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Abstract: It is often necessary to round multidimensional statistical tables in such a
way as to preserve row sums. This is called zero restricted rounding. It is also often
desirable that the rounding procedure be unbiased. A probabilistic rounding procedure is
unbiased if the expected value of the rounding of each table entry is equal to the walue
of that table entry. A rounding procedure is controlled if it is both zero restricted and
unbiased. There is a practical algorithm that generates a controlled rounding for any two
dimensional table [Coz]. It is also known that there are three dimensional tables that do
not have a zero restricted rounding [CCE]. We prove that the problem of deciding whether a
three dimensional table has o zero restricted rounding 18 NP-complete. We also prove that
the problem of deciding whether a controlled rounding is possible for a three dimensional
table is NP-complete. The exzistence of polynomial time algorithm, that is an algorithm
that runs in time bounded by a polynomial, for one of these rounding problems would
imply that all NP-complete problems have polynomial time solutions. Some of the more
famous NP-complete problems are the traveling salesman problem, integer programming,
the bin packing problem, the graph coloring problem and the knapsack problem. Despite the
fact that NP-complete problems have been widely and extensively studied, there 1s no known
polynomial time algorithm for any NP-complete problem. It is almost unanimously believed
that there is no polynomial time algorithm for any NP-complete problem. Therefore 1t is
very unlikely that there is a polynomial time algorithm for either of these three dimensional
rounding problems. This implies that it also very unlikely that there is a polynomial time
algorithm that generates a zero restricted rounding for those three dimensional tables that
have zero restricted roundings, since such an algorithm could be used to decide whether a
three dimensional table had a zero restricted rounding.
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1. Introduction

Given a table of positive rational numbers it is sometimes necessary to round these
numbers to an integer multiple of some rounding base. To round a number = with respect
to a base B means z should remain fixed if it is an integer multiple of B and rounded to
one of the two adjacent integer multiples of B, B|z/B] or Blz/B] + 1, otherwise. The
expression |z | denotes the greatest integer less than or equal . A rounding of a table T' is
a rounding of every entry in 7. One application of rounding is the prevention of statistical
disclosure in tabular data [CFGH , New , NS].

It is often necessary that a rounding of a table satisfy some additional conditions.
Before we can introduce these conditions we will need the following definitions. If T is an
n-dimensional table, we will denote an entry in T' by T(z1,22,...,2,). A hyperplane of a
table T is obtained from T by fixing some subset of the indices and is denoted by placing
’s in the unfixed positions. For example, T(21, *, *, 24) is a two dimensional table derived
from T by looking only at those entries whose the first coordinate is z; and whose fourth
coordinate is z4. A one dimensional hyperplane is called a row and and a two dimensional
hyperplane is called a sheet. One basic condition that a rounding may be required to satisfy
is that the rounding be zero restricted. A rounding is zero restricted if all the hyperplane
sums in the rounded table are roundings of the corresponding hyperplane sums in the
original table. Alternatively without loss of generality we may assume that the hyperplane
sums are integer multiples of the rounding base and define a zero restricted rounding as a
rounding that preserves hyperplane sums [Cox]. A rounding is unbiased if for every entry
¢ the expected value of the rounding of z is equal to the value of z. A second condition
that a rounding may be required to satisfy is that the rounding be controlled. A rounding
is controlled if it is zero restricted and unbiased.

There is a procedure that generates a controlled rounding for any two dimensional
table T [Cox]. If T is a m by n table this procedure runs in time bounded by ¢-z-min(m, n),
where z is the number of nonzero entries in T and c is a constant. This is assuming the
table is represented by an adjacency list data structure [AHU]. This algorithm runs in
linear time on a one dimensional table.

In contrast it is not true that every three dimensional table has a zero restricted
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rounding [CCE]. Therefore we would like to examine the complexity of deciding whether
a particular three dimensional table has a zero restricted rounding and the complexity of
deciding whether a particular three dimensional table has an controlled rounding. We will
give very strong evidence that there are no efficient algorithms for either of these problems.

