PROGRAMMING CONSTRUCTS FOR
DATABASE SYSTEM IMPLEMENTATION IN EXODUS

by
Joel E. Richardson
Michael J. Carey

Computer Sciences Technical Report #680

January 1987

Programming Constructs for
Database System Implementation in EXODUS

Joel E. Richardson
Michael J. Carey

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

(To appear in Proc. of SIGMOD ’87)

This research was partially supported by the Defense Advanced Research Projects Agency under contract
N00014-85-K-0788, by the National Science Foundation under grant DCR-8402818, by IBM through a Fellowship and
a Faculty Development Award, and by a grant from the Microelectronics and Computer Technology Corporation
MCQC).

Programming Constructs for
Database System Implementation in EXODUS

Joel E. Richardson
Michael J. Carey

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

ABSTRACT

The goal of the EXODUS extensible DBMS project is to
enable the rapid development of a wide spectrum of high-
performance, application-specific database systems. EXODUS
provides certain kernel facilities for use by all applications and
a set of tools to aid the database implementor (DBI) in generat-
ing new database system software. Some of the DBI’s work is
supported by EXODUS tools which generate database com-
ponents from a specificaton. However, components such as
new abstract data types, access methods, and database opera-
tions must be explicitly coded by the DBI. This paper analyzes
the major programming problems faced by the DBI, describing
the collection of programming language constructs that
EXODUS provides for simplifying the DBI’s task. These con-
structs have been embedded in the E programming language,
an extension of C++ designed specifically for implementing
DBMS software.

1. INTRODUCTION

In the 1970’s, the relational data model was the focus of
much of the research in the database area. At this point, rela-
tional database technology is well understood, a large number
of relational systems are available in the market place, and
they support the majority of business applications relatively
well. One of the foremost database problems of the 1980’s is
how to support classes of applications that are not well served
by relational systems. For example, computer-aided design
systems, scientific and statistical applications, image and voice
applications, and large, data-intensive Al applications all place
demands on database systems that exceed the capabilities of
relational technology. Such application classes differ from
business applications in a variety of ways, including their data

This research was partially supported by the Defense Advanced
Research Projects Agency under contract N00014-85-K-0788, by the Na-
tional Science Foundation under grant DCR-8402818, by IBM through a
Fellowship and a Faculty Development Award, and by a grant from the Mi-
croelectronics and Computer Technology Corporation (MCC).

modeling needs, the types of operations of interest, and the
storage structures and access methods required for their opera-
tions to be efficient.

The EXODUS project at the University of Wisconsin
[Care85, Care86b] is addressing the problems posed in these
emerging applications by providing tools that will enable the
rapid implementation of high-performance, application-
specific database systems. EXODUS provides a set of kernel
facilities for use across all applications, such as a versatile
storage manager and a general-purpose type manager. In addi-
tion, EXODUS provides a set of tools to help the database
implementor (DBI) to develop new database system software.
The implementation of some DBMS components is supported
by tools which actually generate the components from
specifications; for example, tools are provided to generate a
query optimizer from a rule-based description of a data model,
its operators, and their implementations. Other components,
such as new abstract data types (classes), access methods, and
database operations, must be explicitly coded by the DBI due
to their more widely-varying and highly algorithmic nature.!
EXODUS attempts to simplify this aspect of the DBI’s job by
providing a set of high-leverage programming language con-
structs for the DBI to use in writing the code for these com-
ponents.

This paper describes the constructs that we have chosen to
include in the E programming language, an extension of
C++[Stro86] designed specifically for implementing DBMS
software. Section 2 describes the EXODUS project in more
detail, outlines the major programming problems faced by the
DBI, and then briefly discusses the relevant previous work.
Sections 3 through 6 each cover one of the major problems fac-
ing the DBI, describing the problem and then demonstrating
that a judicious choice of programming language constructs
can solve the problem. Section 7 presents the "big picture”,
showing how the E programming language in some sense
serves as the heart of the EXODUS approach to database sys-
tem extensibility. Finally, Section 8 presents a summary and
then discusses the research problems that we face in

. implementing the E language. We should point out that, while

some of the constructs presented here are new ideas, a number
of them are not. We draw heavily on ideas developed by the
programming language research community in the past ten
years. The contribution of this paper lies largely in its analysis

! Actually, we will provide a library of generally useful components
(e.g., widely-applicable access methods such as B+ trees and some form of
hashing), but the DBI will obviously have to implement those which are
needed but not available in the library.

of how these constructs are useful for solving the rather unique
problems that arise in the context of implementing and extend-
ing database systems.

