INTEGRATING NON-INTERFERING
VERSIONS OF PROGRAMS

by
Susan Horwitz

Jan Prins
Thomas Reps

Computer Sciences Technical Report #690

March 1987

Integrating Non-Interfering Versions of Programs

SUSAN HORWITZ, JAN PRINS, and THOMAS REPS
University of Wisconsin — Madison

The need to integrate several versions of a program into a common one arises frequently, but it is a tedious and time
consuming task to integrate programs by hand. Anyone who has had to reconcile divergent lines of development will
recognize the problem and identify with the need for automatic assistance. This paper concerns the design of a tool for
automatically integrating program versions. The main contribution of the paper is an algorithm, called Integrate, that
takes as input three programs A, B, and Base, where A and B are two variants of Base. Whenever the changes made
to Base to create A and B do not “interfere” (in a sense defined in the paper), Integrate produces a program M that
integrates A and B.

The method is based on the assumption that any change in the behavior, rather than the fext, of Base's variants is
significant and must be preserved in M. Although it is undecidable to determine whether a program modification actu-
ally leads to such a difference, it is possible to determine a safe approximation by comparing each of the variants with
Base. To determine this information, we employ a program representation that is similar, but not identical, to the pro-
gram dependence graphs that have been used previously in vectorizing compilers.

To the best of our knowledge, the code-integration problem has not been previously formalized. It should be noted,
however, that the integration problem examined here is a greatly simplified one; in particular, we assume that expres-
sions contain only scalar variables and constants, and that the only statements used in programs are assignment state-
ments, conditional statements, and while-loops.

CR Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques — programmer work-
bench; D.2.3 [Software Engineering]: Coding — program editors; D.2.6 [Software Engineering]: Programming
Environments; D.2.7 [Software Engineering]: Distribution and Maintenance ~ enhancement, restructuring, version
control; D.2.9 [Software Engineering]: Management — programming teams, software configuration management;
D.3.4 [Programming Languages]: Processors

General Terms: Algorithms, Design

Additional Key Words and Phrases: program integration, non-interfering versions, propagating enhancements, program
dependence graph, program slicing, data-flow analysis, control dependency, data dependency

1. INTRODUCTION

Programmers are often faced with the task of integrating several related, but slightly different variants of a
system. One of the ways in which this situation arises is when a base version of a system is enhanced
along different lines, either by users or maintainers, thereby creating several related versions with slightly
different features. If one wishes to create a new version that incorporates several of the enhancements
simultaneously, one has to check for conflicts in the implementations of the different versions and then
merge them to create an integrated version that combines their separate features.

This work was supported in part by the National Science Foundation under grants DCR-8552602 and DCR-8603356 as well as by
grants from IBM, DEC, Siemens, and Xerox.

Authors’ address: Computer Sciences Department, University of Wisconsin, 1210 W. Dayton St., Madison, W1 53706.

The task of integrating different versions of programs also arises as systems are being created. Program
development is usually a cooperative activity that involves multiple programmers. If a task can be decom-
posed into independent pieces, the different aspects of the task can be developed and tested independently
by different programmers. However, if such a decomposition is not possible, the members of the program-
ming team must work with multiple, separate copies of the source files, and the different versions of the
files have to be merged into a common version,

The program-integration problem also arises in a slightly different guise when a family of related ver-
sions of a program has been created (for example, to support different machines or different operating sys-
tems), and the goal is to make the same enhancement or bug-fix to all of them. Such a change cannot be
developed for one version and blindly applied to all other versions since the differences among the versions
might alter the effects of the change.

Anyone who has had o reconcile divergent lines of development will recognize these situations and
identify with the need for automatic assistance. Unfortunately, at present, the only available tools for
integration are variants of differential file comparators, such as the Unix utility diff. The problem with such
tools is that they implement an operation for merging files as strings of text. For instance, diff implements
a heuristic algorithm for file companson based on the longest common subsequence problem [Hunt &
MclIroy].

This approach has the advantage that the current tools are as applicable to merging documents, data files,
and other text objects as they are to merging programs. Unfortunately, these tools are necessarily of lim-
_ited utility for integrating programs because the manner in which two programs are merged is not safe.
One has no guarantees about the way the program that results from a purely rextual merge behaves in rela-
tion to the behavior of either of the two programs that are the arguments to the merge. The merged pro-
gram must, therefore, be checked carefully for conflicts that might have been introduced by the merge.

This paper describes a technique that could serve as the basis for building an automatic program integra-
tion tool. We present an algorithm Integrate that takes as input three programs A, B, and Base,, where A
and B are two variants of Base. Integrate either determines that the changes made to Base to produce A
and B interfere, or it produces a new program M that integrates A and B with respect to Base .

The method is based on the assumption that any change in the behavior, rather than the text, of Base’s
variants is significant and must be preserved in M. Although it is undecidable to determine whether a pro-
gram modification actually leads to a change in behavior, it is possible to determine a safe approximation
by comparing each of the variants with Base . To determine this information, we adopt (and adapt) the pro-
gram dependence graphs that have been used previously for representing programs in vectorizing com-
pilers [Kuck et al. 1981, Allen & Kennedy 1982, 1984, Ferrante et al. 1987].

To the best of our knowledge, the program-integration problem has not been previously formalized. It
should be noted, however, that the integration problem examined here is a greatly simplified one; in partic-
ular, the algorithm Integrate operates under the simplifying assumptions that expressions contain only
scalar variables and constants, and that the statements used in programs consist of assignment statements,
conditional statements, while-loops, and no other control constructs.

The paper is organized into seven sections, as follows: Section 2 discusses criteria for integratability and
interference. Section 3 illustrates some of the problems that can arise when programs are integrated using
textual comparison and merging operations.

Sections 4.1 through 4.5 describe the five steps of the algorithm Integrate. The first step, described in
Section 4.1, builds the program dependence graphs that represent the programs Base , A, and B. The pro-
gram dependence graph that represents program P is denoted by Gp. The second step, discussed in Sec-

tion 4.2, determines sets of affected program points of G, and Gy as computed with respect t0 Gy, -
Each set captures the essential differences between Base and the variant program. The third step,
described in Section 4.3, combines G, and Gy to create a merged dependence graph Gy, making use of
the sets of affected program points that were computed by the second step. The fourth step uses G4, G,
the affected points of G, and Gg, and Gy to determine whether A and B interfere with respect to Base ;
interference is defined and discussed in Section 4.4. The fifth step, which is carried out only if A and B do
not interfere, determines whether Gy, corresponds to some program and, if it does, creates an appropriate
program from Gy. Although, as we show in Appendix C, the problem of determining whether a program
dependence graph corresponds to some program is NP-complete, we conjecture that the backtracking algo-
rithm given for this step in Section 4.5 will behave satisfactorily on actual programs. The algorithm
Integrate is summarized in Section 4.6.

Section 5 discusses how Integrate may be applied to the problem of propagating enhancements and bug-
fixes through related program versions. Section 6 describes some technical differences between the kind of
program dependence graphs we employ and the program dependence representations that have been
defined by others. Section 7 discusses some areas for future work and possible extensions to our method to
permit it to be applied to more realistic programming languages.

2. CRITERIA FOR INTEGRATABILITY AND INTERFERENCE

Two versions A and B of a common Base may, in general, be arbitrarily different. To describe the
integrated version M we could say that the developers of A and B each have in mind their own
specification, and that M should be constructed so as to satisfy both specifications. For example, following
the view of specifications as pairs of pre- and post-condition predicates [Hoare 1969, Dijkstra 1976], given
programs A and B that satisfy {P4} A {Qs) and (P} B {Qp]), respectively, A and B are integratable if
there exists a program M such that (P4} M {Q4)and (Pg} M (Qg}.

Under certain circumstances, it is not possible to integrate two programs; we say that such programs
interfere. One source of interference for the integration criterion given above can be illustrated by restat-
ing the criterion as follows: M integrates A and B if M satisfies the three triples
(PaAPgYM (Qan Qg), (Pan—Pg}M (Q4), and (Pg A —P,} M {Qp}. A and B interfere if the
formula P4 A Py is satisfiable but Q4 A Qp is unsatisfiable; under this circumstance, it is impossible to
find an M that satisfies the specification (P4 A Pg} M {Q4 A O3 }.

An integration criterion based on program specifications leaves a great deal of freedom for constructing
a suitable M , but would be plagued by the familiar undecidable problems of automated program derivation.
Moreover, the requirement that programs be annotated with specifications would make such an approach
unusable with the methods of system development currently in use. Consequently, we investigate a consid-
erably restricted definition of the program-integration problem and devise appropriate interference criteria.

Our basic assumption is that the integrated version M must be composed of exactly the statements and
control structures that appear as components of A and B. In conjunction with this assumption, we assume
that the editor used to create Base, A, and B provides a unique-naming capability so that statements and
predicates are identified consistently in all three versions. Each component that occurs in a program is an
object whose identity is recorded by a unique identifier that is guaranteed to persist across different editing
sessions and machines. For example, a component that is moved from its original position in Base to a
new position in A retains its identity from Base.

As for the interference criterion, since we do not know the specification of any of the versions of the pro-
gram, we assume that any change to version A or B that could lead to a different behavior than the
behavior of Base is significant and must be preserved in M. Although it is undecidable to determine

whether a program modification actually leads to such a difference, it is possible to determine a safe
approximation by comparing each of the variants with Base. To determine this information, we make use
of program dependence graphs [Kuck et al. 1981, Allen & Kennedy 1982,1984, Ferrante et al. 1987]; we
also make use of the notion of a program slice [Weiser 1984, Ottenstein & Ottenstein 1984] to determine
just those statements of a program that determine the values of (potentially) affected variables. (In both
cases, these ideas have been adapted to the particular needs of the program-integration problem).

Although we restrict our attention in this paper to a programming language with only the most basic con-
trol constructs, we are hopeful that our approach to program integration can be extended to more realistic
programming languages. Our assumptions about the language have been made to simplify the program-
integration problem to a manageable level. When the program-integration problem is extended beyond our
simplified setting, certain details of the integration method will become more complicated. For instance,
the data-flow problems whose solutions are necessary to support our approach may become more complex;
however, similar problems have already been addressed in [Weiser 1984, Ferrante et al. 1987], and they are
not insurmountable.

An additional goal for an integration tool, although one of secondary importance, is ensuring that the
program M that results from integrating A and B resembles A and B as much as possible. While on the
subject of our method’s limitations, it is only fair to point out that that it is notably weak in this area. For
example, when the final step of the integration algorithm finally determines the order of statements in M, it
does not make direct use of the order in which statements occur in A or B. Consequently, it may not
preserve original statement order, even in portions of the programs that are unaffected by the changes made
to the base program to create A and B. Our integration method does preserve the original variable names
used in A, B, and Base; however, as discussed briefly in Section 4.5, it may be necessary to abandon this
property and permit the final step of the integration algorithm to perform a limited amount of variable
renaming.

