INSTRUCTION ISSUE LOGIC FOR
HIGH-PERFORMANCE, INTERRUPTIBLE, MULTIPLE
FUNCTIONAL UNIT, PIPELINED COMPUTERS

by

Gurindar S. Sohi

Computer Sciences Technical Report #704

July 1987

INSTRUCTION ISSUE LOGIC FOR HIGH-PERFORMANCE, INTERRUPTIBLE,
MULTIPLE FUNCTIONAL UNIT, PIPELINED COMPUTERS

Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, Wisconsin 53706

July, 1987
Abstract

The performance of pipelined processors is limited by data dependencies and branch
instructions. In order to achieve high performance, mechanisms must exist to alleviate
the effects of data dependencies and branch instructions. If the processor is to support
virtual memory, it is essential that a precise state of the machine be recoverable at all
times, i.e., interrupts must be precise. In multiple functional unit pipelined processors
where the instructions can complete and update the state of the machine out of program
order, hardware support must be provided to implement precise interrupts. In this paper,
we combine the problems of data dependencies and imprecise interrupts. We present a
design for a hardware mechanism that resolves dependencies dynamically and, at the
same time, guarantees precise interrupts, without a significant hardware overhead. Simu-
lation studies, using the Lawrence Livermore loops as a benchmark, show that by resolv-
ing dependencies, the proposed mechanism is able to obtain a significant speedup over a
simple instruction issue mechanism and, at the same time, is able to implement precise
interrupts. We also discuss how this mechanism could be used to alleviate the effects of
branch instructions.

1. INTRODUCTION

The CPUs of most supercomputers consist of several pipelined functional units connected
together in some fashion [1,2]. Such multiple functional unit, pipelined machines are able to
achieve a considerable overlap in the execution of instructions. Unfortunately, pipelined CPUs
have two major impediments to their performance: i) data dependencies and ii) branch instruc-
tions. An instruction cannot begin execution until its operands are available. If an operand is
the result of a previous instruction, the instruction must wait till the previous instruction has
completed execution, thereby degrading performance. The performance degradation due to
branch instructions can be even more severe. Not only must a conditional branch instruction
wait for its condition to be known, an additional penalty may be incurred when fetching an
instruction from the taken branch path to the instruction decode and issue stage.

Pipelined CPUs suffer from another major problem - an interrupt can be imprecise [3-5].
This problem is especially severe in multiple functional unit computers in which instructions can
complete execution out of program order even though they are issued in program order [1-3].
For a high-performance, pipelined CPU, an adequate solution must be found for the imprecise
interrupt problem and means must be provided for overcoming the performance degradation due
to data dependencies and branch instructions.

The detrimental effects of branch instructions can be alleviated by using delayed branch
instructions. However, the utility of delayed branch instructions is limited for long pipelines. In
such cases, other means must exist to alleviate the detrimental effects. A common approach is to
use branch prediction [6,7]. Using prediction techniques, the probable execution path of a
branch instruction is determined. Instructions from the predicted path can then be fetched into
instruction buffers or even executed in a conditional mode[3, 8-11]. While the conditional mode
of execution will result in a higher pipeline throughput, especially if the outcome of the branches
is predicted correctly, a hardware mechanism must exist which will allow the machine to recover
from an incorrect sequence of conditional instructions.

Both hardware and software solutions exist to the data dependency problem. Software
solutions use code scheduling techniques (combined with a large set of registers) to increase the
distance between dependent instructions and to provide interlocks [12]. Most hardware solutions
employ waiting stations or reservation stations where an instruction can wait for its operands
and allow subsequent instructions to proceed [13], thereby allowing instructions to issue out of
program order. The reservation stations form the core of a dependency-resolution mechanism
that must exist in order to preserve program dependencies. In this paper, a dependency-
resolution mechanism is synonymous with an out-of-order instruction issue mechanism. Note
the difference between out-of-order instruction issue (also called out-of-order instruction execu-
tion) and out-of-order instruction completion. Instructions can complete out of program order
even though they were issued in program order.

In a pipelined machine, imprecise interrupts can be caused by instruction-generated traps
such as arithmetic exceptions and page faults. An imprecise interrupt can leave the machine in
an irrecoverable state. While the occurrence of arithmetic exceptions is rare, the occurrence of
page faults in a machine that supports virtual memory is not. Therefore, if virtual memory is to
be used with a pipelined CPU, it is crucial that interrupts be precise. Several hardware solutions
to the problem are described in [S]. We are unaware of any software solutions to the imprecise
interrupt problem for multiple functional unit computers. A software solution will be extremely
difficult, if not impossible. Not only must the software allow for the worst-case execution time
for any instruction, it must also keep track of instructions that have completed out of program

order and generate the appropriate code sequence to undo the effects of those instructions. In
any case, some hardware support must be provided to maintain run time information.

In this paper, we treat the problems of out-of-order instruction issue and imprecise inter-
rupts simultaneously. If interrupts are to be precise, some hardware support is needed. The
precise-interrupt mechanism will aggravate dependencies [5]. Why not extend this mechanism
to allow out-of-order instruction execution as well so that the aggravated dependencies (as well
as other dependencies) can be tolerated?

In section 2, we describe the model architecture that we use throughout this paper. In sec-
tion 3, we discuss Tomasulo’s out-of-order instruction issue algorithm and extend it, giving
several variations, so that the cost of implementing it is not prohibitive even for a large number
of registers. Simulation results for the proposed dependency resolution mechanism are
presented. In section 4, we discuss the problem of imprecise interrupts and present solutions.
Section 5 describes a unit, the Register Update Unit (RUU), that resolves dependencies as well
as implements precise interrupts. The precise interrupt and out-of-order instruction issue
mechanisms mutually aid and simplify each other. An evaluation of the RUU is carried out in
section 6. Finally, we discuss how our mechanism might be used to alleviate the degradation
due to branch instructions.

