A PARALLEL ASYNCHRONOUS SUCCESSIVE
OVERRELAXATION ALGORITHM FOR SOLVING
THE LINEAR COMPLEMENTARITY PROBLEM
by

Karen M. Thompson

Computer Sciences Technical Report #705

July 1987

A PARALLEL ASYNCHRONOUS SUCCESSIVE
OVERRELAXATION ALGORITHM FOR SOLVING

THE LINEAR COMPLEMENTARITY PROBLEM

Karen M. Thompson
Computer Sciences Department

University of Wisconsin, Madison, Wisconsin 53706

Abstract We present a parallel asynchronous successive overrelaxation algorithm
for the solution of symmetric linear complementarity problems and linear programs.
A distinguishing feature of this algorithm is that processors need not communicate
after each update of the solution vector and therefore processor idle time can be
avoided. The proposed parallel algorithm is applied to finding least 2-norm solu-
tions of linear programs. Improvement is observed over the synchronized version of

the algorithm, the parallel gradient projection successive overrelaxation algorithm.

Key Words: Parallel algorithms, SOR, gradient projection, linear complementar-
ity problem, linear programming

Abbreviated Title: Asynchronous SOR Solution of LCPs and LPs.

This material is based on research supported by National Science Foudation Grants
DCR-8420963 and DCR-8521228 and Air Force Office of Scientific Research Grants

AFOSR-86-0172 and AFOSR-86-0255.

1. INTRODUCTION

In this chapter we propose a parallel asynchronous successive overrelaxation

algorithm to solve the linear complementarity problem.
Mz+q¢g>0,2>0,2(Mz+4q)=0

where M is a n X n symmetric matrix and ¢ is a vector in IR™. The serial successive

overrelaxation (SOR) iterate is as follows:
A1 = (zz - wE(Mzi +q+ K(zH'1 - ZZ)))+

where E is a positive diagonal matrix in IR?*™ ,w is some positive number, and K
is some substitution operator such as the lower or upper triangular part of M.

Related work has been done on parallel iterative methods for solving the system
of equations

Az = b

Missirlis, [Missirlis85] proposed a Jacobi~type parallel iterative scheme based on
finding an approximation of the Neumann series to A~1l. Conrad and Wallach,
[Conrad & Wallach77], propose a parallel Gauss—Seidel method based on breaking
the matrix A into blocks. They show convergence for diagonally dominant systems.
An asynchronous algorithm was proposed by [Barlow & Evans82] for matrices A

which have the special property

Previously proposed parallel SOR algorithms for solving the LCP have been
described in [Mangasarian & DeLeone86a] and [Mangasarian & DeLeone86b]. Both
methods required synchronization after each update of z. The proposed algorithms
require communications only after asynchronous multiple updates of z. Pang and
Yang, [Pang & Yang87], propose a parallel asynchronous algorithm which breaks
the matrix M into blocks and makes multiple iterations in parallel. The proposed
algorithm is an asynchronous version of [Mangasarian & De Leone86a).

The significance of developing an asynchronous algorithm lies in the need to
develop efficient parallel algorithms. Ideally, the idle time of all processors as well
as redundant computing time should be zero. If an algorithm consisted of p inde-
pendent tasks which required the same amount of computing time we could assign
the work to p different processors and complete the work p-times as fast. However,
optimization algorithms have serial components, thereby requiring communication
between the processors. If communication must occur often then communication
costs become a large part of the computation time. Therefore it’s desirable to com-
municate as little as possible without degrading the convergence properties of the
algorithm.

In this chapter we propose a more general version of GPSOR presented in
[Mangasarian & De Leone86b], that can be implemented in an asynchronous way.
Like Pang and Yang’s work we divide the matrix M into blocks and perform multiple

iterations in parallel. However, Pang and Yang’s method requires a two stage regular

2

splitting of M which can only be guaranteed for positive definite M. In contrast
our method requires positive semidefinite M.

In Section 2 we discuss the previous work of Mangasarian and DeLeone found in
[Mangasarian & Del.eone86b]. Our principal contribution is contained in Sections
3, 4, and 5 where we discuss the proposed Asynchronous SOR (ASOR) algorithm.
Section 3 develops optimality conditions for the proposed ASOR. In Section 4 we
specify the algorithm and present convergence results. Finally in Section 5 compu-
tational results are presented based on tests performed on generated linear programs
formulated as symmetric LCPs.