3. THE PERILS OF TEXT-BASED INTEGRATION

Integrating programs via textual comparison and merging operations is accompanied by numerous hazards.
This section describes some of the problems that can arise, and underscores them with an example that
baffles the Unix program diff3. (Diff3 is a relative of diff that can be used to create a merged file when sup-
plied a base file and two variants).

One problem is that character- or line-oriented textual operations do not preserve syntactic structure;
consequently, a processor like diff3 can easily produce something that is syntactically incorrect. Even if
the problem of syntactically erroneous output were overcome, there would still be severe drawbacks to
integration by textual merging because text operations do not account for program semantics. This has two
undesirable consequences:

a) If the variants of the base program do interfere (under a semantic criteria), diff3 still goes ahead and
produces an “integrated” program.

b) Even when the variants do not interfere (under semantic criteria), the integrated program created
using diff3 is not necessarily an acceptable integration.

The latter problem is illustrated by the example given below. In this example, diff3 creates an unaccept-
able integrated program despite the fact that it is only necessary to reorder (whole) lines to produce an
acceptable one. The example concerns the following base program and two variants:

Base program

if P thenx :=0fi
if O thenx :=1f
y=x

if R thenw :=3fi
if S thenw =4 fi

=W

Variant A Variant B

ifQ thenx :=1fi if S thenw :=4fi
if P thenx :=0fi ifR thenw :=3fi
Yy =x Z=w

ifR thenw :=3fi if P thenx :=0fi
if S thenw =41 if Q thenx :=1fi
zi=w yi=x

In variant A, the conditional statements that have P and Q as their conditions are reversed from the order

in which they appear in Base. In variant B, the order of the P—Q pair remains the same as in Base, but

the order of the R—S pair is reversed; in addition, the order of the first and second groups of three state-
ments have been interchanged.

Under Unix, a program that (purportedly) integrates Base, A, and B can be created by the following
operations:
diff3 —e A Base B > script
(cat script; echo ’1,9p’) l ed — A
The first command invokes the three-way file comparator diff3; the —e flag of diff3 causes it to create an
editor script as its output. This script can be used to incorporate in one of the variants (in this case, A)
changes between the base program (Base) and the second variant (B). The second command invokes the
editor to apply the script to variant A .

The program that results from these operations is:

if S thenw =4 fi

ifR thenw =31

zZ=w

if P thenx :=0fi

ifQ thenx =11

y =X

This program is exactly the same as the one given as variant B. Because it does not account for the differ-
ences in behavior between Base and variant A , this can hardly be considered an acceptable integration of
Base ,A,and B.

We now try a different tactic and exchange the positions of A and B in the argument list passed to diff3,
thereby treating B as the “primary” variant and A as the “secondary” variant (diff3 is not symmetric in its
first and third arguments). The program that results is:
ifQ thenx =11
if P thenx :=0fi
yi=x
Clearly this program is unacceptable as the integration of Base , A, and B.

This example illustrates the use of diff3 to create an editing script that merges three documents whether
or not there are “conflicts.” It is also possible to have diff3 produce an editing script that annotates the
merged document at places where conflicts occur. At such places, the script inserts both versions of the

text, and brackets the region of the conflict by “<<<<<<” and “>>>>>>." For instance, the outcome for the
second case discussed above is:

<<c<<<< B

ifS thenw =4 fi
ifR thenw =3 fi
Zi=W

if P thenx :=0fi

S5>>>>> A

ifQ thenx :=1fi
if P thenx =0fi
y =x

When we apply the program-integration method that is described in this paper to this same example,
there are several programs it might create, including the following three:

if S thenw =4 fi
ifR thenw :=3fi
z2=w

ifQ thenx :=1fi
if P thenx :=0fi

ifQ thenx :=1fi
if P thenx :=0fi

y=x

if S thenw =4 fi
ifR thenw :=3fi

ifQ thenx :=11i
if P thenx :=0fi
if S thenw :=4fi
ifR thenw :=3fi
yi=x

y =x z:=w z =W

In contrast with the programs that result from text-based integration, any of the algorithm’s possible pro-
ducts is a satisfactory outcome for integrating Base, A, and B. We return to this example in Section 5,and
use it to illustrate the operation of the program-integration algorithm.

4. AN ALGORITHM FOR INTEGRATING NON-INTERFERING VERSIONS OF PROGRAMS

4.1. The Program Dependence Graph

The information used by our program integration method is encapsulated by a program representation
called a program dependence graph. Program dependence graphs were introduced by Kuck [Kuck et al.
1972, Towle 1976, Kuck 1978, Kuck et al. 1981] and a number of variations have since appeared [Allen &
Kennedy 1982,1984, Ottenstein & Ottenstein 1984, Ferrante et al. 1987]. The definition presented here is
yet another variation, adapted to the particular needs of the program-integration problem.

The program dependence graph for a program P, denoted by Gp, is a directed graph whose vertices are
connected by several kinds of edges!. The vertices of Gp represent the assignment statements and control
predicates that occur in program P . In addition, Gp includes three other categories of vertices:

a) There is a distinguished vertex called the entry vertex.

b) For each variable x used in P, there is a vertex called the initial definition of x. This vertex
represents an initial assignment to x with a special value uninitialized.

¢) For each variable used in P, there is a second vertex called the final use of x. 1t represents an access
to the final value of x computed by P.

The edges of Gp represent dependencies among program components. An edge represents either a con-
trol dependency or a data dependency. Control dependency edges are labeled either true or false, and the

1A directed graph G consists of a set of vertices V(G) and a set of edges E(G), where E(G)CV(G)XV(G). Each edge
(b,c)e E(G) is directed from b to ¢; we say that b is the source and ¢ the target of the edge. Throughout the paper, the term “ver-
1ex” is used to refer to elements of dependency graphs, whereas the term “node” refers to elements of derivation trees.

source of a control dependency edge is always the entry vertex or a predicate vertex. A control depen-
dency edge from vertex v, to vertex v, denoted v, —>; vz, means that during execution, whenever the
predicate represented by v, is evaluated and its value matches the label on the edge to v, then the program
component represented by v, will be executed (although perhaps not immediately). A method for deter-
mining control dependency edges for arbitrary programs is given in [Ferrante et al. 1987]; however,
because we are assuming that programs include only assignment, conditional, and while statements, the
control dependency edges of Gp can be determined in a much simpler fashion. For the language under
consideration here, a program dependence graph contains a control dependency edge from vertex v, to ver-
tex v, of Gp iff one of the following holds:

i) v, is the entry vertex, and v, represents a component of P that is not subordinate to any control
predicate.

ii) v represents a control predicate, and v, represents a component of P immediately subordinate to the
control construct wiiose predicate is represented by v;. If v, is the predicate of a while-loop, the
edge v, —>, v, is labeled true; if v, is the predicate of a conditional statement, the edge v, —; v is
labeled true or false according to whether v, occurs in the then branch or the else branch, respec-
tively.

Note that there are no control depéndencies to initial definitions and final uses of variables.

A data dependency edge from vertex vy to vertex v, means that the program’s computation might be

changed if the relative order of the components represented by v, and v, were reversed. In this paper, pro-

- gram dependence graphs contain two kinds of data-dependency edges, representing flow dependencies and
def-order dependencies.

A program dependence graph contains a flow dependency edge from veriex v, to vertex v, iff all of the
following hold:

i) v, is an assignment statement that defines variable x.
if) v, is an assignment statement or predicate that uses x.

iiiy Control can reach v, after v, via an execution path along which there is no intervening definition of
x. That is, there is a path in the standard control-flow graph for the program [Aho et al. 1986] by
which the definition of x at v, reaches the use of x at v,. (Initial definitions of variables are con-
sidered to occur at the beginning of the control-flow graph, and final uses of variables are considered
to occur at its end).

A flow dependency that exists from vertex v, to vertex v, will be denoted by v, —>f Vo

Flow dependencies can be further classified as loop independent or loop carried. A flow dependency
vy —>; v, is loop independent, denoted v, —>; v,, if the execution path by which v is reached from v,
includes no backedge of the control-flow graph; otherwise, it is a loop carried dependency. A loop-carried
dependency edge is labeled with the loop that carries the dependence; that is, if the execution path by
which v, is reached from v, includes a backedge to the predicate of loop L (in the control-flow graph),
then the edge from v, to v, is labeled with L. Such a dependency is denoted by vy —> ey Va-

A program dependence graph contains a def-order dependency edge from vertex v, to vertex v, iff all of
the following hold:

i) v, and v, both define the same variable.

ii) v, and v, are in the same branch of any conditional statement that encloses both of them.

jii) There exists a program component v such that v, —> v; and v, —; vs.
iv) v, occurs to the left of v, in the program’s abstract syntax tree.
A def-order dependency from v, to v, is denoted by vy —> 4, ¢y V2.

Note that a program dependence graph is a multi-graph (i.e. it may have more than one edge of a given
kind between two vertices). When there is more than one.loop-carried flow dependency edge between two
vertices, each is labeled by a different loop that carries the dependency. When there is more than one def-
order edge between two vertices, each is labeled by a vertex that is flow-dependent on both the definition
that occurs at the edge’s source and the definition that occurs at the edge’s target.

Example. Figure 1 shows an example program and its program dependence graph. The boldface arrows
represent control dependency edges; dashed arrows represent def-order dependency edges; solid arrows

program Sum
sum =0
x =1
whilex <11 do
sum = sum -+ x
x=x+1
od

sum = uninitialized x = uninitialized
T

@ x =1 q! while x < 11
!
finaluse(x) W

Figure 1. An example program, which sums the integers from 1 to 10 and leaves the result in the variable sum, and its
program dependence graph. The boldface arrows represent control dependency edges, dashed arrows represent def-
order dependency edges, solid arrows represent loop-independent flow dependency edges, and solid arrows with a hash
mark represent loop-carried flow dependency edges.

represent loop-independent flow dependency edges; solid arrows with a hash mark represent loop-carried
flow dependency edges.

The function GeneratePDG, given in Figure 2, creates a program dependence graph (a PDG) for a given
program. The data-dependency edges of the PDG are computed using data-flow analysis. For the res-
tricted language considered in this paper, the necessary computations can be defined in a syntax-directed
manner; these methods are described in detail in Appendix A.

We shall assume that elements of PDG’s are also labeled with some additional pieces of information.
Recall that we have assumed that the editor used to modify programs provides a unique-naming capability
so that statements and predicates are identified consistently in different versions. Each component that
occurs in a program is an object whose identity is recorded by a unique identifier that is guaranteed to per-
sist across different editing sessions and machines. It is these identifiers that are used to determine “identi-
cal” vertices when we perform operations on components from different PDG’s (e.g. V(G NV (G)).

4.1.1. Program dependence graphs and program behavior

In choosing which dependency edges to include in our program dependence graphs our goal has been to
partially characterize programs that have the same behavior. In particular, two inequivalent programs
should not have the same program dependence graph, although two equivalent programs may have dif-
ferent program dependence graphs.

