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ON THE NORM EQUIVALENCE OF SINGULARLY
PERTURBED ELLIPTIC DIFFERENCE OPERATORS

by
Charles I. Goldstein

and

Seymour V. Parter

ABSTRACT

Consider the system of linear algebraic equations Lj U = f which arises from the
finite-difference discretization of the singularly perturbed elliptic operator

bt — b et

I e — iaau+i ou o , du o Ou
K2=" 0z "0z 9z 0y oy oz  dy ' Oy

5 5 (1.5a)
+E°LdE e AL 4 Kpu
Oz Ay

where 1 << K < oo, 0< o <1. In this work we are concerned with preconditioning

operators iK,h so that

(i) The condition number [(f} 1) 'Li ] and the condition number [L K,h(INL xn) ] s
bounded independently of h and

(ii) there are bounds on the growth of these condition numbers as a function of K .






1. Introduction

The numerical solution of elliptic boundary-value problems leads to the related prob-

lem of actually obtaining the solution of a large, sparse system of linear equations
AU=F (1.1)

where A, is an nxn matrix and n is the number of grid points. There is a large literature
connected with the analysis of iterative methods for the solution of (1.1) - see [1], [2].
Almost all iterative methods, including the multigrid methods [3] can be cast in the

framework of a preconditioning followed by iterative improvement. That is, we consider

the system
B1A,U=B'F, (1.1)
or the system
(AnB;Y)YV = 4,.(B;'V)=F, (1.3a)
U=B'vV. (1.3)

Then an iterative method is applied to this new problem. Of course, one chooses B,
so that B! is “easy” to compute. Furthermore, it is often advantageous to choose B,
to be positive definite symmetric. With the practical success of multigrid methods for

uniformally elliptic problems with positive symmetric part there is a particular interest in

preconditioned iterative methods for which the condition number of B A, [or A,B;!]
is bounded independent of the dimension n. It is easy to develop iterative methods that

yield estimates of the form

. . rk—14;
Iefl < Kol 231 N (1.4)

where k = V/C or C [C' = condition number (B;'A4,)]. Thus, in the case where C is
independent of n one has an iterative method which is competitive with multigrid and
whose convergence rate is independent of n.

Several authors have studied this problem [4]-[6] in the special case where A, (and
B, ) is positive definite or has a positive definite symmetric part. In that case one can
analyze the preconditioned iterative method using the concept of “Spectrally Equivalent

Operators” introduced by D’Yakanov [7]. More recently there have been results for the
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truly indefinite case [8]-[10]. These problems require the concept of “Norm Equivalence”
(see [8] for a detailed discussion).

In this work we are concerned with singularly perturbed boundary-value problems of

the form
T e {8a8u+8 ?_7_‘__}__6?_ 8u+8 du
K= Or Ox Ox Oy Oy Oz Ody c Oy (1.50)
5a
o}
+ K° {da—“-m L Kpu=F inQ
Oz dy
and
specified boundary conditions on 9 (1.50)

where 1 < K < oo, 0 < ¢ < 1. The ellipticity of the system is expressed by the
requirement that there are constants 0 < ¢ < @ such that: for all (z,y) ¢ Q and all

£ = (&,&) we have

g(E+E)<al +2666+c2 <Q(E24£D). (1.5¢c)

The domain 2 is taken as the unit square
Q:=(z,y)=0<z,y<1 (1.6a)

and the boundary conditions take the form

u or % =0 (1.60)

along an entire side. The operator Lx is approximated by a finite-difference operator
Ly . This is the situation discussed in [8, section 3]. In that work K is kept fixed (indeed
it doesn’t appear in the discussion) and the authors concentrate on preconditionings B,
for which condition number (B;'A,) is bounded independently of n. In this work we

focus our attention on both A and K and discuss preconditioning operators L K,k SO that

(i) The condition number [(ZN)K,;,)_lLK,h] and the condition number [L[{,h(f;](,h)—l] is

bounded independently of h and

(ii) there are bounds on the growth of these condition numbers as a function of K .
Throughout this work the symols M, My, M, etc. will denote constants which
depend on the coefficients a, b, ¢, d, e, p and the first derivatives of the coefficients a, b, ¢, d, e

but not on h or K.



