A PARALLEL PIVOTAL ALGORITHM FOR SOLVING
THE LINEAR COMPLEMENTARITY PROBLEM

by

Karen M. Thompson

Computer Sciences Technical Report #707

July 1987

A Parallel Pivotal Algorithm For

Solving the Linear Complementarity Problem

Karen M. Thompson
Computer Sciences Department

University of Wisconsin, Madison, Wisconsin 53706

Abstract We propose a parallel implementation of the classical Lemke’s algorithm
for solving the linear complementarity problem. The algorithm is designed for
a loosely coupled network of computers which is characterized by relatively high
communication costs. We provide an accurate prediction of speedup based on a
simple operation count. The algorithm produces speedups near p, where p is the
number of processors, when tested on large problems as demonstrated by computa-
tional results on the CRYSTAL token-ring multicomputer and the Sequent Balance

21000 multiprocessor.

Key Words: Parallel algorithms, Lemke’s algorithm, linear complementarity prob-
lem, distributed algorithms.

Abbreviated title: Parallel pivotal solution of LCPs.

This material is based on research supported by National Science Foundation Grants
DCR-8420963 and DCR-8521228 and Air Force Office of Scientific Research Grants

AFOSR-86-0172 and AFOSR-86-0255.

1. INTRODUCTION

In this paper we propose a parallel distribution of Lemke’s algorithm,
[Lemke65], for solving LCPs. This distribution is designed to exploit a multi-
computer architecture where a number of processors are loosely coupled such as
CRYSTAL [DeWitt et al84].

Parallel distribution of algorithms such as Lemke’s algorithm allows for solving
much larger problems in shorter time. See [Schnabel84] for a discussion on paral-
lel optimization as well as a survey of work done in parallel optimization. Bhide
proposed a distributed algorithm for the simplex algorithm [Finkel et al86]. Pre-
liminary testing was done on small LPs. The initial results showed communication
overhead dominated the calculations.

Phillips and Rosen propose a parallel algorithm for solving the LCP based on
solving a multiple cost row linear program [Phillips & Rosen86]. This algorithm
handles an LCP when M is indefinite. However, they suggest using Lemke’s algo-
rithm when M is positive semidefinite. They present computational experience on
the CRAY X-MP/48.

A major trend in computing has been the creation of large networks of com-
puter workstations. See [Agrawal & Jagadish86] for a model for parallel process-
ing on these networks. These networks have relatively high communication costs.
Therefore it is crucial that algorithms designed to run on these networks minimize
the need to communicate. The proposed parallel implementation of Lemke’s algo-
rithm is tested on the CRYSTAL multi-computer. CRYSTAL is a set of twenty

1

VAX — 11/750 computers with 2 megabytes of memory each connected by a 80
megabit/sec Proteon ProNet token ring. We also compare computational results
with an implementation on a tightly coupled multiprocessor, the Sequent Balance
21000. This machine consists of eight processors running at 10 MHz, with a 8
kbyte cache sharing a global memory via a 32-bit bus, with 8 megabytes of physical
memory.

Section 2 will discuss Lemke’s Algorithm. Section 3 will discuss the imple-
mentation of a parallel Lemke’s algorithm designed for multi-computers. Finally,
Section 4 will present a model for predicting speedups. Computational results are
compared with the expected speedups. A comparison of results with the Balance
21000 will be presented.

We briefly describe our notation now. For a vector z in the n—dimensional real
space IR™, z will denote the vector in IR™ with components (z4); = max{z;,0},
i = 1,...,n. RMX™ will denote the set of all m x n real matrices. For A €
IRmxn,AT will denote the transpose, A; will denote the ith row, A ; will denote

the jth column and a, j the element in row ¢ and column j.

2. LEMKE’S ALGORITHM FOR SOLVING THE LCP
Pivotal methods are based on moving from one vertex to another on a polyhe-
dral set S where
S:={z|z>0,Mz+q >0} (2.1)
Mangasarian has shown that the LCP is equivalent to a constrained minimization

of a concave function [Mangasarian78] which we state in the following lemma.

2

Lemma 3.1. (LCP equivalence with a concave minimization problem) Let S be
defined as in (2.1). Then z solves the LCP if and only if
n n
0=> %~ (G~ (MZ+ 0y =min 3~z — (5~ (Mz+0))4
i=1 =1

Proof:

First we note that the objective function in the minimization problem is non-
negative on S. Now suppose Z solves the LCP. We need only show that 0 =
n — — —
20 % — (2 — (MZ + q)j) 4
=1
Case I:

Suppose z; = 0. Then
Zi— (% — (MZ+q);)4 = —(—=(Mz + ¢);)+ =0

since

(Mz +q); > 0.

