the multicomputer. In order
to compare the parallel algorithms to their serial version ( single processor ), we
need a few definitions here.

Let T, be the elapsed time required to run the parallel algorithm in p nodes

( processors ). Then the speedup, Sy, is defined as

Ty
S, 1= —.
P Tp
The efficiency, Ep, is defined as
S
Ep:=22.
Pp
Theoretically, with our algorithm,
T
T, > —.
P=p
So, E, satisfies
S T
E,=2Lf=—-<1.
P p pTyp

Thus, one hopes for E, to be as close to one as possible.

We first discuss our computational experience with subproblems of even size.



125

5.4.1 Case 1

For block-angular linear programming problems, we assume that subproblems
of almost similar dimension takes almost equal amount of time to solve them, and
we call them subproblems of even size. For these we used the scheme described
in the algorithm ALG 5.3 to allocate the LP subproblems. The test problems we
tried are 2al, 3al, 4al, 2bl, 3bl and 4bl from Table 4.1. The problems 2al, 3al
and 4al have 100 subproblems and 10 coupling constraints, but the sizes of the
whole problems are 850 x 1500, 1250 x 2800 and 1500 x 4000, respectively. Since
the subproblems are of (almost) even size, each subproblem in 2al, 3al and 4al is
of dimension ( about ) 8 x 15, 12 x 28 and 15 x 40, respectively. The problems
2b1, 3bl and 4bl are similar to 2al, 3al and 4al except that the b’s have 20
coupling constraints.

Theoretically, whether we utilize one processor or ten processors the total
number of dual iterations ( and calls to SIMUL ) and the final primal and dual
objective value should be about the same. Recall that for given y, after solving

the subproblems, the dual function, g(y), and the subgradient, 7, are computed

by using :
N
9(y) = (y,a) — Z{(Afy,ii) — fi(%:)},
and
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where #; is the computed solution of the i*® subproblem, : = 1,...,N. Suppose

we have two processors and N is odd, then if we compute

LN/2}
Z A; %

i=1

in one processor and compute

N
Z A; 3;

i=[N/2]

in another processor and then sum the results together, the resulting vector should

come out to be the same as when we compute

serially in one processor. Similar results hold for the calculation of g(y). Thus,
the dual function and the subgradient should come out to be the same no matter
whether we used one précessor or several processors. But in practice, they do not
come out to be the same due to round off in numerical calculations.

After doing a preliminary testing and realizing that we did not get the same
number of iterations ( and other information ) with different numbers of processors,
we decided to send the solution £; from worker processors to the queen processor
and then have the matrix multiplications performed serially ( going from ¢ =1 to
N ) at the queen processor to obtain the dual function value and the subgradient.
When we did it this way, the number of iterations and other information were
the same using different numbers of processors. In Figure 5.6, we present the

speedup against the number of processors when the matrix multiplications are
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done in serial for the problems 2al, 3al and 4al and when tried on 1, 2, 3, 5,
7, 9 and 11 processors. Although the speedup ( and so the efficiency ) is getting
better as the problem size is getting bigger, we see that speedup seems to have an
asymptotic behavior as the number of processor increases. The high cost of matrix
multiplication operations being done in serial is the major factor in observing an
asymptotic behavior in speedup while the number of processors is still in single
digits.

We wished to do ‘better ( in terms of speedup and efficiency ) than what
we achieved with matrix multiplication being done in serial, especially, when we
realized that the matrix multiplication is a major factor for not achieving better
efficiency. Thus we tried again the version of the parallel code where the matrix
multiplication is being done in parallel. For the same problems, this resulted
in obtaining the number of iterations and other information to be different with
different numbers of processors, as we expected from our earlier observation. But
at the same time, it resulted in obtaining considerably better speedup even though
the number of calls to SIMUL were different. The computational results with the
six test problems tried on 1, 2, 3, 5, 7, 9 and 11 processors are presented in Tables
5.1, 5.2, 5.3, 5.4, 5.5 and 5.6. In Figures 5.7 and 5.8, we plotted speedup against
the number of processors, the first figure with test problems 2al, 3al and 4al, and
the second one with test problems 2bl, 3bl and 4b1l. The irregular behavior of