Remark 1.1: All of our results are easily extended to the case of the Direchlet problem

in a convex polygonal domain  whose boundary agrees with the discrete boundary.

Remark 1.2: The problem (1.5) is frequently rewritten in terms of K =1 := & . These
problems arise in models of reaction-diffusion and convection-diffusion. To maintain ac-
curacy, it is often necessary that K and h be constrained by a condition of the form

Kh = constant as K — oo or h — 0.

Remark 1.3: The operator employed as a preconditioner is typically based on the positive
definite symmetric part of the given operator. If p < 0 in (1.5a) this operator would
correspond to the second order derivative terms, which do not depend on K . To see why it
is important to consider K as well as h when preconditioning (1.5), consider the following
simple stationary wave propagation model Lxu = — Au — (K + 6K )u = fin Q ,u =
Oon 9, where § >0 and 1 > r > 0. Suppose that Lx is approximated by the discrete
operator, Ly , and we use the discrete Laplacian, L%{’h , as a preconditioner. Since
Ly and L‘}(, p, have constant coefficients, it can be seen by a simple eigenvalue analysis
that
C((Ln) " Lic,n) = O(K>7T)

as K — oo and this estimate is sharp. On the other hand, if we precondition by L}, =
L%+ K , it can be readily seen that

C ((L}*-(,h)wlLK,h> =0(K'™")

as K — oo . Hence L}"( » is a much better preconditioner than LY , even for moderate
values of K . Preconditioners for more general variable coefficient wave propagation models

in general domains are analyzed in [10] using finite element error analysis.

We briefly outline the remainder of the paper. In Section 2 we define our notation.
In Section 3 we establish some basic estimates for the finite difference operators. We
state and prove the main results in Section 4 (Theorems 4.1-4.4). The analysis uses the
concept of norm equivalence (see (4.1)). The preconditioner can be any operator that is
norm equivalent to Bj defined by (4.19), uniformly in K and A . It is shown in [11]

how multigrid methods can be employed to give specific preconditioners of this kind. The

3



condition number estimates in Theorems 4.1-4.4 will typically be much worse for large
K when positive definite symmetric preconditioning operators other than (4.19) are used.
This can be seen in general using the analysis in Section 4 and was demonstrated in Remark
1.3 above. Finally, it is shown in Section 5 how to transform Convection Diffusion type
operators into a simpler operator. This new operator can then be preconditioned as in
Section 4 with the resulting condition number bounded independently of K and h as

K — .



2. Preliminaries I: Notation

Let p and ¢ be integers and set

Az = Z—)%_——l- , Ay = ﬁl— , h =max (Az, Ay) (2.1)
Qn ={(z, ;) €Q, zx =kAz, y; = jAy} (2:2a)
I = {(zr,y;) €I, zr=kAz, y; = jAy} (2.2b)
Qn = Qp Uy, . (2.2¢)

Note: If (z1,y;) € 92 then either k=0 or p+1 or j =0 or £+ 1.
Let S denote the set of grid vectors V = {V} ;} defined on Qp, that satisfy the
appropriate discrete boundary conditions. Thus, if the boundary conditions associated

with Ly require
(i) UO,y) =0, then V5 ;=0, j=0,1,..(£+ 1),
(ii) Uy(z,1) =0, then Vi p41 = Vi e,k =1,2,...p, and so on.

Remark 2.1: In the case of the boundary condition (ii) above one would probably choose

Ay differently so that
1 1
ve=1-=5Ay, yen1=1+;Ay.

However, such a modification has no effect on our analysis. Hence, for the purposes of this
discussion we formulate the discrete (finite-dimensional) spaces as above.