2. THE EXODUS APPROACH

A number of database research projects have recently
begun to address the problem of building database systems to
accommodate a wide range of potential applications. Related
projects include PROBE at CCA [Daya85, Mano86],
POSTGRES at Berkeley [Ston86b, Ston86¢c], GENESIS at
UT-Austin [Bato86], GEMSTONE at Servio Logic [Cope84,
Maie86], and STARBURST at IBM Almaden [Schw86]. The
EXODUS project is distinguished from all but GENESIS by
virtue of being a "database generator” effort rather than an
effort to build a single (although extensible) DBMS for use by
all applications. The EXODUS and GENESIS efforts differ
significantly in terms of the philosophies and technical details
of their approaches to solving the DBMS software generation
problem; GENESIS takes more of a "building block" plus
"pluggable module" approach to the problem, whereas
EXODUS has certain powerful fixed components plus a collec-
tion of tools for a DBI to use in building the desired system
based around these components. We review the EXODUS
approach in more detail in this section, after which we outline
the resulting programming issues and relate them to previous
work.

2.1. An Overview of EXODUS

Figure 1 presents a sketch of the architecture of an
application-specific DBMS implemented using EXODUS. As
shown in the figure, there are three classes of components:
those that are fixed across all EXODUS applications, those
implemented by the DBI using the programming constructs
described in this paper, and those generated by an EXODUS
tool from a DBI-written specification. Here we primarily con-
cern ourselves with the first two component types. The overall
architecture and the latter type of components are discussed
more fully in [Care86b].

The fixed components of EXODUS are the storage object
manager and the type manager. As detailed in [Care86a], the
storage object manager provides storage objects for storing
data and files for logically and physically grouping storage
objects together. A storage object is an uninterpreted container
of bytes which can be as small (e.g., a few bytes) or as large
(e.g., hundreds of megabytes) as demanded by an application.
Storage object operations include reading a byte range from
within an object, writing (i.e., updating) a byte range, append-
ing bytes to the end of an object, inserting a sequence of bytes
at a specified point, and deleting a specified range of bytes.
For reads, the specified bytes are buffered contiguously in the
buffer pool (even if they are distributed over several pages on
disk). The storage manager also supports an efficient scheme
for versioning storage objects, and any sequence of actions
over storage objects and files may be bracketed as a transac-
tion.

In EXODUS, a database system is fully compiled; that is,
the system code is written in E, user schema are compiled into
E types, and user queries are compiled into E procedures. An
interesting aspect of this design is that all EXODUS systems
have a homogeneous view of types; the type system available
to the DBI is also available at run time. While the front end
may restrict or redefine the types available to the user,
ultimately, all pieces are compiled by E.

COMPILED
QUERY

" OPERATOR |
METHODS :
T TACcEss ~ |
METHODS !
S~ o ——t STORAGE OBJECT
MANAGER
T enerated SCHEMA
L~ Emponent -
- codegiby
" S~ DATABASE
~ component

Figure 1: Architecture of a DBMS produced by EXODUS.

The EXODUS type manager? [Fran86] maintains infor-
mation about the modules which make up the database system.
In particular, it is responsible for maintaining a dependency
graph between the modules, and for keeping the various pieces
of the graph up to date. For example, dependencies exist
between modules containing type definitions and modules
which use those definitions, and between user files and pro-
cedures (compiled queries) which access them.

