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Abstract

Every designer of a general-purpose operating system (OS) faces the problem that the service needs
of potential applications can neither be perceived nor completely satisfied. New needs emerge and services
required by one application might conflict semantically or incur heavy overhead on other applications.
Therefore, an ideal system would be one that lets any application choose, replace, add, and extend OS ser-
vices and resources. Such a fully open system lifts the burden of selecting the optimal set of services.
However, full openness raises difficult questions regarding the structure of the system and the mechanisms
required to support openness. Our research focuses on how to construct a fully open computing system in
a multiuser environment. We investigate the interplay between openness and the constraints imposed by
protection requirements and efficiency objectives. We examine the impact of different prospective designs

on the architectural complexity and programming complexity.

In this paper we present a novel model of a multiprocessor fully open computing system. We sketch
a specific design based on the model and touch upon its implementation. These three levels of abstraction
are used to shed light on the problems regarding full openness and to evaluate prospective solutions. The
model is based on the concepts of resource ownership and service provision. The OS is viewed by the
model as a minimal set of mandatory services, necessary to protect users and system resources. It accom-
modates construction of customized, shared “OS”s in a protected and efficient way. Ordinary,
untrustworthy applications can provide most of the traditional OS services. They can own shared physical
resources and access them via services at the lowest level. We focus on CPU and memory management
and illustrate how openness can be attained within protection and efficiency constraints. At the design and
implementation levels we point at techniques and features aimed to reduce overhead and complexity.

Finally, we evaluate our approach and discuss its practicality.




1. Introduction

Suppose you have just completed the design of your next-generation, general-purpose operating sys-
tem (OS) after thoroughly examining the needs of its prospective applications and carefully crafting the
services to support them. The question now is how soon designers of databases, programming languages,
or other special applications will complain about missing features or inadequate facilities in your OS. This
phenomenon was observed in many cases [1,2,3]. It is a symptom of two problems designers of general-
purpose OS’s face: First, they cannot perceive the service needs of potential applications, since needs
change as new applications emerge. Second, they cannot satisfy them all, since needs may conflict, or
satisfying one may impose unbearable overheads on some applications. As it turns out, even OS’s con-
sidered as providing ‘generally adequate’ services might fail to appropriately support certain applications,
in particular because their general services impose excessive overheads or coercive semantics on these

applications.

Consider the following examples. General memory and buffer management services could become
very inefficient for a DBMS [1], or redundant for a DBMS that uses different buffering schemes [4]. A
flexible and elaborate interprocess communication (IPC) mechanism could be semantically coercive for a
language specifically designed to support this mechanism [5], or inefficient and insufficient for a tightly-
coupled, multiprocess transaction system [6]. Moreover, even extending the OS with services favorable to
such an application [7] does not necessarily remedy the inefficiency problem due to the generality of the
services [8]. A real-time application has scheduling requirements different from other applications, and it
may necessitate efficient accommodation of several communication models at the same time [9]. While
most applications would prefer a virtual, higher-level view of the hardware, some applications require
direct access to physical resources for efficiency or correctmess reasons. Testing a new device driver on
top of relatively high-level OS services, for instance, could become a complex and costly task, without the
guarantee of correctness [10]. Finally, an inflexible filing facility can restrain the applicability of a user-

friendly interface to the OS itself [11].
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The alternative to one general-purpose OS is a number of application-tailored OS’s. However, it is
usually impractical to write a full-scale OS for each application, nor to have several OS’s coexist in a com-
puter shared by different applications. The main concern of this paper is what is required to make a
general-purpose OS behave as many application-tailored OS’s. (We henceforth discuss only a general-
purpose OS, referring to it simply as 0S.) An ideal OS is one that dynamically adapts its services to the
needs of applications, without incurring extra overheads or impeding their protection needs. We believe
that only an open system that lets applications choose, add, replace, and extend OS services and resources
can satisfy the quest of adaptability; it will be ideal if openness is accommodated in a protected and
efficient way. An open system thus offers a solution to the design problems mentioned above: it lifts the

burden of evaluating the needs of the potential applications, and the selection of an optimal set of services.

The open system approach contrasts the traditional closed system approaches. One such approach is
to design the OS as a closed, high-level interface to physical resources that provides ample or functionally
rich services. Although in general this approach offers convenience to applications (as illustrated in Figure
la, applications are ‘small’), it has several drawbacks. It imposes heavy burden on the OS
designer/implementor to extend and modify services as new needs emerge. Some modifications might be
impossible because of conflict with existing services. Moreover, in an all-if-anything service provision
style each application pays a performance penalty for features it does not want. As we learned from
designing a flexible IPC mechanism [12, 13, 14], adding features to improve generality might increase the
complexity of both the OS and applications, impose high execution cost, and still be insufficient. Another
approach is to design the OS as a closed, low-level interface that provides a reduced set of services, as
shown in Figure 1b. Although in this approach applications presumably can satisfy their needs, including
efficient access to physical resources, writing applications is more complex. Each application suffers pro-
gramming overhead in having to supplement the basic services. For many users the complexity of manag-
ing physical resources and the inconvenience of the interface are unacceptable burdens. An open OS can
combine the benefits of the two approaches, as alluded to in Figure 1c. Applications can access the OS at

different levels or define new levels. The system offers the convenience of the former approach, and the




efficiency and customization of the latter approach. However, in order to be fully adaptable (that is, recon-
structible and extensible), a system should be fully open to all applications. By fully open we mean that
even in a multiuser environment, services and resources are open to all applications, including services in

the TPC, memory and processor management domains.
The fully open system approach presents several intriguing and intricate questions.

(a) How is openness achieved? Specifically, how is the system structured, what are the constructs that
represent services and resources, and what are the primitives that accommodate dynamic customiza-
tion? Some of the aspects of this question are: to what extent services can be open independently of

each other, shared by different applications, and what architectural support might be required?
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Figure 1: The Operating System in Various Approaches



() How does openness interact with protection considerations? In a multiuser environment, in order
to protect resources from being inadequately used and to protect users from each other, some ser-
vices must be retained in the OS and some restrictions must be imposed on users. It is unknown,
however, what is the minimal set of such services and restrictions. This set should facilitate addi-

tional protection measures implemented by individual applications.

(¢) Does protected openness impede efficiency or incur complexity? If so, what are the tradeoffs

between them? Can efficiency be improved through architectural support?

In summary, the problem is how and to what extent a system can be open to its customers, and what is the
interplay between openness and various constraining, mutually-dependent aspects of protection, efficiency,

architectural support, and complexity.

In order to explore these questions and to evaluate prospective solutions, we decided to experiment
with a fully open computing system (FOCS) defined in three levels of abstraction. First, we have
developed the fully open computing system model (called the FOCS model), which defines the system
components, their interrelationship, and the constraints imposed by protection requirements. Second,
guided by the model, a design of a specific multiprocessor system has been laid out. Third, we have exam-
ined techniques to implement various components and features of the design. Each of these refinement
stages has contributed to our understanding of the problems regarding openness and has provided a dif-
ferent framework to evaluate solutions. We found the model instrumental in exposing many obstacles in
achieving full openness, and in shedding light on dependencies between the components of a FOCS. The
design and the implementation techniques provide insights into the practicality of openness, and into the

tradeoffs between openness, efficiency, and complexity.

A new model was necessary since no other models or OS designs support openness to its ultimate
extent. Several models, such as the object [15], message—based client-server, and virtual machine models
[16], and systems motivated by them [17,18,19,20,21, 22,23] open high-level services or virtual resources

to applications. However, none of them enables general users to manage shared physical resources or




provide low-level services. Most services for IPC, memory and processor management in these models
and systems are provided by irreplaceable OS components. Moreover, we have not identified a simple way
to extend any of these models to define a FOCS without altering its major features. In some cases the
notions we wanted to introduce, such as letting any application directly access physical resources and pro-
vide allocation policies, conflict with the model philosophy. Some systems isolate their entities from each
other and impose protection barriers between them, which in turn imply expensive commaunication COSIS.
As a result, opening low-level or frequent services is restricted or impractical. We therefore preferred to
develop a new model, guided by the goal to pursue openness to its ultimate extent. In a way, our model
extends all these models with features that support full, protected openness, and simplifies them by remov-

ing features obstructing openness.

This paper is an interim report of our research in system openness and focuses on the model. The
model is detailed in the next section. Several components of the specific design are briefly discussed in
Section 3, and implementation issues are touched upon in Section 4. These sections are not intended to
illustrate a complete design or implementation, but rather to emphasize techniques and features aimed at
reducing overhead and complexity without undermining openness or protection. In Section 5 various
aspects of our approach are discussed, and a comparison to related work is drawn in Section 6. We con-

clude with a summary of the key ideas and indication of future directions.

2. The Model

The FOCS model assumes a multiuser, multiprocessor shared memory environment. The system
consists of one or more memory devices, each defining a separate physical address space. All memory
devices comply to the same service interface. There is one or more tightly-coupled and architecturally
identical CPU’s. Only a few assumptions are made by the model for necessary architectural features.
These assumptions derive from protection considerations and the need to support openness. We present
these assumptions where the need for them is described. We first present a general overview of the model

and then elaborate on its application in various domains. We focus on the processor and memory



6

management domains, in which openness sharply confronts protection requirements and efficiency objec-

tives.

