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Abstract. We show that a least 2-norm solution of a general linear complementarity
problem (LCP) can be obtained by solving a sequence of perturbed quadratic programs.
The norm of the solutions of the perturbed problems approaches monotonically from below
the norm of a least 2-norm solution of the LCP, as the perturbation parameter approaches
zero. For sufficiently large value of the perturbation, the quadratic program is strongly
convex and easily solved by Lemke’s method. This yields a guaranteed lower bound to the
norm of a least 2-norm solution. For some L.CP’s, even non-monotone ones, the perturbed
quadratic program may give a solution to the LCP for a finite value of the perturbation
parameter. For monotone LCP’s the perturbed quadratic program yields the least 2-norm
solution for a finite value of the perturbation parameter if and only if the least 2-norm

solution of the linearized LCP equals that of the original LCP.
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We consider the fundamental linear complementarity problem [4]
(1) Mz+¢>0,2>0, z(Mz+4¢)=0

where M is an arbitrary n X n real matrix and ¢ is in the real n-space R™. Since M is arbi-
trary it may not be copositive plus [4] nor positive semidefinite and hence the affine function
Mz + q need not be monotone. Consequently, fundamental algorithms for solving (1) such
as Lemke’s algorithm [4] fail in general and the problem is known to be NP-complete [3].
Obviously there is no simple way of solving the problem then. When the problem is solv-
able we propose the solution of a sequence of decreasingly perturbed quadratic programs
(see (3) below) the solution of which have an accumulation point which is a least 2-norm
solution of (1). When the perturbation parameter ¢ exceeds the absolute value of the most
negative eigenvalue of (M -+ MT), the perturbed quadratic program (2) becomes strongly
convex and the norm of its unique solution gives a lower bound to the norm of a least
2-norm solution of (1). If this strongly convex quadratic gives a complementary solution,
that is z(Mz + ¢) = 0, then it is a least 2-norm solution to the non-monotonic linear
complementarity problem (see Example 2 and Corollary 3 below). However in general
the perturbed quadratic programs are nonconvex as the perturbation parameter £ tends
to zero. When M is positive semidefinite the perturbed quadratic programs are always
strongly convex. For such a case the least 2-norm solution of (1) is obtained by solving
(2) for a finite e if and only if the linearization of the linear complementarity problem
(1) around any solution point of (1) has the same least 2-norm solution as the original
problem (1) (see Theorem 5 below). Our first result (Theorem 1) gives useful monotonic
properties of solutions of the perturbed quadratic programs (3) for a non-monotonic linear
complementarity problem. Throughout Hz][ will denote the 2-norm (zz)/2.

We begin our analysis by considering the following perturbation of (1) for € >0

(2) min :B(M:c+q)+—;—xx subject to Mz +¢>0,z>0



When & = 0 and the minimum of (2) is zero, we obtain an exact solution to (1). For a

sequence of decreasing positive numbers {e;} converging to zero, the subproblems
. )
(3) min z(,M:c—I—q)—i-E-:c:c st. Mz+¢>0,z>0

can be considered subproblems of an exterior penalty function method for the following

problem of determining the least 2-norm solution of (1)
.1
(4) min 7 oz st. Mz+¢>0,z2>0, z(Mz+4¢)<0

By using standard results of exterior penalty functions such as given in [7] we can state

the following important properties of solutions z* of (3).

1. Theorem Let {;} |0, let {z'} be a corresponding sequence of solutions of (3) and

let Z be a solution of (1) with least 2-norm. Then

(2) 0< 2™+ (M2 4 ) < 2 (M2 + g)

(b) [l = [|l=*]]

(© =il < (2l|® - 2 (M= + ) * < | 2]

(d) If z°(Mzi + ¢) = 0 then 2’ is a least 2-norm solution of (1).

(e) lim z'(Mz'+q) =0

1+ OO

0 Jim [z = ||

(g) Each accumulation point % of the bounded sequence {z'} is a least 2-norm solution

of (1). If the least 2-norm solution Z of (1) is unique, then {z‘} converges to Z and

lim —22 T4 (M2 +q)

i—00 €;

=0
Proof Consider the exterior penalty problem
in P 1)"‘- in 1 +1x(Mx+ )
L PR ‘
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associated with (4) where

X:={z|Mz+¢>0, z>0}

Note that the penalty term z(Mz + ¢) is nonnegative on X and is zero on the feasible
region of the least 2-norm problem (4). The assertions of this theorem are then direct
consequences of results of exterior penalty functions, for example as given in [7]. Thus (a)
and (b) above are a consequence of Proposition 2.1 [7]. Parts (c) and (d) are a consequence
of Proposition 2.2 [7] and its proof which give P(z?, ;1,—) < 1 zz. Parts (e) and (f) are a
consequence of Theorems 2.5 and 2.8 [7]. Part (g) is a consequence of Theorem 2.8 [7] and
the fact that a bounded sequence in R™ all of whose accumulation points are the same,

converges [2]. &

When M is positive semidefinite the subproblems (3) are strongly convex quadratic
programs and are easily solvable by standard methods such as Lemke’s or other methods
[4]. The subproblems (3) are different from those of the Tihonov regularization proposed

in [11] in which the following subproblems are solved for {e;} | 0
(5) (M+el)z+¢>0,2>0, z((M+el)z+q) =0

The approach proposed here is probably more robust because our results as stated in
Theorem 1 do not require any monotonicity as is the case in [11]. Furthermore our approach
may give a solution to a non-monotone linear complementarity problem for a finite nonzero
e as demonstrated by the following example which was generated such that M + M7T is

not positive semidefinite and such that £= (0 1 1) is a solution of (1).