Let G(z,y) be a function defined on . We write
1
Grj = G(zr,y5), Gryy;=Glar+ §Aaz,yj) , ete. (2.3)

Let V € Si; we denote the usual forward, backward, and centered difference quotients

denoted by subscripts in the following manner

1

Velk,; = < (Vit1,5 — Va5, (2.4a)
1

Valk,; = X [Vi,s = Ve-1,5] , (2.4b)
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1

[Va“:]k,j = AT [Vk+1,j - Vk—l,j] . (2.4c)

with similar notation for difference quotients in the y directions. Let Ty, T, denote the

shift operators

[TV = Vit [TyViki = Vi1, (2.5q)
[T Ve = Vie,i> [Ty ' Viks = Vij-1 - (2.5b)

With this notation, we are able to describe finite difference operators that correspond to

the differential operator Ly.

Let
a(e,y) = a(z + -;—Aa:, v) (2.60)
~ 1
Hz,y) = c(z,y + §Ay) (2.6b)
and for U ¢ S}, we define
[Lo,wU] = —{(@Us)z + (bUz)5 + (bU3)z + (EUy )5} (2.7a)
[LK,hU] = [Lo,hU] + K?{dU; + eUg} + KpU . (2.76)

One can think of (2.7b) as the “natural centered-difference” approximation of Ly . How-

ever, there are other reasonable and useful difference approximations. Let

[A1 U] = —{aUyzz + 2bUsy + cUyy} (2.8a)
and
1 - Oa  Ob
[L(K,)hU] = [A1, U] + (K d— %2 oy Us
P 9% (2.8b)
o (&
+ (I& e — —8-&“-—6;) Uy + Kpu .
Finally, we may also make use of the operator L(Ié)h given by
(2) K°
[LK,hU] = [LO,hU] + ‘2—' {(dU)@ + dUs + (eU)g + GU@}

(2.9)

reid ;)
+ (KP_ K7od K7 __?_)U



Each of these difference operators has certain advantages. For example the operator

L(Ig)h clearly exhibits its symmetric and skew-symmetric parts. These are

K? dd K% Oe
SI{’hU = IJo,hU -+ (I(p - —2—— 5{; - —2— 'é"’;)U (210(1)
~ K°
Sxcal = == {(dU)z + dUs + (eU); + Uy} (2.10)

We now introduce some norms and semi-norms defined on S; . For every V € S}, we set

e

P 14

WVlg = [AwAy Z IVk,j|2} ) (2.11a)
k=1 j=1

p £ i

Vioa = [y 30 S 000+ 41,] (2115)
k=0 j=0
Vg = {IVaal2 + 2| Vagl2 + 1 Vy5l2} % (2.11¢)
Viga ={IVIZ+1VI2:}7, (2.114d)
1

Vg = {IVIZ: +1V2,}7 . (2.11¢)

Finally, if By is a linear operator acting in S;, , we define

1B,
1Balls =0 292%, “vi,

Remark 2.2. The operators in (2.7)-(2.9) may be defined analogously with the first order
centered differences replaced by forward or backward differences (e.g. dU; replaced by
dU, , etc.). This is often the case with various singular perturbation models. It can be
seen that the results of this paper (in particular, Theorems 4.1-4.4) hold using analogous

arguments.



3. Preliminaries II: Estimates

In this section we collect some basic estimates.

Lemma 3.1: Let V €S, . Let A;, be given by (2.82). Let 0 < ¢ < @ be the constants
of (1.5¢). Then

2Q?
Vige < oy 141, V5 - (3.1)

Proof: See Lemma A.1 of [8] and [12].
Lemma 3.2: Let V € S, . Let Lo, be given by (2.7a). Then, there are constants M > 0,
ho > 0 such that, for 0 < A < hy we have

P

.,
2
V2, < ‘q‘[AmAy Z [LonV]k; [V 1 . (3.2)

=1 j=1

Proof: We give a rather detailed proof because this result seems to be a “folk theorem”
but we have found no complete proof.