Before we start we need some preliminary definitions.

2. Definitions

The class P is defined as the class of problems that have polynomial time solutions.
An algorithm solves a problem in polynomial time if there is some polynomial p(z) such
that on any input «, of size n, the algorithm solves the problem for & in no more than
p(n) steps. The class P is generally regarded as the class of problems that have practical
solutions [Edm, GJ]. The class NP is defined as the the class of problems where it is
possible, in polynomial time, to guess a candidate solution and then verify whether the
candidate is indeed a solution. As an example of a problem in N P, consider the Hamilto-
nian cycle problem. The input to this problem is a set of cities and a listing of the cities
that have direct plane flights between them. The problem is then to decide whether there
is a scheduling of flights that starts and finishes in the same city and visits each other city
exactly once. While finding a Hamiltonian cycle is apparently very difficult, it is easy to
guess at some subset of flights and then decide if they form a Hamiltonian cycle.

A problem C is N P-hard if a polynomial time algorithm for C implies a polynomial
time algorithm for every problem in NP. More technically a problem C is NP-hard if
for every problem A in NP there is a polynomially computable function f such that
an instance z of A has a solution if and only if the instance f(z) of C has a solution.
A problem is N P-complete if it is in NP and it is NP-hard. The above mentioned
Hamiltonian cycle problem is N P-complete. Some examples of N P-complete problems
are the traveling salesman problem, satisfiability of boolean formulas, the graph coloring
problem, the bin packing problem, the knapsack problem, and integer programming. See
Garey and Johnson [GJ] for more information about N P-completeness, including a 100
page collection of some of the more significant N P-complete problems. The class of N P-
complete problems contains a rich variety of problems that have been extensively studied

and yet there are no known subexponential time algorithms for any N P-complete problem.
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As a result it is almost unanimously believed that proving a problem N P-hard implies the
problem has no polynomial time solution.

An N P-complete problem we will use later is the 2-in-4 SAT problem [Sch]. An
instance of 2-in-4 SAT is a set of boolean variables X = {zi,23,...,2,} and a set of
clauses C = {C1,Cy,...,Cpn,}. Each clause is a set of four variables from X. The 2-in-4
SAT problem is determining whether there is a truth assignment which assigns true to

exactly two variables per clause.

3. NP-completeness Results

We prove that the problem of deciding whether a three dimensional table has a zero
restricted rounding is N P-complete. We also prove that the problem of deciding whether
a three dimensional table has a controlled rounding is N P-complete. This trivially implies
N P-completeness for tables of dimension greater than three. In fact these rounding prob-
lems remain N P-complete even if sheet sums instead of row sums are required to be zero
restricted.

To prove that the zero restricted three dimensional rounding problem is N P-hard we
will exhibit a polynomial time transformation that takes an instance A of 2-in-4 SAT
and creates a three dimensional table 7. The table T' has the property that it has a
zero restricted rounding if and only if the instance A, of the 2-in-4 SAT problem, has a

satisfying assignment.

Theorem 1 The zero restricted three dimensional rounding problem is N P-complete.

proof: The problem is in NP because it is trivial to verify that a potential rounding is
zero restricted. To show that the problem is NP-hard, let X = {21, 22,...,2,} be a set
of variables and C = {C1,Cs,...C}, } be a set of clauses of an arbitrary instance of 2-in-4
SAT. We will denote the jth occurrence of variable ; by :rf ~1 and the number of times
z; appears by #z;. Let V = {1311 <1< n0<j < #z; —1} be a set with a distinct
element for each variable occurrence. V has 4m elements. We are now going to construct
a 4m by 4m by 5m table 7. Let T(«a,f,v) denote a single entry in this table where o
and f are elements of V and v is an element of V U C. That is the first two indices are

variable occurrences and the third index is either a variable occurrence or a clause. There



will be a total of 8m nonzero entries in T, 2 for each variable occurrence in the 2-in-4