2.1. Overview

Central to the model is the observation that full openness can be achieved by letting each computa-
tion select the services and resources it needs. It is assumed that all computing requirements can be cap-
tured in two abstractions, a service and a resource. A service is a logical function and a resource — the
means needed to perform the service. The model is based on the concepts of resource ownership and ser-
vice provision. The computing system is modeled as a collection of servers that own resources and provide
services to each other. Each server can dynamically choose, extend, replace, or add resources and services.
Services are executed by activities, which are threads of control that span multiple servers. The activity
represents a computation; it starts at one service, and can transfer control to other services to be performed
on its behalf. Ownership of resources and access to resources is accomplished via services. Motivated to
support full openness, the model leaves the semantics and function of resources and services to the mutual
understanding of the provider and users of each resource/service. Only a few default rules apply to the

mechanisms of service provision, as required by protection requirements.

Servers are self-contained entities that communicate via service invocations and shared resources.
A server can be viewed as a dynamic representation of a program (composed of executable algorithms and
structures) that implements services. A service is an abstraction of a set of actions, whose functionality
and invocation conventions, such as the number and types of input arguments and of returned results, are
decided by the service provider. Services are invoked via bindings, each of which is a reference to a par-
ticular service. A service can be performed asynchronously with its invocation or return results multiple
times. A resource is a physical component, such as a CPU, disk space, or communication bandwidth, or a
logical entity, such as a semaphore, file, or virtual disk. It is encapsulated in one server, called its host. A
resource is composed of units. Each unit can be owned by several servers concurrently. The default owner

of the entire resource is its host; other servers become owners via allocation. The host defines the




semantics of accessing the resource and the rights the owners have to the resource. Through the host’s ser-
vices an owner can access the resource and allocate units it owns to other servers. Depending on the
resource, these functions might be allowed only to current owners, which are the last allocatees for each
resource unit. A former owner, which is a previous allocator of a unit, may revoke it; revocation from an
owner implies revocation of all allocations made by the revokee. An owner can also issue permits for other
servers to access its share of the resource. A permit is a reference to a portion of a resource that specifies
access rights, such as modify or copy.

Figure 2-1 illustrate the relationship between servers, resources, and services. Multiple hierarchies
of services and resources can be formed. At the bottom of the resource hierarchy we show the physical
resources, whose hosts are called devices. A resource may be mapped by its host to several physical or
logical resources which the host owns or is permitted to access. The dependency of a resource or a service
on other resources or services can be transparent to the users of the resource/service. Figure 2-2 further

illustrates the notion of resource ownership and access. Notice that server Sy, for instance, accesses

resource R through the host of R, and not through S, who has allocated the resource to Sy.
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The model view of naming and typing is very simplistic, as stems from our desire to minimize the
imposition of default semantics and overheads. Servers, services and resources are identified by unique
names. Service and resource types have application-specific semantics, and so there is no support in the
model for formal definition and checking of types. Names are used by hosts and service providers to
announce their resources and services. These announcements can be made statically, e.g. in user manuals,
or dynamically through intermediary servers. We denote such servers as name servers. A name server
would allow servers to deposit bindings/permits, to locate required resources/services and to obtain the
necessary bindings. In general, servers acquire bindings/permits statically, e.g., at load time, or dynami-

cally, e.g., as a result returned by another service.!

Services are executed using processors. Each device owns a private processor, dedicated to perform
access to its resource. The CPU device is peculiar since its resource, the CPU, is a processor too. A CPU
is needed by every server to realize services; devices, for instance, need a CPU to initiate access services or
to inform customers of access completion. Therefore, every server may be a CPU owner or be permitted
access to a CPU by an owner. We emphasize in the model the ability of former CPU owners to reclaim the
CPU, since there are times when this reclamation is urgently needed by devices. The protocol of CPU rec-
famation, called a CPU interrupt, and the dynamic ordering of CPU owners are detailed in § 2.4. CPU’s
are allocated by time. An activity is the entity that consumes CPU time to execute services. Through ser-
vice invocation and return the activity transfers access permission for the CPU to the servers whose ser-
vices it executes.

Protection in a multiuser environment prescribes restrictions on openness. On the one hand, since
applications vary in their protection requirements, they should be let decide and implement their protection

mechanisms. Accordingly, it is left to each server to decide discrimination among customers, rejection of

IFor the sake of convenience, we refer to various services or servers by their assumed functionality.
For instance, a disk server is one that provides access to a disk. However, we do not imply that this func-
tionality is rigorously defined by the model, nor that services termed identically, such as two disk access
services, provide identical function.




physical
resource R

=== allocation

o----> binding

Figure 2-2: Resource Ownership
Allocation of a resource Is illustrated as transferring units of it. A logical resource is depicted differently than a physi-
cal resource, although the user of the logical resource (Server §,) should not be aware of the difference.

invocations, checking service inputs, and if it is a host — to verify ownership and access permission to its
resource. It is assumed that a service is entrusted by its customers to provide the expected function.
Hence, a customer is not protected against a faulty service, other than disallowing the service provider to
use resources it has not been granted access to. Also, bindings and permits are supported as light-weight
capabilities: A binding/permit is created and can be invalidated only by the service provider/resource
owner to whose service/resource the binding/permit refers; each holder of the binding/permit can duplicate

and transfer it to other servers as an ordinary data structure.

On the other hand, there are three basic protection requirements that must be guaranteed. First, a
faulty server should not fail unrelated servers. This requirement is supported by the restriction that servers
cannot access resources they are not granted access to and the ability to revoke a resource, €.g., preempt a

CPU from a server after its allocation expires. Second, servers should be able to implement their
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protection mechanisms. This requirement can be achieved through a set of mandatory services provided by
generally-trusted servers. The model view is that this set of services is minimal, in that it excludes any ser-
vice or restriction that servers can provide for themselves. This set consists of verification of bindings at
service invocation and of return address at service return, verification of another server’s id, and maintain-
ing accounts. The latter two services are necessary so servers can discriminate among customers and
reduce contention for scarce resources. The third requirement is that certain resources, called system
resources, be protected by generally-trusted hosts. The definition of what constitute the system resources
is installation-dependent; it presumably would consist of only mandatory or globally-shared resources. The
model assumes that the mandatory services provided by these hosts is minimal, in that they include only
services necessary to control allocation and access to the system resources; all other services to use the

resources are relegated to the resource owners. The last two basic protection requirements are guaranieed
by a set of generally-trusted servers called the operating system base (OSB).2

The OSB constitutes the ‘real’ OS in the model. Its power derives from the fact that at system ini-
tialization it annexes the system resources and all resources necessary to impose the mandatory services.
What servers we consider as appropriate to be included in the OSB? It should include the hosts of the sys-
tem resources, and of resources the OSB depends on, such as the memory into which the OSB is loaded.
We assume that this installation-defined list includes all the CPU devices® and a clock device, which is
essential for proper reclamation of CPU’s. In addition, the OSB includes: (2) the accountant — a unique
server that provides services to open/close accounts and maintain their balances, and (b) the initiator — a
unique server that at system-initialization time creates the rest of the OSB and other servers required in the
system. The CPU device provides, among other services, binding and return address verification. For the

sake of allocation simplicity, it is assumed that all CPU’s are owned by the CPU driver, a server which

2Additional restrictions are required to standardize the representations of bindings, permits, and other
forms of naming and addressing. The specification of these standards is relegated to the designer of a
specific system.

3The reason for this requirement is that any untrustworthy CPU device may maliciously modify the
OSB and thus endanger the entire system.
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facilitates the allocation of CPU’s.? The CPU driver and any driver of a system resource are included in the

OSB.

The non-OSB servers are called application-level servers, and a logical collection of them is called
an application. Above the OSB, applications can construct virtual OS’s. A virtual OS is merely a collec-
tion of servers that includes the OSB. One such virtual OS is assumed to be created at system-initialization
time, to provide common services required by different applications. For instance, this virtnal OS may
include the following servers: (a) a default name server, (b) a server creator, which creates other servers,
and (c) an installation-defined list of various hosts, drivers of shared resources, language processors, and

editors.

2.2. Execution Management

We turn now to describe the details of service provision and resource management in specific
domains. In this section we elaborate on processor management® and in the next section on memory
management; other physical resources are discussed in § 2.4. We show that using the principles introduced
above, every application can achieve its peculiar CPU scheduling or memory management policies. We
describe enhancements of the model with new features, some which derive from efficiency and simplicity

considerations.

The CPU driver is allocated all the CPU’s for eternity. It routinely suballocates them to its custo-
mers, and provides services to further allocate/revoke CPU’s. The unit of allocation is a time unit. Any
server may own a CPU for some fime slice. Such a server is called a scheduler. To become a scheduler, a
server must establish an interface with the CPU driver, which is necessary so that the former is informed
when it is allocated a CPU, and that its allocation requests can be verified. The scheduler therefore hands a

binding for its scheduling service, the latter to be invoked whenever control of a CPU is transferred to the

“In general, a driver denotes a server that controls resource allocation for one or several devices. We
introduce this term only for reasons of efficiency and convenience of allocation.

5We focus on the management of CPU’s only, since the private processors of other devices are stati-



12

scheduler.

Let us briefly describe the application of the model principles of ownership and allocation to CPU
management. A scheduler can allocate a portion of its time slice of a given CPU to another scheduler,
which then becomes the current scheduler for that CPU. Control of the CPU returns to the allocator for the
remainder of its slice when the current scheduler’s slice expires. As with any resource, a scheduler can
release the CPU before its slice expires; a former scheduler can reclaim the CPU, for instance when it is
reactivated via a service invocation. Reclamation or release imply recursive revocation of all further allo-
cations made by a later owner. The ordering of CPU ownership is maintained by the CPU driver. The
latter can alter the order when schedulers require urgent execution. This feature allows devices and othe'r
servers to acquire a CPU urgently, as well as to prevent interruption during urgent work (see § 2.4). Once

allocated a CPU, the scheduler uses the device’s services directly to schedule usage of the CPU.