We briefly describe our notation now. For a vector z in the n—dimensional real
space IR™, 7z will denote the vector in IR with components (z4.); = max{z;,0},
¢ = 1,...,n. The scalar product of two vectors z and y in IR" will be simply
denoted by zy. For z € R", || z ||= (sz)% is the standard Euclidean norm.
We also have || z ||j/= (z,Mz)l/z. IR™X™ will denote the set of all m x n real
matrices. For A € IRmxn,AT will denote the transpose, A; will denote the ith
oW, Az’j the element in row ¢ and column j, and for 7 € {1,...,m},J € {1,...,n},
A7 will denote the submatrix of A with rows 4;, ¢ € Z, while A7 7 will denote the

submatrix of A with elements Az'j’ el e J.

2. THE PARALLEL GPSOR ALGORITHM

We start by recalling that the LCP is equivalent to finding z € IR™ such that
z = (2 —w(Mz+ q))4 for some w >0 (2.1)

The proof of this can be found in [Mangasarian77]. The above relationship suggests

an obvious algorithm. Given e R™,
At = (zz w(Mzi +a)+

If M is symmetric this algorithm is a gradient projection algorithm. We can modify
this algorithm by updating z component by component and using the most current
information to update subsequent components. Therefore the modified algorithm
would be
§z) = (2 — wB(Mz + ¢ + K(s(2) — 2)) (2:2)
where w is some positive number, F is a positive diagonal matrix in IR"®*" and K
is some substitution operator such as the strictly lower or upper triangular part of
M. Clearly, a fixed point of this algorithm also solves the LCP.
The GPSOR algorithm is based on the following optimality conditions pre-

sented in [Mangasarian & De Leone86b].

Theorem 2.1. (GPSOR optimality condition) Let M, K ,E € IR**", ¢ € IR",

w > 0 such that E is a positive diagonal matrix.

(a) If z solves the LCP and (wE)~! + K is positive definite then p(z) = z where
p(2) is a solution of (2.2).

(b) If p(z) solves (2.2) and p(z) = z then z solves the LCP.

Proof:

See [Mangasarian & De Leone86b] 1

Consider the SOR iterate (2.2). If we choose K = L, where L is the strictly
lower triangular part of M, we see that p§-+1(z) replaces z; during the computation
of p§'+1 (z) for all I > j. This selection of K produces an algorithm which is sequential
in nature. The idea Mangasarian and De Leone use to develop a parallel GPSOR
is to find an appropriate K which will allow the algorithm to be split into parallel
parts. Therefore K is chosen to be a block diagonal matrix consisting of the strictly
lower triangular part of the principal submatrix of each horizontal partition of the
matrix M. Then the new algorithm can be easily distributed on to a number of
processors equal to the number of submatrices in the horizontal partition of M.
This choice of K was first proposed in [Mangasarian & De Leone86a] for a different
SOR procedure which didn’t involve a stepsize. Therefore, to get convergence an w
restricted to an interval depending on E and K must be chosen. In practice this
resulted in small w which resulted in a slow algorithm. GPSOR allows a choice of
w in the range (0,2) when M is positive semidefinite. To specify parallel GPSOR,

partition the matrix M into p contiguous horizontal blocks as follows:

- le

where the blocks MIj correspond to the variables zl—j and {I,7y,...,Ip} is a

consecutive partition of {1,2,...,n}. Now partition M7. as follows:
J

My, =1 7. My
z; [I, IJIJG]

where Z¢ is the complement of Z; in {1,2,...,p}. Therefore, M+ .7. is a principal

square submatrix of M. Now

Mz 7. =Ly.7.+D7.7.+UT.7.
IJ,I] .IJI] I]I] I]IJ
where LI]- Ij and UI]- Ij are the strictly lower and upper triangular part of M- IjI"
. 1
and DIjIj is the diagonal part of Ml-j Ij'

Now define K as follows:
Inn

L1,z
K = 22 (2.3)