1

SAT instance. All the entries will be 0 or 5

and the rounding base will be 1. If variable

J 1

zd occurs in clause C}, then set T(2?, 2!, Ct) to be 5. Rounding an entry T(zd, !, Cy) to

1 corresponds to assigning z; true and rounding an entry 7'(z?, z!,C}) to 0 corresponds

L
2

to assigning »; false. Therefore each sheet T'(, %, C) has four entries each with value
and the sheet sum of T'(x,%,C}) is 2. The restriction that exactly two literals for clause
C) must be assigned true is analogous to the restriction that exactly two out of the four
entries on sheet T'(%, *, C) must be rounded to 1.

Now we must guarantee that every occurrence of z; is assigned the same truth value.

(j+1)mod#z;

For each variable occurrence ] set T'(z], z; , &) to i— All other entries in T are

zero. Then each sheet of the form T(af , %, %) or T'(x, a:{ ,*) has two entries and a sheet sum
of 1. This creates a cycle which guarantees that for each z; all the nonzero entries of the
form T(:Lf , af , Cr) are rounded in the same direction. To see this let zJ be an occurrence
of some variable 2, we will ignore subscripts for the moment. Without loss of generality we
will assume that (j+ 1) mod #z equals j+ 1. Also assume that 24 occurs in clause Cj and
23+ occurs in clause €. Then by the zero restrictedness condition on sheet T(a7, *, ) we
have that T(z?, 27, C}) and T(z7, 277!, 27) must be rounded in opposite directions. Also
by the zero restrictedness condition on sheet T(x, /1, x) we have that T(z/+1, 29+, Cy)
and T(z?, 29+, 27) must be rounded in opposite directions. Therefore T(z?,27,Cy) and
T(z9*1, 2911 C)) must be rounded in the same direction. By repeatedly applying this
argument all entries of the form T(z7, 27, Cy,) must be rounded in the same direction.
This construction gives us a one to one correspondence between zero restricted round-
ings of T' and satisfying assignments of the 2-in-4 SAT instance. Assigning a variable
z; true corresponds to rounding to 1 all nonzero table entries of the form T(:z:f ,wf , Ck)

and rounding to 0 all table entries of the form T(a:g, :cgjﬂ)mc’d#m,x{). Assigning z; false

corresponds to rounding to 1 all table entries of the form T('z:f , acgj +1)mod#e; , :L'f ) and to 0

all table entries of the form T(.’c{, 'L{, Cr). &

We now turn our attention to the controlled three dimensional rounding problem. To

show the controlled rounding problem is in N P we need the following standard lemma [PS].
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Lemma 1 Let Az = b,a; > 0 be a linear program, where ¢ = (z1,...,%5) is a column
vector of indeterminants. If this linear program has a solution then it has a solution Z
where the columns of 4, which correspond to the nonzero entries of &, form a linearly

independent set.

Theorem 2 The controlled three dimensional rounding problem is N P-complete.

proof : To prove membership in NP let T' be a three dimensional table. For this problem
we may assume without loss of generality that each dimension is of size n and the rounding
base is 1 [Cox]. For convenience we will consider T' as one dimensional vector of size n3.
A base 1 rounding s of T' can then be thought of as a 0-1 vector of length n3. Let
{81,82, .., 8m} be the set of zero restricted roundings for T' and let S be a n® by m matrix

whose ith column is s;. Let w = (wy,...,wn) be a vector of indeterminants of size m. T

has a controlled rounding if and only if there is a solution to the following linear program:

m

Z w; =1

i=1
Sw =T

w; >0, ie{l...m}

In these formulas the value of w; represents the probability that solution s; is generated.
The second equation then expresses the restriction that the rounding must be unbiased.
We cannot construct the matrix S in polynomial time since m may be exponentially larger
than n. Yet we can nondeterministically determine whether this linear program has a
solution without explicitly constructing S. This follows from the lemma 1. Since the rank
of S is at most n3, if the above linear program has a solution, then it has one where at
most n® + 1 of the w;’s are nonzero.