The components in Figure 1 that are implemented by the
DBI are the access methods and operator methods. In addition,
the DBI must write code for the operations associated with
each class (abstract type) that he or she wishes to define. To
clarify by using a familiar example, a DBI who wants to imple-
ment a relational DBMS for business applicatons via the
EXODUS approach will have to write code for the desired
access methods (e.g., B+ trees and dynamic hashing), for the
operator methods (e.g., relation scan, indexed selection, nested
loops join, merge join, etc.), and for various useful classes
(e.g., date and money). A DBI implementing a database
management system for an image application will have to
implement an analogous set of routines, presumably including
various spatial index structures, operations that manipulate col-
lections of images, and an appropriate set of classes. To sim-
plify the DBI's programming tasks, the constructs of the E pro-
gramming language — the topic of this paper — are provided.
We will have more to say about E very shortly.

Finally, the top of the EXODUS architecture consists of a
set of components that are generated from DBI specifications.
One such component is the query optimizer and compiler. The
query optimizer takes an algebraic query tree and transforms it
into a tree representing an access plan; the query compiler
then translates this plan tree into an E program which is com-
piled and executed. To produce a new query optimizer, the
DBI writes a rule-based description of the data model — its
operators, how they can be legally reordered, the available
operator implementations and their associated cost functions,

?Really, this is a generalized make facility; the name "type manager"
was kept for historical reasons.

etc. — and this description is then fed to the EXODUS optim-
izer generator [Grae86]. Similarly, we plan to provide tools to
automate the process of producing new DML/DDL com-
ponents, which are the query parser and DDL support com-
ponents of Figure 1. (This last idea is similar to the data model
compiler notion discussed in [Mary86].) As a prototype for
demonstration purposes, we are currently implementing from
scratch a GEM [Zani83] front end extended with limited ADT
facilities.

2.2. Problems Facing the DBI

In using a typical systems programming language such as
C or C++ to write code for ADTs, access methods, and opera-
tor methods, implementors of database system software are
faced with several problems that complicate the task. These
problems can be traced to two sources that are fairly unique to
the task of implementing a DBMS:

(1) Virtually all data of interest resides on secondary storage
(for persistence and size reasons).

(2) A great deal of data type information is missing while the
DBMS is being implemented.

The fact that the data to be manipulated by DBMS code
resides on disk affects the DBI’s task in several ways. First,
disk storage is typeless, while from a schema standpoint the
data to be manipulated has type (e.g., it may consist of records
with named, typed fields). Thus, the DBI's code must expli-
citly map typed data onto untyped storage by manually han-
dling offset, length, and type indicator information. Second,
the DBI must explicitly move data between main memory and
the disk, being sure to fix it and unfix it in the buffer pool at
appropriate times, etc. Lastly, when writing code for the
access method component of the system, the DBI may have to
worry about concurrency control and recovery issues in order
to make index operations serializable and recoverable without
overly restricting concurrency. It has been estimated that as
much as 70% of the code for a typical access method in a rela-
tional DBMS such as Commercial INGRES is due to secon-
dary storage considerations such as these [Ston85].

What gives a DBMS its power and general purpose nature
is the fact that users are able to create and destroy schema (i.e.,
types) throughout the life of the system; it also means that the
DBI must program in a world of unknown types. For example,
in writing index code, the DBI must write the code in such a
way that it can work for multiple key types. Users may build
indices over fields of any type for which indexing is meaning-
ful; B+ trees may be built over any data type for which a total
ordering exists. While the primitive types are known when the
index code is being written, it should also work for types that
may be defined later (as long as they meet the appropriate ord-
ering constraints) [Ston86a). Again, the DBI must resort to
writing code that basically interprets low-level, type-specific
information (including functions to operate on the type).
Things are further complicated by the fact that, while some
data types are fixed length or at least of bounded length, other
types will be variable length in nature. This missing type
information problem is even more serious when the DBI has to
write code that implements operations at the data model level,
such as the select, project, and join routines of a relational
DBMS. At this level, the DBI can assume very little indeed
about the data types of interest.