some of the graphs can be attributed to
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Nodes ITER/NSIM Time (sec) Speedup  Efficiency
( Processor )
1 20/56 475.86 1 1
2 22/71 293.33 1.622 0.811
3 20/56 181.03 2.628 0.876
5 21/68 127.00 3.746 0.749
7 19/47 79.92 5.954 0.851
9 23/66 132.30 3.596 0.399
11 19/48 94.26 5.048 0.459

Table 5.1 Time, Speedup and Efficiency for 2al ( 850 x 1500 )

Nodes ITER/NSIM Time (sec) Speedup  Efficiency
( Processor )
1 19/49 1261.79 1 1
2 20/41 618.36 2.041 1.021
3 15/49 457.16 2.760 0.920
5 20/41 265.53 4.752 0.950
7 19/37 192.80 6.545 0.935
9 15/50 202.24 6.239 0.693
11 20/41 161.96 7.791 0.708

Table 5.2 Time, Speedup and Efficiency for 3al ( 1250 x 2800 )

Nodes ITER/NSIM Time (sec) Speedup  Efficiency
( Processor )
1 21/48 2439.81 1 1
2 16/56 1311.32 1.861 0.931
3 21/60 929.91 2.624 0.875
5 15/46 532.72 4.580 0.916
7 19/44 396.24 6.157 0.880
9 20/44 320.77 7.606 0.845
11 19/41 263.97 9.243 0.840

Table 5.3 Time, Speedup and Efficiency for 4al ( 1500 x 4000 )
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Nodes ITER/NSIM Time (sec) Speedup  Efficiency
( Processor )
1 28/77 752.01 1 1
2 40/90 456.55 1.647 0.824
3 38/77 297.20 2.530 0.843
5 38/98 226.25 3.324 0.665
7 49/96 189.42 3.970 0.567
9 46/111 174.08 4.320 0.480
11 31/69 99.61 7.549 0.686

Table 5.4 Time, Speedup and Efficiency for 2bl ( 850 x 1500 )

Nodes ITER/NSIM Time (sec) Speedup  Efficiency
( Processor )

1 28/68 1777.49 1 1
2 28/78 1009.17 1.761 0.881 -
3 43/93 809.42 2.196 0.732
5 29/77 441.77 4.024 0.805
7 34/92 382.63 4.645 0.664
9 28/75 272.31 6.527 0.725
11 38/74 253.72 7.006 0.637

Table 5.5 Time, Speedup and Efficiency for 3bl ( 1250 x 2800 )

Nodes ITER/NSIM Time (sec) Speedup  Efficiency
( Processor )
1 29/72 3220.31 1 1
2 22/59 1501.35 2.145 1.073
3 28/71 1125.79 2.860 0.953
5 39/73 733.06 4.393 0.879
7 32/88 572.49 5.625 0.804
9 na na na na
11 35/88 410.17 7.851 0.714

Table 5.6 Time, Speedup and Efficiency for 4bl ( 1500 x 4000 )
na := not available
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i) round off errors and thus resulting in increase or decrease in calls to SIMUL

(NSIM) and number of iterations, and so the solution time, and
ii) the effect of communication and idle time.