Case II:

Suppose Z; > 0. Then
7 — (2 —(Mz2+q);)4 =2 — ()4 =0

since

(Mz +q); =0.

Therefore

n
0= % - (5 — (Mz+q);)+.
1=1

Hence Z solves the minimization problem. We now show that if Z solves the mini-
mization problem that Z solves the LCP.

Suppose Z solves the minimization problem. Then z; ~ (z; — (MZ +q);)4+ =0
for:=1,2,...,n.

Case I: Suppose Z; —(Mz +q); 2 0= (Mz+4q); =0= 2, > 0.

Case II: Suppose z; — (MzZ+q); < 0= %, =0= (Mz+q); > 0.

Therefore # solves the LCP. |

The LCP has a solution at a vertex as a consequence of the following lemma

found in [Mangasarian78].

Lemma 2.2. Ifthe linear complementarity problem has a solution, it has a solution

at a vertex of S.

Proof :

Because S is contained in the nonnegative orthant, it does not contain any
straight lines (that go to infinity on both ends) and hence by Corollary 32.3.2 in
[Rockafellar70] the concave minimization problem must have a solution at a vertex

of S, which by Lemma 2.1 must solve the LCP. [}

4

Lemke’s algorithm [Lemke65] is based on the following equivalence obtained by

enlarging the space of the problem by adding artificial variables.

(w=Mz+ezg+qg>0)
([Mz4+¢>0)
wq = 2
$ z2>0 = ;
(2,29) >0
| z(Mz+¢)=0 w
(Z7z0)< >=O
\ wQ J

This representation has the advantage that we can easily identify a feasible

point. Before we specify the algorithm we need to state the following definition.

Definition 2.1. The points (z, zp), (w,wq) are said to be almost complemen-

tary if z;w; = 0 except for at most one 1.

We are now ready to specify the algorithm due to Lemke.

Algorithm 2.1. (Lemke’s Algorithm)

Step I Add an artificial nonbasic variable zg and an artificial basic variable
wq = 2. Increase the value of zy until the most negative w; becomes zero. This
corresponds to pivoting on the row with most negative ¢; and column z3. The
problem is now feasible and almost complementary.

Step II Exchange a nonbasic variable and some basic variable while main-
taining feasibility and almost complementarity. Therefore the nonbasic variable
that enters the basis is the variable complementary to the variable which just be-
came nonbasic. Continue this step until the process terminates at a solution or an

unbounded ray.

The LCP is feasible if S is nonempty. Lemke’s algorithm will converge to a

solution if the LCP is feasible and M is copositive plus or a P- matrix.

3. IMPLEMENTATION OF PARALLEL LEMKE

The time consuming portion of Lemke’s algorithm is the pivoting step. The
pivoting step is 0(712) therefore when n is large each iteration will be very time
consuming. The idea then is to distribute the pivoting among r processors in the
hopes of obtaining a solution r times as fast.

Suppose we're trying to solve the LCP and define
A=[M e g4

where € is a vector of ones. Then A is the pivot matrix and 'A.(n +2) is the right
hand side where n is the dimension of the LCP. Suppose that r is the pivot row and

s is the pivot column, then for ¢ # r, 7 # s we have

- Gi50r g
a; j

— e —
i arsg

The key to parallelizing Lemke’s algorithm is to note that when updating the
pivot matrix we need only elements in the pivot row and the pivot column. There-
fore there are two natural ways to divide the pivot matrix, in horizontal blocks or
in vertical blocks. Then each horizontal or vertical block will be updated simulta-

neously in separate processors.

If we divide the pivot matrix into horizontal blocks each processor has the por-
tion of the pivot column it needs to update all the elements in its block. Therefore
each processor needs only the pivot row to complete the update. Likewise if we di-
vide the pivot matrix into column blocks we need only the pivot column to complete
the update.

Because we are considering an implementation on a loosely coupled network
with relatively heavy communication costs we would like to avoid unnecessary com-
munication. In Lemke’s algorithm we must determine the pivot column and row.
The pivot column is always the column corresponding to the complement of the
variable which last became nonbasic. Therefore locating the pivot column is a sim-
ple matter of keeping track of the location of the variables. This is easily done
independently in each processor. However, we find that the horizontal partition
results in extra communications to complete the ratio test necessary to determine
the appropriate pivot row.

The pivot row is selected by employing a ratio test as follows

__ argmin {__ai,n+2l

S 1<i<n a;g

a;s < O}

If the A is partitioned in horizontal blocks each processor would find the minimum
ratio of the portion of the pivot column it owned. Then a communication to a master
processor would be necessary whereby this processor would determine the minimum
of all ratios and notify the appropriate processor with another communication.
The processor which owned the pivot row would then proceed to share it with all

7

other processors. Therefore this results in 2(p — 1) + 1 communications, the first
p — 1 communications are needed to send the master the minimum ratio, the next
communication to notify the proper processor, and finally the last p— 1 to send the
pivot row.