The CPU is a resource necessary for execution of services. The machine instructions, in fact, are
services provided by the CPU device to use the CPU. An activity is an independently schedulable entity.
A scheduler dispatches an activity for execution on a particular CPU for a time quantum. Dispatching is a
service provided by the CPU device, and it implies granting an access permit to the server whose service
the activity is currently executing. Why couldn’t a scheduler grant the access permit directly to the server
that needs the CPU? The reason is that the scheduler has some knowledge about the precedence of the
computations it schedules. This precedence is associated with activities created to execute these services,
and must somehow be conveyed to services the former services invoke. Therefore, activities are viewed as
threads of control across server boundaries (see Figure 2-3). Upon a service invocation the activity contin-
ues to execute the invoked service at its server, suspending the invoking service until the invoked service
returns. Thus, service invocation and return, which are services provided by the CPU device, to transfer
CPU access permit among servers. Multiple activities can run simultaneously at one server. They all share

the server’s address space, resources, permits, and bindings. It is the server’s responsibility to synchronize

cally allocated to them.
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or mutually exclude them. Each activity has a private execution context (detailed shortly). Notice, how-
ever, that a service can be provided asynchronously with its invocation, for instance when the service

returns after invocation but its function is performed by another activity.

These features allow implementing any application-specific CPU scheduling policy. All an applica-
tion needs is that one of its servers becomes a scheduler, acquires CPU’s from the CPU driver or other
schedulers, create activities and dispatch them. Or, an application might choose an existing scheduler to be
bound to. However, there are several problems regarding execution management, which require additional

features, as we show in turn.

First, a server might be unable to continue a service, for instance because a specific event should be
awaited, such as the completion of an IO service or the release of a buffer used by another activity. There-
fore, the server needs to notify the activity’s scheduler to block the activity, and likewise later to unblock it.
Notice that the server, being executed by activities started by different applications, might not necessarily
know the invocation conventions of their schedulers’ services. Hence, a standard interface must be
defined for such services, and in general for all services required for a particular activity by different
servers. These services are distinguished from services required by a server regardless of the activities
executing it, such as OpenFile for temporary results. The standard interface defines what these services
are, where their bindings should be found, and what their invocation conventions are. The model does not
define a particular standard interface; this task is relegated to the designer of a specific system. The bind-
ings of these services are considered part of an activity’s context; they are denoted as the activity’s private

bindings. The server may also pause, which implies the expiration of the current quantum.

A second problem arises with expiration of time quantums. A server does not control the time allot-
ted to activities executing its services, other than through suggesting scheduling preferences to their
schedulers. Time expiration, however, is undesirable to a server particularly in two situations: (a) within a
critical section, which is necessary to mutually exclude accesses to shared structures; this expiration may

cause a delay to other activities arriving at the critical section and form convoys, and (b) while executing an
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urgent function such as handling a trap or an interrupt, both which are discussed in § 2.3 and § 2.4. Being
generally untrustworthy, ordinary servers cannot disable time expiration. Two features are added to the
model in order to remedy these problems: First, a server may request from the CPU device to postpone
time expiration during the critical section/urgent function. The CPU device sets a limit to the extra time
granted to a server in this way. Second, should an activity get ‘stuck’ in a critical section/urgent function,
or at occupying a structure required by another activity, the server can push that activity to release the criti-
cal section/structure or complete the urgent function. A server executed by activity A may transfer execu-
tion to activity B currently idle at the server, for the rest of A’s quantum. This transfer tantamounts to using
the same access permit in two contexts. The operation is performed via a service provided by the CPU
device, whose intermediation is necessary in order to preserve A’s execution state and restore B’s (detailed
shortly). Notice that the focal server cannot transfer execution to another activity currently executing or
idling at another server, since such a transfer might confuse the state of the latter server, for instance if B is
awaiting a particular event. For the same reason, a scheduler is allowed to dispatch only the activities it

controls. This control is represented by having an access permit to an activity’s context descriptor.

A third problem occurs at activity switch. The execution state of the suspended activity should be

preserved until this activity resumes execution. This state consists of information held at the CPU device,

e.g., in the CPU registers, and includes the environment of the currently executed service.® There are three
requirements imposed on this operation: (a) the state needs to be copied into a structure which is of a
predefined, CPU-dependent format, so that the copy can be automatically performed by the CPU device,
(b) the structure must be core-resident when the copy is required, at a location known to the CPU device,
and (c) the preserved values should be protected from corruption by other servers. To satisfy these require-
ments, a standard structure called an Activity’s Context Descriptor (ACD) is maintained for each activity

at the CPU driver, as illustrated in Figure 2-3. The latter guarantees requirements (b) and (c). For the same

The environments of services in the activity’s thread are stored either in these registers or in local
variables in the servers at which the activity runs. It is left to a server to preserve the environment of its
service prior to invoking another service, using for instance local stack frames, and restore the environment
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Figure 2-3: Activities and Context Descriptors

Activity A has started in Server § and is currently blocked in Server R. Activity B is currently running in Server Q.

line of reasoning, the ACD contains other volatile values such as the activity’s account id, quantum, and a
stack of return addresses for services invoked but not returned yet. Notice that ACD’s are not stored at the
CPU device to avoid static association of an activity with a given CPU. The CPU device is permitted
access to all ACD’s. The implication of having ACD’s maintained by the CPU driver is that activity crea-
tion is through the latter’s services. The creator of an activity receives an access permit to the activity’s
ACD with certain rights, including the rights to dispatch and set the activity’s initial service invocation.
The control over an activity can be passed among schedulers by passing this permit. Moreover, the holder
of such a permit can also direct the CPU driver’s policy of retaining ACD’s in memory, in cases when not

all ACD’s can remain core-resident all the time. This feature allows more efficient execution of urgent

thereafter.
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activities.

Finally, how does a scheduler know when it is allocated a CPU? When the driver notifies the CPU
device of the new owner of the CPU, the CPU device switches to its designated activity to invoke the
scheduler’s scheduling service. This activity is reactivated upon each slice or quantum expiration. Since a
scheduler may own several CPU’s, this service might be invoked concurrently by different activities. This
situation is not different from any other server being executed by several activities. Therefore, it is left to
the scheduler to make the service indivisible and to mutually exclude the activities where necessary. It is
also up to the scheduler to restore the consistency of its structures, should one of the activities get

preempted prior to completing this service, for instance when a CPU is revoked from this scheduler.

2.3. Memory Management

In this section we reiterate the model general principles as applied to management of physical and
virtual memory. We present additional features that allow an application to directly and efficiently map its
virtual spaces to physical memory, while memory accesses are performed efficiently and in a protected
way. The particular features are motivated also by considerations to accommodate sharing of virtual and

physical spaces, and to keep the interfaces simple.

The model views virtual memory as a collection of Universes. A Universe is a self-contained, auto-
nomous resource composed of Spaces. A Space is the unit of allocation — a reference environment into
which a server is loaded. It is composed of segments, each of which is a single virtual address space com-
posed of pages, as illustrated in Figure 2-4b. A page is a contiguous range of virtnal addresses. The host
of a Universe is called its manager. A Universe is mapped into the physical memory owned by its
manager. Although the Universe is embedded within its manager, as shown in Figure 2-4a, the manager is
virtually embedded in the Universe, as it runs in one of the Universe Spaces, as shown in Figure 2-4b. This
feature allows a Universe manager to directly and efficiently manipulate the structure and mapping of the
Universe (detailed shortly). A server has an access permit to the entire Space it is loaded into. Thus, it

may create and transfer access permits to regions of its Space, which can be used, for instance, as buffers
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by other servers. Similarly, a Universe manager may create access permits to the physical space it owns.

The physical memory consists of one or more physical address spaces, each of which is defined by a
memory device and is composed of frames. A frame is a contiguous, device-dependent range of physical
addresses. The frame is the unit of allocation. For the sake of clarity, we will distinguish between memory
devices and drivers. A memory driver is a server that provides services to create/destroy Universes, to
allocatefrevoke physical memory, and to copy from one Universe to another one. The memory device is
assumed to perform only accesses. We assume that the entire physical address space of a memory device
is owned by one memory driver. We detail below the interaction between Universe managers, memory

devices and drivers.

As shown in Figure 2-4, a Universe is mapped into one physical memory space. The restriction of
one space is necessary since different memory devices may employ different mapping schemes, as dis-
cussed shortly. At each memory access, a virtual address must be translated to a physical address. It is
impractical and insecure that address translation be performed by Universe managers, and thus it must be
performed by the device. Therefore, the model requires some low-level uniformity of mapping to allow
efficient and protected access. The device needs to know the Universe’s structure and mapping to physical
memory. This information is contained in a Universe segment, called the base segment. The structure of
the base segment is predefined and device-dependent. Its mapping to physical memory is known to the
device at every instant. This mapping is provided by the manager at Universe-creation time, and can be
dynamically modified thereafter. Figure 2-4 shows that the device holds ownership information, which can

be set by the driver, and translation information, which is used for memory accesses.