We can illustrate the need for each of the different kinds of edges included in our definition by demon-
strating some sample inequivalent programs that would be indistinguishable if PDG’s were to lack a partic-
ular kind of edge. For example, the distinction between loop-independent and loop-carried flow dependen-
cies is necessary to distinguish between the following two program fragments:

function GeneratePDG(P) returns a program dependence graph
declare
P an abstract syntax tree representation of a program
G : a program dependence graph
begin
V(G) := the set of assignment statements, if predicates, and while predicates of P, an entry vertex,
for each variable in P an initial definition and a final use
E(G)=0
Traverse P and insert control dependency edges into G
Compute loop-carried and loop-independent reaching definitions for each node of P (see Appendix A)
Traverse P and insert loop-independent and loop-carried flow dependency edges into G
Compute def-order dependencies for each node of P (see Appendix A)
Traverse P and insert def-order dependency edges into G
return(G)
end

Figure 2. The function GeneratePDG(P) creates the program dependence graph for program P.

~-10-

x:=0 x:=0

while P do while P do
y=x ifQ thenx :=1f
if Q thenx :=1f yi=x

od od

The PDG’s for these fragments have identical vertices, control dependency edges, and def-order depen-
dency edges. If we ignore the distinction between loop-independent and loop-carried flow dependencies,
they have identical flow dependency edges as well; however, in the left-hand fragment, the flow depen-
dency from the assignment statement x :=1 to the assignment y :=x is a loop-carried dependency,
whereas the corresponding dependency in the right-hand fragment is a loop-independent one.

Def-order dependencies are needed in PDG’s to be able to distinguish between the program fragments:

if P thenx :=0fi ifQ thenx :=1f
ifQ thenx :=1fi if P thenx :=0fi
yi=x y=x

Here the PDG’s for these fragments have identical vertices, control dependency edges, and flow depen-
dency edges. If PDG’s did not contain def-order dependency edges, these programs would have identical
PDG’s, although they do not have equivalent behaviors. Including def-order dependences causes them not
to have identical PDG’s; in the left-hand fragment, there is a def-order dependency from the assignment
statement x := 0 to the assignment x := 1, whereas in the right-hand fragment, the def-order dependency
runs in the other direction, from x =1 tox :=0.

4.1.2. Program slices

For a vertex s of a PDG G, the slice of G with respect to s, written as G /s, is a graph containing all ver-
tices on which s has a transitive flow or control dependence (i.e. all vertices that can reach s via flow or
control edges):

VG Is)={wlweV(G)Aw 55}

We extend the definition to a set of vertices § = U s; as follows:
RS i
VG /8§)=V(GI(Ys)N=VV(G/s)
+ i

It is useful to define V(G /v)=Q forany v ¢ G.

The edges in the graph G /S are essentially those in the subgraph of G induced by V(G /§), with the
exception that a def-order edge v — 4,4 W is included only if G /S contains the vertex u that is directly
flow dependent on the definitions at v and w. In terms of the three types of edges in a PDG we define
EGIS)= {(v—=2pw)l(v—ryw)eE(G)AvVWE V(GI/S))

V{2 WEeEEGIA vweV(G/S))
V(O =2uwW) ! ¢V Duww)EEG)A uyweV(G 18)}

We say that G is a feasible program dependence graph iff G is the program dependence graph of some
program P. For any § ¢ V(G), if G is a feasible PDG, the slice G /§ is also a feasible PDG (although it
may omit some final-use vertices); it corresponds to the program P’ obtained by restricting the syntax tree
of P to just the statements and predicates in V(G /5) [Ottenstein & Ottenstein 1984].

The significance of a slice is that it captures a portion of a program’s behavior. The programs P and P,
corresponding to the slice G /S and the graph G , respectively, “compute the same values” at each program
point s € S. In our case a program point may be (1) an assignment statement, (2) a control predicate, or (3)

-11-

a final use of a variable. Because a statement or control predicate may be reached repeatedly in a program,
by “computing the same value” we mean (respectively) (1) for any assignment statement in S, the same
sequence of values are assigned to the target variable, (2) for a predicate in S, the same sequence of
boolean values are produced, and (3) for each final use in §, the same value for the variable is produced.

4.2. Determining the Differences in Behavior of a Variant

In this section we characterize (an approximation to) the difference between the behavior of Base and its
variants. Since we do not know the specification of Base or its variants, we assume that any and only
changes in behavior of a variant with respect to Base are significant. The program dependence graphs are
a convenient representation from which to determine these changes. (The other reason for working with
the PDG representations is that they are simple to merge since they relax the relative ordering of statements
within control structures).

In what follows, let G, G4, and G represent the program dependence graphs of the programs Base, A,
and B, respectively, that are produced by GeneratePDG of Section 4.1.

If the slice of variant G4 at vertex v differs from the slice of G at vertex v (i.e. they are different
graphs), then values at v are computed in a different manner by the respective programs. This means that
the values at v may differ, and we take this as our definition of changed behavior. We define the affected
points D, of G4 as the subset of vertices of G, whose slices in G and G, differ:

Dy={vl ve Gy A Glv#Gyaiv}
The slice G, /D, captures the behavior of A that differs from Base .

There is a simple technique to determine D, that avoids computing all of the slices stated in the
definition. The technique requires at most two complete examinations of G, , and is based on the following
three observations:

a) All statements and predicates that are in G4 butnotin G are affected points.

b) Each vertex w of G, that has a different set of incoming control or flow edges in G4 thanin G gives
rise to a set of affected points — those vertices that can be reached via zero or more control or flow
edges from w.

¢) Each vertex w of G, that has an incoming def-order edge w’ —> 4w that does not occur in G
gives rise to a set of affected points — those vertices that can be reached via zero or more control or
flow edges from u.

The justification for observation a) is straightforward: for w € V(G,)-V(G), G /w is the empty graph,
whereas w € V(G4 /w), 50 G, /w is not empty. The justification for observation b) is also straightfor-
ward. By the definition of slicing, when w differs in incoming flow or control edges, G4 /w and G /w can
not be the same, hence w itself is affected. For any vertex v that is flow or control dependent on w, the
slices G, /v and G /v contain w. Therefore, if w is affected, all successors of w via control and flow
dependencies are also affected.

The justification for observation c) is more subtle. When a def-order edge w’ —> 4w occurs in G4
but not in G, then the slice G, /u will include both w” and w and the def-order edge between them, while
G /u will not include this edge. Hence u is affected. The reverse situation, where w’ —> 4, () W OCCUIS in
G but not in G4 means u is affected if u € G4. But it is not necessary to examine this possibility since
either w’—> g,y W in G is replaced by w — wuyW’ in G4, in which case w’e G, will contribute u as
affected, or else one or both of the flow edges w — ru and w' —>fu in G will be missing in Gy, in
which case u is affected by the change in incoming flow edges. As before, for any vertex v that is flow or

-12-

control dependent on u, the slices G, /v and G /v contain u; therefore, if u is affected, all successors of u
via control and flow dependencies are affected. Note that neither w” itself nor w itself is necessarily an
affected point.

Observations a), b), and c) serve to characterize the set of affected points. If v € G, is affected there
must be some w in G4 /v with different incoming edges in G4 and G. By the arguments above, either w
itself is an affected point (cases a) and b)), or it contributes a vertex u € V(G4 /v) that is an affected point
(case c)); therefore, it is possible to identify v as an affected point by following control and flow edges.
This latter observation forms the basis for the program AffectedPoints(G’, G), given in Figure 3. It com-
putes the set of affected points of G with respect to G by examining all vertices w in G’ that have a dif-
ferent set of incoming edges in G’ than in G, and collecting the affected points that each vertex contri-
butes. Then a flooding algorithm is used to find all vertices reachable from this set by flow or control
edges; this is the set of affected points of G”.

function AffectedPoints(G’, G) returns a set of vertices
declare
G’,G : program dependence graphs
S ,Answer : sets of vertices
w,u,b,c: individual vertices
begin
’ S:=0
for each vertex w in G’ do
ifw isnotin G then
Insertw in §
fi
if the sets of incoming flow and control edges to w in G is different from the incoming sets to w in G then
Insertw in S
fi
for each def-order edge w’ = 4,(yw thatoccurs in G’ butnotin G do
Insertu in S
od
od
Answer =&
while S = D do
Select and remove an element b from S
Insert b in Answer
for each vertex ¢ such thath —> ;¢ orb —> ¢ in G" and ¢ € (Answer vS)do
Insertc into S
od
od
return(Answer)
end

Figure 3. The function AffectedPoints determines the points in the program dependence graph G’ that may yield dif-
ferent values in G’ thanin G .

-13 -

4.3, Merging Program Dependence Graphs

We now show how to merge the program dependence graphs of two variants so that the differences
between the behavior of Base and its variants are preserved. The approach we describe accommodates the
simultaneous merge of any number of variants, but for the sake of exposition we consider the common case
of two variants A and B .

The changed behavior in variant A is characterized by the slice G4 /D4. The behavior at program
points D, =V(G,) — D, remains unchanged, so the unchanged behavior is characterized by GA /D, . For
every v € DA we have G4 /v =G /v hence G, /DA =G /DA

Similarly, in variant B, Gg /Dg charac_tgnzes the new behavior, Dy =V (Gy) — Dy characterizes the
unchanged points in B, and Gg /Dg =G /Dg chara_c_tcrizes the unchanged behavior of B. The unchanged
program points common to both variants are D4 n Dy and the unchanged behavior common to both is

G Dy nDg) =Gy /(D nDg) = Gg /(D4 » Dp)

The merged graph Gy should be composed of the elements of G, that characterize the changed
behavior of A, the elements of Gp that characterize the changed behavior of B, and the elements from G

that characterize common unchanged behavior?.

Gy =(Ga ID4) v (Gg IDg) v (G /(Da ~ D))

A simple way to implement the _c_:onstrgction of Gy is to mark the vertices and edges of G4 /D, in Gy,
Gy /Dg in Gg, and either G4 /(D4 n Dg) in G4 or Gp /(D4 nDg) in Gg. Then v € V(Gy) if v is
marked in G4 or G (and similarly for the edges of Gy).

4.4. Determining Whether Two Versions Interfere

A merged program dependence graph, Gy, that is created by the method described in the previous section
can fail to reflect the changed behavior of the two variants, A and B, in two ways. First, because the union
of two feasible PDG’s is not necessarily a feasible PDG, G, may not correspond to a feasible PDG.
Second, it is possible that G, will not preserve the differences in behavior of A or B with respect to Base .
If either condition occurs, we say that A and B interfere. Testing for interference due to the former condi-
tion is addressed in Section 4.5; this section describes a criterion for determining whether a merged pro-
gram dependence graph preserves the changed behavior of A and B.

To insure that the changed behavior of variants A and B is preserved in Gy, we introduce a non-
interference criterion based on comparisons of slices of G4, Gg, and Gy; the condition that must hold for
the behavior of A and B to be preserved in Gy is:

GM /DA = GA /DA and GM [Dp = GB /DB
On vertices in 5,4 N 53 the graphs G, and Gp agree and hence Gy is correct for these vertices.

