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Abstract

As part of our research in performance tools for parallel and distributed programs we
have developed longest path algorithms to calculate critical paths in program activity graphs.
These longest path algorithms include both parallel distributed algorithms and centralized algo-
rithms. Program activity graphs were derived from measurements of application programs and
used to test these algorithms. This paper presents our experiences in developing, implementing
and testing longest path algorithms for the critical path analysis. Both our centralized and distri-
buted algorithms are based on the technique of diffusing computation. We have tested variations
of these algorithms with graphs built from traces of different application programs. We compare
the performance behavior of the distributed and centralized algorithms and discuss various
aspects that affect the speed-up of distributed programs.



1. INTRODUCTION

In our current research of performance measurement tools for parallel and distributed programs[1],
we are developing techniques for automatically guiding the programmer to performance problems in their
application programs. One example of such techniques finds the critical path through a graph of a
program’s execution history. We create a precedence graph of a program’s activities (computation and
communication) with the data collected during the program’s execution. The critical path, the longest path
in the program activity graph, represents the sequence of the program activities that take the longest time to

execute. The knowledge of this path helps to guide the programmer to performance problems.

Finding the longest path in an arbitrary directed graph is computationally expensive. However, if the
given graph is acyclic, as is the case for program activity graphs, the algorithm becomes simpler and shor-
test path algorithms can be used to find the longest paths with only trivial changes. The shortest path algo-

rithms are known to be linear to the number of vertices and edges in a graph[2].

We have developed several different algorithms for calculating the critical path through an activity
graph in our measurement system. These algorithms include both distributed parallel algorithms and cen-
tralized serial algorithms. In this paper we present our experience in developing, implementing and testing
longest path algorithms for the critical path analysis in program activity graphs. We compare the perfor-
mance of distributed algorithms with the centralized version and discuss various performance aspects that

affect the speed-up of distributed programs.

The use of the longest path algorithm is discussed elsewhere[1]; this paper focuses on the develop-
ment of the parallel algorithms. We start with Section 2 to define some basic graph terms used in the paper
and briefly describe our testing environment. Section 3 gives a brief description of the general structure of
diffusing computations on graphs, on which we base our algorithms. Section 4 describes the implementa-
tion of our longest path algorithms and their corresponding performance measurement results. The final

conclusions are in Section 5.

2. The Longest Path Problem

We present some definitions relevant to longest path algorithms used in this paper. We also give a

description of the hardware and software environment in which we tested the longest path algorithms.



2.1. Definitions

A directed graph (digraph), G=(V E), consists of a set of vertices V={v,v,,...}, a set of edges
E ={e,.e3...}, and a mapping ¥ that maps every edge onto some ordered pair of vertices (v; v;). Edge
(v; v;) has an associated length w;;. {& path, P, is a finite sequence of edges P = (v, V5, . .., V), such that
(viviq)€E foralli < k. A path that starts and ends at the same vertex is called a cycle. The length d(P)
of apath P is defined tobe d(P)=wo + wia +. ..+ We_pi. P is a longest path from v; to v; if d(P) has
the maximum length over all paths possible from v; to v;. The one-to-all longest path problem finds the

longest path from a given vertex, called the source, to all the other nodes, the destinations.

2.2. Assumptions and Our Testing Environment

The graphs used in our longest path algorithms are program activity graphs in which vertices
represent events in a program and edges represent the precedence relationships between events. The length
of an edge is the time between the events of its two end vertices. Since all edges in a graph represent a for-
ward progression of time, no cycles can exist in the graph. The acyclic property makes the difference
between longest path problem and shortest path problem trivial. Therefore, in the following discussion, we

consider that all shortest path algorithms are applicable to the longest path problem.