Mapping to physical memory is as follows. The frame is also the unit of mapping. The mapping
information visible to the device must follow the device-dependent frame size(s), though each Universe
may support different page sizes. The structure of the mapping information depends on the mapping
scheme employed by the device. At the model level we consider two basic schemes, since other schemes

can be a combination thereof. In a direct-mapping, index-based scheme, a per-segment page table specifies
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Figure 2-4: The Memory Subsystem

for each page the frame it is mapped to. Page tables reside in the base segment. They are pointed to from
segment descriptors, which are placed in the base segment too. The base segment’s page table must reside
in physical memory owned by its manager. (Assuming a contiguous table, a manager therefore must own

at least one contiguous physical memory area of the table size.) Figure 3-2 exemplifies these issues for a
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specific design. In an inverted-mapping scheme, where a single frame table is maintained by the device,
each frame’s descriptor specifies the page mapped to it and a group id. Each segment’s descriptor specifies
the segment’s group association.” The device allows a Universe manager to manipulate the descriptors of
the frames it owns. The reason for having group ids or references to page tables in segment descriptors is
to allow sharing of segments between Spaces. However, to avoid the problem of unique ids for shared seg-
ments as in Multics [24], it is the mapping information, not the segment itself, that is shared. Figure 3-2
illustrates the structure of the base segment and the information held at the memory device, assuming a
direct-mapping scheme. Notice that the mapping information of the Universe manager and of the base seg-
ment are also held in the base segment. As a result, the Universe manager can manipulate page tables,

change structural information of its Universe, and perform paging, all by accessing its local structures.

Knowing the structure of the base segment, the device can examine the structure of the Universe,

locate the mapping information, and perform the necessary translation. It is assumed that the CPU gen-

erates virtual addresses within a Space, in the form { <segment number>, <page number, offset> }.2 There-
fore, a per-CPU current Space, that is, a <Universe id, Space number> pair, must be known at every
instant. (For instance, this information can be maintained at the memory device, as shown in Figure 3-2.)
Spaces are switched only at activity switch (e.g. at dispatching), service invocation, and service return.
Copy between two Spaces does not cause a Space switch: the copy is performed by the Universe manager
in a single Space, if the two former Spaces are in the same Universe, or else by the device. The translation
process is the following. Given the current Space, its segment descriptors are located, based on the base
segment’s structure and mapping information. Likewise, the segments’ mapping information are located,
including their page tables in a direct-mapping scheme. Given a virtual address, the referred segment’s

mapping information is examined; searching for, or indexing by the page number, a frame number is

"The base segment’s group association, though, must be explicitly told to the device by the Universe
manager, so that the device can locate the necessary information held in the base segment.

8To be more accurate, a virtual address is a permit to access a location in a Space, furnished by the
running server to the CPU device. The CPU device passes the permit to the memory device as a parameter
{0 2 memory access service.
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derived, which added the offset yields the desired physical address. See an example of the translation pro-

cess in § 3.3.

For protection purposes, the device verifies the following: First, that every frame accessed during the
address translation process and that the yielded frame are owned by the manager of the addressed
Universe. Second, that the virtual address is valid, e.g., that the segment number and the segment descrip-
tor are valid. Last, that the intended access specified in the machine instruction or the access permit does
not conflict with the access rights associated with each segment. Upon a page fault or a violation, the dev-
ice, depending on the cause, either rejects the access service with an appropriate error indication, or
invokes a designated service of the Universe manager, labeled as “fault service” in Figures 2-4. A binding
to this service is handed by the manager at Universe creation. This service may invoke a fault-handling
service of the server that caused the fault or another designated server such as a debugger. For this pur-

pose, a server can register a fault-handling service with its Universe manager.

2.4. More on Devices

Communication with devices follows the regular service invocation paradigm, but is more intricate
in that it requires transfer of control between two processors. (For clarity, we refer to devices other than
the CPU devices as IO devices.) Invocation of an IO device’s service is performed on the CPU where the
invocation is issued. We assume that the IO device has an internal mechanism to schedule an activity on
its private processor to perform the access. This mechanism can be based on the IO device’s local memory

shared among its activities.

At access completion, control needs to be transferred back from the 10 device’s processor to a CPU,
in order to perform service epilogue tasks such as telling about the event to a waiting customer. This
requirement implies that the IO device needs to revoke ownership from the CPU’s current owner. The
CPU device provides a service to request this reclamation, that is, to raise an interrupt. This service
decides whether to reject or honor the request, based on the relative precedence of the IO device and the

current owner of the CPU. The precedence information is prescribed by the CPU driver whenever the CPU
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device is told its new owner. If the request is honored, then the IO device becomes the CPU’s current

owner. For protection and efficiency reasons, before the ownership switch takes effect the CPU driver is

notified of the interrupt by the CPU device.? The CPU driver then determines the length of the slice that the
interrupting IO device is granted with. The former owners regain ownership of this CPU at the end of this
slice, or, pending the CPU driver’s discretion, of another CPU at another time. Finally, the CPU device
invokes a designated service of the IO device, similarly to invoking a scheduler’s scheduling service upon

CPU allocation.

Therefore, similarly to a scheduler, an IO device needs to establish an interface with the CPU driver,
in which its precedence for CPU ownership is negotiated, and a binding to its interrupt-handling service is
handed. The CPU driver decides precedence levels of IO devices/schedulers based on external parameters
provided statically at system-initialization time or dynamically by a privileged user called the System
Administrator. Bear in mind that no matter what the precedence is, the slice allocated to an IO
device/scheduler is restricted by protection considerations. We assume that the CPU driver would rou-

tinely reallocate CPU’s to satisfy pending allocation requests.

To perform an IO operation into/from a customer’s address space, an 10 device must present a valid
access permit to the memory device that performs the access. For efficiency reasons, we assume that the
interface with a memory device allows translation of an access permit from virtual to physical addresses.
Therefore, an IO device can avoid the presumably longer address translation process when performing a
mass copy, by copying directly into physical memory. In a copy between two memory devices the reques-

e
ter of the copy is viewed as an 10 device.

The model principles presented in § 2.1 are sufficient for the management of other physical
resources. We exemplify management of a disk space and network communication bandwidth in discuss-

ing specific design issues in § 3.4.

9Specifically, the CPU is revoked from all owners. The CPU driver is reactivated via a return from a
service it has formerly invoked to set the CPU ownership.
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2.5. Miscellaneous

The model assumes the existence of an accounting system responsible for the maintenance of
accounts. Similar to Dennis and Van Horn’s model [25], there are principals that pay the bills. The Sys-
tem Administrator mentioned above is also responsible to add principals and set their balances. The
accountant server issues account ids to the principals. It provides services to debit and/or credit accounts.
The OSB servers charge for using their resources in order to reduce contention, and so can do any server.

Each activity and server are equipped with an account id.

In some situations an asynchronous service invocation is required in order not to suspend the invok-
ing service. One notorious example is at interrupt handling: the interrupt-handling service might need to
notify a customer awaiting this event, by invoking a reply service of the customer; however, the latter ser-
vice cannot be entrusted to return quickly, and so accesses to the device might be delayed for too long.
Instead of supporting another invocation paradigm, the model suggests that an asynchronous invocation be
accomplished via synchronously invoked services. For instance, to invoke service S asynchronously, one

invokes service S’ whose purpose is to relegate the invocation of S to another activity.

Communication between activities is necessary to report exceptional events. For example, an
activity’s scheduler might want to announce intended termination of the activity, so that all uncompleted
services in the activity’s thread can properly clean up their state. As another example, an event discovered
by one activity may imply an immediate change in the execution of another activity running or idling at the
same server. Using shared memory in such a case might be impractical. For this purpose, the CPU driver
accommodates exception raising on activities. This service is allowed to the target activity’s scheduler and
to the server at which the activity is currently executing or postponed. When the activity resumes execu-
tion, the exception is noticed. Analogous to memory and CPU fault handling described above, the current
server’s fault-handling service is invoked. Since this mechanism allows communication between a
scheduler and servers it is not bound to, we assume that the standard interface mentioned in § 2.2 is

extended to include a set of exception types. Notice, however, that for protection reasons a server (say S)
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is precluded from raising exceptions on an activity currently running or idling at another server (say R).
Should S discover an event worth alerting R, and possibly altering the behavior of a service previously
invoked by S, then S should notify R of the event through an ordinary service invocation.

To accommodate proper state cleanup, intended termination of a server should be announced to its
peers by the server itself or by another designated server, e.g., its creator. This notification should be done
through regular service invocations. As another standard, a binding for any service can additionally refer
to a termination-notification service, to be invoked prior to terminating the binding. However, servers can-
not count on being properly notified of the termination of other servers they are bound to, or of activities
executing their services. Therefore, we designate the CPU device to support servers to interrogate whether
a given server or activity has terminated.

The attentive reader has probably noticed a problem we have ignored in § 2.3: How can a Universe
manager create a Universe if the manager runs in one of the Universe Spaces? To resolve this problem, a
manager starts running as a server mapped to another Universe, and then after creating a new Universe
migrates into that Universe to become its manager. This intricate process is supported by the memory
driver.!® For instance, Universe creation can follow these steps: Server S, running in Universe U, intends
to create a new Universe U,. S, acquires the necessary frames and constructs the base segment of U, as
one of its segments. Next, S, invokes a service of the memory driver for the target memory (into which U,
is mapped). This service creates U, as a new Universe and ‘downloads’ into it its base segment and .
Note that §, does not disappear, but rather its copy, §,, becomes U,’s manager. §, activates S, by invoking
the latter’s initialization service, or by creating an activity to do so. Through an appropriate interface with
the memory driver, S, can serve as a recovery server for §,. Namely, should S, fail to handle a fault in U,

e.g., if its fault-handling service is paged out, then §; can be called to rescue U,

10A1, initial Universe, however, is predefined at system-initialization time. The OSB is loaded into
this Universe.