The verification of the invariance of the slices in Gy, and the variant graphs is closely related to the
problem of finding the difference between two PDGs: Gy must agree with variant A on D4 and with B on
Dy . Therefore an easy way to test for non-interference is to verify that

AffectedPoints(Gy,Gs) D4 =@ and AffectedPoints(Gy , Gg) 0 Dp =9

2A simplified form of this definition involving only two slices is given in Appendix B.

-14 -

4.5. Reconstituting a Program From the Merged Program Dependence Graph

This section describes procedure ReconstituteProgram, which is invoked as step five of the program
integration algorithm. Given a program dependence graph Gy, that was created by merging non-interfering
variants A and B, ReconstituteProgram determines whether Gy, is feasible (i.e. corresponds to some pro-
gram), and, if it is, creates an appropriate program from Gy.

Because we are assuming a restricted set of control constructs, each vertex of Gy is immediately subor-
dinate to at most one predicate vertex, i.e. the control dependencies of Gy define a tree T rooted at the
entry vertex. The crux of the program-reconstitution problem is to determine, for each predicate vertex v
(and for the entry vertex as well), an ordering on v ’s children in T. Once all vertices are ordered, T
corresponds closely to an abstract-syntax tree. We assume that a function, named TransformToSyntax-
Tree, has been provided to convert tree T with ordered vertices into the corresponding abstract-syntax tree.

The algorithm for reconstituting a program from program dependence graph Gy is presented in outline
form in Figure 4 as the function ReconstituteProgram. In ReconstituteProgram, the tree T induced on Gy
by its control dependencies is traversed in post-order. For each vertex v of T visited during the traversal,
an attempt is made to determine an acceptable order for v’s children; this attempt is performed by the pro-
cedure OrderRegion, which is explained in detail below.

Given infeasible program dependence graph Gy, ReconstituteProgram will fail in one of two ways.
Failure can occur because procedure OrderRegion determines that there is no acceptable ordering for the
children of some vertex. Failure can also occur at a later point, after OrderRegion succeeds in ordering all
vertices of Gy . In this case, TransformToSyntaxTree is used to produce program P from Gy, Genera-
tePDG is applied to P to produce program dependence graph Gp, and Gp is compared to Gy. If Gy is
infeasible it is not identical to the dependence graph of any program; thus, Gy is not identical to Gp, and
ReconstituteProgram fails.

function ReconstituteProgram(Gy) returns a program or FAILURE
declare
Gy : a program dependence graph
T the tree defined by the vertices and control edges of Gy
v: avertex of Gy
begin
[1] for each vertex v of T in a post-order traversal of T do
[2) if the vertices in the subtree rooted at v cannot be ordered then return(FAILURE) else order them fi
[3] od
{4] P :=TransformToSyntaxTree(Gy);
[5] if Gy = GeneratePDG(P) then return(P)
{6] else return(FAILURE)
[7]1 f
end

Figure 4. The operation ReconstituteProgram(G),) creates a program corresponding to the program dependence graph
Gy by ordering all vertices, or discovers that Gy is infeasible.

-15-

Conversely, given feasible program dependence graph Gy, ReconstituteProgram always succeeds.
OrderRegion orders all vertices of Gy , and TransformToSyntaxTree produces program P with dependence
graph identical to Gy .

Unfortunately, as we show in Appendix C, the problem of determining whether it is possible to order a
vertex’s children is NP-complete. Although we believe that a backtracking method for solving this prob-
lem will behave satisfactorily on actual programs, it is also possible to completely side-step this difficulty
by having OrderRegion perform a limited amount of variable renaming. This matter is discussed in more
detail in Section 4.5.3.

4.5.1. Procedure OrderRegion: Ordering vertices within a subtree

Definition. The collection of vertices subordinate to a particular predicate vertex v is called a region; v is
the region head. If v represents the predicate of a conditional, v is the head of two regions; one region
includes all statements in the “true” branch of the conditional, the other region includes all statements in
the “false” branch of the conditional. For all vertices w, EnclosingRegion(w) is the region that includes w
(not the region of which w is the head). Because the entry vertex and the vertices representing initial
definitions and final uses of variables are not subordinate to any predicate vertex they are not included in
any region.

Given region R, the main job of procedure OrderRegion is to find a total ordering of the vertices of R
that preserves the flow and def-order dependencies of R, or to discover that no such ordering is possible. A
secondary responsibility of OrderRegion is to project some information from the vertices of R onto the
head of R.

To order the vertices of R , OrderRegion adds some edges to R and removes some edges from R. If this
introduces a cycle in R , OrderRegion fails; otherwise, it creates a directed acyclic graph (a DAG) that can
be topologically ordered to produce an acceptable ordering of R. The creation of the DAG is based on the
following observations:

Observation (1). Loop-carried flow edges and edges with a single endpoint inside the region under con-
sideration identify the upwards-exposed uses and downwards-exposed definitions [Aho et al. 1986] of the
region. Once exposed uses and definitions are identified, new edges can be added to the region to exclude
some erroneous topological orderings. For example, consider the dependence graph fragment shown in
Figure 5. A legal topological ordering of the vertices of the region subordinate to vertex Cis:F,G,D,E;
however, the dependence graph of the program generated according to this ordering will be missing the
flow edge from F to H, and will have an extra flow edge from D to H.

The new edges added to R run from uses of variables to definitions of the same variables, or from
definitions of variables to other definitions of the same variables; such edges have been called anti-
dependencies and output dependencies, respectively [Kuck et al. 1981].

Once these new edges have been added, the loop-carried flow edges and edges with a single endpoint
inside the region are projected up onto the region head and play no further role in the ordering of the ver-
tices within the region.

Identifying exposed uses and definitions, inserting anti- and output-dependence edges, and projecting
edges onto the region head are accomplished by procedure PreserveExposedUsesAndDefs, explained in
Section 4.5.2 below.

Observation 2. Even with the edges added to preserve exposed uses and definitions, topologically sorting
R can lead to an incorrect ordering. Consider the dependence graph fragment shown in Figure 6. A legal
topological ordering of the vertices of the region subordinate to vertex A is: B, D, C, E; however, the

~-16—

Figure 5. Dependence graph fragment: Topological ordering F, G, D, E, of the vertices subordinate to vertex C is not
acceptable.

Figure 6. Dependence graph fragment: Topological ordering B, D, C, E is not acceptable.

dependence graph of the program generated according to this ordering will be missing the flow edge from
B to C, and will have an extra flow edge from D to C.

This problem can be characterized as “letting a definition come between a def-use pair”; the ordering
B, D, C, E allows the definition of x represented by vertex D to come between the def-use pair represented
by vertices B and C. The solution to this problem also requires the insertion of new anti- and output-
dependence edges, and is carried out by procedure PreserveSpans, explained in Section 4.5.3.

To ensure that future invocations of PreserveSpans have complete information, procedure PreserveSpans
also projects information about variable definitions from the vertices in region R onto the head of R.

To summarize: Procedure OrderRegion calls procedures PreserveExposedUsesAndDefs, and Preser-
veSpans to add anti- and output dependence edges to the region to exclude erroneous topological orderings,
and to project information from the vertices in the region onto the region head. Procedure OrderRegion is
shown in Figure 7.

-17-

procedure OrderRegion(R)
declare
R: aregion
begin
PreserveExposedUsesAndDefs(R)
PreserveSpans(R)
if R contains no cycles then TopSort(R) else fail fi
end

Figure 7. Procedure OrderRegion adds new edges to the given region to ensure that dependencies are respected, pro-
jects information onto the region head, and topologically sorts the vertices of the region.

4.5.2. Procedure PreserveExposedUsesAndDefs: Preserving upwards-exposed uses and downwards-
exposed definitions

For all variables x, a use of x that is upwards-exposed within a region must precede all definitions of x
within the region other than its loop-independent flow-predecessors (a use of x can be upwards-exposed
and still have a loop-independent flow-predecessor that defines x within the region if the flow-predecessor
. represents a conditional definition). Vertex E in Figure 5 represents an upwards-exposed use of variable
w.

Similarly, a definition of x that is downwards-exposed within a region must follow all other definitions
of x within the region other than those to which it has a def-order edge (again, a definition of x can be
downwards-exposed and still precede a conditional definition of x). Vertex F in the example of Figure 5
represents a downwards-exposed definition of variable x.

Procedure PreserveExposedUsesAndDefs uses flow edges having only one endpoint inside the given
region R, and loop-carried flow edges having both endpoints inside R to identify exposed uses and
definitions. It then adds edges to R to ensure that exposed uses and definitions are ordered correctly with
respect to other definitions within the region. Finally, the edges used to identify exposed uses and
definitions are removed from R and are projected onto the region head. Def-order edges with a single end-
point inside R are also projected onto head(R). This ensures that the region enclosing the head of R will
be ordered correctly during a future call to OrderRegion. PreserveExposedUsesAndDefs performs the fol-
lowing four steps:

Step (1): Identify upwards-exposed uses.
A vertex with an incoming loop-independent flow edge whose source is outside region R , or with an
incoming loop-carried flow edge with arbitrary source, represents an upwards-exposed use of the
variable x defined at the source of the flow edge. Mark each such vertex UPWARDS-EXPOSED-
USE(x).

Step (2): Identify downwards-exposed definitions.
A vertex that represents a definition of variable x and has an outgoing loop-independent flow edge
whose target is outside region R, or has an outgoing loop-carried flow edge with arbitrary target,
represents a downwards-exposed definition of x. Mark each such vertex DOWNWARDS-
EXPOSED-DEF(x).

~ 18~

Step (3): Preserve exposed uses and definitions.
For each vertex n marked UPWARDS-EXPOSED-USE(x), add a new edge from n to all vertices m
in the region such that m represents a definition of variable x, and m is not a loop-independent flow
predecessor of n. For each vertex n marked DOWNWARDS-EXPOSED-DEF(x), add a new edge
to n from all vertices m in the region such that m represents a definition of x and there is no def-
order edge from n tom.

Step (4): Project edges onto the region head.
Replace all flow and def-order edges with source outside of R and target inside R with an edge from
the same source to head(R). Replace all flow and def-order edges with source inside R and target
outside of R with an edge from head(R) to the same target.

Consider each loop-carried flow edge with both source and target in R. If head(R) represents the
predicate of the only loop responsible for the presence of this edge, then remove the edge without
replacing it. Otherwise, replace the edge with a self-loop at head(R).

Figure 8 shows the example dependence graph fragment of Figure 5 after the four steps described above
have been performed on the region subordinate to vertex C. The new edge added from vertex D to vertex
F prevents F from preceding D in a topological ordering.

4.5.3. Dependencies induced by spans

In the example dependence graph fragment of Figure 8, the ordering D, F, E, G of the vertices subordinate
to vertex C is a topological, but erroneous one. The problem with this ordering is that it allows the
definition of variable x at vertex F to “capture” the use of x at vertex E. In general, once a definition of
variable x has been executed, all uses of x reached by that definition must be executed before any other
definition of x. This observation leads to the following definition:

Definition. The span of a definition d, where d defines variable x, is the set {d } together with all uses of x
that are in the same region as d , and are loop-independent flow targets of d:

Span(d)= {d} v {uld = u } » EnclosingRegion(d)

Figure 8. Dependence graph fragment with new edge D — F added to preserve the downwards-exposed definition of
x atvertex F.