2. MODEL ARCHITECTURE

The model architecture that we use for our studies is presented in Figure 1. It has the same
capabilities and executes the same instruction set as the scalar unit of the CRAY-1 [1, 14]. The
CRAY-1 was chosen because it represents a state-of-the-art scalar unit and its execution can be
modeled precisely. The author also had easy access to tools that could be used to generate
instruction traces for the CRAY-1 scalar unit [15]. There are a few differences between the
CRAY-1 scalar unit and our model architecture. First, in our model architecture, all instructions,
whether they are composed of 1 parcel (16 bits) or 2 parcels (32 bits) can issue in a single cycle
if issue conditions are favorable. Next, only one function can output data onto the result bus in
any clock cycle. In contrast, the CRAY-1 scalar unit has separate result busses for the address
and scalar functional units. Instructions are fetched by the Instruction Fetch Unit and decoded
and issued by the Decode and Issue Unit. Once dependencies have been resolved in the decode
and issue unit, instructions are forwarded to the functional units for execution. The results of the
functional units are written directly into the register file. The register file consists of 8 A, 8 S, 64
B and 64 T registers.

2.1. Benchmark Programs

The benchmark programs used throughout this paper were the first 14 Lawrence Livermore
loops [16]. The first 14 loops were chosen because they were readily available. Henceforth, we
shall refer to them as LLL1, LLL2, ..., LLL14. The simulations were carried out as follows.
The benchmark programs, as compiled by the CFT compiler for the scalar unit, were fed into a
CRAY-1 simulator [15]. The CRAY-1 simulator generates an instruction trace for each pro-
gram. Vector instructions are not used. Each instruction trace was then fed into the appropriate
simulator.

2.2. Simulation of the Model Architecture

We simulated the execution of the benchmark programs on the model architecture of Fig-
ure 1. The number of instructions executed and the number of clock cycles taken for the

l From Memory

Instruction Fetch Unit

l

Decode and Issue Unit

Functional FU FU FU
Units

FU

Register
File

|
.

|
0]

——— R

Result Bus

Figure 1. The Model Architecture

Memory

execution of each benchmark program and the number of instructions executed per cycle is
given in Table 1. In generating the results of Table 1, we assumed that (i) no memory bank
conflicts occur, (ii) all instruction references are serviced by the instruction buffers, and (iii) the
instructions are already present in the instruction buffers when the program is started. These
assumptions do not affect the execution time considerably for the benchmark programs. These
assumptions and a difference in the bus structure account for the difference between the data

presented in Table 1 and in [17].

Table 1: Statistics for the Benchmark Programs

Benchmark | Instructions | Clock Cyclesto | Instruction

Program Executed Execute Program | Issue Rate
LLL1 7217 17234 0.419
LLL2 8448 17102 0.494
LLL3 14015 36023 0.389
LLL4 9783 20643 0.474
LLLS 8347 20696 0.403
LLL6 9350 22034 0.424
LLL7 4573 10231 0.447
LLLS 4031 8026 0.502
LI.L9 4918 10134 0.485
LLL10 4412 9420 0.468
LLL11 12002 28002 0.429
LLL12 11999 27991 0.429
LI.L13 8846 17814 0.497
LLL14 9915 23573 0.421
Total 117856 268923 0.438

The instruction issue rate is the average number of instructions that are executed in a cycle, i.e.,
the total number of instructions executed in the benchmark divided by the total number of cycles
to execute the benchmark. The instruction issue rate for the total of all 14 loops is calculated as
the total number of instructions for all loops divided by the total number of cycles to execute all
loops rather than a average of the individual issue rates. For reasons of brevity, we shall present
all subsequent simulation results for a combination of all 14 loops rather than report the detailed
breakup for each individual loop.

As we can see from Table 1, the performance of the model machine is far from the theoreti-
cal limit of 1 instruction per cycle. From our simulations, we determined that the main reason
for this sub-optimal performance is data dependencies. Therefore, we must find some way of
alleviating the affects of data dependencies. We have two choices: (i) eliminating the dependen-
cies or (ii) tolerating the dependencies. Data dependencies can be eliminated by software code
scheduling techniques. Hardware dependency resolution techniques allow the machine to
tolerate dependencies. Since we are mainly concerned with a hardware mechanism that allows
the architecture to tolerate dependencies as well as implement precise interrupts, we can restrict
our attention to hardware mechanisms for tolerating dependencies.

3. HARDWARE DEPENDENCY RESOLUTION

When an instruction reaches the decode and issue stage in the pipeline, checks must be
made to determine if the operands for the instruction are available, i.e., if all dependencies for
this instruction have been resolved. If an operand is not available, the instruction must wait in
the decode and issue stage. Because the decode and issue stage of the pipeline is busy, subse-
quent instructions cannot proceed even though they may be ready to execute. Subsequent
instructions can proceed if the waiting instruction "steps aside," thereby freeing the decode and
issue stage and allowing other instructions to bypass it while it waits for its operands. In order to

do so, some form of waiting stations or reservation stations must be provided [13]. Other
mechanisms also exist in the literature [18]. Since our work is based on the concept of reserva-
tion stations, we shall focus our attention on mechanisms that employ reservation stations in
some form.

3.1. Tomasulo’s Algorithm

Tomasulo’s hardware dependency-resolution (or out-of-order instruction issue) algorithm
was first presented for the floating-point unit of the IBM 360/91 [13]. An extension of this algo-
rithm for the CRAY-1 scalar unit is presented in [17]. The algorithm operates as follows. An
instruction whose operands are not available when it enters the decode and issue stage is for-
warded to a Reservation Station (RS) associated with the functional unit that it will be using. It
waits in the RS until its data dependencies have been resolved, i.e., its operands are available.
Once at a reservation station, an instruction can resolve its dependencies by monitoring the
Common Data Bus (the Result Bus in our model architecture). When all the operands for an
instruction are available, it is dispatched to the appropriate functional unit for execution. The
result bus can be reserved either when the instruction is dispatched to the functional unit[17] or
before it is about the leave the functional unit [13].