To solve the controlled rounding problem nondeterministically guess a number £,
1>k >n®+1, and k 0-1 vectors ay, as, ..., ar each of size n. Verify in polynomial time
that each a; is a zero restricted rounding of T'. Let A be the matrix whose ¢th column is

a; and v = (vy,...,v;) be a k-dimensional vector of indeterminants. Then check whether

5



the following polynomial sized linear program has a solution:

k
Z v; =1
=1
Av =T

v; 20, 'I,E{llu}

Using the ellipsoid method of Khachian a linear program can be solved in polynomial
time [PS].

To show that the controlled rounding problem is N P-hard we will exhibit a polynomial
time transformation from the 2-in-4 SAT problem to the controlled three dimensional
rounding problem. This transformation is identical to the one used in theorem 1. Let
{z1,22,...,Zn} be a set of variables and {Cy, Cy, ...Cm } a set of clauses of an instance of the
2-in-4 SAT problem. Notice that if § is any satisfying assignment for this instance, another
satisfying assignment § can be constructed from § by reversing the truth assignment of each
variable. A identical phenomenon occurs in the table T' constructed by the transformation.
The table T' has 8m nonzero entries. Every zero restricted rounding o of T rounds 4m
of the nonzero entries to 1 and 4m of the nonzero entries to 0. If o is a zero restricted
rounding of T then another zero restricted rounding & can be constructed from o by
rounding each nonzero entry of T in the opposite direction. If T has a zero restricted
rounding ¢ then T has a controlled rounding. The controlled rounding can be obtained by
picking o with probability % and & with probability %— Therefore T' has a zero restricted
rounding if and only if it has a controlled rounding. We have already shown in theorem 1
that that 7' has a zero restricted rounding if and only if the original 2-in-4 SAT instance
was solvable. Therefore we may conclude that the controlled three dimensional rounding
problem is N P-hard. &

It is interesting to note that the table T' constructed in the above theorems has only one
nonzero entry in each row, and hence only the sheet additivity conditions were necessary

to prove the problems N P-hard. This implies the following two corollaries.

Corollary 1 Given a three dimensional table T' and a rounding base B it is N P-complete

to decide whether T has a rounding that preserves sheet sums.
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Corollary 2 Given a three dimensional table 7' and a rounding base B it is N P-complete

to decide whether 7' has an unbiased rounding that preserves sheet sums.

4. Conclusions and Open Questions

It has been shown that some three dimensional tables do not have zero restricted
roundings [CCE]. We have proved that it is very unlikely that there is an efficient algorithm
that can decide which tables have zero restricted roundings. This implies that it is also very
unlikely that there is an efficient algorithm that generates a zero restricted rounding for
those three dimensional tables that have zero restricted roundings. For such an algorithm
could be used to decide which tables had zero restricted roundings.

Our results indicate that any attempt to develop an efficient algorithm for the general
three dimensional zero restricted rounding problem will probably be unsuccessful, since
such an algorithm would imply that all N P-complete problems are efficiently solvable.
This does not rule out the possibility that important special cases of the three dimensional
zero restricted rounding problem are efficiently solvable. One special case that is of interest
is when the size of one or two of the dimensions is small.

Another avenue for further investigation is approximation algorithms. For many ap-
plications we would be willing to settle for a rounding that was in some sense almost zero
restricted or almost controlled. One possibility for loosening the restrictions would be by
relaxing the rounding constraints. For example, we may not want to require that multiples
of the rounding base remain fixed. We could allow these entries to be rounded to one of the
two adjacent integer multiples of the rounding base. With these constraints it is not known
if all three dimensional tables possess zero restricted roundings [Cox]. We conjecture that
there are tables of higher dimension that do not possess zero restricted roundings under
these constraints. We further conjecture that it is N P-complete to decide which of these

tables possess zero restricted roundings under these constraints.
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