L1pTy
Algorithm 2.1 can now be performed for each row block .Ij for y=1,...,psimul-

taneously. We are now ready to specify the algorithm.
Algorithm 2.1 Parallel GPSOR Algorithm for the LCP
Let {Z7,Z5,...,Zp} be a consecutive partition of {1,2,...,n} ,let E be a pos-
itive diagonal matrix in IR™®*"™ and let 20 > 0. For:=0,1,2,... do the
following

Direction Generation Define the direction

AN
' . ‘ pI1 (z) le
d' = p(*) -2 = (2.4)
iy _ 1
such that p(z*) satisfies

6

.zi = (z7., —wE+. 4+ (M .zi
pz]() (;r] .I]I](I;

g7 + Ly 7. (51— 2 2.5
a7; + L1,7,(I; IJ)))+ (2.5)

for y=1,...p wherew > 0 is chosen so that for some v > 0

2 (WEL) ™ + Lpz)er; 2 vl 2 I Vo, (2.6)

forj=1,...,p
Stop if dt = 0, else continue.

Stepsize Generation

where
fE) = min{f(e 4 A A 2 0) (27)

The direction generation can be performed in parallel on p processors. The
stepsize generation is performed and the new value of 211 is shared between D
Processors.

The following results are from [Mangasarian & De Leone86b].

7

Theorem 2.2. (Convergence of the Parallel GPSOR Algorithm) Either the se-
quence {zz} generated by the Parallel GPSOR Algorithm 2.1 terminates at a solu-

tion of the LCP or each of its accumulation points solves the LCP.

Corollary 2.6. Condition (2.6) of Algorithm 2.1 hold with either of the following

two assumptions:

(1)0<w< min min2/E; > |M,;|
le,...,pzefj lel'j

I#1
(i) 0 < w < 2, E = D~ and M is positive semidefinite.

3. OPTIMALITY CONDITIONS FOR ASOR

Parallel GPSOR must be synchronized after every iteration. On a loosely
coupled network this would involve communicating information after every iteration.
Because the SOR iteration is relatively cheap communication costs may be a large
proportion of the total time, thus causing the algorithm to be inefficient. Therefore,
it would be advantageous to construct an algorithm that is asynchronous.

The proposed asynchronous algorithm is a multi-sweep GPSOR. The idea of
the algorithm is that each processor makes multiple updates of zl—j before sharing

information. Assuming K is defined as in (2.3) we have

where

kj kj— k s
SAQS (ij () —wEr, 1. (Mg, PI (2)

bag, + L 1(o7) OF I’ ‘@), (3.)

We now develop optimality conditions for ASOR.

Theorem 3.1. (Optimality Conditions for Asynchronous SOR)

Let M,K,E € R"*X™ g€ IR", w > 0 such that E is a positive diagonal matrix.
(a) (Necessity)If z solves the LCP and (wE) ™1+ K is positive definite then p(z)=z.
(b) (Sufficiency) If p(z) = z, (wE’Ij)~ 14 LIjIj is positive definite and

Mz.1,
(wEI I)~ -14 LI _7: - ——-——2-—-‘— is positive definite Vj then z solves the LCP.

Proof:

Part (a) follows from the part (a) in Theorem 2.1. We now prove part (b).
Suppose pI], (2) = zl-j V. If kj = 1 Vj then the result follows from part
J
b of Theorem 2.1 because this is equivalent to communicating after each update.
L
Therefore we will show that if pl—]‘(z) = sz then p}l-_ = sz in which case the
J J
result follows from Theorem 2.1.
k-
Suppose that z7. # p:lz(z) but z7. = pl—],(z). Then z7. is an accumulation
J J J J J
point for the following iterate:

zi"H: zi_—wE (M. .zi,—i—q .+ M+ 4czre + L. .zi+1—zi_
T, (I, IJIJ(1;17;°1; + 97 + M7 IJIJ(I, Ij)))+

where {Z1,Z5,...,Ip} is a consecutive partition of {1,2,...,n} and I; is the com-
plement of Z; in {1,2,...,p}. Then by Theorem 2.1 of [Mangasarian77] we have

that z,Ij solves the following LCP:
wr,. =Mr.7.27. +q7. + My 7¢27¢ > 0
Ij IJI] Ij qI] IJI]C l']c

wr. Xz, =0
.IJ I]
zr. 20
IJ

Mzt .T.
since (wEIjIj)_l + LIjIj - ——73—7 is positive definite. But by Theorem 2.1

part a and (WEIjIj)_l + K L,z; positive definite this contradicts the fact that

ZIj # plI] (2). Therefore from Theorem 2.1(b) z solves the LCP. 1

4. ASYNCHRONOUS SOR ALGORITHM

We are now prepared to specify the algorithm.
Algorithm 4.1

Direction Generation Define the direction

&= p(zi) — 4t

)