If the DBI must deal explicitly with all of these problems
when implementing or extending software in a so-called
“extensible DBMS", then the system is not as extensible as it
really needs to be. We address these problems by providing
the DBI with the E programming language, an extension of
C++ that lessens or eliminates each of these problems in some
way. For example, E extends the class® facility of C++, allow-
ing classes to be parameterized and allowing class objects to
live on disk. Of course, class definitions may be arbitrarily
nested, and there is no restriction on the size of a class object.
(Nested type definitions are not supported by ADT-INGRES
[Ong84], and we are aware of no DBMS ADT facility that per-
mits types to be arbitrarily large.) E also provides control flow
constructs which enable the DBI to write operator methods in a
manner allows them to be "plugged together” to form execut-
able queries in an elegant yet efficient manner. Basically, the E
langnage is an attempt to allow the DBI to concentrate on
implementing the data model, while the translator handles such
"nonessential” details as mapping types onto secondary
storage, interacting with the buffer manager and transaction
manager. To insure reasonable performance, E allows the DBI
to provide declarative "hints" about such issues as storage lay-
out and buffering policies. We describe the major E constructs
and how they address these problems in the remaining sections
of the paper.

2.3. Related Language Work

Languages to which E and its constructs are related fall
into one of two categories: those whose design has directly
influenced the design of E, and those whose domain (i.e., per-
sistent storage) is similar. On the design side, there are three
languages of primary relevance. As has already been noted, E
is an extension of C++ [Stro86] and is, in fact, upward compa-
tible. We found C++’s class mechanism to be an excellent
starting point for the kind of constructs that we needed; also,
C++ has a growing audience, and we didn’t want to introduce
yet another (completely new) language. Next, as we shall see,
secondary storage access in E is reminiscent of the use of file
windows in Pascal [Jens75]. Finally, several of the constructs
that we identify as being useful to the DBI, as well as ideas
regarding their implementation, have been borrowed from the
CLU language [Lisk77] [Atki78]. For example, E has a class
generator mechanism inspired by CLU type generators, and we
plan to implement them in a CLU-like fashion to make them
independently compilable. Finally, we should note that E is
related to Trellis/Owl [Scha86] in that both borrow many
features from CLU. Work by the Trellis/Owl group also led us
to examine the use of iterators in a database environment
[OBri86].

There are several classes of programming languages that
address problems related to having disk-based data. Database
programming languages are one such class, including
languages that integrate relations into their design. Examples
include Rigel [Rowe79], Pascal/R [Schm77], THESEUS
[Shop79], and Plain [Wass79]. This class also includes other
languages designed for writing database applications at the
conceptual level, such as Galileo [Alba85]. Persistent pro-
gramming languages form another relevant language class,
including languages like PS-Algol [Atki84] and Napier
[Atki8S5].

3C++ uses the term "class" instead of "ADT".

The E language is significantly different from all of these
_languages because it is targeted specifically for implementing
DBMS software, as opposed to writing applications on top of
an existing DBMS. Database programming languages typi-
cally treat relations or entity sets as collections of objects, hid-
ing the details of their storage structures; as far as the pro-
grammer is concerned, the underlying DBMS is a given. E,
however, is intended for implementing database systems, and
must therefore give the DBI a great deal of control over storage
structures. And, whereas persistent programming languages
strive to provide a uniform view of their storage and name
spaces, hiding the distinction between persistent and non-
persistent data, a DBI must be ever-aware of this distinction
and of the placement of objects in files in order to write
efficient code.

3. ABSTRACTION VIA CLASSES

One goal which EXODUS shares with several other pro-
jects is to allow for the definition of abstract data types (ADTs)
in a database system [Alba85] [Daya85] [Ong84] [Osbo86]
[Ston86a]. The C++ class mechanism is a good starting point
since it provides much of the semantics that we need. It is
assumed that the reader is familiar with such concepts as
abstract data types, modules, and object-oriented program-
ming, so we present only a brief introduction to C++ classes.