Both (i) and (ii) together can make a significant difference in speedup and
efficiency for smaller problems ( e.g. 2al ). But as problem size increases, the
speedup graphs appear to be growing more stably even though there are some
differences in the number of SIMUL calls ( e.g. 4al, 4bl ). Thus communication
and idle time is not a significant factor for larger problems. In case of two problems
(3al and 4bl), we obtained efficiency greater than one using two processors. This
is due to the fact that the number of SIMUL calls is more with one processor than
with two processors for both these cases. Finally, comparing Figures 5.6 and 5.7,
we see that a smaller number of coupling constraints means better speedup and
efficiency. This is not surprising, as the number of coupling constraints determines
the dimension of the dual space. So as suggested by Dirickx and Jennergren
[Dir79], we also think that it is a good idea to keep down the number of coupling

constraints in the modeling stage itself.
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5.4.2 Case II

We have implemented the algorithm ALG 5.7 for uneven subproblems using
both the algorithm LPT 5.4 and the algorithm MF 5.6 for scheduling subproblems.
We did our tests for block-angular linear programming problems. Hereafter, we
will refer to the two versions of the algorithm ALG 5.7 as the algorithm LPT and
the algorithm MF, respectively.

Both the algorithms LPT 5.4 and MF 5.6 require knowledge of the solution
time beforehand for assigning the subproblems to the different processors. Since
we do not have any e priori knowledge of the solution time we decided to estimate
it. To accomplish this we geﬁerated linear programming problems of different
sizes, with five problems, in each size, to be solved by the routine ZXOLP. We first
took the average of the time of the five random problems in each size. Then we
did a regression fit for different problem sizes. For solution time, we obtained the
following relation :

cm2.17n0.89

where m is the number of rows and n is the number of variables, and c is some
constant. This gives us an estimate for the solution time for the subproblems. The
reader should note that we solve the subproblems from scratch only the first time,
and after that, we use parametric programming. So, the behavior of the solution
time at subsequent dual point may be somewhat different, but we use the same

estimate at the subsequent dual points also. Thus, we do a static scheduling of
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the subproblems, i.e., we do not move the subproblems around to other processors
at subsequent dual points, once they are allocated in the beginning.

The implemented algorithms were tried on two test problems. The first test
problem one is of dimension 475 x 1000 with 10 coupling constraints and 30 sub-
problems. The second test problem is of dimension 400 x 1100 with 10 coupling
constraints and 34 subproblems. The smallest numbers of constraints for the sub-
problems for both test problems one and two are 5, whereas the largest numbers
of constraints are 40 and 39, respectively. The smallest numbers of variables for
the subproblems for test problems one and two are 15 and 8, respectively, and
the largest numbers of variables are 80 and 68, respectively. We tested the algo-
rithms using 1, 2, 3 and 5 processors. We present the information about iterations
(ITER), number of calls to SIMUL (NSIM) and time in Tables 5.7 and 5.9. The
numbers in parenthesis indicate the time taken for the first call to SIMUL and
the average of time taken for the subsequent calls to SIMUL. The difference in
the number of iterations ( and number of calls to SIMUL ) between the methods
( LPT and MF ) is due to round off error; this happens as after the scheduling,
the ordering of the subproblems in both the methods may be different and that
may make a difference in the numerical calculation of the dual function value and
the subgradient. This observation is similar to the observation we made in the
previous section.

Speedup and efficiency are reported in Tables 5.8 and 5.10. The speedup vs.

number of processors is plotted in Figures 5.9 and 5.10 for problems one and two,
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respectively. From the results, we observe that the algorithm LPT gives better
speedup ( and efficiency ) than the algorithm MF for these two test problems on the
number of processors tried. This is clear for smaller number of processors, when
we can clearly see the difference in total time, time for first call to SIMUL and the
average of time taken for the subsequent calls to SIMUL. For five processors, the
gaps seem to be narrowing. Under any circumstances, we have more than 50 %
efficiency with both the methods for the problems and cases we tried. With larger

test problems, we hope to obtain similar or better behavior.