Let 2* := [zzz-] Z%-c] Define p%j (z*):= zl—j Then pz-; is defined as in (3.1). Choose
J

EIjIj and w > 0 such that for some v{,v9 > 0

M. 1.
I]IJ
2

y(L;rjIj + (szjzj)"1 - > llyl® vy (2.17)

10

y(szIj + (WEIjIj)_l)?/ >ywllvl® vy (4.1)

stop if d* = 0 else continue.
Step Generation
where
F(2 + Ndb) = min{ F(Z4 + AV 4+ 2dE > 0}

We can now use the optimality results to establish convergence for Algorithm

4.1.

Theorem 4.1. (ASOR Convergence) Let M be symmetric and positive semidefi-
nite. Either the sequence {22} generated by Algorithm 2.3 terminates at a solution

of the LCP or each accumulation point of {zz} solves the LCP.

Proof:

The sequence terminates only if for some 7, p(2*) = 2* in which case 2? solves

the LCP. Suppose {zz} does not terminate and Z is an accumulation point of { zz}

—Vi()d = V()P () -)
= V7 fE)E ()~ 8) - = Vg [P () - 27)
2| i) A} Ip Ip Ip
Therefore define
Z. _ Z. Z’ “- e . 2‘
f_’[] (ZIJ) f(zl'laz_’[27 sz]a 7ZI])

11

For ease of notation we’ll drop the superscript ¢ on f%(zI) Then
7 7D

Vi)(pz —zl—)—f:z (Z;r)—fz (p (ZI)>+-np (ZI-)—ZZI. 13
J 9 IjIj
; 1 lc- .
> f1.(z%)= fr.(0% (z2.)0) + = | 2 (21.) — 2% |12
-—fIJ(ZIj) ij(ij(I])) 2” ij(ZIJ) sz “MI]-I]-
(By (4.1) and Theorem 2.1 [Mangasarian77])

1. :
2 p7. (27, 2
Ipz,(o7;) = =1, ”LII+(“’EII) 1- ~Mz;1./2

o eg) = A |2
2 Ij 9 Ij MI]I]

(By Theorem 2.1 [Mangasarian77])

>y || ok (%) -2 1%+ -—up (ZI)‘"ZI 13,
S] Z; I;1;
(By (4.1))

> 9:[]. (sz)2 (By positive semidefiniteness of M)

Hence,
—VF(z)d > (07, (25)2 +...07 (25)2) =~8(z4)2 > 0
(z;)d” =~ Il(zl—l - 07,27, ¥0(2")* >
Now let {ZZJ } be a subsequence converging to z. We claim that p(zzj) is
bounded. Suppose p(zzj) is not bounded and suppose
y
(#},(='9))

. 1 %
p(zzj) - Pzz(z)

\plzp(zzf))

12

Then
1 (14
pIk (z7)

I 2%, ()]

1 ACED (
lim —% = lim (~wEg, 7, L7, 1
I gy ()| dmeot R R

).

and hence for an accumulation point p we have

p=(-wEp, 7, L7, 7,P)+ P#0
This however is equivalent to
0#520,p(wBg 1) " + Ly, 7,)p =0
((wEIka)"l + K7, 7,)p20

But this contradicts (4.2). By induction on [for pé—k (zzJ) we see that p(zij) is
bounded. Without loss of generality let {zéj , p(zij)} — {2,p} and henced = p—z.
Since p(zij)>0

Ai 4 add = (1= N7 +2p(z9) >0 for 0<A<1
Consequently

£ +2d9) > G > G5+ for 0< A<
letting j — oo we get

fZ+ M) > f(z) 0< A1
Hence Vf(2)d > 0 and
02 -Vf(E)d= lim ~VHdT 2 Jim 10(:9)2 2 0

Therefore §(2) = 0. Then by Theorem 3.1 and conditions (4.1) and (4.2) z solves

the LCP. |

When E is chosen appropriately we have the following special case.