-19-

The span of a vertex that defines variable x is called an x -span.

Restating the observation above in terms of spans, once definition d of variable x has been executed, all
vertices in Span(d) must be executed before executing any other definition of x. Furthermore, if any ver-
tex in Span(d;) must be executed before some vertex in Span(dy), where d, and d, both represent
definitions of variable x, then all vertices in Span(d ;) must be executed before d».

The exception to this rule is that a conditional definition of x may come between another definition and
its use, if the conditional definition is also a flow predecessor of the use. To simplify this section’s presen-
tation, we begin by ruling out this kind of exception by considering only dependence graphs of programs
without loops or conditionals; under this restriction, each use of variable x is reached by exactly one
definition of x.

In this case, erroneous topological orderings are excluded by considering, for each variable x, all pairs
<d,, d,> of definitions of x. If there is some vertex v in Span(d;) that must precede some vertex w in
Span(d,), (because of a path from v to w along existing flow, anti-dependence, or output dependence
edges), then edges are added from all vertices in Span(d;) — Span(d>) to verte- 4. Similarly, if there is a
path from a vertex in Span(dy) to a vertex in Span(d,), edges are added frc:. all vertices in Span(dy) —
Span(d,) to vertex d,. In the graph fragment of Figure 8, the edge E — F would be added because the
edge D — F forms a path from Span(D) to Span(F), and vertex E is in Span(D) — Span(F).

The reason for taking the set difference Span(d;)— Span(dy), is that even in graphs corresponding to
straight-line code, spans can overlap, as illustrated in Figure 9. Because C is itself in Span(B), adding
edges from all vertices in Span(B) to C would create a self-loop at C, making a topological ordering impos-
sible.

There may be pairs <d,, d,> for which there is no path in either direction between Span(d,) and
Span(d,). It is still necessary to add edges to force one span to precede the other so as to exclude errone-
ous topological orderings. Although it might seem that an arbitrary choice can be made, Figure 10 gives an
example in which making the wrong choice leads to the introduction of a cycle in a fragment of a feasible
graph.

The fragment of Figure 10 includes two x-spans: Span(A) and Span(D), and two y-spans: Span(B) and
Span(C). There are paths neither between the two x -:pans nor between the two y -spans; thus, it appears

"2
x:=0;

N G D D

Zi=X

Span(B) Span(C)

Figure 9. Straight-line code fragment and corresponding dependence graph fragment (control edges omitted) with
overlapping x -spans.

-20 -

Figure 10. Graph fragment (control edges omitted) with two X -spans and two y -spans

-that one is free to choose to add edges from the vertices of Span(A) to vertex D, or from the vertices of
Span(D) to vertex A, or from the vertices of Span(B) to vertex C, or from the vertices of Span(C) to vertex
B. However, while three out of these four choices lead to a successful ordering of the vertices, choosing to
add edges from the vertices of Span(D) to vertex A leads to the introduction of a cycle. This is because the
introduction of these new edges creates paths both from a vertex in Span(B) to a vertex in Span(C), and
vice versa. Figure 11 shows the fragment of Figure 10 with the new edges added; the path from Span(C) to
Span(B) is shown using dashed lines. The path from Span(B) to Span(C) is symmetric.

Unfortunately, as we show in Appendix C, the problem of determining the right choice in a situation like
the one illustrated in Figure 10 is NP-complete. However, we expect that in practice there will be very few
such choices to be made, and a simple backtracking algorithm will suffice: if a cycle is introduced when
ordering spans, the algorithm backtracks to the most recent choice point, and tries a different choice. If all
choices lead to the introduction of a cycle, the graph is infeasible.

It is also possible to side-step this difficulty entirely by slightly redefining our goals. Rather than insist
that the program produced by ReconstituteProgram preserve the usage patterns of variables that exist in
graph Gy, we can have OrderRegion perform a limited amount of variable renaming. In particular, when
two x -spans are not connected by a path in either direction, all occurrences of the name x in one of the two

-1 -

Span(C)

Span(D)

Figure 11. Span(D) has been chosen to precede Span(A). Paths have been created from Span(B) to Span(C) and vice
versa. The path from Span(C) to Span(B) is indicated using dashed edges.

spans can be replaced by a new name not appearing elsewhere in the program. This renaming removes all
problematic choices, and thus PreserveSpans need never backtrack. The disadvantage of this measure is
that the integrated program will include variable names that did not appear in either variant. Further work
is needed to determine whether this technique will be necessary in practice.

Recall that we have limited our discussion thus far to the dependency graphs of programs without loops
or conditionals. Allowing these constructs introduces the possibility that spans may overlap in two new
ways, as illustrated in Figure 12. In the first case there must be a def-order dependency edge from d, to d;
or vice versa, or the graph would have failed the interference test of Section 4.4. In the second case there is
a flow edge from d to d,. These edges are sufficient to force an ordering of the two spans; thus, allowing
conditionals and loops does not complicate PreserveSpans.

The head of region R must represent definitions of all the variables defined in R when the head of R is
considered as a vertex in its enclosing region. Therefore, the final step of procedure PreserveSpans is to
project information about variable definitions from the vertices of a region onto the region head. For exam-
ple, PreserveSpans would designate vertex C of Figure 5 as representing definitions of x, y, and z, because
of the definitions of these variables at vertices D and F, E, and G, respectively.

-22-

Figure 12. Conditionals and loops can lead to these kinds of overlapping spans.

4.6. Recap of the Program Integration Algorithm

The function Integrate, given in Figure 13, takes as input three programs, A, B, and Base , where A and B
are variants of Base. Whenever the changes made to Base to create A and B do not interfere, Integrate
produces a program P that integrates A and B.

function Integrate(A , B, Base) returns a program
declare
A, B,Base: programs
G4, Gs, Gy: program dependence graphs
Dy, Dg: subsets of the vertices of A and B, respectively
P: aprogram
begin
G := GeneratePDG(Base)
G, = GeneratePDG(A)
Gy = GeneratePDG(B)
D, = AffectedPoints(G, ,G)
Dy := AffectedPoints(Gp,G)
Gy 1= (Ga 1D4) v (G /D) v (Ga ! (Da ~ Dp))
if Gy IDy # Gy /Dy v Gy /Dg # Gg / Dg then exit with failure fi
P := ReconstituteProgram(Gy)
if P = FAILURE then exit with failure fi
return(P)
end

Figure 13. The function Integrate takes as input three programs A, B, and Base, where A and B are variants of Base.
Whenever the changes made to Base to create A and B do not interfere, Integrate produces a program P that integrates
A andB.

Example. Consider how Integrate performs on the example from Section 3, on which diff3 performed
so miserably. The base program and its two variants are:

Base program

if P thenx :=0fi
ifQ thenx :=1fi
yi=x ,

ifR thenw :=3f
if S thenw =4 f

2i=w
Variant B

if O thenx :=1fi if S thenw :=4fi
if P thenx :=0fi if R thenw :=3fi
yi=x z2i=w
ifR thenw :=3fi if P thenx :=0fi
if S thenw =4 fi if Q thenx :=1fi
zZ=w yi=x

Variant A

The program dependence graphs for Base, A, and B are shown in Figure 14. The program-integration
algorithm would determine that there is a single affected point of G4: the assignment statement y :=x.
This means that the part of variant A ’s computation that must be preserved is:

ifQ thenx :=1fi

if P then x :=0fi

yi=x

Similarly, z ;= w is the single affected point of Gg, and the part of variant B’s computation that must be
preserved is:

if S thenw =41

ifR thenw :=3fi

zi=w

The integration algorithm then merges the program dependence graphs G, and Gp, tests them for interfer-
ence (they do not interfere), and creates one of a number of programs, including the following three:

if S thenw =4 fi
ifR thenw =31fi
zZ=w

ifQ thenx :=1f
if P thenx =0fi

if Q thenx :=1fi
ifP thenx =0fi
yi=x

if S thenw =4 fi
ifR thenw :=31fi

ifQ thenx ;=11
if P thenx :=0f
if S thenw =4 fi
ifR thenw :=3fi
y =X

yi=x z=w z:=w

These programs and any of the other possible products of Integrate are a satisfactory outcome for integrat-
ing Base ,A,and B.

5. APPLICATIONS OF PROGRAM INTEGRATION FOR PROGRAMMING IN THE LARGE

Programming in the large addresses problems of organizing and relating designs, documentation, indivi-
dual software modules, software releases, and the activities of programmers. The manipulation of related
versions of programs is at the heart of a number of these issues. In some respects, the program-integration
problem is the key operation for creating a programming environment to support programming in the large.

One context in which the program integration problem arises is when several related versions of a sys-
tem exist and one desires to make the same enhancement or correction to all of them. In this situation, the
changes that one makes to a base version of a system must be repeated on the source code for other ver-
sions that are to receive the enhancement. The algorithm Integrate provides a way for changes made to the

Ga

Figure 14. Program dependence graphs for Base, A, and B.

base version to be automatically installed in the other versions.

Our program-integration algorithm also makes it possible to separate consecutive edits on the same pro-
gram into individual edits on the original base program. For example, consider the case of two consecutive
edits to a base program O; let O+A be the result of the first modification to O and let O+A+B be the
result of the modification to O+A. Now suppose we want to create a program O+B that includes the
second modification but not the first. This is represented by case (a) in the following diagram:

O+A

/ \ \
O+A O+B O+A+B 0
I'd N Id
, s N N , /7
¥ N\ ¥
O+A+B O+B
(@) (b

However, by re-rooting the development-history tree so that O +A is the root, the diagram is turned on its
side and becomes a program-integration problem (situation (b)). The base program is now O+A, and the
two variants of O+A are O and O+A+B. Instead of treating the differences between O and O+A as
changes that were made to O to create O +A, they are now treated as changes made to O +A to create O.
For example, when O is the base program, a vertex v that occurs in O+A but not in O is a “new” vertex
arising from an insertion; when A is the base program, we treat the missing v in O as if a user had deleted
v from A to create O. Version O+A+B is still treated as being a program version derived from O+A.

6. RELATION TO PREVIOUS WORK

We have not seen any other work that permits one to integrate programs so as to preserve changes to a base
program’s behavior. In this section, we elaborate on some technical differences between the program
dependence graphs employed in this paper and the program dependence representations that have been
defined and used by others.

Our use of the term “program dependence graph” could lead to some confusion because the data struc-
ture defined in Section 4.1 is similar, but not identical, to the program dependence graphs defined by
several other authors. In fact, the term does not have a standard definition, and slightly different definitions
of program dependence representations have been given, depending on the application. Nevertheless, they
are all variations on a theme introduced in [Kuck et al. 1972], and share the common feature of having
explicit representations of both control dependencies and data dependencies.