Let us observe that

¢ < min {a(z,y), c(z,y) : (z,y) eQ} . (3.3)

A straight-forward summation-by-parts argument gives

p ¢
Ji=AzAy > Y [LopV1ki[Vieg =L + 25 + I (3.4)
k=1 j=1
where
P £
I, := AzAy Z Z (a)kj(Vx)%j , (3.5q)
k=0 j=1
p £
L = AzAy Z Z [0V Vilk,j » (3.50)
k=1 j=1
P £
I = Axdy > [E(Vy) ki - (3.5¢)
k=1 j=0
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First let us rewrite I in terms of V,, Vz,V,, V5 . We have

AzAy ¢

I =—;

k=1 j=1

Turning to I; and I3 we write

. Az [8a\' Az [ 8a\"
‘1—“"‘2‘"(5;) : “"(T”“)'T<Z§Z> -

Thus we have

1
L = ;AzAy 231 [a0,i(Va)s,; + ap+1,i(Ve)} ;]
=
1 kS
+Laony 303 al02)+ 02714
k=1 j=1
1 P
I; = —2—A:1:Ay Z [Ck,O(Vy)i,O + Ck,lf-#l(vyﬁ,e]
k=1
1 SRS
2 2
£ 0oty 3 30 el0hP (514 .

where

|Fy| + |Fa| < MRIV]Z, .

Collecting these formulae yields

[G(Vx)2 + 20V, Vy + C(V?/)Q]

<

Il

L
=1 >

N
‘M‘u

k=1 j=1
AzAy 2d 2 9
S > [a(Va)? + 26V, Vy + o(V3)?]
k=1 j=1
AzAy & : 2
+— D0 [a(Ve)? + 26V Y, + o(V,)?]
k=1 j=1
AzAy LA 9 9
+ = > Z [a(Ve)? + 26V Vy + o(Vy)?]

o
il
Y

o
i
A

1
+ 5 AzAy Z [Go,j(Vx)g,]‘ + ap+1,j(VZ)129,j]
j=1
P

2 k=1

P
SO b(VeVy + VaVy + ViV, + ViVl .

1
+ = AxAy Y [ero(Vyio + ceer1(Vy)i ) + Fi + Py .

(3.6)

(3.7)

(3.8a)

(3.8b)

(3.8¢)

(3.9)



Observe that
(Vadr,i = (Va)k-1,;

and

ao,; > 4, Gpt+1,5 =29, Cko =9, Cket1 =>4 -

Thus using (1.5¢) we obtain

q|V2, 1 ST+ R+ |F.

That is
g|VI2, < T+ MRV, .
_ 9

Thus, the lemma follows for hg = 5T -

Lemma 3.3: There are linear operators Eh,Eh defined on S), such that

LU = Ly, U + EyU

L[{)hU = L(I?,)hU -+ EhU

and

1EUlly < M Ullgyr s 1E:UNlg < M1+ KUl -

(3.10a)

(3.100)

(3.11)

(3.12a)

(3.12b)

(3.13)

Proof: These estimates follow from the estimates and formulae of lemma A.3 of [8]. For

estimate (3.13) we require that d and e have bounded second derivatives.

Lemma 3.4: There are linear operators Fj , F,gl) defined on S}, such that: for every

real o and every V € .5, we have
6"az[LK’h(ean)] = [Lo,hV] -+ K"[dV@ -+ eVg]
+ [Kp+ K°da]V + F),V
e [L(e** V)] = [Lop V] + K7[dV; + V]
+[Kp+ K°da]V + FV

and

1F3 Vg < M(1+ K7a*R)|[V ]|y

10
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IFOVI, < M1+ Koo )|[V],,: - (3.150)

Proof: These estimates follow from Lemma 3.3 and several straightforward computations.