Using Algorithm LPT Using Algorithm MF
Number of ITER/ Time in sec ITER/ Time in sec
processors NSIM NSIM

30/57 1367.86 (221.12, 20.30) 30/57 1367.86 (221.12, 20.30)
24/65  774.27 (115.58,10.16) 24/62  830.99 (138.08, 11.23)
24/70  611.69 ( 88.47, 7.47) 23/67 613.49 (101.62, 7.64)
24/63 418.84 ( 66.70, 5.56) 28/72  452.46 ( 66.72, 5.31)
Table 5.7 Test problem 1 : Output information
Times in parenthesis are the time for the first call to SIM UI;
and the average of the subsequent calls to SIMUL

ot WO

Using Algorithm LPT Using Algorithm MF
Number of Speedup Efficiency Speedup Efficiency

processors

1.767 0.884 1.646 0.823
2.236 0.745 2.230 0.743
3.265 0.653 3.023 0.605

Table 5.8 Test problem 1 : Speedup and Efficiency



Using Algorithm LPT Using Algorithm MF
Number of ITER/ Time in sec ITER/ Time in sec
processors  NSIM NSIM

crWw N

Table 5.9 Test problem 2 : Output information
Times in parenthesis are the time for the first call to SIMUL
and the average of the subsequent calls to SIMUL

Using Algorithm LPT Using Algorithm MF
Number of Speedup Efficiency Speedup Efficiency
ProCessors

1.767 0.884 1.646 0.823

2.236 0.745 2.230 0.743

3.265 0.653 3.023 0.605

Table 5.10 Test problem 2 : Speedup and Efficiency
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26/81 889.76 (134.40, 9.33) 26/81 889.76 (134.40, 9.33)
23/71  489.78 ( 80.17,5.74) 29/72  557.63 ( 94.16, 6.40)
28/68  365.59 ( 61.89, 4.40) 30/82  424.27 ( 66.35, 4.27)
30/74 292.64 ( 52.71,3.13) 24/77 314.44 ( 53.35, 3.32)
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5.5 Summary

In this chapter, we presented parallel algorithms for problem type (1.1) and
their implementation and computational experience on the CRYSTAL multicom-
puter. For problems with subproblems of even size, we allocated subproblems
equally among the processors, and observed that we can attain efficiency in the
range of 70% - 80%. For problems with uneven subproblems, we identified the
problem of allocation of the subproblems to different processors with the indepen-
dent task-scheduling problem [Gar78]. We implemented the least processing time
algorithm and the MULTIFIT algorithm for scheduling the subproblems. These
algorithms require knowledge of solution time of subproblems beforehand. In our
case, this is not available. Instead, we estimate the solution time. The imple-
mented algorithms, then, give an efficiency of more than 60% on the test problems
we tried, with the least processing time algorithm giving slightly better efficiency

than the MULTIFIT algorithm.
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Chapter 6

A DOUBLY-COUPLED LINEAR PROGRAM

In this chapter we propose two-stage decomposition methods for the doubly-
coupled linear program (2.6). The problem (2.6) cannot be directly attacked by
the decomposition technique described in Chapter 3 for the type of problem (1.1).
Here, we propose two approaches where we apply the decomposition technique in
two stages to the problem (2.6). For convenience, we display here the doubly-

coupled linear program :

min (co,mo)+(cl,$1)+"'+(CN,$N>

Zoje)@N
subject to
Dy 2o+ By =b
Dy zo + By z2 = by
(6.1)
Dy zo + By oy =bn
Avzo+A1zi+ -+ +AvzIN=a
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where B; € R™>*™ D; e R™*" A; € R™*™ for:=,0,1,...,N,and a € R™,

b; e R™,i=1,...,N withz; e R%,i =0,1,...,N.

We found only two references which deal with solution methods for the prob-

lem (6.1). They are Ritter’s algorithm [Rit67], and the algorithm by Hartman and

Lasdon [Har70].

We present here the two approaches.

6.1 The first approach

First we define the perturbation function, F(z, p), as

N
g: £ a-— E Aizi=p,
Ci, Ti i 1=0 .
F(z,p) = ,'=o( 022y Diz¢g + Bizi =b;, 1 =1,...,N,
2,>0,i=0,1,...,N;
00, otherwise,

where z = (zg,...,2n). The Lagrangian is

L(z,y) = igf {{y,p) + F(=z,p)}
D;z¢ + Biz; = b;,

=0

R otherwise.