Previous program dependence representations have included data dependency edges to represent flow
dependencies and two other kinds of data dependencies, called anti-dependencies and output dependencies.
(All three kinds may be further characterized as loop independent or loop carried). Def-order dependen-
cies have not been previously defined.

For flow dependencies, anti-dependencies, and output dependencies, a program component v has a
dependency on component v, due to variable x only if execution can reach v, after v, and if there is no
intervening definition of x along the execution path by which v, is reached from v;. There is a flow depen-
dency if v, defines x and v, uses x; there is an anti-dependency if v, uses x and v, defines x; there is an
output dependency if v, and v, both define x.

Although def-order dependencies resemble output dependencies in that they both relate two assignments
to the same variable, they are two different concepts. An output dependency v, -3, Vo between two
definitions of x can hold only if there is no intervening definition of x along some execution path from v,

-2 —

to v,; however, there can be a def-order dependency vy —>,, v, between two definitions even if there is an
intervening definition of x along all execution paths from v, to v,. This situation is illustrated by the fol-
lowing example program fragment, which demonstrates that it is possible to have a program in which there
is a dependency v; —>4, v, but not vy —>, v, and vice versa:

(1 x =10

[2] if P then

[3] x =11
[4] x =12
[5] fi

(6} y=x

The one def-order dependency, 1 —> 4, () 4, exists because the assignments to x in lines [1] and [4] both
reach the use of x in line [6]. In contrast, the output dependencies are 1—>, 3 and 3 —>, 4, but there is no
output dependency 1—>, 4.

One of the drawbacks of using output dependencies in place of def-order dependencies is that using out-
put dependencies would cause some equivalent programs to have unequal PDG’s. This situation is illus-
trated below by the two program fragments:

x =10 x =11
a:=x b=x
x =11 x:=10
b=x a:=

x =12 x =12
c=x c=x

In the left-hand fragment, the output dependencies are x := 10—, x :=1landx :=11—, x = 12; in the
right-hand fragment, they are x := 11—, x := 10 and x := 10—, x :=12. In contrast, none of the ele-
ments in the two fragments are related by def-order dependencies, so under our definition their PDG’s are
equal.

A final reason for choosing def-order dependencies over output dependencies is that def-order dependen-
cies make it easier to define both the operation that merges two program dependence graphs and the
interference test. One can get a feeling for the difficulties that would occur if PDG’s were to contain out-
put dependencies by considering the complications that arise in defining a program slice. Suppose state-
ment [6] is an affected point of:

[1] x =10

2] if P then

3] x =11
4] x =12
[51 fi

[6] y=x

The vertices of the slice consist of all assignments and predicates of the fragment, except for [3]. Notice,
however, that among its edges the slice must contain the output dependency [1] —>, [4], which does not
appear in the original PDG; the original PDG contains the dependencies [1]1 —>, (3] and [3] —, [4]. The
correct definition of slicing involves examining some, but not all, transitive output dependencies; similar
complications would occur in the definition of the operation that merges two PDG’s.

In other definitions that have been given for program dependence graphs, there is an additional control
dependence edge for each predicate of a while statement -- each predicate has an edge to itself labeled
true. By including the additional edge, the predicate’s outgoing true edges consist of every program ele-
ment that is guaranteed to be executed (eventually) when the predicate evaluates to true. This kind of edge
was left out of our definition because it was not necessary for our purposes.

-7~

The problem of generating program text from a program dependence graph has previously been
addressed only in a context that admits a considerably simpler solution. In previous work, the program
dependence graph is known to correspond to some program. For example, in the work on program slicing,
because the slice is derived from a program dependence graph whose text is known, when creating the tex-
tual image of a slice, it suffices to take the text of the original program and delete all tokens that do not
correspond to components of the slice [Ottenstein & Ottenstein 1984].

Our work requires a solution to a more general problem because the final program dependence graph is
created by merging two other program dependence graphs. The merged program dependence graph may
not correspond to any program at all, but even if it does, this program is not known a priori, when Recon-
stituteProgram is invoked. As shown in Appendix C, the problem of deciding whether a PDG is feasible is
NP-complete.

Ferrante and Mace describe an algorithm for generating sequential code for programs written in a
language with a multiple GOTO operator and impose the condition that the algorithm not duplicate any
code in this process [Ferrante & Mace 1984]. Programs written in the language they consider have a close
correspondence to the subgraph of control dependencies of a program dependence graph. They discuss the
application of their algorithm to compiling a program dependence graph for execution on a sequential
machine; however, they assume that only a certain class of optimizing transformations has been applied to
the original PDG (which was generated from some program). They assert that the transformations of this
class preserve the property that the resulting graph corresponds to some program. Thus, while their results
are relevant to generalizing ReconstituteProgram to work on PDG’s generated from arbitrary programs
[Ferrante et al. 1987], they will have to be extended to account for infeasibility due to a PDG’s data depen-
dencies.

7. FUTURE WORK

In this paper, the problem of program integration is studied in an extremely simplified setting. For this rea-
son, the procedure described in the paper is not a realistic method for integrating programs; however, we
feel that the approach that we have developed represents a promising basis for further work. Below, we
outline some possible ways to extend our work.

Among the obvious deficiencies of the present study are the absence of programming constructs and data
types found in the languages used for writing “real” programs. One area for further work, therefore, is to
extend the integration method to handle other programming language constructs, such as break statements,
procedure calls, and I/O statements, as well as other data types, such as records, arrays, and pointers. For
each extension to the programming language, it will be necessary to make some adjustments to certain
phases of the integration method. For example, the data-flow analysis required to determine data depen-
dencies in the presence of break statements is more complicated, but straightforward.

To incorporate procedure calls, it will be necessary to perform interprocedural data-flow analysis to
compute aliasing and may-mod information. This information can then be used by an extended form of
program slicing to cut down on the number of components that a procedure call contributes to a slice.
Because techniques for using interprocedural data-flow analysis in conjunction with program slicing have
already been developed by Weiser [Weiser 1984], we anticipate few difficulties in extending our program
integration methods in this direction.

One way to incorporate input and output statements is to treat them as accesses to two special objects
input and output [Ottenstein & Ottenstein 1984]. The objects input and output may be thought of as
streams that get updated whenever operations are performed on them. For example, an output statement

-28 —

write x
would be treated as an assignment
output = output | StringValueOf(x)

where the symbol | represents string concatenation. Consequently, output statements would be treated just
like assignment statements in terms of detecting changes to a base program’s behavior, and the relative
order of output statements appearing in a program P would be captured in Gp by flow dependencies.

Programming languages with record data types can be handled in a straightforward mannerkby treating
each field of a record variable as a separate variable. The simplest way of handling arrays is to treat an
update to any cell as an update to the entire array. More sophisticated analysis of array access patterns,
such as the analysis of “recurrences” used in some vectorizing compilers, does not appear to permit a more
precise analysis of whether or not two program variants interfere. To incorporate pointer-valued variables,
an analysis of pointer usage probably will be necessary; without the information that such an analysis
would provide, an update via a dereferenced pointer would have to be considered to update every location
in memory.

We anticipate that it will be useful to create different varieties of program-integration procedures based
on our techniques, but that produce integrated programs with slightly different properties. For example, it
may be useful to develop a variation of the integration method in which the integrated program does not
read the same kind of input data files that are used by the base program,; in cases where it is not important
to preserve the format of the program’s input data, this might make it possible to perform integrations that
would otherwise fail. Similarly, it may be useful to develop a variation in which the integrated program
does not produce the same kind of output as the base program. A somewhat different possibility exists
when one can anticipate that a successfully integrated program will never have to be examined by a human
programmer. Under these conditions, there are perhaps more liberal notions of program integration; for
example, the integration procedure should be permitted to rename freely any variable that occurs in the
program.

APPENDIX A: DATA DEPENDENCIES

This appendix discusses how to determine the data dependencies that appear in a program’s program
dependence graph. We present definitions, expressed with attribute grammars, that describe how to gen-
erate the PDG’s loop-independent flow dependency edges, loop-carried flow dependency edges, and def-
order dependency edges. For each case, the definition is presented as an attribute grammar over the fol-
lowing (ambiguous) context-free grammar:

Root —» S
S — Id = Exp
Sy = 8,; 83

§, — if Exp then S, else S, fi

§; — while Exp do S, od

(In this grammar, the subscripts on the §’s are not meant to indicate different nonterminals; they are used
to distinguish between the different occurrences of S in each production. For example, in the second pro-
duction, the three occurrences of nonterminal S are labeled S, §,, and S3). We do not actually provide an
explicit method for computing the quantities being defined; however, all of the attribute grammars dis-
cussed below are noncircular, which means that their atiributes can be computed by any of a number of

-9 -

algorithms for attribute evaluation®.

Reaching definitions

One way to compute data dependencies involves first computing a more general piece of information: the
set of reaching definitions for each program point. A definition of variable x at some program point ¢
reaches point p if there is an execution path from ¢ to p such that no other definition of x appears on the
path. The set of reaching definitions for a program point p is the set of definitions that reach p. A
program’s sets of reaching definitions may be expressed with an attribute grammar using four attributes for
each S nonterminal: exposedDefs, killedVars, reachingDefsBefore, and reachingDefsAfter.

The reachingDefsBefore attribute is an inherited attribute of S ; the other three are synthesized attributes
of S. The values of killedVars attributes are sets of variable names; S.killedVars consists of the set of
variables that must be assigned to when § executes. The values of the exposedDefs , reachingDefsBefore ,
and reachingDefsAfter attributes are sets of triples that record information about a program’s definitions.
Each ftriple is of the form:

<variable name, program location, program location>

The first program location that occurs in a triple indicates the position of a definition; the second program
location either contains the value null or the location of one of the program’s loops. A triple for definition
d is an element of S.exposedDefs if d is defined within S and is downwards exposed in §, that is, if it
reaches the end of S. S.reachingDefsBefore and S.reachingDefsAfter are the definitions that reach the
beginning and end of S, respectively.

The relationships between these attributes are expressed by the equations of the grammar presented in
Figure 15.

The attribute S.killedVars consists of variables that are guaranteed to be assigned to within §. Thus, if §
is an assignment statement, there is always an assignment made to the /d of the statement. Because the
body of a while-loop may never execute, the loop as a whole is not guaranteed to make an assignment to
any variable.

A definition d is in S.exposedDefs if d is a definition within § and d reaches the end of §. Thus, if § is
an assignment statement, the triple </d , &S, null> is in S.exposedDefs because the definition of /d reaches
the end of S. (The notation “‘&S’’ denotes the program point represented by §). For the statement-
concatenation production, the definitions reaching the end of S are the exposed definitions from S that
also reach the end of S together with the exposed definitions from § .