For example, it is easy to verify that
e [a(e™V o]z = (aVi)s +0[(a” + a* M)V lg,1] (3.16a)

e™¥(e** V) = Vi + oV + 0((e® + *2)||V||5.1) - ] (3.160)

Corollary: There are linear operators Fj, F,El) defined on Sj such that: for every real

a and every V € Sy we have

1
e % [L}(’h(eva)] = Lo’hV -+ -é- I{a[dV@ + (dV)ﬁ]

1
+ 5 K7leVy + (V)] + [Kp+ K°dalV (3.17a)
+ FV + K RV,

1
e-w[L(IQh(eMV)] = LoaV + 5 K[dV + (dV)s]

1
+ 5 E7eVy + (eV)s] + [Kp + K7da]V (3.170)
O KT,
and
1EVIly < MBIV g1 +[VIg)s IFOVI < MBIV pn +IVIe).  (317c)
Proof: Direct computation based on Lemma 3.4. |
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4. Preconditioning Estimates

In this section we are concerned with the condition numbers of families {A,B; "'}
and {B;lAh} where Aj denotes one of Lk,h,Lg}l or L}(kz}l and Bj is a suitable chosen
invertible operator defined on S;. We first discuss the families {A;B;, 1} and then obtain
results for the families {B;lAh} by the use of the adjoint relationships. One major tool

is the following concept.

Definition: Let Ay , Bj be defined on S, and assume that both are invertible. We
say that {Ax} is uniformly norm equivalent to {Bj} if there exist positive constants

0 < a < B such that,
ol|BuUl, < | 4Tlly < BIBAUL, , VU €Si, (4.1)

a and f are independent of h . This concept was used in [10] and studied in depth in [8].
In the cases of interest in this work, A, and Bj will depend on the parameter K >> 0 .
In some of these cases it is not possible to find « and § independent of K . Hence we will

have occasion to deal with the case where a and f depend on K.

Lemma 4.1: Suppose (4.1) holds. Then

l4n By, < 8, (4.2a)
-1 1
1Badz ly < =, (420)
so that
C(ARB;') < Bla . (4.3)

Proof: To obtain (4.2a) we set U = B; 'V . To obtain (4.2b) we set U = A;'V . Since
(ARB;')™' = BRA;' we obtain (4.3) from (4.2a), (4.2b). |

In the work that follows B} will either be another discrete elliptic operator L K,h OF
an operator taken from a family {Bj,} which is uniformly norm equivalent to L K,k , With

respect to K as well as h .

12



Lemma 4.2: Let Bj be a discrete elliptic operator of the form L 3, L(Igh or Lg??h .
Let ¢ = 1. Assume that d(z,y) > dp > 0 and Kh < My . Then thereis a Ky > 0 and an
ho > 0 such that, for all K > Ky and all A, 0 < h < hy we have the following estimates

1B g < M/K (4.4a)
B! flgn < ME™2| £l (4.4b)
1By flg2 < M(L+ED)||f| (4.4¢)
Proof: Let
B,U=f. (4.5)

Let U = e®*V, where the positive number a will be determined later. Invoking the
Corollary to Lemma 3.4 we see that there is a constant My, depending only on the

coefficients of Lk, but not on h or K so that

1
Lo nV + 51{ [V + (dV)z + eVy + (eV);]

(4.6a)
+ K [p+adlV=e"f+QLV
where
1QrVllg < Mo(1+ a®)[Vllg + K Mo|[ Vg - (4.60)
Multiplying by V and summing over ; we use Lemma 3.2 to obtain
q
5 [Viga + K [ado = [Iplo)IVIG < II£ll - 1Vl (a7
+ Mo(1+ a)[Vllga IVl + K Mo|[ V][5 .
Let
oo + My + 2
a=qp = [plleo + Mo + . (4.8a)
do
Then (4.7) and elementary inequalities yield
q ¢ q
LIz s+ 2KIVIE < Il - WVl + 26IVIE + LIV, (49)

where \ .
M1

13



Thus, for K > M; we have

TV A+ KIVIZ< £, - 1V, (4.10)
which immediately implies

1Ully < e[|Vl < e* K flly

and
. 4 1
Ulga < 21+ 200" |V, < €70 (14 200) — 2 117 -

Thus, we have proven (4.4a) and (4.4b).
Using Lemma, 3.3 and (2.8a), (2.8b) we see that

Al,hUJf—K(dU;c+eU@)+KpU:f—}—RhU (4.11a)
where
HRhU”g < 'M”U”g,l . (4-115)

Using (4.4a) and (4.4b) we see that

‘Al hUZF

)

where

IFlly < (1 4+ K3) M| fll, -

Using Lemma 3.1 we see that 4.4c holds. |

Remark : The estimates (4.4) remain valid if the assumption d(z,y) > dy > 0 is replaced
by —d(z,y) > do > 0, or e(z,y) > eg > 0, or —e(z,y) > eo > 0. In the first case ayg is

z

replaced by the negative of (4.8a). In the latter two cases e*® is replaced by e*Y.