13

Corollary 4.1. (Special Case) Conditions (4.1) and (4.2) of Algorithm 4.1 hold

when M is positive semidefinite E7.7. = Df_lz-. >0and0<w< 2.
J7J 777

Proof:
(i)
2(wEg,7.) Y+ L7, - MIjIj)z =
777 777 2
Ly.7.+Uz.7.+D71.7T.
-1 J7) J7]]
=z(w *Dyr. 7.+ Ly. 7. — z
(W™ Dz 1, + I1,71, 5)

1 -1 2
= —z((2w™ * = D)Dr.7.)2 > z
2((D772z
where the last inequality follows form the positivity of Dy.7. and 0 < w < 2.
177

(i)

~1 —1]
z2((WBE+.+. +Lr 7))z =2{w *Dy.7.+ z
((IJIJ) IJI]) (7,1,)
- —;-z((Zw'—l ~ DL, + Mp) 27| 2 12

where the last inequality follows from the positive semidefiniteness of M, the posi-

tivityof Dand 0 < w < 2. 1

5. Computational Experience

The ASOR algorithm was tested on a symmetric LCP formulation of a linear

programming problem. We state the LP in standard form.

min cz
st.
Az > b
x>0

14

where ¢ € IR, A € IR"*™and b € IR™. The LCP formulation due to Mangasar-
ian [Mangasarian84] is based on the following observation. Consider the following

quadratic programming problem.

: € 2
min cz + § |z 115
st.

Az > b

The unique solution of the above QP is the least 2-norm solution of the LP provided
that e € (0, €] for some € > 0. We take the dual of QP and get the following dual

prograr.

€ 2
max cz+ = || z ||5 +u(b— Az) ~ vz
(u,0)>0 2712

st.

c+ezc——ATu—v=O

where u and v are dual variables in IR"* and IR™ respectively. After making appro-
priate substitutions we get the following minimization of a quadratic function over

nonnegativity constraints
2
At utv—cl5 —bu

Then the LCP formulation falls out by constructing the KKT conditions.

15

The algorithm was tested on the CRYSTAL multi~computer. CRYSTAL is a
set of 20 VAX —- 11/750 computers with 2 megabytes of memory each connected by
a 80 megabit/sec Pro-teon ProNet token ring. We randomly generate an LP which
is known to be solvable. We choose € = .2 and w varies between 1.2 and 1.8. Primal
feasibilities were calculated to an accuracy of 1072, The primal objective function
values were accurate to four significant digits.

An important question for implementing ASOR is how many updates of z Ij
should be carried out in processor j before sharing information. Pang and Yang,
[Pang & Yang87], suggest using a progressive tolerance. Therefore we iterate in
parallel until the difference between successive iterates is less than a certain toler-
ance based on a progressive accuracy strategy. Pang and Yang report success on an
implementation on the IBM 4381 and the CRAY X-MP/24, however, they compare
their method with an earlier version of a parallel SOR algorithm, [Mangasarian &
De Leone86a], which is not as effective as GPSOR.

In our experience we have noted that it is not always wise to select k 5> 1 We
can think of the parallel sweeps as being part of an inner iteration while that step
plus the final line search is an outer iteration. Therefore the more sweeps we do in
the inner iteration the more time consuming one outer iteration is. If the marginal
improvement due to extra inner iterations is very small it may not be worthwhile
to choose kj > 1. Our experience has been that near the optimal point one should

use only one sweep.

16

We incorporated the following strategy. A master node is in charge of deter-

mining the number of sweeps at a given iteration. If

| wttl —wt |
>

I =T

use one sweep. Otherwise, use two sweeps. In our computations we use r = .25. We
note that since we were able to balance the load evenly among the processors there
was no need to have each node carry out a different number of sweeps. However,
this can be changed in case of unbalanced distributions.