If the pivot matrix was divided in vertical blocks then each processor either
waits for or sends the pivot column. Then if each processor holds a copy of A.(n +2)
each processor can independently determine the pivot row and proceed with the
update. Therefore the vertical division saves p communications.

We suggest the following scheme. Each processor j holds a column block of the
matrix A and a copy of 4 ;, 9 in its memory. Then processor j proceeds through

the following steps.

Step I. Determine the pivot column s
If 3 i3 in memory
send pivot column
else
receive pivot column
Step II. Ratio Test
Step III. Pwvot
Step IV. If complementarity is satisfied then
stop
else

go to step I

8

4. COMPUTATIONAL EXPERIENCE

Table 4.1 displays the time in seconds to solve three randomly generated prob-
lems of dimension 50, 200, and 425 on the CRYSTAL multi-computer. The prob-

lems were tested using one to eight processors.

Table 4.1

CRYSTAL TIME IN SECONDS

PTocessors Problem Dimension

P 50 200 425

1 1.8163 90.8340 629.7770
2 1.0159 46.5438 316.573

3 .7808 31.6945 212.6680
4 6771 24.6202 161.5050
5 .6261 20.4335 129.9620
6 5972 17.6500 110.2570
7 .6011 15.7600 96.0057

8 .6164 14.2546 86.1556

To assess the speedup from using p processors we define the following measure-

ment of speedup.

Computing time on one processor

Sp:

B Computing time using p processors.

9

An upper bound on Sp would be p. This would occur if there was no overhead
due to the parallelism of the algorithm. Therefore a goal in producing an efficient
parallel algorithm would be to try to approach a speedup of p for p processors.

Expected speedup based on an elementary operation count for the proposed

algorithm will be defined as

ge Expected time for one iteration on one processor
p Expected time for one iteration on p processors

Note that we have both serial and parallel components of the algorithm. Finding the
pivot column and finding the pivot row are repeated independently in each processor
and therefore can be thought of as serial. This step is O(n). Pivoting is done in
parallel and takes -2—%?- steps. We also must take into account communication costs.
At each iteration one processor sends a pivot column in k(n) buffers to the p — 1
remaining processors. Here k(n) is the number of buffers needed to send a vector
of n real numbers and is given by k(n) := [2]. Therefore k(r) is the smallest

integer greater than or equal to & where s is the number of elements that can be

transmitted by one buffer. Therefore define

g€ . 2n2 + Bn _ 2n + f
P 9n2/p+ Bn+k(n)(p—1) 2n/p+B+vk(n)(p—1)/n

where £ is an unknown parameter and « is a ratio of time for communication divided

by the time for one operation. Using this definition we can maximize speedup for

fixed n by using p = 4/ 5 kzn X n processors. A least squares fit over observed data

10

gives us B = 4.4014 and v = 143.5467. Therefore we would expect siaeedup to be
maximized when p is 5.9, 16.7 and 28.9 for dimensions 50, 200,and 425 respectively.
Clearly, p must be an integer number. Figure 4.1 shows the percentage of the
maximum speedup we obtain for a fixed dimension given the number of processors
p. We see that the curve is steep for p < p where p =, /;ﬁm x n. However, for
p > p the curve decreases slowly. Therefore when there is a question of rounding
p one should round up rather than down. Table 4.2 compares expected speedup
with the speedups obtained on test problems for problem sizes 50, 200, and 425.
Figures 4.2, 4.3 and 4.4 display table 4.2 graphically. Finally figure 4.5 graphs the
computed speedups for the different dimensions so we can see that as n grows large
the speedup approaches p for p << n.

We would expect to get better speedups on a shared memory machine like the
Balance 21000. The implementation on Balance 21000 is similar except we save on
communication costs because the pivot column is in shared memory. Table 4.3 com-
pares computed speedups on Balance 21000 with computed speedups on CRYSTAL
for problem sizes 50,200,425. We see that the CRYSTAL speedups drop off faster as
we move to more processors than the Balance 21000 speedups. This drop is noticed
almost immediately for the smaller dimensioned problem, however CRYSTAL is

competitive with Balance 21000 at dimension 425 through seven processors.