3. Design Issues

In this section we sketch several components of a specific design based on the model. In the next
section we highlight several implementation issues. These sections are intended to demonstrate how over-

head and complexity can be reduced, and to exemplify how various features of the model can be realized.

3.1. Servers and Services

The default servers in the system are the OSB and a set of commonly-used servers. This set includes
compilers, server creators, a Universe manager, command interpreters, schedulers, drivers, providers of
higher-level interserver communication mechanisms, and file servers. The servers needed at system-
initialization are listed in a configuration schema, which specifies also the initial bindings between them.
The schema is read by the initiator, who then loads and binds the initial servers. Other servers can be
Joaded dynamically by command interpreters, Universe managers, or server creators, when their services
are needed. The initiator takes inventory of existing physical resources and creates their device servers.
Devices may be microcoded or software servers, and the shared and trustworthy ones can be embedded in
the OSB. The schema is prescribed by the System Administrator. He or she may use a privileged interface
with the OSB that allows them to add devices, to set accounts and balances, and to change precedence lev-

els. The system administrator is recognized by a special account id.

Language constructs let a server declare the services it provides and uses, similar to export and
import constructs in module-based programming languages such as Ada® [26] and Modula [27]. A service
is in fact a list of operations associated with a descriptive name. Compilers group this information in two
separate segments of a standard structure, which are similar to symbol tables for exported and imported
identifiers. The standard structure facilitates loaders and runtime-support servers to externally bind service
providers with their customers. Services can be registered and located via global (commonly-used) or

private name servers. The provider of a service hands to the name server a binding to the service, a service

®Ada is a registered trademark of the U.S. Department of Defense (Ada Joint Program Office).
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name, the server name, and an optional type. Types are application-defined or standard types supported by
the name server. The service provider also specifies whether the binding should be duplicated for each
new customer, or handed only to the first customer to request it. Servers can query a name Server to locate
a required service, and get a binding on a successful match. The name server defines matching rules for
service and server names, that is, between names associated by a service provider and those specified in a
query. Each server is bomn with at least one binding to a service provided by the default, global name

server, which allows obtaining bindings to other services or other name servers.

Each binding contains a vector of operations, a reference and a key (see Figure 3-1a). The matching
lock and the operations’ addresses appear in the referenced address. The key is verified upon invocation.
The service provider may invalidate a binding by changing the lock. Any binding holder may duplicate
and transfer it, but not forge a seemingly valid one. A memory access permit has a similar structure (see
Figure 3-1b). Its key is verified against a lock at the target address. The permit indicates access rights and
memory size. These features support efficient creation, verification, and invalidation of bindings and per-
mits. Additionally, each application can decide and easily implement inheritance rules for services and

resources.

A service provider may inscribe in a binding an initialization operation and a termination operation.
Both are hints, proposed for invocation at every new binding creation and termination, respectively. The
initialization operation should be invoked by the name server, the new customer, or whoever transfers the
binding to a new customer. The termination operation should be invoked prior to terminating the binding,
by the customer or by whoever terminates the customer. These features, which we assume are observed by
well-behaved servers, facilitate service providers to properly initialize and clean up their state. As men-
tioned in § 2.5, a server may discover through the CPU device whether a given server or activity has ter-
minated. For this purpose, a server must have a unique id, which is invalidated at the termination of the
server. Thus, we assume that the Space number is the pair <index, id>, where the index is used to locate

the Space in the Universe (see the table in the bottom of the base segment in Figure 3-2), and the id is
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Figure 3-1: A Binding and an Access Permit

(a) A binding. Language-specific attributes are optional. At invocation, the customer specifies a reference to the binding and
the operation requested. (b) An access permit to virtual memory. The permit may include the size of the target block and the

access rights, but only those specifies at the target server are consulted at access time.
Target address is the 5-tuple <Universe id, Space number, segment number, page number, offset>.

unique per server.

We mentioned in § 2.2 that an activity has private bindings. Where are they located? Each ACD
contains a reference to a list of bindings, which are the activity’s private bindings. For simplicity, this list
is ordered in a standard order, so services can be located easily. For instance, the binding for block activity
would be the n-th in each list. At service invocation request, which as mentioned before is a service pro-

vided by the CPU device, the requester distinguishes between bindings which it refers to directly and

private bindings.
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3.2. Execution Management

The interface between the CPU driver, CPU device and schedulers is enhanced in order to reduce the
inherent overhead of dispatching. This overhead stems from the need to invoke a scheduler’s scheduling
service whenever a quantum allotted to an activity expires. A service provided by the CPU driver and
coordinated with the CPU devices allows a scheduler to be periodically detached from the short-term
scheduling mechanism whenever the scheduler wishes so. The scheduler gives a list of scheduling orders,
located at its address space. When the scheduler is in detached-mode, then activities are dispatched from
this list by the CPU device as long as the scheduler owns a CPU. The CPU device updates the list with the
results of completed dispatching or allocations. On a faulty or empty list, the CPU device invokes the
scheduling service of that scheduler. The scheduler may dynamically interrogate and rearrange the list,
change quantums, or disable/enable being detached. For instance, these changes can be made by a desig-

nated activity, dispatched periodically to perform housekeeping chores. Or, they can be made when the

scheduler is reactivated via a service invocation.!!

We have designed a preliminary version of a CPU-allocation algorithm for the CPU driver. Itis a
multilevel feedback algorithm, based on the notions of urgency and demands. Each customer of the CPU
driver specifies its demand in terms of number of CPU’s required (total and how many thereof are needed
concurrently), for how long, and the urgency level of the demand. The urgency level is in a range defined
by the CPU driver. The CPU driver maintains scheduling queues, one per urgency level. A scheduler may
post simultaneously different demands in different queues. CPU allocation by the driver is as follows.
Each queue is scanned in turn and schedulers are allocated CPU’s in a round-robin fashion. There is an
upper limit on an allocation, which is a function of the contention for CPU’s (that is, the system load), the

urgency level, and the recent history of allocations to that scheduler. The last element is meant to give a

11gimilarly, a memory device can provide a service to Universe managers to be periodically detached
from page fault handling. Upon a page fault, replacement would be performed by the memory device, pro-
vided the Universe manager supplies a valid list of free frames, and page swap to or from a swapping dev-
ice is not necessary.
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bonus to schedulers with low or unsatisfied demands, and is somewhat similar to credits used by Kurose et
al [28] to reduce contention for multiaccess networks. Likewise, there is an upper limit on the total alloca-
tion for each queue, in order to provide some fairness to demands of lower urgency. The unsatisfied por-
tion of a demand becomes the scheduler’s new demand for the next round, or is added to the scheduler’s
demand if it has a continues one. The position of a demand in a queue or between queues can change,
depending on the scheduler’s recent demands and whether they were fully satisfied. The order of scanning
the queues is altered with each new demand posted in a queue of an urgency higher than that of the queue
currently being scanned. In addition, the OSB may dictate preferred allocation to a given scheduler, for
instance, by granting the scheduler’s entire demand unequivocally. It should be noted that the CPU driver
charges, although differently, for both posting a demand and being allocated a CPU, with charges increas-

ing with the urgency level.

3.3. Memory Management

In this section we merely focus on how the model view of memory mapping and address translation
can be realized. We limit the discussion to a direct, index-based mapping scheme. As Figure 3-2 illus-
trates, the base segment contains the following components: (2) general structural information that tells the
memory device the sizes of the tables; (b) a Spaces table, with a fix-size entry per Space. Using a fix-size
entry, the memory device can fetch the necessary information of an addressed Space by indexing in the
table. Notice, however, that an entry can be extended using “overflow buckets” when new segments are
added to a Space; (c) information about the Space, such as the id of the server mapped to it, and a descrip-
tor per each segment; (d) as mentioned in § 2.3, a segment descriptor specifies mapping information and
access rights. It may also contain control information used by the Universe manager, such as indication of
being shared; (e) page tables.

The memory device maintains a Universes table with an entry per Universe mapped to this device.

An entry would include the physical address of the page table of the Universe’s base segment, and the

address of a fault handler for that Universe. The memory device would also contain caches of data and of
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Figure 3-2: Structure and Mapping Information Employing a Directed-Mapping Scheme-— An Example
The manager resides in Space 0; the base segment is segment 0 of Space 0. In an inverted-mapping scheme, this example
would change in the following: (a) There would be no page tables, (b) A segment descriptor would contain a group id instead
of PT base and PT length, and (c) An inverted table, similar to the frame owner table would contain at each entry two pairs of

<group id, page #>: one for the manager, one for other Spaces.

recent translations.

Following the example of Figure 3-2, translation of the virtual address [<4>,<2,32>] in the Space
<123,3> follows these steps: (a) The device locates the page table of Universe 123’s base segment, (b) pro-
vided Space 3 is valid, its entry in the Spaces table is located in virtual memory (as you I}Otice, each entry
is of a fix size); using the latter page table, the entry is fetched from physical memory, (c) the descriptor of

segment 4 is located in virtual and physical memory (if necessary, following pointers in an overflow
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bucket), (d) provided the segment is valid, the segment’s page table is fetched, (e) finally, the frame
number of page 2 is obtained. Using caches of translation information, the device can skip memory look-

ups at repetitive accesses to a Universe, Space, or segment.