A program activity graph consists of several sub-graphs that are stored in different host machines.
The data to build these sub-graphs is collected during the execution of the application programs. We can
copy the sub-graphs between host machines. The time to do the copying can be traded against the amount
of parallel computation. All sub-graphs were sent to one machine to test the centralized algorithm. In test-
ing distributed algorithm, sub-graphs were either locally processed or sent to some collection of machines

to re-group into bigger sub-graphs.

We used two application programs to generate program activity graphs in testing the longest path
algorithms. Application 1 is master-slave structure in which a master process repeatedly sends work to
slave processes and collects results from the slaves. Application 2 is pipeline structure in which each pro-
cess in a chain of processes gets the job from its predecessor and sends the partial result to its successor.
There are adjustable parameters in each application program. By varying these parameters we vary the

size of the problem solved and generate program activity graphs with different number of vertices. In



graphs generated from Application 1, more than 50% of the total vertices was in one sub-graph and other
half of the vertices were evenly distributed among the other sub-graphs. The vertices in the graphs from

Application 2 were evenly distributed among each sub-graph.

All our tests were run on VAX-11/750 machines. The centralized algorithms ran under 4.3BSD
UNIX, and the distributed algorithms ran on Charlotte distributed operating system([3,4]. Charlotte is a
message-bhased distributed operating system designed for the Crystal multicomputer[5], which connects 20
homogeneous node computers (VAX-11/750s) and several host computers using an 80MB/sec Pronet

token ring[6].

The Charlotte kernel supports basic interprocess communication mechanisms and process manage-
ment services. The interprocess communication is through full-duplex connections, called links, between
processes. The basic communication primitives are Send, Receive, and Wait. The Send and Receive are
non-blocking operations which initiate a transfer of message between two processes on the specified link.
A process can do Wait on either Send or Receive operations (or both) and the process will be blocked until

the operation completes.

3. Diffusing Computation on Graphs

Diffusing computation on a graph, proposed by Dijkstra and Scholten[7], is a general method for
solving many graph problems. All of our algorithms for the longest path problem are variations of this
method. Before we start the discussion on details of our algorithms, we first give a brief description of the

general structure of diffusing computation.

We define that a root vertex of a directed graph is a vertex in the graph that has only out-going
edges, a leaf vertex of a directed graph is a vertex in the graph that has only in-coming edges. A diffusing
computation on a graph can be described as:

From all root vertices in the graph, a computation (e.g., a labeling message) diffuses to all of its des-
cendant vertices and continues diffusing until it reaches all leaf vertices in the graph.

We distinguish two variations of the diffusing computation: syachronous execution and asynchro-
nous execution. In the synchronous execution, a non-root, non-leaf vertex will diffuse the computation to
its descendant vertices only after it gets all computations diffused from all in-coming edges. In the asyn-

chronous execution, a non-root, non-leaf vertex will diffuse the computation to its descendant vertices as



soon as it gets an new computation from any one in-coming edge. The synchronous execution can
deadlock in a graph with cycles. However the computational complexity of synchronous execution is

linear to the number of edges and vertices.

4. Tests of Longest Path Algorithms

We have implemented several algorithms for finding the one-to-all longest paths from a designated
source vertex to all other vertices. The centralized algorithm was based on the PDM shortest path algo-
rithm[2] and tested as a standard for comparison with distributed algorithms. A distributed algorithm,
based on Chandy and Misra’s distributed shortest path algorithm[§], was developed on Charlotte distri-
buted system. Both centralized and distributed algorithms were tested with graphs derived from program

activity graphs from measurements of Application 1 and 2.

This section discusses the details of our implementation of various algorithms and summarizes the
test results. We compare the centralized and distributed algorithms and give some remarks based on our

experiences.

4.1. Test of Centralized Algorithm

Graphs in our tests are directed and acyclic. To find longest (shortest) path in such graphs is simpler
than the general longest (shortest) path problem. We chose the PDM shortest path algorithm as the basis
for our implementation[2]. The experiments of Denardo and Fox[9], Dial et al{10], Pape[l11], and
Vliet[12], show that on the average PDM algorithm is faster than other shortest-path algorithms if the input

graph has a low edges to vertices ratio (in our graphs, the ratio is about 2).