Each source register is assigned a busy bit. A register is busy if it is the destination of an
instruction that is still in execution. Each destination register (also called a sink register) is
assigned a tag which identifies the result that must be written into the register. Since any register
in the register file can be a destination register, each register must be assigned a tag. A reserva-
tion station has the following fields:

Source Operand 1 Source Operand 2 Destination

Ready | Tag | Contents || Ready | Tag | Contents Tag

If a source register is busy when the instruction reaches the issue stage, the tag for the
source register is obtained and the instruction is forwarded to a reservation station. The
appropriate ready bit in the reservation station is set to indicate that the source operand is una-
vailable. If the source register is not busy, the contents of the register are read into the reserva-
tion station and the ready bit is reset to indicate that the source operand is available. The instruc-
tion fetches a tag for the destination register, updates the old tag of the destination register and
proceeds to a reservation station. When all source operands are available in a reservation sta-
tion, the instruction is dispatched to a functional unit for execution and the reservation station is
released for reuse by future instructions. Memory is treated as a special functional unit. When
an instruction has completed execution, the result (along with its tag) appears on the result bus.
The registers as well as the reservation stations monitor the result bus and update their contents
(and ready/busy bits) when a matching tag is found. Details of the algorithm can be found in
[13] and [17].

While this algorithm is straightforward and effective, it is expensive to implement because
each register needs to be tagged and each tag needs associative comparison hardware to carry
out the tag-matching process. This may not be practical if the number of possible destination
registers, i.e., the number of registers is large. For our model architecture which has 8 A, 8 S, 64
B and 64 T registers, an implementation of this dependency-resolution mechanism for all the

registers would require 144 tag-matching units. The use of such a large number of hardware
units may not be practical.

3.2. Extensions to Tomasulo’s Algorithm

3.2.1. A Separate Tag Unit

On closer inspection we see that very few of all possible destination registers may actually
be active, i.e., be waiting for a result at any given time. Therefore, if we associate a tag with
each possible destination register, a lot of associative tag-matching hardware will be idle at any
given time. Why not have a common tag pool and assign a tag only to a currently active desti-
nation register rather than associating a tag with each possible destination register? In
Tomasulo’s algorithm, a currently active register is one whose busy bit is on.

We consolidate the tags from all currently active registers into a Tag Unit (TU). Each
register has only a single busy bit. At instruction issue time, if a source register is busy, the TU
is queried for the current tag of the source register and the tag is forwarded to the reservation sta-
tions. A new tag is obtained for the destination register of the instruction. If the destination
register is not busy, acquiring such a tag from the TU is straightforward. If the destination regis-
ter is busy, i.e., the TU already holds a tag for the register, a new tag is obtained and the instruc-
tion holding the old tag is informed that, while it may update the register, it may not unlock the
register, i.e., clear the busy bit when it completes execution. In order to do so, we associate
another bit with each TU entry. This bit indicates if the tag is the latest tag for the register and if
the instruction has a key to unlock the register, i.e., clear the busy bit. Instruction issue blocks if
no tag can be obtained, i.e., the TU is full. The TU has the following fields:

Register Number || Tag Free || Latest Copy

The reservation stations are modified so that the result can be forwarded to the appropriate slot in
the TU. The new reservation station has the following fields:

Source Operand 1 Source Operand 2 Destination

Ready | Tag | Contents || Ready | Tag | Contents || Slotin TU

As before, the instruction along with its associated tags/operands is forwarded to a reserva-
tion station where it waits for its operands to become ready. The result from a functional unit
(along with its tag) is broadcast to all reservation stations and is also forwarded to the TU.
Reservation stations monitor the result bus and gate in the result if the tag of the data on the
result bus matches the tag stored in the reservation station. The TU forwards the result to the
register specified in the appropriate slot of the TU. All registers are, therefore, updated only by
the TU when their data is available and no direct connection is needed between the functional
units and the register file. When the register has been updated by the TU, the corresponding tag
is released and is marked free in the TU. The modified architecture that incorporates a Tag Unit
and reservation stations associated with each functional unit is shown in Figure 2.

Instructions from Memory

l

Instraction Fetch Unit

| |

Tag I
Unit Decode and Issue Unit ""‘"“"]
|

K

yl

Reservation l J' J’ J' Load
Stations | 1}8 i l 1}’3 | | I}'S] l I}'S | Registers

Functional | FU FU FU FU
Units

Result Bus

Figure 2. The Model Architecture with a Tag Unit and
Distributed Reservation Stations

3.2.1.1. Example

The operation of the Tag Unit is best illustrated by an example. Consider a TU that has 6
entries as shown in Figure 3. Each entry in the TU has a bit indicating if the tag is free, i.e.,
available for use by the issue logic, a bit indicating if the tag is the latest tag for the register and
a field for the number of the destination register.

The TU is indexed by the tag number. Consider the execution of an instruction 7 that adds
the contents of registers SO and S7 and put the result in S4. Assume that the state of the TU is as
shown in Figure 3 and that S7 is free (indeed a register must be free if it does not have an entry
in the TU). When the issue logic decodes I, it attempts to get a new tag for the destination
register S4 from the TU and obtains tag 3. Since the TU already has a tag for S4, the old tag (4)
is updated to indicate that it no longer represents the latest copy of the register. Since S7’s con-
tents are valid, they can be read from the register file and forwarded to the reservation stations
directly. However, since the contents of SO are not valid, the latest tag for SO (tag 2) must be
obtained from the TU. The issue unit forwards a packet to the reservation station associated
with the add functional unit. The packet contains the contents of S7, a tag (2) for SO and a tag
(3) for the destination register S4. I waits in the reservation station till that tag 2 appears on the

Tag Register Tag Latest
Number Number Free Copy

1 AQ N Y
2 S0 N Y
3 NIL Y Y
4 S4 N Y
5 SO N N
6 S3 N Y

Figure 3: A Tag Unit

result bus. At this point, the reservation station reads the value for SO and I is ready to execute.
When 7, completes execution, i.e., leaves the add functional unit, the result is forwarded to all
reservation stations that have a matching tag (3) and also to the TU. The TU forwards the result
to the register file to be written into S4. Since tag 3 is the latest tag for S4, S4’s busy bit can be
reset when the data has been written into S4. Tag 3 is then marked free and is available for reuse
by the issue logic.