(2)

Lemma 4.3: Let By be a discrete elliptic operator of the form Ly 3, L(Kl’,)h or L Koh-

Assume that Kh < My. Let 0 <1 and p(z,y) satisfy

p(z,y) = po >0. (4.12)

14



Then there is a Ko > 0 and an hg > 0 such that, for all K > Ky and all A, 0 < h < hg
we have the estimates (4.4a), (4.4b) and

|B5 flg2 < M (L4 K75l (4.4¢')
Proof: As before, let
B,U=Ff. (4.5)
Using Lemma 3.3, we see that
LOU=f+QuU (4.13q)
where
1Ty < M+ KR, (4.13)

Multiplying by U and summing over 2, we use Lemma 3.2 to obtain
q -
510051+ KpollUllg < M1fllg - 1T
+ME?|U|Jg + M1+ KTR)|[Ullga - U]l

Thus, for A small enough we have
q 1 o
L2, + (3Kpo — ML+ K DITIE < 1£l, U],

and the estimates follow as in the previous lemma.
In Lemma 4.2 and Lemma 4.3 we were concerned with cases in which the symmetric

part of By, is positive definite (for K large enough). We now turn to the indefinite case.

Lemma 4.4: Let By be a discrete elliptic operator of the form Ly s, Lg?h or Lg?)h
with
Kh < MO .

Suppose
1B My < M. (4.14)

Then there is an hg, such that for all A, 0 < h < hy , we have

- L -
| B}, 1flg,1 SMA+K2)|fllg 1By 1”9 (4.15a)

15



1B; flg2 < M1+ (K75 + K)|B; o] - 1 £l - (4.15b)

Proof: Let BpoU = f. Then Using Lemma 3.3
LOU = f+QuU (4.16a)

where

1@rUllg < M(1+ E°R)|[U]lg, - (4.160)

Multiplying by U and using Lemma 3.2, we have
q >
5 1Ulex S ENUIG + 11l - 1T1lg + MNTllg,1 - U]l -

So that
q M
ZIU|3,1 < (K + -q-)HUllﬁ + I fllg 1U1lg -

Hence (4.15a) holds.
Using Lemma 3.3 and (2.8) we see that

AU = f+ RyU (4.17a)

where

IBLU I, < MIE|U ]|y + K|UYl) (4.170)

Hence, Lemma 3.1 and (4.15a) yields (4.15D).
Definition: We say A}, is of class I if the estimates (4.4) hold. That is
145 Ny < M/K, 1437 flga < ME 5| £, (4.180)

|47 flg < ML+ K3 £, - (4.180)

Theorem 4.1: Let A, be of class I. Let
Bp,=-AL+ K. (4.19)

That is
BLV = —[Vuz 4+ Vyyl + KV,

16



and B} satisfies the boundary conditions of Ap. Then

C(AnByY) = [ AnB; o - 1 Brdi lly < M1+ K773)2 . (4.20)

Proof: Use (4.18a), (4.18b) and apply Lemma 4.3 to By, |

Theorem 4.2: Let Ap be an operator which satisfies the estimates (4.14) and (4.15).
That is

145 g < My (4.21a)
|47 flgn < M MK E| ), (4.215)
|47 Flgz < ML+ (K7HE + K)Mi]| £ - (4.21c)

Let By, be the operator given by (4.19). Then
C(ARB7Y) < M(1+ K™ 3)[1+ (K°t7 + K)Mi).
Proof: Apply lemma 4.3 to Bj,.
We now turn to estimates on C(Bj;'Ay). We observe that
1By Anlly = (B An)*llg = 1 45(B5 g (4-22a)