We give a brief outline of the PDM algorithm in Figures 1 and 2. Figure 1 shows the asynchronous
algorithm and Figure 2 shows the synchronous algorithm. A detailed discussion and the proof of the

correctness of these algorithms can be found in [2].

The diffusing computation in this algorithm is to label the vertex with the current longest length. Q,
in Figures 1 and 2, is a job queue for the diffusing computation. The original PDM algorithm is asynchro-
nous. Every vertex in the graph will generate successor vertices in the queue as soon as an updated path to
that vertex is discovered. Therefore, the number of all generated successor vertices in the queue from a

single vertex can be proportional to the number of all possible paths from the source to the vertex. In the



contrast, the synchronous algorithm will generate successor vertices only when it finds the longest path
from the source — i.e., when computations from all of its in-coming vertices have completed. We imple-
mented this by setting a counter at each vertex that equals the number of all in-coming edges to that vertex.
The counter is decremented every time the vertex gets a path information from its predecessor, and the suc-
cessor vertices will be put in the queue only when the counter becomes zero. Since our graph is acyclic
and only one central job queue exists in the program, this method guarantees the termination of the algo-

rithm (when job queue is empty) and no deadlock will result.

for all u in G do for all ¥ in G do
Dlul:=0; Counter[u] := # of in-coming edges;
end Dlu]:=0;
initialize Q to contain SOURCE only; end
while Q is not empty do initialize Q to contain SOURCE only;
delete Q ’s head vertex u; while Q is not empty do
for each edge (u,v) that starts at u do delete Q ’s head vertex u;
ifDv]1<Dlul+w, then for each edge (u,v) that starts at 1 do
Plvl=u; dec(Counter[v ]);
Dv] =Dul]+w,; if D[v] < D[u] + w,, then
if v was never in Q then Plv]:i=u;
insert v at the tail of Q0 ; D[v]:=Dlul+w,;
else end
insert v at the head of 0 ; if Counter[v] = 0 then
end insert v at the tail of O ;
end end
end end
end end
Figure 1: Asynch. Version of PDM Alg. Figure 2: Synch. Version of PDM Alg,

We have tested our algorithms with graphs derived from the measurement of Application 1 and 2.
The total number of vertices in the graphs varies from a few thousands to more than 10,000. About 33% of
vertices have an outdegree of three, and 67% of vertices have an outdegree of one. The average edges to
vertices ratio is around two. Figure 3 shows the test results of the execution time versus number of vertices
in the graph for centralized algorithm. Since the asynchronous execution was too slow to test with larger
graphs, we only show one result for the asynchronous execution. The execution time shown in the figures
includes the copying time of nine sub-graphs to one host machine. However, our measurements indicate
that this copying time is much less than one percent of the total execution time. The result in Figure 3
shows a significant performance difference between asynchronous execution and synchronous execution

(around two orders of magnitude). The longer execution time for the data of Application 1 is because of



unevenly divided sub-graphs.
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Figure 3: Execution Times for the Centralized Algorithm

4.2, Test of Distributed Algorithm
Our implementation of distributed longest path algorithm is based on Chandy and Misra’s distributed

shortest path algorithm[8]. Every process represents a vertex in the graph in their algorithm. However, we
chose to represent a sub-graph instead of a single vertex in each process since the number of total processes
in Charlotte system is limited by the size of physical memory and we were testing with graphs having
thousands of vertices. Charlotte does not provide shared memory (as it is a network-based system), there-
fore we can not implement the algorithm using a shared job queue as in the modified PDM algorithm. We
implemented the algorithm in such a way that there is a process for each sub-graph and each process has a
job queue for the diffusing computation (labeling the current longest length of the vertex). Messages are

send between processes for diffusing computations across sub-graphs (processes). Each process keeps

individual message queues to its neighbor processes.