3.2.1.2. Interactions with Memory

Instructions that interact with the memory, i.e., load/store instructions, are handled in a spe-
cial manner. A set of Load Registers is responsible for resolving dependencies in the memory
functional unit. The load registers contain the addresses of "currently active" memory locations.
Each load register has tags to allow for multiple instances of a memory address, i.e., multiple
outstanding requests to the memory location.

The reservation stations associated with the memory functional unit are managed in a
pseudo-queue fashion to satisfy dependencies. If the address of a load/store operation is unavail-
able, subsequent load/store instructions are not allowed to proceed. If the destination address of
a pending store instruction is known, subsequent load instructions can proceed in any order (if
their addresses are available) as long as dependencies are not violated. When a load instruction
is allowed to proceed, it checks to see if the address for the load operation matches an address
stored in the load registers. If a match occurs, and the load register is not free, the load instruc-
tion is halted and is not submitted to memory. A match can occur if there is either a pending
load or a pending store operation. In either case, the load need not be submitted to memory
since the desired data can be obtained when the pending load or store operation completes. If a
match occurs for a store instruction, the tag associated with the load register is updated.

If no match occurs for either operation, a free load register is obtained. A load register is
free if there are no pending load or store instructions to the memory address held in the load
register. The load request is submitted to memory. The corresponding tag is also submitted to
memory so that the data supplied by the memory may be read by the appropriate source
operands in the reservation station. Issue is blocked if a free load register is not available. The
busy bit of the load register is updated when the load/store instruction completes execution.

3.2.2. Merging the Reservation Stations

If each functional unit has a separate set of reservation stations, it is likely that some func-
tional unit will run out of reservation stations while the reservation stations associated with
another functional unit are idle. As suggested in [17], we can combine all the reservation sta-
tions into a common RS Pool rather than having disjoint pools of reservation stations associated
with each functional unit. All instructions that were previously issued to distributed reservation
stations associated with the functional units now go to the common RS Pool. Instruction issue is
blocked if no free reservation station is available, i.e., if the RS Pool is full. As instructions
become ready in the RS Pool, they are issued to the functional units. All the other functions are
as before.

3.2.3. Merging the RS Pool and the Tag Unit

In the Tag Unit, there is one entry for every instruction that is present in either the RS Pool
or in the functional units. Therefore, at any time, there is a one-to-one correspondence between
the entries in the TU and the instructions in the reservation stations or the functional units. This
suggests that we can combine the RS Pool and the Tag Unit into a single RS Tag Unit (RSTU).
Of course, a reservation station is wasted if it is associated with an instruction that is in a func-
tional unit. However, as we shall see in section 5, this organization can easily be extended to
allow for the implementation of precise interrupts.

In the RSTU, a reservation station is reserved at the same time that a tag is reserved. When
an instruction issues, it obtains a tag from the RSTU and in doing so automatically reserves a
reservation station. All the other functions, including interactions with the memory are as
before. The architecture with a RSTU is given in Figure 4. Each entry in the RSTU is as fol-
lows:

Tag Latest Source Operand 1
Free Copy

Yes/No (| Yes/No || Ready | Tag | Contents

Source Operand 2 Destination

Ready | Tag | Contents Register

Note that in the RSTU, associative logic is needed for 2 purposes: (i) obtaining tags for
source operands and updating the latest copy field and (ii) in the reservation stations for match-
ing tags.

3.2.3.1. Simulation Analysis of the RSTU

In order to evaluate the effectiveness of the RSTU, we carried out a simulation analysis of
the RSTU using the first 14 Lawrence Livermore loops as a benchmark. The results obtained for
the execution of all 14 loops are presented in Table 2. The relative speedup is the speedup com-
pared to the simple instruction issue mechanism of Table 1 and the instruction issue rate is the
average number of instructions issued per cycle. The number of load registers was 6. This
guarantees that instruction issue is never blocked because of an unavailable load register.

Instructions from Memory

|

Instruction Fetch Unit

!

Register
File

!

L
1=]
][5]

Decode and Issue Unit
RS Tag Unit
Load
x x L 4 Registers
Functional FU FU FU FU
Units
Memory
‘|' Data
Result Bus

Figure 4. The Model Architecture with a RS Tag Unit

10

Table 2: Relative Speedup and Issue Rate with a RSTU

Number of Relative | Instruction
Entries in RSTU | Speedup | Issue Rate

3 0.965 0423

4 1.140 0.499

5 1.294 0.567

6 1.424 0.624

7 1.479 0.648

8 1.553 0.681

9 1.587 0.696

10 1.642 0.720

15 1.763 0.773

20 1.798 0.788

25 1.820 0.798

30 1.821 0.798

From Table 2, it is quite clear that the RSTU is able to achieve a significant speedup over a
simple instruction issue mechanism with a reasonable amount of hardware. The RSTU is also
quite close to achieving the theoretical issue limit of 1 instruction per clock cycle. Indeed, all
non-branch instructions are able to achieve the limit of 1 instruction per cycle. The only cycles
in which no useful instruction instruction is executed are the dead cycles following each branch
instruction. The degradation due to such cycles could be reduced by using delayed branch
instructions or by executing instructions in a conditional mode. The results presented in Table 2
compare favorably with the results presented in [17]. Because the RSTU can implement the
dependency-resolution mechanism for the B and T register files, it can achieve a better speedup
than a mechanism that is somewhat restricted as in [17].