Translation information held by the memory device must be consistent with the mapping information
maintained by Universe managers. For this purpose, it suffices that a memory device maintains the rela-
tionship between its translation tables and the respective mapping information. Additionally, a memory

device can let a Universe manager explicitly invalidate specific items in the device’s translation tables.

3.4. Devices

In this section we exemplify how the model principles can be employed for managing two other phy-
sical resources. Applications may include private disk devices. A disk device divides its disk space into
blocks, which are the units of allocation. A disk driver might be necessary to coordinate allocation of
several disks, mainly for convenience of the disk users and the efficiency of disk utilization. For synchron-
ization or protection reasons, the driver might require that accesses are made through its services only, in
which case the driver is the sole owner of the disk space; otherwise, the disk device is given the ownership
information, and customers access their disk shares directly through the device’s services. By owning part

of a disk, a server can provide filing services or define virtual disks and provide services to control them.

A single machine can be connected to other machines via one or more networks. Each network con-
nection is controlled by one network-controller device. The resource is the communication bandwidth and
the unit of allocation is a time slot to send packets. The device provides send and receive services of byte
streams. Reliability and flow control are relegated to communication servers implementing higher-level
protocols. A communication server has to create a port into which received messages can be queued. The
server associates with a port a logical name (so that remote peers can locate the port), an access permit to
memory where messages are placed, and a binding for a service to be invoked upon message receipt or
send. Allocation of the bandwidth is analogous to allocation of CPU’s, and similarly the device may

employ a dynamic precedence scheme.
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3.5, Miscellaneous

In order to support the decision making of schedulers, Universe managers, and other servers, various
devices and drivers expose usage information of their resources. For instance, the CPU driver collects load
information, and provides read-access permits for schedulers to inspect this information. Similar facilities
are available at the memory and network drivers. The information includes a price vector for the resource.
We assume that some servers provide parametric policies rather than a single policy. Thus, one scheduler

can serve several applications with different scheduling policies.

We assumed above that servers are entrusted by their customers, and thus the system does not inter-
fere in how much they charge for resources and services. However, some restrictions are needed to protect
a customer from a faulty server. Thus, the accountant allows a server to set a limit on both the amount its
account can be charged and the total of all charges. Notice that setting such a restriction may result in
other servers refusing to provide services or resources to the focal server, if they cannot charge for their

services/resources.

As an additional protection measure, the activity’s and the server’s account ids cannot be read or
modified by servers other than the accountant. How charging can be possible then? The activity’s account
id is found in its ACD, and charging thus can specify the currently executing activity — which tantamounts
to the activity charging itself. A server does not pass its account id to another server when invoking the
latter’s service. Rather, the former server may deposit its account id in reserved slot(s) in the ACD (of the

currently executing activity). Charging requests, therefore, can refer to this slot(s).

4. Implementation Issues

At the implementation level we assume that the system is structured as a collection of CPU’s,
memories, and 10 resources connected with a common bus — similar to the emerging class of multiproces-
sors known as multis [29]. A device can have hardwired or microcoded representation (services and struc-
tures) loaded into its private memory and executed by its private processor, both attached to its resource. It

can also have software or microcoded representation executable by a CPU.
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To reduce potential overhead at crossing server domains, several cooperating servers can be linked at
load time to form a single server, similar to the way Ada packages or Modula modules are linked to form a
single program. In such a case, each ‘module’ can still be viewed as a separate server by its customers. To
accommodate linking, allocation of segments numbers by compilers should be standardized, so that linkers
can merge the servers. For example, the instructions of a server’s program would always form segment n.
Moreover, linking servers together should not change invocation protocols. Therefore, the service invoca-
tion and service return machine instructions behave as procedure call and return instructions when the
invoking and invoked services reside in the same Space. In order to avoid indirect level of addressing of
segments, as in Multics, the segment number field of a virtual address can be a register number that con-

tains the actual segment number.

To make service invocation more efficient, we assume the CPU architecture provides a large register
file and a register window per invocation [30]. Therefore, using a stack for invocations is not necessary.
The actual register file and window sizes would be a tradeoff between the efficiency of Space switch and
activity switch. We anticipate that devices’ services and several drivers’ frequent services, such as
dispatching, interrupt granting, and CPU allocation, be implemented in hardware or microcode. They can
be invoked through generic machine instructions, similar to IO instructions in conventional architectures

such as the IBM System/360 [31].

Every CPU device interfaces the memory subsystem through an attached memory management unit
(MMU). The MMU contains a cache of recent or anticipated accesses. We assume a virtually-addressed
cache, that is, every entry is prefixed with a unique identifier, such as the triple <Universe id, Space
number, segment number> or the pair <server id, segment number>. Therefore, there is no need to flush
the cache upon Space or activity switch, which in turn reduces the overhead of service invocation, service

return, and dispatching.

For the sake of cache consistency, caches are updated by memory devices via a common bus to

invalidate or replace entries modified in other caches. In particular, mapping information held at CPU’s
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should be modified when this information is modified by the relevant Universe managers. Therefore, via
regular machine instructions a Universe manager may direct the CPU’s to invalidate mapping information
relevant to its Universe. The MMU holds a table which indicates the memory device to which each
Universe is mapped, so that memory references can be directed to the appropriate memory devices. Thus,

Universe ids must be globally unique.

Maintaining virtually-addressed caches with large prefixes might be architecturally complex. If
alternatively the cache is indexed by physical addresses, an MMU contains also a translation look-aside
buffer (TLB) to hasten searches in the cache. A TLB stores <virtual address, physical address> pairs and
is searched without translation. Only on TLB or cache miss a translation-and-access request is passed to
the appropriate memory device, which returns also the yielded physical address. Having a large TLB to
hold all translations for the cache might impose efficiency problem. Therefore, the alternative would be
that each MMU performs the required translation. In this case, all MMUs and memory devices must com-
ply to a single mapping scheme. This is somewhat a restriction on the extent memory devices can differ
from each other. Note that memory devices can still differ in other aspects, such as frame sizes and access

speeds.

We have ignored so far the question of how servers are named and where context information is
held. Few standards should be made at the implementation-level. First, each server has a context descrip-
tor of a standard format at a well-known location in its Space, for instance at the beginning of segment 0.
This descriptor, among other values, contains the server’s name and account id, and is set by its creator.
Reading designated fields of this descriptor, such as the server name, is a services provided by the CPU
device. Second, the server id equals the id of the Space it is loaded into, and the latter id is modified by the
Universe manager upon each Space deallocation. In this way, it is easy to validate whether a given server
is still alive. Additionally, all permits and bindings issued by a server are automatically invalidated when

the server terminates.
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To simplify memory ownership verification at each access, a frame is marked with a key that
identifies its current owner. This key equals the Universe id, so at each memory access it is verified
against the id of the addressed Universe. This usage of keys is similar to a method employed by IBM Sys-
tem/360 [31]. The key is stored in the frame or in a single inverted table at the memory device, as shown
in Figure 3-2. Ownership of other resources can be represented by similar primitive capabilities or by
lock-key pairs, where the lock is maintained by the device and the key is presented by the invoker of an
access service. We assume that such keys as well as keys stored in bindings and permits (see Figure 3-1)

are long enough to prevent forging a seemingly valid one.

5. Discussion

The FOCS model supports maximal openness, limited only by what we consider as minimal protec-
tion constraints that are necessary in a multiuser environment. An application can substitute most of the
existing services and resources, and construct its own virtual operating system from a set of servers and
devices. Decomposition of the OS and of applications to separate servers allows easy replacement of ser-
vices and resources, or policies and mechanisms. The replacement is dynamic — without need to recom-

pile or relink the OS.

In some sense the system in our model is closed: similar to conventional operating systems resource
allocation depends on decisions made by the OSB. The model tries to minimize this centralized control to
only as little as is dictated by the contention between users and by their protection needs. Openness is
achieved when applications are allocated the resources. Once an application can bid for the resources it
needs and get them, it can provide the policies and mechanisms to use them. In particular, the model was
carefully crafted to support real-time computations. A scheduler can dispatch an application to run uninter-
rupted, provided it buys urgent time or increases its precedence for as many CPU’s as it needs. To further
improve execution time of a computation, its scheduler or servers executed by the computation can nego-
tiate memory replacement preferences with their Universe managers. To simplify coordination between

servers, the servers that form, or serve a single application — so called problem-oriented servers, can be
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combined into a single server.

Our model allows coexistence of different paradigms of computation and communication. Servers
can provide higher-level, connectionless or connection-based interserver communication mechanisms, with
different reliability and synchronization flavors. Issues of sharing resources and inheritance of access to
resources or services can be decided by the application-specific Universe manager or server creator. The
model supports a variety of possible approaches to these issues. The granularity of execution tasks,
resource units, shared memory buffers, communication and IO transfer units can all be decided by each
application. Likewise, transactions can be supported at different levels by various applications, each
selecting the appropriate mechanisms to implement its required semantics for concurrency control,
recovery, and reliability.

The model supports sharing of memory in various levels. Universe managers can share physical
memory through allocation, and each of them decides sharing of physical memory among its customers.
Spaces can share segments through mapping, each possibly with different access rights. Servers can share
address spaces by being merged into one server (that is, loaded into one Space), by sharing segments, or by
having access permits to each other’s Space. Other resources held by a server can be shared with other

servers through allocation, permits, or services.