Then, the dual problem is

max a(y)

where

o(y) = inf L(z,9)
N
=<y,a)+u§f {Z(Ci"yAi,wi> £; >0,i=0,1,...,N

=

D;zo + Biz; =b;,i=1,...,N

N N
(e i) + (y,a — 2 Aizi), if{ i=1,...,N -
i=0 £;>0,i=0,1,...,N;

3

(6.2)
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Note that g is nonsmooth concave. We will denote the second part by §(y), i.e.,

N

- . L . Di$0+ngi=bg,i=1,...,N}
§(y) = inf {§<c- yAi, i) 2,>0,i=01,...,N ' (6.3)
For given y, the problem (6.3) is the following structured linear program :
iI}:f (co — yAo,To) + -+ + (cn — YAN, TN)
subject to
Dy zo+ Brxy = b
D; zo + B; z, =b
Dyzo + Byzny =b
z; >0,i=0,1,...,N.
Its usual linear programming dual is
max  (b,v1) +--+ + (bn,vN)
V14.-yUN
subject to
v1 By <ea-—-yA
ve Bg < cp —yAs
(6.4)

vy By <cn —yAN

nDi+ - +uvnv DNy < co—yho

v; (¢ =1,...,N) unrestricted.
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For now, we consider y to be temporarily fixed at §. Then the above LP
(6.4) looks very close to the problem (4.1), and so, we should be able to apply the
decomposition technique to this problem. First, we rewrite the above problem as

a minimization problem :

min  —(by,v1) — -+ — (bn,VN)
U143 UN i

subject to
v By <e —§4
ve By <cp—JA2
(6.5)
vN BN S cen —JAN
vnDi+ - +ovn DN < co—JAo
u;i(t=1,...,N) unrestricted.

For simplicity, let

éi=ci—j4Ai 1=0,1,...,N.

Now we define the perturbation function for this problem as
N B?"viSé,‘,i=1,...,N
— b;, v; if A N
f@’:Qaﬁ) = Z‘-:l< iY ), ! —Co + Z:IDT'U: < q
=
+o00, else.
So the Lagrangian for this problem is

L(v,u,§) = inf {(u, q) + F(v,¢,9)}

(

N b vs A 3 DTv; if u20
..Z(,,v,)-}-(u,—CO-f'g_P1 .'vz>, 1 |B,Tv,'§éi,i=1,-~-,N

i=1
. uZo
et ﬁ‘Bﬁug&¢=1vu,N

| +00, if BT v; £ &.
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So, for this fixed g, we get the following dual problem of the problem (6.5) :
max t(u, )

where

N
.. —(éo,u) + > inf,, {(D,u — bi,vi) | B‘,Tv,- < é,‘} ifu > 0;
t(uvy) = =1

—00, else.

Observe that u is the original variable 9. So, writing the above problem as the

dual problem of the problem (6.4) and with o substituted in place of u, we have
~ max H(z0,9) = min {~#(zo,§)} := min #(z0,9)

and

N
) &0, To) + 2 sup,, 1{bi — Dizo,v;) | Blv; <&}, ifzo >0
H(zo,¥) = ( ) i=1 { ) } (6.6)

+o00, else.

The function #(-,§) is a nonsmooth convex function in zo, and to solve the nons-

mooth problem
min #(zo,9) (6.7)
one can take the nonsmooth exact penalty function approach [Pie69] to transform

(6.7) to the unconstrained problem

min { (a0, ) +a || (=20} I }, (63)

where « is a large positive number. To compute the function value and a subdif-
ferential for the objective function in the problem (6.8), one needs to solve the LP

subproblems :
sup (b; — D;zo, vi)

vi (6.9),’
subject to Bl v; < ¢; — §4A;,
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fori =1,...,N. Note that the dual variables of the problem (6.9); correspond to
the variables z1, ...,z N of the problem (6.1). Under a certain assumption ( similér
to the one given in § 3.1 ), a subgradient for the objective function in (6.8) at z,
is given by

N

co — §Ao — Z v;iD;i + a(—x0)+,

=1

where v; is the computed solution of the LP subproblem (6.9); for given z¢ and .