At first glance, it may seem that an organization with merged reservation stations (such as
the RSTU of Figure 4) has a distinct disadvantage over an organization with distributed reserva-
tion stations (such as Figure 2) since only one instruction can issue from the reservation stations
to the functional units in a clock cycle unless multiple paths are provided between the RSTU and
the functional units. On the other hand, a better use of the reservations stations results since the
reservation stations can be shared amongst several functional units. In order to evaluate the
effectiveness of multiple data paths between the RSTU and the functional units, we simulated an
architecture with 2 paths from the RSTU to the functional units, but only a single issue unit, a
single result bus and single path from the RSTU to the register file. The results are presented in
Table 3.

11

Table 3: Relative Speedup and Issue Rate with a RSTU and 2 Data Paths

Number of Relative | Instruction
Entries in RSTU | Speedup | Issue Rate

3 0.976 0.428

4 1.155 0.506

5 1.310 0.574

6 1.442 0.632

7 1.515 0.664

8 1.586 0.695

9 1.634 0.716

10 1.667 0.730

15 1.796 0.787

20 1.832 0.803

25 1.843 0.808

30 1.845 0.809

As is evident from Table 3, the presence of a duplicate path from the RSTU to the func-
tional units makes a small difference. This result is not counter-intuitive. We use an argument
based on instruction flow to convince the reader. The RSTU is essentially a reservoir of instruc-
tions that is filled by the decode and issue logic and drained by the functional units. Since the
decode and issue logic can fill this reservoir at a maximum rate of 1 instruction per cycle, having
a drain that is capable of draining more than 1 instruction per cycle will not be very useful in a
steady state.

4. IMPLEMENTATION OF PRECISE INTERRUPTS

We now address the issue of precise interrupts. A complete description of several schemes
that implement precise interrupts is given in [5]. The basic idea behind all these schemes is that
the instructions must update the state of the machine in program order even though they may
complete execution out of program order (they may even begin execution out of program order).
In order to achieve this, a mechanism must be provided to reorder the instructions after they
have completed execution. This reorder mechanism could be a simple reorder buffer or a more
complex reorder buffer with bypass logic, a history buffer or a future file [5].

The simple reorder buffer allows instructions to finish execution out of order but updates
the state of the machine (registers, memory, etc.), i.e., commits the instructions in the order that
the instructions were present in the program, thereby assuring that a precise state of the machine
is recoverable at any time. By forcing an ordering of commitment amongst the instructions, the
reorder buffer aggravates data dependencies - the value of a register cannot be read till it has
been updated by the reorder buffer, even though the instruction that computed a value for the
register may have already completed and the new value is in the reorder buffer. If bypass logic
is associated with the reorder buffer, an instruction does not have to wait for the reorder buffer to
update a source register; it can fetch the value from the reorder buffer (if it is available) and can
issue. With a bypass mechanism, the issue rate of the machine is not degraded considerably if
the size of the buffer is reasonably large [5]. However, a bypass mechanism is expensive to
implement since it requires a search capability and additional data paths for each buffer entry. A

12

history buffer has the same performance as a reorder buffer with bypass logic. It does not need
bypass logic but the register file needs another read port. A future file achieves the same perfor-
mance as a reorder buffer with bypass logic at the expense of duplicating the entire register file.

S. MERGING DEPENDENCY RESOLUTION AND PRECISE INTERRUPTS

We note that the RSTU of section 3.2.3 can be modified to behave like a reorder buffer if it
is forced to update the state of the machine in the order that the instructions are encountered.
This is easily accomplished by managing the RSTU as a queue. Therefore, all that we have to
do to implement precise interrupts in an architecture with a RSTU is to manage the RSTU like a
queue. We call the modified logic the Register Update Unit (RUU). The RUU is essentially the
RSTU constrained to commit instructions in the order that the instructions were received by the
decode and issue logic (and consequently by the RUU). The functional units remain unchanged.
The modified architecture that uses a RUU to execute instructions out of program order and to
ensure a precise state of the machine is given in Figure 5.

Instructions from Memory

l Register
File
Instruction Fetch Unit r— - —l
| |
1 o o)
Decode and Issue Unit ‘_"““*‘—J |

Register Update Unit

Load
. D . L Registers
gunclional FU FU FU FU

nits

Memory

l Data

Result Bus

Figure 5. The Model Architecture with a RUU

5.1. The Register Update Unit (RUU)

The RUU performs four major functions: (i) it determines which instruction should be
issued to the functional units for execution, reserves the result bus and dispatches an instruction
to the functional unit, (ii) it determines if an instruction can commit, i.e., update the state of the

13

machine, (iii) it monitors the result bus to resolve dependencies and (iv) it provides tags to and
accepts new instructions from the decode and issue logic. The RUU is managed like a queue
using RUU_Head and RUU_Tail pointers. RUU slots that do not lie between RUU_Head and
RUU_Tail are free. If RUU_Head = RUU_Tail, the RUU is full and cannot accept any more
instructions from the decode and issue logic. RUU_Tail points to the slot that will be used by
the decode and issue logic and RUU_Head points to the next instruction that must commit to
ensure a precise state. In designing the RUU, we keep in mind that (i) it should not involve a
large amount of hardware and (ii) it should not affect the clock speed to an intolerable extent.

Managing the RSTU like a queue has a very important side effect - the logic for obtaining
tags for source operands and generating tags for destination operands is greatly simplified.
Recall that in the RSTU, the issue logic needed to search the RSTU associatively to obtain the
correct tag for the source operand and to update the latest copy field for the destination register.
If multiple instances of the same destination register are disallowed, i.e., instruction issue is
blocked if the destination register is busy, no associative logic is necessary since the register
number itself serves as the tag. An instance of a register is a new copy of the register. By pro-
viding multiple instances of a destination register, the architecture can process several instruc-
tions with the same destination register simultaneously. Disallowing multiple instances of a des-
tination register can degrade performance [17]. As noted in [13], it is possible to eliminate the
associative search and use a counter to provide multiple instances and source operand tags for
each register if we can guarantee that results return to the registers in order. This is precisely
the situation in the RUU. The implementation of precise interrupts, therefore, simplifies the
out-of-order instruction issue mechanism.