The S.reachingDefsBefore and S.reachingDefsAfter attributes consist of the definitions that reach the
beginning and end of S, respectively. For example, in an assignment statement, the definitions in
reachingDefsAfter are the definitions in reachingDefsBefore that are not killed by the assignment, together
with <Id,&S,null>, which represents the assignment itself. In a while loop, §.reachingDefsAfter
represents the set of definitions that possibly reach the end of the loop; it is given the value:

S ,.reachingDefsAfter = S \.reachingDefsBefore © §.exposedDefs

S.reachingDefsBefore contributes the definitions that occur earlier than the while loop, and
Sy.exposedDefs contributes the exposed definitions that occur within the loop body. The
S p.reachingDefsBefore attribute of a while loop is handled slightly differently because it necessary to tag
the definitions in S ,.exposedDefs with &S to indicate the loop carrying these reaching definitions:

3Readers who are not familiar with attribute grammars or attribute evaluation could consult either the original paper on attribute gram-

—-30~

attributes
S.exposedDefs: synthesized
S.killedVars: synthesized
S.reachingDefsBefore: inherited
S.reachingDefsAfter : synthesized
attribute equations
Root — §
S.reachingDefsBefore = &
S - Id :=Exp

S.killedVars = {Id}
S.exposedDefs = <Id, &S, null>
S.reachingDefsAfter = { <i,a,l>\<i,a,l> e S.reachingDefsBefore n i #1d } v (<ld, &S, null>}

§1 28238,
S1.killedVars =S ykilledVars w Ss.killedVars
Sy.exposedDefs = { <i,a,l>|<i,a,l>€ SyexposedDefs n i & Sy.killedVars} u S3.exposedDefs
S o.reachingDefsBefore = S \.reachingDefsBefore
S s.reachingDefsBefore = S y.reachingDefsAfter
S .reachingDefsAfter =S 3.reachingDefsAfter

Sy — if Exp then S, else S; fi
S, .killedVars =S, .killedVars ~ Sy.killedVars
§.exposedDefs = S y.exposedDefs « §s.exposedDefs
S p.reachingDefsBefore = §,.reachingDefsBefore
§ s.reachingDefsBefore = §.reachingDefsBefore
S ..reachingDefsAfter =S j.reachingDefsAfter © S.reachingDefsAfter

S, —> while Exp do S, od
Sy .killedVars =&
S 1.exposedDefs = S .exposedDefs
Sy reachingDefsBefore = S \.reachingDefsBefore U { <i,a,&S>|<i,a,null>€ §.exposedDefs }
S 1.reachingDefsAfter =S ,.reachingDefsBefore S ,.exposedDefs

Figure 15. An attribute grammar that describes the generation of a program’s sets of reaching definitions.

S .reachingDefsBefore = S y.reachingDefsBefore v { <i,a,&S>1<i,a,null>€ Sj.exposedDefs }

Flow dependencies

Having computed the reaching definitions for each statement S, we can determine the sources of flow
dependency edges for each site where variables are used (i.e. in expressions in assignment statements, if
statements, and while loops). In each case, the sources of flow dependencies are computed as a function of
the value of the reachingDefsBefore atiribute of the left-hand side S nonterminal. We assume that an Exp
nonterminal has a synthesized attribute used whose value is the set of all variables used in Exp ; an Exp is
flow dependent on the set of vertices computed by restricting §y.reachingDefsBefore to the variables in

Exp.used:
(al<i,a,l>e Si.reachingDefsBefore A i € Exp.used}

By making some small changes to the equations of the attribute grammar given in Figure 15, we define
two variations on reaching definitions that are used to compute the sources of loop-independent and loop-

mars [Knuth 1968] or any one of several compiler textbooks that discuss these matters, such as [Waite & Goos 1983].

-31 -

carried flow dependencies for each use site. For instance, when the third attribute equation associated with
the while-loop is changed from:

§ ,.reachingDefsBefore =S \.reachingDefsBefore v (<i,a,&S>|<i,a,null>e S,exposedDefs }

to:

S ,.reachingDefsBefore =S y.reachingDefsBefore ‘)]
the reachingDefsBefore and reachingDefsAfter attributes compute just the loop-independent reaching

definitions. In this case, {a 1<i,a,l> € Sy.reachingDefsBefore A i € Exp.used) computes the sources of
Exp’s loop-independent flow dependencies.

To compute loop-carried flow dependencies, the third equation associated with the while-loop is used in
its original form:
S ,.reachingDefsBefore =S |.reachingDefsBefore v { <i,a,&S;>|<i,a,null>€ S ,.exposedDefs }
However, the third attribute equation associated with the assignment statement is altered from:
S.reachingDefsAfter = { <i,a,l>|<i,a,l> € S.reachingDefsBefore A i #ld) v <Id,&S ,null>
to:
S.reachingDefsAfter = { <i,a,l>\<i,a,l> e S.reachingDefsBefore A i#Id}

In this case, {al<i,a,l>€ §,.reachingDefsBefore A i € Exp.used} computes the sources of Exp’s
loop-carried flow dependencies.

Def-order dependencies

Determining the def-order dependencies that occur in a program also depends on having computed the
program’s sets of reaching definitions. A program’s sets of def-order dependencies may be expressed by
attaching three additional attributes to each § nonterminal: flowEdges, flowEdgesBefore, and
flowEdgesAfter. The flowEdges attribute is a synthesized attribute of S whose elements are pairs of pro-
gram locations that - present the source and target of a flow edge whose target occurs in the program frag-
ment that is subordinate to §. Thus, the value of S.flowEdges in the production Root — S represents the
set of flow edges in the entire program.

The equations for the attributes flowEdgesBefore and flowEdgesAfter , shown in Figure 16, thread this
information through the program left to right. At each assignment statement S, the set that is passed on to
S.flowEdgesAfter is S.flowEdgesBefore without the flow edges whose source isS.

For each assignment statement S of a program, we use the value of S. flowEdgesBefore to compute the
targets of all def-order edges whose source is S : a def-order edge S —> ()¢ exists for each ¢ such that

<s,u> € S.flowEdgesBefore A <t,u> € S.flowEdgesBefore n s=4&S$

APPENDIX B: CONSOLIDATING SLICES OF A PROGRAM DEPENDENCE GRAPH'

In Section 4.1.2 we defined the program slice G /s for a PDG G and a vertex s in G. The program slice
definition exter’s to a set of vertices in G. It is a natural extension since the program slice of a set of pro-
gram points is piccisely e graph union of the program slices of the individual program points, as we show
next.

-39~

attributes
S.flowEdges: synthesized
S.flowEdgesBefore: inherited
S.flowEdgesAfter : synthesized

attribute equations
Root — §
S.flowEdgesBefore = S.flowEdges
S - Id := Exp
S.flowEdges = { <a, &S >1<i,a,l> € S.reachingDefsBefore a i € Exp.used }
S.flowEdgesAfter = S.flowEdgesBefore — { <s,t>1<s,t> e S flowEdgesBefore A s=4&S }

Sy~ 82383
S1.flowEdges =S, flowEdges © Si.flowEdges
8. flowEdgesBefore =S ,.flowEdgesBefore
§3.flowEdgesBefore =S ,.flowEdgesAfter
S1.flowEdgesAfter =S 3.flowEdgesAfter

S; — if Exp then S, else S; fi
S,.flowEdges = { <a, &S>|<i,a,l1> € S .reachingDefsBefore A i € Exp.used }
S,.flowEdgesBefore =S, flowEdgesBefore
§3.flowEdgesBefore =S, .flowEdgesBefore
S1.flowEdgesAfter =S, flowEdgesAfter ~ S3.flowEdgesAfter

S; — while Exp do S, od
Sy.flowEdges = { <a, &S>\<i,a,l> e S\.reachingDefsBefore A i€ Exp.used }
S o.flowEdgesBefore =S, flowEdgesBefore
S ,.flowEdgesAfter =S ,.flowEdgesAfter

Figure 16. An attribute grammar that describes the generation of a program’s def-order dependency edges.

Theorem. For any collection U s; of program points, we have U G /s5; =G / U s;.

Proof. The graph U G /s; consists of vertices U V(G /s;) and edges U E(G /s;).
(ORCAL(E /s,~)'= V(G / Us;) by the defmit;on given in Section 4.1f2.
2) (;1) For each u ——)w:s UE(G /s;) we have u —w € E(G /s;) for some i. Since 5; < Ui,
u-—-)weE(G/us,-),sc;uE(G/s;)gE(G/Vs;). ‘
(b) For each 1: e g w‘e E(G/ kiJsi) we lhave weV(G/ ki)s,-)= kiJV(G /s;). Hence

weV(G/s;) for some i. Since u—>y.w we must have ueV(G/s;) as well, so
u—>; weE(G/s)c VEG /s).
1

For each u = 4,(yw € E(G/ Us;) we have te V(G / U 5)) = L V(G /5;) by the definition of

def-order edges in a slice. Hence te V(G /s;) for some i. Since uw —>pt we have
tuweV(G/s),sou—>4,nmweEG/s)c VEG/s).
]

Since G contains only flow, control and def-order edges, we have E(G / U s;)c U E(G/ $i).
£ 13
Combining (a) and (b) we have U E(G /5;)=E(G / U 5;).
i 13
Combining (1) and (2) we have U G /5; =G/ U 5;.
i i

If we recall that for v ¢ V(G) we defined G /v to be the empty graph, we may eliminate from the state-
ment of the theorem the requirement that the s; be vertices in G. Although in general the union of two

-33—

feasible program dependence graphs is itself not necessarily feasible, the theorem shows that this is the
case for slices from the same feasible PDG, since their union is a slice and all slices of a feasible PDG are
feasible.

We can use the theorem above to reduce the definition of Gy in Section 4.3 to the union of two slices.
Starting with the definition of Gy

Gyt =(Ga IDa) © (G3 D) v (G /(D4 ~ Dp))

weuse G /(Dy n Dp) = G, /(Dy nDp) = Gy /(D4 ~ Dg) and idempotency of U to obtain

Gy =(Ga /D4 © Ga /(D4 0 Dp)) v (G IDg w G /(Da ™ Ds)

and apply the theorem above to consolidate the slices:

Gy =(Ga /Ds v (Da " Dp))) v (G /(Dg w D4 N Dp))

Now we simplify the set terms using the fact that for v € (Dp -V (G,)), we have G, /v = so that
Gy =G /(Ds v Dg) U Gy /(Dg v Dy)

Thus the merged graph Gy can be defined as the graph union of a slice of G4 with a slice of Gp.

APPENDIX C: THE INTRACTABILITY OF DECIDING WHETHER A PROGRAM DEPEN-
DENCE GRAPH IS FEASIBLE

This appendix shows that the problem of deciding whether or not a program dependence graph is feasible
is NP-complete. We call this problem the PDG-FEASIBILITY problem.

Theorem. The PDG-FEASIBILITY problem is NP-complete.

To see that PDG-FEASIBILITY is in NP, recall the following observation that was made in Section 4.5
when discussing ReconstituteProgram:

Because we are assuming a restricted set of control constructs, each vertex of [PDG G1] is im-

mediately subordinate to at most one predicate vertex, i.e. the control dependencies of [G] define

a tree T tooted at the entry vertex. The crux of the program-reconstitution problem is to deter-

mine, for each predicate vertex v (and for the entry vertex as well), an ordering on v’s children

inT.
In Section 4.5, we also assumed that we have been furnished the function TransformToSyntaxTree that
converts a control-dependence tree T with ordered vertices into the corresponding abstract-syntax tree.
Note that G is feasible if and only if there exists an ordering of T’s vertices that yields a program P for
which Gp = G. Clearly a nondeterministic algorithm for deciding feasibility can guess an ordering for the
children of each predicate vertex in T. By creating the program P = TransformT: oSyntaxTree(T') and then
testing whether Gp = G , it is possible to check whether G is feasible; both steps take at most time polyno-
mial in the size of G.