In the following we evaluate the aspects of openness and their interplay, as exposed in all three lev-

els of our approach: model, design, and implementation.

e On Protection:

The basic, default level of protection is low in order to fit protection requirements of mutually-trusted
servers, and thus avoid overhead and limitations imposed by unnecessary protection measures. The lack of
parameter or capability checking at service invocation, except for the validity of the referred address,
makes communication among cooperating servers efficient. However, mutually-suspicious servers or
generally-used servers that must protect their resources would suffer greater overhead in implementing

their own protection mechanisms. Some of the additional protection measures, though, should be very
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simple to implement —- requiring merely checking a scalar or a vector of values. This approach fits well
the requirements of database and transaction management systems. Such systems prefer that the OS pro-
vides rudimentary protection for communication with them, and let them control their internal interactions

in more efficient and sophisticated ways [3].

Relegating capability verification to servers can be less efficient than if the verification would be
done by the hardware in a capability-based architecture. But using capabilities in our approach is not man-
datory, and thus communication among cooperating servers is more efficient. It is still an open question
whether some form of more restrictive default capability mechanism, possibly supported by the hardware,

can be more beneficial in terms of both protection and efficiency.

Our approach does not provide protection requirements that might be considered necessary, but sup-
ports different means to accomplish them. We consider here two examples. First, a server § cannot control
the distribution of permits, bindings, and private capabilities it has passed to its customer C. Thatis, C can
transfer them to another server S°, and so forth. We do not consider this issue a protection gap. Instead of
passing a permission to a resource or service, a server can impose an intermediary service to access the tar-
get resource; the server would then check at each access the validity of the access requester. This example
illustrates a trade off between protection and access efficiency. A different balance between the two can be

selected by each application designer.

Second, a customer of a service is protected very little from its service providers. Its resources,
including its address space, and to some extent its account id are protected. However, it cannot prevent
misuse of its account id, unfair charging for services or resources, or misprovision of services. We do not
consider this issue a problem, since a server can always choose services from servers it entrusts, or it can
substitute them. This example illustrates the trade offs between openness, protection, and efficiency. The
default protection measures are tailored to applications consisting of mutually-trusted servers. They are
intended to protect against errors a server cannot otherwise protect itself. Adding more measures to protect

servers from all potential hazards inflicted by untrusted servers would incur higher execution overheads
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and would backlash in impeding openness itself (cf Hydra [32], especially the designers’ retrospectives in

Ch.7).
e On Execution Efficiency:

Once the OS is decomposed to separate entities, the communication among them should be efficient,
especially for frequent and urgent tasks such as page replacement, CPU scheduling, and interrupt handling.
Therefore, we were careful to simplify server-domain crossing. between servers. The semantics chosen
for service invocation, service return, and resource access, and the assumptions made about virtually-
addressed caches and register windowing, were all motivated by this concern. We presume therefore that
interserver communication would be (almost) as efficient as calling a procedure in a different locality of

the same address space.

Service invocation and return can be very efficient since parameters and results are passed in regis-
ters. Since there is no default stack, then service invocation and return do not require time-consuming
stack manipulation operations. The efficiency of service invocation/return can decrease when the environ-
ment of the invoking service must be preserved in a local stack frame. The invoker needs then to extract a
frame from a heap and later free it. This overhead and its complexity can be reduced by employing simple
heap management techniques, such as maintaining a list of free stack frames sorted by frame size. More-
over, frame sizes can be decided at compile time [33] or be fix, trading space efficiency for execution
efficiency. Passing access permits for buffers used as parameters or results of a service invocation incur
additional overhead when the buffers are accessed. We presume that such overhead is lighter than that
incurred in conventional systems that provide more heavy-weight IPC mechanism, requiring for instance

transferring the buffer in a message back and forth.

To further reduce the communication cost, cooperating servers can be linked to form a single server
or be loaded into a single Space, without reducing their flexibility to act as separate servers. The process of
binding a server with its service providers should not bear high performance cost, as bindings can be

obtained at load time or via parameters; bindings can be obtained in groups, for instance as a library of
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bindings.

Inefficiency increases with the decrease in the ‘‘trust-level’” among servers, as the overhead of pro-
tection increases. However, by not imposing complex or costly default protection mechanisms, our
approach allows servers to tune their mechanisms to avoid extra overheads. The most inefficiency-
implying feature is the need to undertake bookkeeping of resources allocated to other servers or used by
activities, and checking periodically if these servers/activities are still alive. This bookkeeping, though, is
not radically more complex or expensive than what conventional OS kernels and shared utilities do to pro-

tect their resources.

On the positive side, the decomposition of a monolithic OS to separate servers offers some efficiency
gains, as each server controls fewer customers. For instance, scheduling decision making can be faster, as
it involves scanning shorter lists. In addition, since scheduling is problem-oriented, decomposed schedul-
ing presumably results in more efficient resource allocation. The suggested detached-mode interface for
CPU scheduling and memory replacement reduces the interface cost for communicating scheduling and
memory allocation decisions to the devices. It allows schedulers and Universe managers to define

medium- to long-term policies, while still being responsive to short-term changing requirements.

The support of activities in our approach offers additional gains of execution efficiency. Various
applications such as DBMS’s [3, 8] and commonly-used servers [5] require support of light-weight threads,
each devoted to a single interaction with a customer. These threads should be cheap to create and destroy.
The application should be allowed efficient control over scheduling of these threads, which involves
dynamic setting of priority and dependence parameters. Carrying a single interaction or transaction means
that a thread should efficiently traverse across layers of services, down to the IO and communication dev-
ices. Our approach accommodates these notions by the semantics chosen for activities and the facilities

supporting them.

The issue of interrupt handling demonstrates the interplay between protection, efficiency, and com-

plexity. Interrupts are admitted as soon as is dictated by the device’s relative precedence. The device can
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perform whatever urgent tasks are required. Nonetheless, there is a back-pressure on the device against

monopolizing the CPU.
o On Architectural Support:

The major requirement from the architecture is to support virtual-to-physical address translation and
memory ownership verification. These functions performed in software cannot attain practical efficiency.
Our solutions in all three levels of the model, the specific design and the implementation, demonstrate a
balance in the interplay between architectural complexity, access efficiency, protection, and openness.
Untrustworthy Universe managers can treat mapping tables as ordinary data structures in a protected way,
while translation can be performed directly by a memory device. The exira mapping levels increase the
complexity of the translation mechanism. The mapping structure is based on notions borrowed from the
VAX® memory architecture [34], in which all page tables reside in the kernel address space. In the FOCS
model this scheme is extended by (a) there is no single kernel; a ‘kernel’, i.e. a Universe manager, is
selected dynamically, (b) variable number of segments per server is allowed as in Multics [24], and (c) the
structure of a Universe, Space and segment is more complex. Unlike Multics, we avoid an extra level of
indirection by supporting sharing of mapping information rather than sharing segment numbers. Overall,
we believe that these extensions would not preclude supporting address translation in the architecture. The
incurred complexity is not high, compared to other systems that support structured memory mapping such
as VAX or iAPX-432 [35]. A designer of a specific system can choose to reduce the architectural com-

plexity by reducing openness, for instance by fixing the number of segments per Space.

Ownership verification does not increase the complexity of the memory architecture, since it requires
merely comparing a key. Setting ownership can be done in microcode or even software. Verifying access
permits is merely comparing a vector of values. Other functions relegated to the architecture or assumed to
be implemented in microcode are very simple. Service invocation and return are simple extensions of reg-

ular procedure call and return instructions. Checking permits and bindings are similarly simple, since they

®VAX is a registered trademark of Digital Equipment Corporation.
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involve merely comparing one or several fields or branching to the address of the service operation.

Our assumption of employing virtually addressed caches in the MMU’s is in line with recent trends
in cache design [36]. This assumption is important in reducing Space-switch overhead upon service invo-
cation, service return, and activity dispatching. In making the cache somewhat more complex, we simplify
the function of the MMU, which performs virtual-to-physical address lookup instead of translation. This
means that memory devices do not need to distribute mapping tables to all CPU’s whenever the tables get
modified by Universe managers. If the size of translation buffers is limited by space restrictions, and thus
address translation (rather then lookup) needs to be performed at the CPU chip, then the implementation
would require all memory devices to adhere to a single mapping scheme. This issue demonstrates a trade
off between openness (allowing memory devices to employ different mapping schemes), architectural com-
plexity and access efficiency.

e On Programming Complexities:

A major consideration in shaping the model and particularly the specific design was to restrain the
programming complexity incurred by protected openness. Below we compare programming complexity in
our approach to thatin a conventional system. We focus on three levels of program or programmer sophis-
tication. First, there is no extra complexity imposed on novice programmers, as they can be oblivious of
the internal structure of the real or virtual OS they use. Programmers do not have to write supporting
servers to provide the services and manage the resources required by their programs. Services required by
a program can be selected by language processors such as compilers, linkers, and runtime packages. Ser-
vices can be also selected through libraries, which the programmer selects by merely knowing their high-
level functionality (e.g., that the library is needed to obtain Unix ™M-like filing services) without having to

select the lower-level services herself.

Second, writing a more sophisticated program, such as a server that provides high-level services, is

basically of comparable complexity as writing a utility program in a conventional system. Both programs

™(jnix is a Trademark of Bell Laboratories.
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have to cope with synchronization and mutual exclusion of multiple concurrent threads of control execut-
ing in the server/utility. In our approach these threads are scheduled by other schedulers, so synchroniza-
tion and mutual exclusion, as illustrated in handling critical sections, is somewhat more complex. To
reduce this complexity, the model and the specific design offer means for proper initialization and termina-
tion of services, bindings, and activities. Charging for resource usage adds programming complexity and
execution inefficiency to servers. Charging in principle is not peculiar to a fully open system — other sys-
tems employ the notion of servers charging for their resources and services [37], and incur similar com-
plexity or inefficiency. Choosing simpler charging schemes at the design level can reduce the complexity,

and potentially reduce the efficiency of resource utilization.