The scheme we use to provide multiple instances of a destination register and to provide
source operand tags associates 2 n-bit counters (control bits) with each register in the register
file (this includes the B and T register files). There is no busy bit. The counters, the Number of
Instances (NI) and the Latest Instance (LI), represent the number of instances of a register in the
RUU and the number of the latest instance, respectively. When an instruction with a destination
register Ri is issued to the RUU, both NI and LI associated with Ri are incremented. LI is incre-
mented modulo n. Up to 2”1 instances of a register can be present in the RUU at any time;
issue is blocked if NI for a destination register is 2*—~1. When an instruction leaves the RUU and
updates the value of Ri, the associated NI is decremented. A register is free if NI = 0, i.e., there
is no instruction in the RUU that is going to write into the register.

When an instruction is decoded, the issue logic requests an entry in the RUU. If no free
entry is available, i.e., the RUU is full, instruction issue is blocked. If an entry is available, the
issue logic obtains the position of the entry (using the RUU_Tail pointer). It then forwards the
contents of the source registers (if they are available) or a register identifier (the register number
appended with the LI counter to be used as a tag) to the selected reservation station in the RUU.
The LI and NI counters for the destination register are updated and the new identifier for the des-
tination register forwarded to the RUU.

The register tag sent to the RUU consists of the register number Ri appended with the LI
counter. This guarantees that future instructions access the latest instance, i.e., obtain the latest
copy of the register contents and that instructions already present in the RUU get the correct ver-
sion of the data. In our experiments, each of these counters was 3 bits wide. This allowed upto
7 instantiations of a destination register. A 3-bit counter ensured that, for our benchmark pro-
grams, an instruction never blocked in the decode and issue stage because an instance of a regis-
ter was unavailable. Since we had a total of 144 registers, the tag field was 11 (8+3) bits wide.

14

Each source operand field in the RUU has a ready bit, a tag sub-field and a content sub-field. If
the operand is not ready, the tag sub-field monitors the result bus for a matching tag. If a match
is detected, the data on the bus is gated into the content field. There is no need for a Latest Copy
field in the RUU and no associative search logic is needed in the RUU to generate and maintain
the tags. However, associative comparison logic is still needed for all the reservation stations in

the RUU so that they can gate in the value of source operands when available. Each entry in the
RUU is as follows:

Source Operand 1 Source Operand 2 Destination

Ready | Tag | Content | Ready | Tag | Content || Register LI | Content

Dispatched Functional Unit Executed Program Counter
Yes/No Unit Number Yes/No Content

The Dispatched field indicates if the instruction has been dispatched for execution to the func-
tional unit specified in the Functional Unit field. The Executed field indicates if the instruction
has finished execution and is ready to update the register file. The Program Counter field is
needed for the implementation of precise interrupts [5]. For the sake of brevity, we have omitted
the details of extra information that must be carried around with each instruction. The details of
such information are obvious.

When the operands of an instruction in the RUU are ready, the instruction can issue to the
functional units. Priority is first given to load/store instructions and then to an instruction which
entered the RUU earlier. The RUU reserves the result bus when it issues an instruction to the
functional units. When the instruction at the head of the RUU has finished execution, its results
are forwarded to the register file. The associated NI counter is decremented. As is obvious from
the above discussion, each of the tasks of the RUU can be carried out in parallel unless the
hardware configuration is such that resource conflicts occur.

Instructions that interact with the memory, i.e., load/store instructions, are handled as in
section 3.2.1.2. The reservation stations for the memory are provided by the RUU. Note that
decode and issue unit logic needs to search the load registers associatively for memory
addresses. However, the hardware needed for this comparison is not very great for a small
number of load registers. In our simulations, we used 6 load registers though 4 were sufficient
for most cases.

6. EVALUATION OF THE RUU

In order to evaluate the effectiveness of the RUU, we simulated three RUU organizations,
(i) a RUU with bypass logic for source operand values, (ii) a RUU without bypass logic and (iii)
a RUU with a limited bypass logic. The results presented in this section differ slightly from
results presented previously [19]. The main reason for the difference is a different pipeline
structure and a different issue mechanism for load and store instructions.

15

6.1. The RUU with Bypass Logic

Recall that the RUU forces the results to return to the registers in program order. In doing
so, it aggravates data dependencies. Such a degradation could be eliminated if bypass logic for
source operands was provided in some form. The simplest form could be associative com-
parison hardware with the destination field of each RUU entry. If a source operand for instruc-
tion I; is provided by I; and the destination operand of ; is ready in the RUU, the operand can
be read from the RUU and /; allowed to proceed with execution. Note that the history buffer
and the future file[5] are alternate forms for bypass logic. The relative speedups (compared to
the simple instruction issue mechanism of Table 1) and the corresponding instruction issue rate
for different sizes of a RUU with bypass logic are presented in Table 4.

Table 4: Relative Speedups and Issue Rate for a RUU with Bypass Logic

Number of Relative | Instruction
Entries in RUU | Speedup | Issue Rate

3 0.853 0.374

4 0.937 0.411

6 1.077 0.472

8 1.246 0.546

10 1.378 0.604

12 1.502 0.658

15 1.597 0.700

20 1.668 0.731

25 1.713 0.751

30 1.755 0.769

40 1.780 0.780

50 1.786 0.783

The results of Table 4 are quite promising. An RUU with a reasonable number of entries
(10-12) not only speeds up execution but also provides precise interrupts. Moreover, for some-
what larger RUU sizes, the RUU is able to achieve a speedup that is quite similar to the RSTU.
Note that the RSTU was not constrained to implement precise interrupts.