Unlike the original algorithm that has two phases and runs under asynchronous execution for detect-
ing cycles in the graph, our algorithm only need a single phase to find the longest path from source to all
vertices. In our asynchronous version, acknowledgements are used as in the Chandy and Misra’s algorithm
to determine the termination condition. However, in our synchronous version, a local termination condi-
tion is first checked in each process (by detecting the diffusion of computation to the leaf vertices), then the
global termination condition is reached through the exchanges of messages among processes. Details of

the two versions of the distributed algorithm appear in the Appendix.

We ran the distributed algorithm on the same test data as was used for the centralized algorithm.
Figure 4 shows the test results. For the asynchronous execution, we only show one time result in the figure
to compare with the time of synchronous execution. As same as in centralized algorithm, the execution
times for asynchronous execution and synchronous execution differ dramatically. It is also interesting to
note that the performance behavior of the distributed algorithm varies with different number of machines.
When the input graph size is small, concurrency is low even for many machines. Communication overhead
dominates the overall execution time of the algorithm. On the other hand, when graph size is big, there is
more local processing to be done. That results in a higher computation to communication ratio and higher

concurrency.
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Figure 4: Execution Times for the Distributed Algorithm

Speed-up (S) and efficiency (E) are important measures for evaluating parallel programs. We use
these measures to compare the performance of the distributed and centralized algorithms. The speed-up is
defined as the ratio between the execution time of the centralized algorithm (T,) to the execution time of

the distributed algorithm (T;): § = T, / T,;. The efficiency is defined as the ratio of the speed-up to the

number of machines used in the algorithm: E=S/N .

We used input graphs with different sizes and ran the centralized algorithm and distributed algorithm
on up to 9 machines. The speed-up and efficiency are plotted against the number of machines. The results
are shown in the Figures 6, 7, 8, and 9. We can see from these measurements that the distributed algorithm

with bigger input graphs and more machines resulted a higher speed-up, but less efficiency. We will give

detailed discussion on these test results in the next section.
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4.3. Discussions

We have implemented different algorithms for finding the longest path in program activity graphs
and tested these algorithms with various input data. Both the centralized and distributed algorithms we
tested are based on the method of diffusing computation. We first tested our centralized algorithm with
asynchronous execution, as in the original PDM algorithm[2]. One major observation from the test was
that the size of the job queue (Q ) in the program grew rapidly with respect to the number of vertices in the
graph. The length of the job queue was proportional to the number of all possible paths from the source

vertex.

The complexity of the synchronous version of the longest path algorithms is linear to the number of
vertices and edges in the graph, because the diffusing computations only go through each edge and vertex
exactly once. In the asynchronous execution, the complexity is proportion to the total number of all possi-
ble paths from the source to each vertex in the graph, which is far worse than the linear case. The asyn-
chronous execution can increase concurrency in a distributed computation by generating more diffused
computations in the job queue and releasing the synchronization requirements among executions. But we
sacrifice the economy of work because the asynchronous algorithm does less careful bookkeeping. The

work in the asynchronous execution grows so fast that even a parallel algorithm is not viable.

We can only use asynchronous execution to find longest paths in an arbitrary graph with cycles (as in
Chandy and Misra algorithm). But the asynchronous version of the distributed algorithm is not practical to
implement. Our experiences suggest that it is more practical to use a more deterministic method for detect-
ing cycles in graph as the first step, and then use synchronous execution in second step for finding longest

paths.