AR Ballg = (45" Bu)*lly = 1 Br(45 "), - (4.220)

However, the representation Lgf;z shows that A} satisfies exactly the same estimates as

Ap . Hence we immediately obtain the following results which mirror theorems 4.1 and 4.2.
Theorem 4.3: Let A, be of class I. Let By be given by (4.19). Then
C(B7'A) < M1+ K°"%)?. 1| (4.23)

Theorem 4.4: Let A, be an operator which satisfies the estimates (4.21). Let Bj, be the
operator given by (4.19). Then

C(BF'AR) <M1+ K 51+ (K s + K)My]. | (4.24)
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5. An Alternative Method for Convection - Diffusion Type Models
Suppose that A is of class I (see estimates (4.18)) and let Bj, be given by (4.19). If
o< %— , it follows from Theorems 4.1 and 4.3 that
C(ARBy") = 0(1) and C(B;'Ap) = O(1) as K — o0 . (5.1)

On the other hand, these condition numbers can increase with K if ¢ > 5 This includes
the important case of convection-diffusion models for which ¢ =1 .
1
In this section, we assume that ¢ > 3 and show how to replace problem (1.5) by one

of the same form for which (5.1) holds. Suppose that either

(i) d(z,y) > do > 0 or (ii) —d(z,y) > do > 0in Q (5.2a)
or
(i1) e(z,y) > eo >0or (ii) —e(z,y) > e >0in . (5.2b)
If (5.2a) holds, set
U=e 2Ky (5.3a)
and
F=eoKsf (5.4a)
If (5.2b) holds, set
U=e Ky (5.30)
and
F=eoKuy, (5.4b)

It is easily seen that (1.5a) is transformed into the following equation assuming either

(5.2a)-(5.4a) or (5.2b)-(5.4b) holds:

. o, oU o ,,0U d ,,0U 0, 0U
LW:“{@';(%;)+5§<”5;>+5;<655>+‘a‘g(05§>}
S G O
+ K (d8$+eay>+K pU=F (5.5)
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with suitable functions d , €, and p. Furthermore, we assume that the boundary condi-
tions for U take the form
U

U or éﬁ_ =0 (56)

along an entire side.

Now suppose we show that « can be chosen such that

~

D> Po > 0 for K sufficiently large . (5.7)

Then if we discretize Ly using one of the difference schemes, (2.7), (2.8), or (2.9) and
replace K by K' = K27 , it follows from Lemma 4.3 that the resulting discrete operator,
Ay, is of class I for K sufficiently large. Hence we may apply Theorems 4.1 and 4.3 to
see that (5.1) holds. We may thus iteratively solve for the approximate solution, U" | of
(5.5) with the number of iterations bounded as K — oo . The approximate solution, u” ,
of (1.1) is now given by either u® = e*X"2U" or v = e*K"YU"* | Hence our goal is to

prove that (5.7) holds.

Theorem 5.1: Suppose that either (5.2a)-(5.4a) or (5.2b)-(5.4b) holds. Then a may be
chosen such that (5.7) holds.

Proof: It suffices to assume (5.2a) since analogous arguments hold assuming (5.2b). In

view of (5.3a) and (5.3b), we see using a straightforward calculation that (5.5) holds with

Oa
- s1—20 bl
p=ad-a’a+ pK a@xI . (5.8)
Now set
do
a = ff = ——————— if condition (i) in (5.2a) holds (5.9a)
2llall Lo (o)
and
—a=pf= b if condition (ii) in (5.2a) holds (5.90)
2[|afl Lo (@)

It is readily seen using (5.8) and (5.9) that

A -2 -1 00
P> Bdo — F?|lal|l e — (K77 ||pll peo (o) + BK ™ Il-—-~HL°°<Q))

. T (I Kmad°”§%“L°°(Q))
4f|al| (@) 2[|afl oo (o)
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Since 20 > 1, we see that (5.7) holds. i

Note: Computational difficulties can arise using transformation (5.3) for K large since it

may be necessary to deal with very large or very small numbers.
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