Third, writing a server to provide low-level services — the counterpart of an OS module in a conven-
tional system — is in several aspects simpler in our approach than in a conventional system. Only
problem-oriented semantics, that is, of a particular application or of a class of applications, need to be
addressed. For instance, it is simpler to write the memory manager of a DBMS in our approach because
one can choose the services that provide the required semantics. Since one can implement services above
the low-level services of devices, or have private devices, there is no extra complexity involved in trying to
bypass or undo unwanted facilities as in some other systems [3,1,5]. We believe that in general it is
simpler to implement a policy than to tell a monolithic OS the preferred policies, especially if the OS
accepts hints rather than absolutes. Additionally, it is simpler to program the interaction with devices hav-
ing the support for activities, each of which can be devoted to one access transaction. In another aspect, it

is more complex to write such a server in our approach, since physical resources must be negotiated for.
e On Dependency between Services and Service Domains:

The model provides a unified view of services, with no dependency between service domains in the
level of openness. Specifically, using or replacing one set of services for a given domain such as memory

management, does not restrict the flexibility of selecting services in other domains such as buffering and

CPU scheduling.
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In practice, applications may choose to restrain this independence. For reasons of execution
efficiency and provision of required semantics, it might be necessary to coordinate services in different
domains. For instance, the scheduler and Universe manager of a given application may need to coordinate
their policies to achieve better performance. As an example, before scheduling an urgent computation the
scheduler could prompt the Universe managers of the involved servers (if known) to prepage their working
sets. This might be a complex task, especially since different servers could be dynamically involved.
Likewise, a server providing interserver communication services with special features, such as copy-on-
write or urgent messages, would rely on schedulers and Universe managers to support the semantics of its
services. Therefore, it may turn out that at some cases it is more beneficial to combine all dependent ser-

vices into one server. These decisions are left to each application designer to make.

e Miscellaneous:

Dividing a resource among several applications could result in uneven utilization of the resource.
For instance, one Universe may underuse its frames, while at the same time another Universe experiences a
high page-fault rate. This problem is alleviated to some extent in a conventional system, where physical
memory is dynamically and frequently multiplexed among processes by a monolithic memory manager in
the OS. However, the memory manager of a conventional OS observes when code and data is used but not
how it is used. Therefore, a general page replacement algorithm which is efficient from the OS’s point of
view can result in inefficient memory usage by a given application [1]. In our approach, the Universe
manager, knowing usage patterns of its customers, can improve the utilization of its share of physical

memory.

Our approach incorporates several features to improve global utilization of resources as well. We
believe that the accounting system can contribute to improve utilization, particularly if it supports the
notion of crediting a server for not using a resource, in addition to charging the server for using the
resource. Unfortunately, the price—credit balance to achieve optimal resource allocation is not clear. For

example, COSt-CONSCious Servers may use too few resources, and further reduce resource utilization. Other
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means of back-pressure on servers to release unused resources might be necessary. Resource utilization is
enhanced by the model through letting allocation be independent of static hierarchies, and through support

of resource revocation.

Hierarchies usually have conflicting merits, and thus our approach supports hierarchies but does not
impose them. Service provision and resource allocation is inherently hierarchical. For instance, a mailing
server might use DB services, which use some structured filing services, which use flat filing services,
which use disk access services. Or, a scheduler can itself be scheduled by another scheduler, which is
scheduled by another scheduler, and so forth. In our model, these hierarchies are formed and changed
dynamically and efficiently -— without needing explicit introduction of new levels as in other hierarchical
systems [23,38]. Moreover, the model accommodates hierarchies of virtually infinite depth in any service
domain or across service domains, including in memory and processor management domains. Service
domains are mutually independent in their hierarchical structures. On the other hand, hierarchies can be
bypassed Applications can directly access resources at the lowest possible levels. This feature is especially
important to efficiently accommodate repetitive, frequent, or urgent operations such as address translation,

handling page faults, and quantum expiration.

Besides the efficiency drawback of rigid hierarchies, they may introduce complexity in various situa-
tions. Efficiency considerations may motivate special deals between components at different levels, which
complicate maintaining the hierarchy. Extra complexity is incurred when deals break, for instance due to
the abrupt termination of one of the parties involved in a deal. To avoid such a problem, we make the deals
visible and fully supported. Resource-allocation deals among servers at different logical hierarchical levels

are possible. They are made through the device or driver that control the resource.

6. Related Work
The FOCS model borrows several notions from other conceptual frameworks as the object model
[15], server—client model, virtual machines [16], and monitors [39]. Our model extends them to support

further customization of services, direct control of physical resources, and dynamic reconfiguration of the



44

system. Our model simplifies them by removing features that obstruct openness. The object model and the
module construct [40] promote decomposition of a system and information hiding. A service in our model
is analogous to an entry point in an object/module. A service, however, does not have a system-defined
type or access rights associated with it. A service invocation is conceptually similar to a cross-process pro-
cedure call in the language Distributed Processes [41]. Servers can be viewed as monitors [39] regarding

their tasks in mutually excluding and scheduling activities.

Many designs permit system openness to some extent. Neither of them can be considered as an ade-
quate framework to study full openness in a multiuser environment. The open system [42] and Pilot [43]
facilitate static or dynamic modification of the OS, but being single-user systems they ignore many impor-

tant aspects of sharing and protection.

The idea that application-level servers may control processor scheduling was first demonstrated by
Hydra [32, 18]. However, Policy Modules in Hydra, which were responsible for setting scheduling poli-
cies, were OS components. Such a module could not be installed by any application, since it had to be
trustworthy and ‘ordained’ by the OS. Hydra bound CPU scheduling and memory management domains
together, in that memory replacement decisions were made by the kernel based on the scheduling state of a
process. Using a highly protective environment that incurred high performance overhead, Hydra eventu-
ally precluded openness of low-level and frequent services. As the designers of Hydra admitted in retros-
pect, the elaborate protection mechanisms were barely useful for any application. Other object-oriented
systems [17, 35] support easy replacement of high level services and logical resources, but untrustworthy

application-level objects cannot be allocated physical resources or control them directly.

Several designs address openness through hierarchical structuring of the system. VM [23] allows
any user to introduce a full-fledged virtal OS above another virtual or real OS. Communication and
resource sharing between OS’s at various paths or at non-neighboring levels of the hierarchy are very lim-
ited. Except for few implementation short-cuts, services and resource management traverse rigid hierarchi-

cal lines. Applications view only virtual resources. Habermann et al’s work [38] was an attempt to
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develop families of OS’s, similar to computer architecture families. They define a rigid hierarchy and stati-
cally associate functions with each level. As in our model, each ‘server’ defines a different address space,
in which several processes can run concurrently. Sharing among ‘servers’ is limited. Special instructions
allow cross-space invocations. Interserver communication is very expensive in terms of execution time,
since at each invocation a complete address space must be created. CAP [44] defines a process tree in
which every node is a coordinator for its offspring processes, supporting them with the services they need.
All services originate at the Master Coordinator, which is the OS kernel. Similar to the former hierarchical
systems, sharing and communication among processes at non-neighboring nodes in the tree is restricted.
Due to the expensive capability-management mechanisms and the overemphasized hierarchical structure,

the hierarchy was practically limited to two levels only, and the openness of OS services was constrained.

Various message-based systems that follow a general server—client model [19,20,21,22,37] permit
application-level utilities to provide high-level services to applications and to dictate allocation policies to
the OS kernel. In most systems, however, the utilities must be considered part of the OS, since they are
irreplaceable by general users and must be generally trustworthy. Mach [7] and Accent [20] open memory
management to some extent by letting applications specify policies and implement mechanisms. These two
systems provide an elaborate but closed IPC mechanism. Mach and some other multiprocessor operating
systems [45] support the notion of multiple threads within a single address space which are visible to the
OS kernel. Unlike the FOCS model, a single scheduler must be told or must decide the grain, execution

frequency, and mutual dependency of these threads.

In summary, our work should be compared to the related work not only on the extent of openness
attainable, nor on the relative merits and deficiencies observed in various aspects. Rather, we would like to
distinguish our work for providing a conceptual framework to expose problems with openness and evaluate

the interplay between its aspects.



7. Conclusion

We have presented a conceptual framework to build a fully open system, and discussed the practical-
ity of our approach in light of protection, efficiency and complexity considerations. The thrust of our work
is in redefining the role of the operating system and placing the line between the OS and the applications.
Our work offers a novel view of resource management. The moral of this paper should be that an operat-
ing system and the physical resources can be fully open to direct control of unprivileged, and in fact
untrustworthy components, without breaching protection, undermining efficiency, or demanding extensive
architectural support. A small increase in complexity can buy a lot of flexibility. A specific system can

trade off full openness for increased efficiency or decreased complexity.

We view our work as opening the door to grasp the major questions of system openness and under-
stand the interplay between its aspects. There are still open questions regarding full openness, in particular
about the practical impact of protected openness on efficiency and complexity. Our research plans call for
a more detailed design and further evaluation of implementation techniques. We will be looking at extend-
ing our model to distributed systems.
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