6.2. The RUU without Bypass Logic

Since bypass logic is expensive to implement, we decided to evaluate a RUU without any
bypass logic. Before we present the results, let us see where bypass logic is helpful.

Consider an instruction /; that uses the result of a previous instruction /;. Recall that the
reservation stations associated with the RUU already have the capability to monitor the result
bus. Therefore, if /; completes execution after I; is issued to the RUU, I; can gate in the result
from I; when it appears on the result bus. In this case, no bypass logic is needed. If I; has com-
pleted execution but has not committed, i.e., updated the register file, when I; is issued to the
RUU, then we must extend the monitoring capabilities of the reservation stations to monitor both
the result bus and the bus between the RUU and the register file. This is necessary to prevent
deadlock since I;’s dependency on /; would never be resolved if the bus between the RUU and
the register file is not monitored (or bypass logic provided). Extending the monitoring

16

capabilities of the reservation stations can be accomplished without a substantial increase in
hardware.

Bypass logic is helpful only in the cases where I; has completed execution when I; is
issued. Rather that providing bypass logic for this case, we wait for the result of I; to come out
on the bus between the RUU and the reglster file in order to resolve /;’s dependency on I;. If I
is issued to the RUU before I; completes, /;’s dependency on ; can be resolved when I;’s result
appears on the result bus.

Table S: Relative Speedups and Issue Rate for a RUU without Bypass Logic

Number of Relative | Instruction
Entries in RUU | Speedup | Issue Rate

3 0.825 0.361

4 0.906 0.397

6 1.030 0.451

8 1.070 0.469

10 1.102 0.483

12 1.190 0.522

15 1.212 0.531

20 1.291 0.566

25 1.337 0.586

30 1.365 0.598

40 1.447 0.634

50 1475 0.646

Table 5 presents the relative speedups and instruction issue rates for a RUU without bypass
logic. From Table 5, we see that a RUU without any bypass logic at all is still able to achieve a
substantial increase in speed over a simple instruction issue mechanism and implement precise
interrupts at the same time. The speedup however, is not as impressive as the speedup obtained
if bypass logic were used. The difference arises mainly because of the ordering of code in the
loops. Let us illustrate the problem with an example.

Consider the following section of code:

I; A2 <- Al + A3
I A0<-A2+1

I JAM loopstart

Conventional compilation techniques try and increase the distance between instructions /; and /;
and instructions I; and I so that when instructions /; and I reach the issue stage, their respec-
tive operands are ready. Such an increase in dependency distance is in fact harmful to a RUU

17

without bypass logic. If I; was issued sufficiently before I; and completed execution before I,
reached the decode and issue stage, I; would be forced to wait till / ; left the RUU. If, on the
other hand, /; was issued soon before /i, I; could resolve its dependency on I j when the result
of I; was available on the functional unit result bus. In our simulations, no attempt was made to
reorder the code for this special case.

6.3. The RUU with Limited Bypass Logic

Because of the problem illustrated above, we found that branch instructions were blocked
for a long period of time in the decode and issue stage since the contents of the AQ register could
not be read from the RUU (or were unavailable because of a dependency chain aggravated as
above). The branch instruction has to wait in the decode and issue unit until the value of A0
appears on a bus. In order to eliminate this problem, we duplicated the A register file, effec-
tively creating a limited bypass path for the A registers. The duplicate A register file acts as a
future file for the A registers. The entire A register file (8 registers) was duplicated to prevent
the unnecessary increase in the length of the dependency chain that affects the conditional
branch instruction. All other functions are as before. Specifically, there is only 1 copy of the B,
S and T register files and there is no bypass logic in the RUU. As functions that affect the A
registers are completed and appear on the result bus, the result is forwarded to the RUU and also
the the A future file. The architectural register file contains a valid copy of registers at all time
for recovering a precise state. Instructions that use A registers as source operands, fetch the data
from the A future file, if it is available, and proceed. The results for a RUU with limited bypass
logic is presented in Table 6.

Table 6: Relative Speedups and Issue Rate for a RUU with Limited Bypass Logic

Number of Relative | Instruction
Entries in RUU | Speedup | Issue Rate

3 0.846 0.371

4 0.928 0.407

6 1.064 0.466

8 1.115 0.489

10 1.266 0.555

12 1.303 0.571

15 1.420 0.622

20 1.448 0.635

25 1.484 0.651

30 1.505 0.660

40 1.518 0.665

50 1.547 0.678

An RUU with limited bypass logic is able to overcome a significant portion of the performance
penalty paid for eliminating bypass logic especially for small RUU sizes. For larger RUU sizes,
however, the performance is not as good. This is because instructions that transfer data from a B
register to an A register are still held up in the RUU (no bypass logic for the B register file).
Since the destination A register of such transfer instructions eventually affects the branch condi-
tion (most branch instructions in the benchmark programs tested the value of the A0 register),

18

instruction issue is blocked for longer periods of time. We are confident that the performance of
a RUU without bypass logic and a RUU with limited bypass logic could be improved consider-
ably and would come close to the speedups with bypass logic if the code was modified accord-
ingly.

7. BRANCH PENALTY AND CONDITIONAL INSTRUCTIONS

As mentioned earlier, the performance degradation due to branches can be reduced by con-
ditionally executing instructions from a predicted branch path. Several architectures employ this
approach [3,9,11,20]. To allow conditional execution of instructions, a hardware mechanism is
needed that would allow the machine to recover from an incorrect branch prediction.