3.1. C++ Classes: A Short Review

Let us assume that the DBI needs a certain abstract type
called BOX, such that each BOX object represents a rectangu-
lar region in the plane. Certain operations will be needed on
boxes, such as a means of initializing a box and an operation
returning its area. The internal representation of a box, how-
ever, is to remain hidden from users. Figure 2 shows a partial
implementation of BOX as a C++ class. In general, a C++
class consists of a sequence of member definitions. Usually,
classes have both data members (i.e. the representation) and
function members (i.e. methods). The keyword public
separates private from public members; only those member
declarations following public are visible to users of the class.
In Figure 2, a box is represented by two points4 ul and Ir, mark-
ing the upper-left and lower-right-hand comers, respectively,
of the box. Because both data members precede public, they

class BOX {
// representation == upper-left and lower-right corners
struct { float x, y; } ul, Iy

public:
BOX(float x1, float y1, float x2, float y2) {
ulx =x1; uly=yl;

Irx =x2; lry=y2;
}

float area() {
return ((Ir.x - ul.x) * (uly - Ir.y));
)

Figure 2: A Simple Class Definition

(and thus, the representation of BOX) are hidden.

Class BOX has two public member functions, BOX() and
area(). The real-valued function area() applied to a particular
box computes the area of that box by multiplying the x-
distance between the corner points times their y-distance. In
general, one invokes an operation on a class object using dot
notation: object.operation(arguments). For example, assum-
ing we have a BOX object named mybox, we might say:

if(mybox.area() > 10)
// do something

else
// do something else

By definition, a reference to the object is passed implicitly to
the operation, and every class operation is written with this in
mind. Thus, the above invocation passes to area() a reference
to mybox; within the area() function, references to ul and Ir
are equivalent to mybox.ul and mybox.Ir (for this invocation).

The member function named BOX is called a constructor
for class BOX; in general, a member function whose name is

the same as its class is a constructor for that class.> Construc-
tors are used to ensure proper initialization of class objects. In
this example, whenever a BOX object comes into scope or is
allocated on the heap, the function BOX() is called on that
object; since this function takes four real arguments, the com-
piler will complain if these values are not provided in the
declaration of a box. For example:

BOX mybox(0, 1, 1, 0); // unit square at origin
BOX my_other_box; //error: no initializing arguments

3.2. Database Classes

One of the goals of E is to provide the DBI with the fol-
lowing model of typed secondary storage: instead of explicitly
issuing calls to the buffer manager and explicitly casting struc-
ture onto a page of bytes, the DBI should simply be able to
dereference a pointer to a named field of an object, while
buffering and type casting is handled "under the covers." A
similar idea is found in Pascal’s file window mechanism
[Jens75}; the programmer may create files of any type, and
then read and write objects in the file through a private buffer
(the file window). The window holds exactly one object, and

- each ger or put operation moves a whole object. The two

major differences from Pascal’s approach are (1) in E, typed
files are type-safeS, and (2) E buffers only the portion of the
object that is actually needed. Doing a reasonable job of tran-
sparent buffering is an interesting, non-trivial research problem
that will be discussed further at the end of the paper. In this
section, we introduce dbclasses, an extension of the basic class
mechanism designed for secondary storage; the relationship of
typed files to dbclasses is covered in Section 4.

While C++’s class mechanism provides much of the
power needed to implement abstract types, certain implementa-
tion issues make it impractical to store regular class objects in
a (persistent) database. The basic problem involves pointers

“Note that we could have implemented POINT as an ADT in its own
right; then the representation of BOX would have been POINT ul, Ir; .

SC++ also has destructors which are called when the object goes out
of scope. Destructors are useful for classes that allocate storage, e.g.
Linked_List.

®For example, it is possible in Pascal to create a file of arrays with one
program, and then read it as a file of records with another.

and buffering: regular C pointers do not carry enough state to
allow for the buffering of pieces of an object. Since class func-
tions expect the entire object to be available in memory, we
would be forced to buffer whole objects. Such a requirement
would severely limit the maximum object size that the system
could reasonably handle. One approach would be to reimple-
ment all pointers as object descriptors of the kind needed for
this "incremental buffering." However, not only would all
pointer accesses (even to regular memory objects) be slowed
somewhat, but E would lose its upward compatibility with
C++. Another problem is that regular C pointers are simply
too dangerous to allow them to point into the buffers, and the
compiler would find it difficult (or impossible) to know when
buffer space may be unfixed safely. We considered all these
implications to be unacceptable, and therefore chose another
approach.