Computational results are presented for LPs of size 125 x 500, 250 x 1000, and
1000 x 4000. The two smaller problems have density 5% while the 1000 x 4000
problem has density .8%. Figures 5.1, 5.2, and 5.3 graph time against number of
processors. Each graph represents an average over three random problems. We
note that in these cases ASOR tends to provide slight improvements over GPSOR.
If this algorithm was implemented on a parallel system with a slower communi-
cation medium such as a network of workstations these differences may become
more pronounced. However, on a shared memory processor the savings of ASOR
diminish.

In Figures 5.2 and 5.3 we note that two processors solve the problem more than
twice as fast as one processor. This is due to the fact that the substitution operator
K changes as we move to more processors. Therefore we are running a different
algorithm as opposed to simply distributing the program. In these cases there was
a drop in iteration number which accounts for the extra speedup. This leads us to

17

a certain side benefit of studying parallel algorithms. That is we can discover faster
serial algorithms! In other words if we use the substitution operator K used in the
two processor case but run it serially we should produce a faster serial algorithm.
This phenomenon was originally discussed in [Mangasarian & De Leone86b).
Finally we note that further research may provide a more sophisticated criterion
to determine how many multiple sweeps should be computed at a given iteration.

Such a criterion may provide substantial improvement in the algorithm.

18

260 -

240 4

T 220 4

=3

g~

200 -

180 -

ngZoAmwn Z -

160 -

140 -

120

19

Figure 5.1

2 3 4 5
NUMBER OF PROCESSORS

[—y

Total Time (d=5%, m=125, n=500)

t g~ =

OmmTzCcTm Z~

O W

S

Ozonm

26 -

24 | \
22 . \

20 - \

18 | \
16 \
14 _ \
12 | \

10 - \

0 1 2 3
NUMBER OF PROCESSORS

Figure 5.2 Total Time (d=5%, m=250, n=1000)

20

mg =

wngzZzonmwn TMO wuwommeUZom 2Z-

21

44 _
\
40 \
‘I
|
|
36 %
i
b
b
i

32 - t ASOR ——————-

\

i GPSOR ~-mmmmomees
28 - \;\‘

N
\‘ll
\,
24 \\‘\‘
\
\
\y
20 - \
1
\ \‘ ______ e ;~_~//’
Ve P
16 | \\ - —
\/ - -
12 | i i | 1
0 1 2 3 4 5
NUMBER OF PROCESSORS

Figure 5.3 Total Time (d=.8%, m=1000, n=4000)

References

Barlow, R. H. and Evans, D. J. (1982) Parallel Algorithms for the Iterative Solution
to Linear Systems, The Computer Journal, Vol. 25, No. 1, 56-6-.

Conrad, V. and Wallach, Y. (1977) Iterative Solution of Linear Equations on a
Parallel Processor System, IEEE Transactions on Computers, C-26, 9, 838—
847.

DeWitt, D. J., Finkel, R. and Solomon, M. (1984) The CRYSTAL Multicomputer:
Design and Implementation Experience, Computer Sciences Technical Report
#553, University of Wisconsin—-Madison.

Mangasarian, O. L. (1977) Solution of Symmetric Linear Complementarity Prob-
lems by Iterative Methods, Journal of Optimization Theory and Applications,
22, 465-484.

Mangasarian, O. L. (1984) Sparsity—Preserving SOR Algorithms for Separable
Quadratic and Linear Programs, Computers and Operations Research 11,
105-112.

Mangasarian, O. L. and De Leone, R. (1986a) Parallel Successive Overrelaxation
Methods for Symmetric Linear Complementarity Problems and Linear Pro-
grams, Computer Sciences Technical Report #647, University of Wisconsin—
Madison.

Mangasarian, O. L. and De Leone, R. (1986b) Parallel Gradient Projection Suc-
cessive Overrelaxation for Symmetric Linear Complementarity Problems and

22

Linear Programs, Computer Sciences Technical Report #659, University of
Wisconsin—Madison.

Missirlis, N. M. (1985) A Parallel Iterative System Solver, Linear Algebra and its
Applications 65, 25-44.

Pang, J. S. and Yang, J. M. (1987) Two-Stage Parallel Iterative Methods for the
Symmetric Linear Complementarity Problem, School of Management, The

University of Texas at Dallas.

23