Suppose we are mainly interested in obtaining a primal optimal solution of
the problem (6.1). In that case, we do not need the ‘primal’ optimal solution
(vi,...,vn) of the problem (6.5). Thus, we can directly apply the bundle method
of Lemaréchal et al [Lem81] to the problem (6.8), instead of using the bundle-
based decomposition algorithm of Chapter 3. On the other hand if we also want
the ‘primal’ optimal solution (vy,...,vn) of the problem (6.5), we need to apply
the bundle-based decomposition algorithm of Chapter 3.

Once the problem (6.8), or equivalently (6.7), is solved for fixed y, we have

to solve the outer problem (6.2), where

9(y) = (y,a) + min #(zo, Y)-
.’Eo__O

As noted before, g(-) is nonsmooth concave. A subgradient for g(-) at y can
be given as

N
a—Aowo—ZA,-a:,-,

i=1

where zo is the computed solution of the problem (6.7), and zj,...,zxN are the

dual solutions of the problems (6.9); for this zo.
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Finally, we apply the bundle-based decomposition algorithm of Chapter 3 to

the dual problem (6.2). We present the approach described above for solving the
problem (6.1) in a compact way as the following algorithm :

Algorithm ALG 6.1

Step 1. Outer loop problem

Start with y!. Set j « 1.
Step 2. Inner loop problem
For given y/, solve the problem (6.7) by the bundle method.
Step 3.
Check if y/ is optimal. If so, stop.
If not, update y’ to y/*! by the bundle-based decomposition algorithm
ALG 3.1.
j+— j+1, and go to Step 2.

Remarks

(1) In Step 2, one could solve the problem (6.7) by the bundle-based decom-
position method of Chapter 3 if one is interested in obtaining the solutions
(v1,...,vN) of (6.4) also.

(2) Note that for given y and xo, one needs to solve the LP subproblems (6.9);
from scratch the very first time. After that for the inner loop problem, the
objective changes as it is dependent on zo. Then, when we go to the outer
loop, and y is updated, the right hand side of the problems (6.9); changes.

So, it is desirable to have an LP code that can solve the problems (6.9); by
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parametric programming both for the objective function and for the right

hand side.

6.2 The second approach

Here, we give another approach to solve the problem (6.1). We can rewrite

the problem (6.1) as

min { {co,20) +r(z0) }, (6.10)

where r(zg) is defined by the value of the following linear programming problem :

min (1,21} + -+ + {en,ZN)
T1yeeIN

subject to
B; z; =b; — Dizg
By z, = by — Doz
(6.11) -
By zny = by — Dz
Aioy+ -+ +Avzn=a— AZo

z; >0,0=1,...,N.

For given zg, the problem (6.11) is exactly the same as the problem (4.1). Thus,

we can apply the bundle-based decomposition algorithm ALG 4.1 to the problem




148

(6.11). To solve the outer loop problem (6.10), we can again take the nonsmooth

exact penalty function approach [Pie69] and solve the unconstrained problem
min { (co,20) +r(z0) + & || (=20)+ [l } (6.12)

for some large positive number a. The problem (6.12) can be solved by the usual
bundle method [Lem81]. A subgradient of the objective function in the problem
(6.12) is given by

N
Co — on -_ Z’U,‘ Di +a(-$o)+,

i=1
where y is the dual solution of the dual problem, similar to (3.2), of the problem
(6.11), and v; is a dual solution of the LP subproblem
rr:i_n (ci — yAi,z;)
subject to Bjz; = bj — Dizg, z; 2>0.