Instead of trying to provide a completely uniform view of
storage, E divides the world of classes into two kinds: those
whose objects can live only in volatile memory and those
whose objects may live either in memory or on disk. The
former are simply normal C++ classes; the latter we call
dbclasses, to suggest that these are the classes that make up the
database. Qur philosophy is that a DBI can (and should) know
which types are used strictly in memory (for example, a hash
table in a hash join algorithm), and which are used in conjunc-
tion with persistent data (for example, employees). Those
types used only in memory should not suffer any performance
penalties. On the other hand, we do not wish to divide the
world so completely that dbclass objects can live only on disk;
for this reason, E also allows dbclass objects to be declared
locally and to be allocated on the heap.’

Syntactically, one declares a dbclass exactly like a regular
class (except for the keyword dbclass) with the restriction that
all data members of a dbclass must themselves be dbclass
objects. In the BOX example, if we wish to store boxes in the
database, we would first change the declaration to read:

dbclass BOX { ... };

One minor problem is that the data members of BOX are of
type float, which is not a dbclass. Therefore, E provides a col-
lection of built-in dbclasses which are duals of the fundamental
types: dbshort, dbint, dblong, dbfloat, dbdouble, dbchar, and
dbvoid®. All the normal arithmetic operations are defined for
these types. More importantly, assignment and coercion are
defined between these dbclasses and their duals and are imple-
mented by copying values. Thus, we may reimplement BOX
as follows®:

dbclass BOX {
dbstruct { dbfloat x,y; } ul,Ir;
public:
// as before...
K

Finally, for reasons already stated, we cannot allow unres-
tricted pointer usage with dbclass objects. While it is legal to
take the address of a dbclass object, to assign the address to a
pointer, and to dereference a pointer, it is illegal in E to per-
form arithmetic on dbclass pointers. (This reduces the risk of
inadvertently walking all over the buffer pool.) In order to
prevent the (always erroneous) circumvention of these rules, it
is illegal to convert a dbclass pointer into a normal pointer. In
these respects, dbclass pointers in E look similar to pointers in
Pascal, except that they may also point to local stack objects.

We have said that buffering of dbclass objects occurs
under the covers, and that only the pieces actually needed will
be read in. We have also said that doing a reasonable job of
this remains as significant future research. Let us illustrate the
problem with an example. Figure 3 shows a partial definition
of an abstract type IMAGE, where each image is a 4K-by-4K

dbclass IMAGE {
PIXEL map [4096][4096]);
public:

void average() {
int i, j;

for(i=1;1<4095; i++)
for(j =1; j < 4095; j++)
mapli,j].pix_avg(mapli,j-1], mapli-1,],
mapli,j+1], map[i+1,j]);

}; /| IMAGE
Figure 3: A More Interesting Example

map of pixels, and where PIXEL is another dbclass. The
IMAGE member function average() presents an interesting
problem. For each (i,j) generated in the loop, this function
touches pixel (i,j) plus its 4 neighboring pixels. Storing the
image in either row- or column-major order is clearly subop-
timal for this problem. We plan to examine ways of allowing
the designer of a dbclass to specify layout hints for cases in
which the performance loss would be significant. Such hints
will be associated with the definition of the class. For this
example, one might specify that images should be stored in
rectangular blocks.

Another kind of hint concerns buffering. It is well known
that the overall performance of a system can be improved
significantly if one chooses a buffering policy appropriate for
the particular access pattern [Ston81] [Khos84] [Chou85a].
Since different operations on a type are likely to have different
access patterns, we plan to allow the DBI to associate buffering
hints with dbclass methods. For the average() example, LRU
with 3 buffer pages would be sufficient (assuming block lay-
out), while an operation which touches each pixel once (and in
order) might specify MRU with 1 page.

In the next section, we round out our discussion of per-
sistent data, introducing files into the language, showing how
dbclass objects are stored in files, and how files are made part
of the persistent database.

4. FILES & PERSISTENCE INE

Unlike the general-persistence and database programming
languages mentioned in Section 2.3, E is intended for DBMS
implementation. Thus, E takes an approach to persistence

7An interesting implication of this design is that, should the DBI use
dbclasses exclusively, then storage once again appears uniform!