The RUU provides a very powerful mechanism for nullifying instructions, be the instruc-
tions valid instructions or instructions that executed in a conditional mode. Valid instructions
may be nullified because of an interrupt caused by a previous instruction; conditionally executed
instructions may be nullified if they are from an incorrect execution path. Therefore, the condi-
tional execution of instructions with a RUU is very easy. If the decode and issue unit predicts
the outcome of branches and actually executes instructions from a predicted path in a conditional
mode, recovery from incorrect branch predictions can be achieved very easily without duplicat-
ing the register file. We can identify such instructions through the use of an additional field in
the RUU and prevent them from being committed until they are proven to be from a correct
path. Furthermore, there is no hard limit to the number of branches that can be predicted; the
RUU can provide multiple instances of a register for the different paths. Extending the RUU to
accommodate branch prediction and conditional execution is a topic for future research.

8. CONCLUSION

In this paper, we have combined the issues of hardware dependency-resolution and imple-
mentation of precise interrupts. We devised a scheme that can resolve dependencies and thereby
allow out-of-order instruction execution without associating tag-matching hardware with each
register. Such a scheme can, therefore, be used even in the presence of a large number of regis-
ters without a substantial hardware cost. Then we extended the scheme to incorporate precise
interrupts. The precise interrupt and the dependency-resolution mechanisms mutually aid and
simplify each other. We evaluated the performance of the resulting hardware that allows out-
of-order instruction execution and also implements precise interrupts using several Livermore
loops as the benchmark. The results are quite encouraging. The combined mechanism, called
the RUU, is able to implement precise interrupts and is able to achieve a significant performance
improvement over a simple instruction issue mechanism without a substantial cost in hardware.
We noted that this mechanism can easily be extended to support conditional execution of
instructions from a predicted branch path.

Acknowledgments
This work was supported in part by the University of Wisconsin Graduate Research Committee.
The author would like to thank Jim Goodman, Andy Pleszkun, Jim Smith for their useful discus-

sions during this research. The author would also like to thank Sriram Vajapeyam for his help
with the simulations.

19

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

References

R. M Russel, ““The CRAY-1 Computer System,”” CACM, vol. 21, pp. 63-72, January
1978.

““CDC Cyber 200 Model 205 Computer System Hardware Reference Manual,”” Control
Data Corporation, Arden Hills, MN, 1981.

D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, ‘“The IBM System/360 Model 91:
Machine Philosophy and Instruction-Handling,’” IBM Journal of Research and Develop-
ment, pp. 8-24, January 1967.

P. M. Kogge, The Architecture of Pipelined Computers. New York: McGraw-Hill, 1981.

J. E. Smith and A. R. Pleszkun, ‘‘Implementation of Precise Interrupts in Pipelined Pro-

cessors,”’ Proc. 12th Annual Symposium on Computer Architecture, pp. 36-44, June
1985.

J. E. Smith, “‘A Study of Branch Prediction Strategies,”” Proc. 8th International Sympo-
sium on Computer Architecture, pp. 135-148, May 1981.

J. K. F. Lee and A. J. Smith, ‘‘Branch Prediction Strategies and Branch Target Buffer
Design,”” IEEE Computer, vol. 17, pp. 6-22, January 1984.

P. Y. T. Hsu and E. S. Davidson, ‘“Highly Concurrent Scalar Processing,”’ Proc. 13th
Annual Symposium on Computer Architecture, pp. 386-395, June 1986.

A. Pleszkun, J. Goodman, W. C. Hsu, R. Joersz, G. Bier, P. Woest, and P. Schecter,
‘““WISQ: A Restartable Architecture Using Queues,”’ in Proc. 14th Annual Symposium
on Computer Architecture, Pittsburgh, PA, pp. 290-299, June, 1987.

S. McFarling and J. Hennessy, ‘‘Reducing the Cost of Branches,’’ in Proc. 13th Annual
Symposium on Computer Architecture, Tokyo, Japan, pp. 396-304, June, 1986.

P. Chow and M. Horowitz, ‘¢ Architectural Tradeoffs in the Design of MIPS-X,’’ in Proc.

14th Annual Symposium on Computer Architecture, Pittsburgh, PA, pp. 300-308, June,
1987.

J. Hennessy, N. Jouppi, F. Baskett, T. Gross, and J. Gill, ‘‘Hardware/Software Tradeoffs
for Increased Performance,”” Proc. Int. Symp. on Arch. Support for Prog. Lang. and
Operating Sys., pp. 2-11, March 1982.

R. M. Tomasulo, ‘‘An Efficient Algorithm for Exploiting Multiple Arithmetic Units,”’
IBM Journal of Research and Development, pp. 25-33, January 1967.

CRAY-1 Computer Systems, Hardware Reference Manual. Chippewa Falls, WI: Cray
Research, Inc., 1982.

N. Pang and J. E. Smith, ““CRAY-1 Simulation Tools,”” Tech. Report ECE-83-11,
University of Wisconsin-Madison, Dec. 1983.

F. H. McMahon, FORTRAN CPU Performance Analysis. Lawrence Livermore Labora-
tories, 1972.

S. Weiss and J. E. Smith, ‘‘Instruction Issue Logic for Pipelined Supercomputers,’” Proc.
11th Annual Symposium on Computer Architecture, pp. 110-118, June 1984,

20

[18]

[19]

[20]

R. D. Acosta, J. Kjelstrup, and H. C. Torng, ‘‘An Instruction Issuing Approach to
Enhancing Performance in Multiple Functional Unit Processors,”’ IEEE Trans. on Com-
puters, vol. C-35, pp. 815-828, September 1986.

G. S. Sohi and S. Vajapeyam, *‘Instruction Issue Logic for High-Performance, Interrupt-
able Pipelined Processors,’” in Proc. 14th Annual Symposium on Computer Architecture,
Pittsburgh, PA, pp. 27-36, June, 1987.

W. Hwu and Y. N Patt, ““HPSm, a High Performance Restricted Data Flow Architecture

Having Minimal Functionality,”” Proc. 13th Annual Symposium on Computer Architec-
ture, pp. 297-307, June 1986.

21