Here the outer loop problem is to solve the problem (6.12), or equivalently, to
solve the problem (6.10). We state the above approach in the following algorithmic
form :

Algorithm ALG 6.2

Step 1. Outer loop problem
Start with z}. Let j « 1.
Step 2. Inmner loop problem
For given zJ, solve the problem (6.11) by the bundle-based decomposition

algorithm ALG 4.1.
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Step 3.
Check if z} is optimal. If so, stop.
If not, update .'cg to mg"'l by the bundle method [Lem81].

j «— j+1, and go to Step 2.

Here, we have discussed alternative two-stage decomposition methods to solve
the problem (6.1). The essential difference between the above two approaches is
the order of the outer loop and inner loop problems. In the first approach, the
outer variable is y and the inner variable is ¢, whereas in the second approach the
outer variable is z¢ and the inner variable is y ( the dual variables of the problem
(6.11) ). In this sense, the two approaches are symmetric and these algorithms

can be considered as dual to each other.
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Appendix

Prob- Sizeof EPS/ Objective ITER/ Gradient Time Stopping
lem whole DF1 value : EVAL Accuracy/ in  Rule
Name problem primal/dual Relative Min.

1la3 350 x 500 0.1 -1729.0941 31 022x1071 319 Normal

1.5  -1729.1547 75 na 0.47 End
0.03
1a3 350 x 500 0.5 -1728.8947 24 0.38x107'2 262 Normal
1.5 -1729.3947 60 na 0.44 End
0.03
1la3 350 x 500 0.75 -1728.7209 22 0.31x107'%2 2.59 Normal
1.5 -1729.4708 59 na 0.44 End
0.03

1bl 350 x 500* 0.1 -1248.5427 60  0.363 x 10! 2.92 Normal
100 -1248.0388 136 0.335x 107!  0.07 End
0.02
1bl 350 x 500* 1.0 -1247.5926 47 0.302x107'® 2.15 Normal
100 -1248.5925 105 0.985 x 10~ 0.07 End
0.02 -

1b2 350 x 500* 1.0 -1640.7158 62  0.109 x 10! 4.13 Max15
1000 -1641.5603 157 0.289 x 10~  0.20
0.02
1b2 350 x 500* 5.0 -1638.8857 63 0.171 x 10~ 3.83 Normal
1000 -1643.8857 125 0.795 x 10~'°* 0.19 End
0.02

Table A.1 Output information from BUNDECOMP
* _ DX is set at 1078, rest are set at 1077,
(Continued on the next page)



Prob- Sizeof EPS/ Objective ITER/ Gradient Time
lem whole DF1 value : EVAL Accuracy/ in
Name problem primal/dual Relative Min.
1b3 350 x 500* 1.0 -769.4664 69 0.686 6.24
100  -770.2497 167 0.455 x 10! 0.40

0.03

1b3 350 x 500* 5.0 -768.0163 54 0.114 x 10! 5.15
100  -772.4489 134 0.137 0.40

0.03

1b3 350 x 500 10.0 -764.3880 57 0.215x 10713 5.24
10 -774.0837 133 0.116 x 1071¢  0.40
0.03

1b4 350 x 500 10.0 -1513.8084 48 0.139 x 10' 17.13
10 -1521.7147 114 0.661 x 1071 2.43

0.13

1b4 350 x 500 20.0 -1505.9762 39 0.399x10°2 14.73
1000 -1525.9759 76 0573 x 1073  2.43

0.16

1c2 350 x 500* 1.0 -1693.9730 66  0.414 x 10! 5.44
10° -1694.4614 155 0.121 0.19

0.03

1c2 350 x 500* 20.0 -1679.6585 103 0.744x 102 6.85°

10° -1699.6589 182 0.987 x 10~*  0.19

0.03

1d1 350 x 500 1.0 -1204.3195 129 0.368 x 10! 9.53
105 -1205.8113 265 0.582 0.08

0.03

1d1 350 x 500 5.0 -1200.6983 179 0.129 x 10~12 12.09
10% -1205.6259 307 0.520 x 10713 0.08
0.03
Table A.1 Output information from BUNDECOMP
* - DX is set at 1078, rest are set at 1077,
(Continued on the nezt page)
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Stopping
Rule