11

- O mQrHZO0OR oY

mNogEmvun ZOaZ-=X» <

100, o~ -
TN e B
/ ~
N -~
/ N P P s
90 / N g
/ ,,’\ e -
/ TN -
/ \ AN -, -
80 - // \\) e
/ Ve)< AN
/
70 4 / ,/ h N
/ / AN
/ ‘ N
/ d N
60 | / N
| j 4 >
l / > o\
| /
504 J/
/ / /
| ; /
| /
404 ; A) dimension 50
P /
| // B) dimension 200
30 - // C) dimension 425
Ly
l" //
204
/
//
10 /
/
O] 1 I] i 1 1] 1 1 1 1] 1 1

1 1 1
0123 435

6 7 8 9 10111213 14 1516 17 18 19 20

NUMBER OF PROCESSORS

Figure 4.1

Percentage of Maximum Speedup

(OB [\

(=)

(91 S - L A

(=]

Table 4.2

EXPECTED VERSUS COMPUTED SPEEDUPS

50 200 425
Sp Sy Sp Sy Sp Ss
1.7878 1.8227 1.9515 1.9646 1.9893 1.9850
2.3262 2.4009 2.8659 2.8760 2.9613 2.9486
2.6824 2.7458 3.6894 3.7198 3.8994 3.8845
2.9009 2.9087 4.4453 4.4857 4.8458 4.7875
3.0413 2.9467 5.1464 5.1677 5.7119 5.6529
3.0216 2.9065 5.7635 5.7634 6.5597 6.4767
Table 4.3

CRYSTAL VERSUS BALANCE SPEEDUPS

50 200 425
CRYS Balan CRYS Balan CRYS Balan
1.7878 1.8108 1.9646 1.8891 1.9959 1.9893
2.3262 2.3928 2.8760 2.8309 2.9613 2.9762
2.6824 3.0454 3.7198 3.6932 3.8994 3.9860
2.9009 3.3500 4.4857 4.4933 4.8945 4.9521
3.0413 3.7222 5.1677 5.4505 5.7119 5.8777
3.0216 3.9411 5.7634 6.3699 6.5597 6.7854

13

wCoOmmYw

14

7 -
6 - dimension50 @ ————-

expected @ e
5 4
4
3 | _/_«.::.:’_’_:.-..—_‘_,—_:_"_:

=77
P
2 4 ///
%
'/
i

7
14
O T I T T I | ,

NUMBER OF PROCESSORS

Figure 42 CRYSTAL Speedups: Expected versus Computed

"Nl wlesResla B!

15

7 -
6 4 dimension 200 @ ————-
expected @ oo P
7
o
e
e
5 i
S
ra
7
A
!”/
/’/
4 - ,//
/’l/
e
S
S
N
R
3 - %
v
%
0
/’/
//
2 4 //
14
O i i i I I i i
0 1 2 3 4 5 6 7
NUMBER OF PROCESSORS
Figure 4.3 CRYSTAL Speedups: Expected versus Computed

SOOI Y w

16

7 -
6 - dimension 425 ————~- 7
expected e A
///'/
5 - /¢
a
4/
él
/I
g
74
- /
/4
78
/’
/
31 /
/
2 -
1-
0 i i I I I I
° '1 2 3 4 5 6 7
NUMBER OF PROCESSORS

Figure 4.4 CRYSTAL Speedups: Expected versus Computed

b NalwleslesBa-R7,

A) dimension 50
B) dimension 200
C) dimension 425
6 - D) linear
5 -
4
3.
2 4
14
O i I 1 I T
0 1 2 3 4 5

NUMBER OF PROCESSORS

Figure 4.5 CRYSTAL Speedups

17

References

Agrawal, R. and Jagadish, H. V. (1986) Parallel Computation on Loosely-Coupled
Workstations, Computer Technology Research Laboratory Technical Report,
AT&T Bell Laboratories.

DeWitt, D. J., Finkel, R. and Solomon, M. (1984) The CRYSTAL Multicomputer:
Design and Implementation Experience, Computer Sciences Technical Report
#553, University of Wisconsin-Madison.

Finkel, R., Barzideh, B., Bhide, C. W., Lam, M. O., Nelson, D., Polisetty, R.,
Rajaraman, S., Steinberg, I., Venkatesh, G. A. (1986) Experience with Crys-
tal, Charlotte and Lynx Second Report, Computer Sciences Technical Report
#649, University of Wisconsin—-Madison.

Lemke, C. E. (1965) Bimatrix Equilibrium Points and Mathematical Programming,
Management Science, 11, 681-689.

Mangasarian, Q. L. (1978) Characterization of Linear Complementarity Problems
as Linear Programs, Mathematical Programming Study 7, North Holland,
Amsterdam, The Netherlands, 74-87.

Phillips, A. T. and Rosen, J. B. (1986) Multitasking Mathematical Programming
Algorithms, Computer Science Department Technical Report #86-10, Univer-
sity of Minnesota.

Rockafellar, R. T. (1970) “Convex Analysis”, Princeton, University Press, Prince-
ton, New Jersey.

Schnabel, R. B. (1984) Parallel Computing in Optimization, Department of Com-

puter Science Technical Report #CU-CS-282-84, University of Colorado.

18