We have observed a speed-up of almost 4 with 9 machines in the synchronous execution of the dis-
tributed algorithm. The speed-up increases with the size of the input graph and the number of machines
participating in the algorithm. On the other hand, the efficiency of the algorithm decreases as more
machines are involved in the algorithm. Because of the sequential nature of the synchronous execution of
diffusing computations, the computations in an individual machine have to wait for synchronization at each

step of the diffusion. As aresult, the overall concurrency in the algorithm is restricted.
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Our test results (Figures 5, 6, 7, 8) indicate that many factors affect the speed-up in a distributed
algorithm. The structure of the input graph, the number of vertices in the graph, and the number of
machines in the execution all influence the overall speed-up of the algorithm. Our experiences demonstrate
that an important consideration in design of distributed algorithm is to keep balance between the CPU load
and message costs when decomposing the original problem into concurrently executing tasks (processes).
In the input data of Application 1, one of the task was overloaded by more than 50% of the total graph size.
Therefore, the overall speed-up was worse than with input data of Application 2. Similarly, when the size
of input graph was small and the number of machines in the execution was big, the unit of local work was
small relative to the cost of message communication. The speed-up was dominated by the message com-

munication overhead.

5. CONCLUSION

We developed centralized and distributed algorithms, based on diffusing computation, for finding the
longest paths in program activity graphs. We observed that there is a dramatic performance difference
between asynchronous execution and synchronous execution of algorithms. The combinatorial explosion
of CPU and message loads in the asynchronous algorithm easily overwhelm the possible increase of the
concurrency in the algorithm. The complexity of the synchronous algorithm is linear to the number of ver-
tices and edges in the graph. However, the inherent sequential property of the diffusing computations res-

tricts the concurrency of the distributed algorithm.

Our test results demonstrated that parallel, distributed computation can be used to speed up determi-
nation of longest paths in large graphs. We have observed a speed-up of almost 4 with 9 machines. The
speed-up of the distributed algorithm depends on the decomposition of the original problem. An important
consideration in design of a distributed algorithm is to keep a balance between the CPU load and message
costs when decomposing the problem into concurrently executing tasks (processes). To get good speed-up
in a distributed algorithm, we should decompose the problem in the way such that to keep tasks busy but do
not overload or underload any individual tasks. The ratio between the work load in each task and the costs

of message communication affects the overall speed-up of a distributed algorithm,
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APPENDIX

Following is a brief sketch of the two variations of our distribu

ted longest path algorithm. Discus-

sions of the distributed algorithm can be found in Section 4.2,

for all u in sub-graph G do
Counter[u] := 0;

Diul:=0;
end
initialize Q ;

while not termination do
while Q is not empty and
msg queues not full do
delete O ’s head element;
if element = (Length[u ], Pred) then
if D[u] < Length[u] then
if Counter[x] > O then
put Ack[P[x]] in O or msg queue;
end
Plu] :=Pred;
D[u] :=Length[u];
for each edge (u,v) that starts at u do
put length msg: (D[ )+w,, ,Pred=u)
in Q@ or msg queue;
end
Counter[u ] +=# of out-going edges;
if Counter[u ] = 0 then
put Ack[P[«]] in Q or msg queue;
end
else
put Ack[Pred] in Q or msg queue;
end
else
dec(Counterfu]);
if Counter[u] = 0 then
put Ack[P[u]]in Q or msg queue;
end
end
end
Send all msg queues that are not empty;
Receive from all neighbor processes;
if get any msg from other processes then
processing msg and put length msg
and acksin Q;
end
end

L. Asynch. Version of Distributed Algorithm

for all u in sub-graph G do
Counter[u] := # of in-coming edges;
Diul:=0;
end
initialize Q;
while not local_termination do
while Q is not empty and
msg queues not full do
delete O ’s head: (Length[u],Pred);
dec(Counter[u1);
if D[u] < Length{u] then
Plu] :=Pred;
Dlu] :=Length[u];
end
if Counter[u] = 0 then
for each edge (u,v) that starts at u do
put length msg: (D[u ]+w,, Pred=u)
in Q or msg queue;
end
end
end
Send all msg queues that are not empty;
Receive from all neighbor processes;
if get any msg from other processes then
processing msg and put length msg in 0;
end
end
exchange msg with neighbors to get consensus
of global _termination

IL Synch. Version of Distributed Algorithm