To show that PDG-FEASIBILITY is NP-hard, we show that it contains an NP-hard problem,
RESTRICTED-PDG-FEASIBILITY, as a special case. In particular, we restrict our attention to PDG’s
that contain assignment vertices but no predicate vertices and in which, for all variables x, there are no
overlapping x-spans. A program dependence graph in this restricted class is feasible if and only if its ver-
tices can be topologically ordered such that for all pairs <d, d2> of definitions of the same variable, either
all vertices in Span(d,) precede all vertices in Span(dy) or vice versa (henceforth referred to as a legal ord-
ering).

-34 -

Theorem. RESTRICTED-PDG-FEASIBILITY is NP-hard.

Proof. We transform 3SAT (3 CNF Satisfiability) to RESTRICTED-PDG-FEASIBILITY as follows. Let
U = {uy,82,... U4} be the set of variables and C = {cy,¢2,...,C,} be the set of clauses in an arbitrary
instance of 3SAT. Without loss of generality, we will assume that each clause of C contains no more than
one barred or unbarred occurrence of each variable (i.e. there is no more than one u; or i; per clause). We
will construct a PDG G = (V,E) such that G has a legal ‘ordering if and only if C is satisfiable.

For each (logical) variable u; € U, there is a (program) variable x; and two x; -spans in G, which we call
X; and X;. The heads of X; and X; represent the assignment statements x; = 1 and x; := 0, respectively.

For each occurrence of ; or #; in a clause ¢; € C, there is a program variable x/ and two assignment
vertices in V(G), v;; and v;;. Both v; and v;; represent as51gnment statements of the form x/ == x;; how-
ever, v;; occurs in the span X;, whereas vj; occurs in the span X For each occurrence of u; or u; in
¢cj € C, there is also a second program variable, y/, and two addmonal a531gnment vertices, w;; and w;;.
Both w;; and w;; represent assignment statements of the form y/:= --- x/ -+ (i.e. x/ is used on the
right-hand side of the assignment; in some cases, other variables will be used on the right-hand side of the
assignment as well); however, w;; occurs in the span headed by v;;, whereas w;j occurs in the span headed
by \7,, .

To test whether the individual clauses of C are satisfied, we introduce some additional edges in E(G) as
a satisfaction-testing component. The purpose of the edges is to encode the conditions for satisfying a
clause into the ordering dependencies of the graph.

For each clause ¢; =z{VvzyVvz3, where each of the z, represents an occurrence of some variable u;
(either barred or unbarred), we define the right-hand sides for three of the wy; vertices so as to introduce
three flow edges to represent the following pairings: (z;,22), (22,23), and (z3,2,). For each pair we intro-
duce an edge whose source is the w vertex that corresponds to the first member of the pair and whose tar-
get is the “complement” of the w vertex that corresponds to the second member of the pair. For example,
for the clause ¢; = &; v 1,V it3, we define vertex wy; to be “y4 = x4 +y{”, and introduce edge (W,;,W»;);
we define vertex ws; to be “y4 :=x} +y4”, and introduce edge (w5;,w3;); and define vertex w; to be
“y{ :=x{ +y4”, and introduce edge (W3;,w1;). The subgraph corresponding to this clause is shown in
Figure 17.

Clearly the construction of G can be accomplished in polynomial time. What remains to be shown is
that G has a legal ordering if and only if C is satisfiable.

First, suppose that O is a legal ordering of the vertices of G. The truth assignment for each variable u;
of U is obtained according to the relative order in O of the heads of X; and X;: variable y; is assigned the
value T if and only if the head of X; precedes the head of X;. The constraints of the spans X; and X; ensure
that the vertices vy and ¥; have the same relative order as the heads of X; and X;; similarly, the vertices
wy and w;, have the same relative order as v and V.

If all variable occurrences in some clause ¢ had the value F, then there would be a cyclic set of con-
straints among the vertices of ¢ ’s satisfaction-testing component. Because O is a legal ordering and hence
a topological ordering, at least one variable occurrence in each clause must have the value T.

Conversely, suppose that t:U —> { T, F } is a satisfying truth assignment for C. A corresponding legal
ordering O can be obtained by adding some additional edges to G and then topologically sorting the result-
ing graph. For each pair of x-spans, edges are introduced to force all of the vertices of one span to precede
all of the vertices of the other span.

-35~

U x> H A= D
U A DM A D

el

X;

Figure 17. Subgraph representing the clause ¢; = WyvVusvis.

a) If u; is a variable for which #(u;) = T, then for all clauses c; that contain either u; or i;, we add the
edges: ‘
Wi = Vik _
Vik —-)HeadOf (X,)

b) If u; is a variable for which ¢(u;) = F then for all clauses ¢, that contain either i; or k;, we add the
edges:

~36-

W;k 4 Vik
Vi —> HeadOf (X;)

Assuming the truth assignment x, = F, x, = F, x3 = T, the augmented version of the graph of Figure 17 is
shown in Figure 18. What remains to be shown is that this augmented graph has a legal ordering.

i =0 >

X,

%2 Cn=0 D
Ko ot D
% o D

X3

Figure 18. Augmented subgraph representing the clause ¢; = iy V UyV i3, and assuming the truth assignment x; = F,
Xy = F, x 3= T.

-37 -

If u; is a variable for which ¢ (%;) =T, then the head of X; has in-degree 0 and the remaining vertices of
X; have in-degree 1. (Note that X; includes the vertex “x; := 1” and all v;; vertices, but not the w;; vertices,
which are in the x/-spans). The vertices of X; can be placed next in the ordering, and then the vertices and
their out-edges can be removed from the graph. At this point, the head of X; has in-degree 0 and can be
processed as well.

If u; is a variable for which ¢(u;) = F, the corresponding operations are: first process the vertices of the
span X; and then process the head of X;.

At this point, each clause corresponds to a group of nine vertices that have no interconnections with the
vertices for any other clause. This situation is illustrated in Figure 19. The in-degree of each vertex in a
group is at most 2. Because of the way edges were added between (barred and unbarred) w;;, vertices and
(barred and unbarred) v; vertices, the only way a cycle could occur in a group is if each variable of the
clause were assigned the value F. However, because ¢ is a satisfying assignment, each clause has at least
one variable occurrence with value T. Therefore, there is no cycle, and the group of nine vertices can be
ordered.

REFERENCES

[Aho et al. 1986}
Aho, A., Sethi, R., and Ullman, J. Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading, Mass., 1986.

[Allen & Kennedy 1982]
Allen, JR. and Kennedy, K. PFC: A program to convert FORTRAN to parallel form. TR 82-6, Dept. of Math. Sciences, Rice
Univ., Houston, Tex., Mar. 1982.

[Allen & Kennedy 1984]
Allen, I.R. and Kennedy, K. Automatic loop interchange. In Proceedings of the SIGPLAN 84 Symposium on Compiler Construc-
tion Montreal, Can., June 20-22, 1984, pp. 233-246.

[Dijkstra 1976]
Dijkstra, E.W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.

[Ferrante & Mace 1984]
Ferrante, J. and Mace, M. On linearizing parallel code. In Conference Record of the Twelfth ACM Symposium on Principles of
Programming Languages, New Orleans, La., Jan. 14-16, 1985, pp. 179-189.

[Ferrante et al. 1987]
Ferrante, J., Ottenstein, K., and Warren, J. The program dependence graph and its use in optimization. To appear in ACM Trans. on
Prog. Lang. and Syst. Preliminary version appeared in Lecture Notes in Computer Science, vol. 167: 6th Int. Symp. on Program-
ming (Toulouse, France, Apr. 1984), Springer-Verlag, New York, 1984, pp. 125-132.

[Hoare 1969}
Hoare, C.A.R. An axiomatic basis for computer programming. Comm of the ACM 12, 10 (Oct. 1969), 576-583.

[Hunt & Mcllroy]
Hunt, I.W. and Mcllroy, M.D. An algorithm for differential file comparison. Computing Science Tech. Rep. 41, Bell Laboratories,
Murray Hill, NJ. ’

[Knuth 1968]
Knuth, D.E. Semantics of context-free languages. Math. Syst. Theory 2, 2 (June 1968), 127-145. Correction. ibid. 5, 1 (Mar.
1971), 95-96.

[Kuck 1978]
Kuck, DJ. The Structure of Computers and Computations, Vol. 1. John Wiley and Sons, New York, 1978.

[Kuck et al. 1972}
Kuck, D.J., Muraoka, Y., and Chen, S.C. On the number of operations simultaneously executable in FORTRAN-like programs and
their resulting speed-up. IEEE Trans. on Computers C-21 (Dec. 1972), 1293-1310.

[Kuck et al. 1981]
Kuck, D.J., Kuhn, R.H., Leasure, B., Padua, D.A., and Wolfe, M. Dependence graphs and compiler optimizations. In Conference
Record of the Eighth ACM Symposium on Principles of Programming Languages, Williamsburg, Va., Jan. 26-28, 1981, pp. 207-
218.

[Ottenstein & Ottenstein 1984]
Ottenstein, K. and Ottenstein, L. The program dependence graph in a software development environment. In Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments, Pittsburgh,

—38 -

Figure 19. Topological sort in progress on the augmented subgraph of Figure 18. At this point the clause c;
corresponds to the nine vertices shown here.

Penn., Apr. 23-25, 1984. Appeared as joint issue: SIGPLAN Notices (ACM) 19, 5 (May 1984), and Soft. Eng. Notes (ACM) 9, 3
(May 1984), 177-184.

{Tichy 1982]

Tichy, W.F. Design, implementation, evaluation of a revision control system. In Proceedings of the Sixth Intemnational Conference
on Software Engineering (Tokyo, Japan, Sept. 13-16, 1982), pp. 58-67.
[Towle 1976]

Towle, R. Control and data dependence for program transformations. Ph. D. dissertation and Tech. Report 76-788, Dept. of Com-
puter Science, Univ. of llinois, Urbana-Champaign, Illinois, Mar. 1976.

~39 -

[Waite & Goos 1983]
Waite, W.M. and Goos, G. Compiler Construction. Springer-Verlag, New York, 1983.

[Weiser 1982]
Weiser, M. Programmers use slices when debugging. Commun. ACM 25, 7 (July 1982), 446-452.

[Weiser 1984}
Weiser, M. Program slicing. IEEE Trans. on Softw. Eng. SE-10, 4 (July 1984), 352-357. Preliminary version appeared in Proceed-

ings of the Fifth Int. Conf. on Software Engineering, (San Diego, Calif., Mar. 9-12, 1981), pp. 439-449.