2. Example
-5 1 1 -1
M=| 30 2}, g= [ -2
-9 1-7 6

Eigenvalues (M + M7T) = (~21.3426, —4.0640, 1.4066). An initial value of & was taken

as €o = 22 in order to make problem (3) strongly convex. This gave

z(eo) = (0.125 0.8125 0.8125)
Mz(eg)+¢=(0 0 0)
|z(e0)]|| = 1.1558 < v2 = |||
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Hence we have obtained an exact solution z(eg) to the non-monotone (and hence
nonconvex) complementarity problem (1) by solving a simple strongly convex quadratic
program! Moreover, by Theorem 1(d), z(eo) is a least 2-norm solution of the linear com-
plementarity problem (1). If we take & = 0, Lemke’s method fails to solve the resulting
nonconvex quadratic program (2) for this example. Also Lemke’s method applied directly
to the non-monotone complementarity problem (1) for this example also fails. It is worth-

while to formalize part of these results as follows.

3. Corollary For g > l/\|2~* >‘, where A is the smallest eigenvalue of M + M7, the

quadratic program (2) is strongly convex and has a unique solution z(eo). If (1) is solvable
then ||z(eo)|| < ||Z|| where z is a least 2-norm solution of (1). If z(eo) (Mz(eo) + ¢) =0,
then z(eo) is a least 2-n01:m solution of (1).

When M is positive semidefinite and X # ¢, the convex program (2) has a unique
solution z(e) for each & > 0 and by Theorem 1 gg}% z(e) = Z, where Z the unique least
2-norm solution of (1). For many randomly generated test cases for which M is positive
semidefinite it turned out that Z = z(e) for 0 < ¢ < £ for some & > 0. One would have
expected that this is also true in general for all positive semidefinite M. Unfortunately,
this is not the case as evidenced by the following simple counterexample provided by the

author’s colleague, Professor T.-H. Shiau [10].

() ()

The unique solution of (1) is Z = (0 1). For € > 0, the unique solution z(g) to (2) is

4. Example

given by
€ 64 ¢

za(e) =

) =5 D)

3+¢)’

We note that liII(l) z(e) = Z, but that z(e) # z for € > 0.

We can give a necessary and sufficient condition under which problem (2) gives a least
2-norm solution of the linear complementarity problem (1) for a finite value € when M is

positive semidefinite.

5. Theorem Statement (a) below implies statement (b):
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(a) For all € € (0, &] for some & > 0, the quadratic program (2) has fixed solution z

independent of e.
(b) Z is a least 2-norm solution of the linear complementarity (1).

If in addition M is positive semidefinite and Z is any solution of the linear comple-

mentarity problem (1) then statement (a) and the following are equivalent:

(c) The least 2-norm solution Z of the linear complementarity problem (1) is also the

least 2-norm solution of the linearized complementarity problem around z:

(6) Mz+¢>0,2>0, (3(M+MT)+q)(z—%) =0

Proof (a) = (b): By Theorem 1(g).

(c) = (a): By [1] or [9] the solution set of (1) is polyhedral and the linearization (6)
around any solution Z of (1) is equivalent to a linearization around Z, the least 2-norm

solution Z of (1). Since by the minimum principle [5, Theorem 9.3.3]
(Z(M+MT)+q)(z—2z)>0 forall z in X
the linearization (6) is equivalent to the linear program

(7) min (2(M +M7") +g)(z — z) =0

It follows by [6, Theorem 2.1a(i)] or [8, Theorem 1], that there exists an & > 0 such
that for all € € (0, £], the solution of

- ) T - €
(8) min (Z(M+MT)+q)(z—2)+ 5 22
is the least 2-norm solution of (7) and hence that of (6), and by assumption is also the
least 2-norm solution of (1), Z. Hence Z and some @(e) € R™ satisfy the Karush-Kuhn-
Tucker conditions of (8), for € € (0, &]. But these are precisely the Karush-Kuhn-Tucker

conditions for (2), and since (2) has a unique solution for each & > 0, it follows that Z

solves (2) for € € (0, &].



(a) = (c): Since (a) = (b), we know that Z is the least 2-norm solution of the linear
complementarity problem (1). By (a), Z is a solution of (2) for € € (0, &|, hence z and
some %(e) € R™ satisfy its Karush-Kuhn-Tucker conditions, which as noted above are
the Karush-Kuhn-Tucker conditions for Z to solve (8) for ¢ € (0, €]. Hence Z solves (8)
for € € (0, €] and hence by [6, Theorem 2.1a(ii)], Z is a least 2-norm solution of (7) or

equivalently of (6). |}

We note that as asserted by Theorem 5, Example 2 violates the linearization condition

(c) because there is no & such that for € € (0, ], Z solves the quadratic program (2).
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