Maxl15

Max15

Normal
End

Max15

Normal

End

Max15

Normal

End

Max15

Normal




Prob-
lem

Name
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1d2

lel

1e2

le3

2a3

2a3

2a4

2a4

2bl

Size of

whole

problem

350 x 500

350 x 500

350 x 500

350 x 500

350 x 500

850 x 1500

850 x 1500

850 x 1500*

850 x 1500*

850 x 1500

EPS/ Objective ITER/ Gradient
EVAL Accuracy/

DF1

1.0

1000

20.0
1000

50.0
1000

50.0
1000

20.0
1000

1.5
2.0

1.5
2.0

1.0
100

1.0
100

1.0
1.5

value :

primal/dual

-1320.2651
-1320.7020

-1313.8677
-1332.8708

-1244.0764
-1293.9884

-1364.2005
-1413.7078

-1554.1824
-1573.3340

-7244.7490
-7246.2646

-7244.7490
-7246.2646

-6950.5272
-6951.5269

-6947.6271
-6952.6718

-6768.7397
-6769.7480

129
262

207
309

185
270

131
190

147
257

25
68

25
68

24
50

20
43

57
107

Relative

0.160 x 10*
0.146

0.179 x 107!
0.982 x 10~3

0.136 x 101
0.870 x 103

0.115 x 10~1
0.581 x 103

0.213 x 10!
0.137

0.2.600 x 10~®

na

0.260 x 10~°
na

0.705 x 10~14
0.106 x 10~1%

0.126 x 10~13
0.251 x 10~15

0.300 x 10~°
na

Time
in

Min.

11.08
0.19
0.03

14.89
0.19
0.03

15.02
0.07
0.03

11.07
0.18
0.03

15.51
0.37
0.04

40.47
7.87
0.49

40.47
7.87
0.49

362.46

66.95

6.03
355.87

66.83
6.88
8.39
0.67
0.07

Table A.1 Qutput information from BUNDECOMP
* _ DX is set at 1075; rest are set at 1077,
(Continued on the next page)
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Stopping
Rule

Max15

Normal

End

Normal

End

Normal
End

Max15

Normal

Normal
End

Normal
End

Normal
End

Normal
End



Prob-

lem

Name

2b2

2b2

2b3

2b3

2b4

2b4

6al

Size of
whole
problem

850 x 1500*

850 x 1500*

850 x 1500

850 x 1500

850 x 1500

850 x 1500

4000 x 10000

EPS/ Objective ITER/ Gradient

DF1

1.0

1000

5.0
1000

1.0
108

5.0
105

1.0
100

5.0
100

0.5
10*

value :

primal/dual

-7039.9266
-7040.9263

-7036.8860
-7042.0010

-6862.8493
-6864.4961

-6860.7105
-6865.7148

-5769.4902
-5770.4287

-5765.1557
-5771.1528

-68400.6086
-68401.1094

EVAL

46

101

39
78

31
86

48
106

37
84

24

61

22
66

Accuracy/
Relative

0.552 x 1014
0.604 x 10716

0.703
0.681 x 102

0.675 x 10?
0.180 x 10!

0.123 x 10!
0.302

0.129 x 10?
0.797 x 10~1

0.703 x 101

0.435

0.105
0.801 x 10™*

Time
in

Min.

27.15
3.47
0.23

24.27
3.39
0.27

59.86
8.17
0.62

62.98
8.13
0.52

407.93

66.96

4.11
392.93

66.52

5.44

401.12
80.57
4.93

Table A.1 Output information from BUNDECOMP
* _ DX i3 set at 1075, rest are set at 1077,
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Stopping
Rule

Normal
End
Dxmin
Max15
Max15

Max15

Max15

Max15
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