8C++ includes the type "void” (in part) for those functions that return
no values. We include dbvoid mostly for completeness.

9C++ defines struct and union as classes; thus E also defines dbstruct
and dbunion as dbclasses.

which we feel is more appropriate for implementing the lower
levels of a database system.

4.1. File as Class

The concept of a file as a means of storing data on disk is
universal, Unfortunately, the traditional difficulty with files is
that, in general, they are operating system objects and are not
part of the language. This means that files are untyped and do
not obey scope rules or have names known to the compiler.
One way of introducing files into a language is to make file a
type constructor (like struct or array); while the declaration
syntax would be relatively simple, one must then introduce a
host of new language constructs to express operations over
files. Fortunately, new syntax is not really needed.

In E, files are introduced as another built-in class where,
in accordance with the underlying storage system, a file is an
unordered collection of storage objects. A given file may con-
tain only one type of object, and that type must be a dbclass.
Operations on files are defined simply as member functions of
class file, and access to objects in a file takes the form of
operations on (dbclass) pointers. For example, there is an
operation that returns a pointer to the first object in a file, one
which creates an object in a file, etc.

To clarify this discussion, the function in Figure 4 loads a
file with the integers 1..200, then deletes all the odd ones. In
this example, f is a file object local to the function; that is, a
physical file is created when we enter the function, and des-
royed when we exit. (We shall have more to say about file
lifetimes shortly.)

While the syntax!® for declaring the file's type looks a lit-
tle strange, the semantics are clear enough: fis a file (initially
empty) containing a collection of objects of type dbint. The
function newobj creates a new dbint object in file f and returns
a pointer to it. Similarly, gemnex:, given the address of an
object A, returns a pointer to the next object in the file; if A is
the last object, then the operation returns the null pointer value
0. Finally, deleteobj destroys the object in the file having the
given address.

void simple() {
fileof[< dbint >] f;
dbint *p;

for(inti=1; i <= 200; i++){
p = f.newobj();
*p =i;

}

for(p = f.getfirst(); p !=0; p = f.getnext(p))
if((*p) & 1)
f.deleteobj(p);

Figure 4: An Example of File Usage

Two other operations of interest are setroot and getroot,
which are particularly useful in writing index code (or, in gen-
eral, for dealing with files that have a user-defined internal
structure). Every file may have zero or one distinguished

191y fact, the class "fileof” is a particular example of a generator class
(see Section 5).

{root) object; the identity of this object is maintained by the
storage system. If p points to some object in file f, then
fsetroot(p) makes that object the (one and only) root of the
file. The call f.getroot() returns the address of f’s root object if
there is one, and null (0) if not. A file initially has no root, and
if setroot is called with a null address, then it will once again
have no root.

4.2. File Lifetimes

The implementation of a file object has two parts: a physi-
cal storage system file and its representative data structure in
memory. A physical file is created by issuing a CreateFile call
to the storage manager which returns the file’s id (fid). Thus, E
compiles a declaration for a local file into a CreateFile call at
scope entry. The fid returned is then saved in the local
representative data structure. A corresponding DestroyFile is
issued at scope exit. Handling static files is also easy; the
create (destroy) call is simply issued at the beginning (end) of
the program run.

Clearly, a database is of little use if files live no longer
than the program run! E addresses the problem with a new
C++ storage class specifier, persistent:

persistent fileof[< some_dbclass >] f;

This specifier is only applicable to file objects!! and, in this
example, means that f is associated with the same physical file
for all runs of the program. Furthermore, the contents of f is
preserved between runs of the program. We implement this
storage class by having the E compiler issue the CreateFile call
at compile time; the fid it receives is then compiled into the
object code as a constant.

The lifetime of a persistent file is not infinite, however.
In fact, a persistent file lives only as long as its associated
object module, i.e. if the source code is recompiled, then the
old file is deleted, and a new one takes its place. Some appli-
cations (e.g. destroy relation) do not want to redeclare a file,
but merely wish it deleted. In this case, one may invoke the
‘erm’ utility which, given an E source file, removes the object
module and any persistent files associated with it. For exam-
ple, suppose the file employee.e contains the declaration of two
emp relations:

#include "EMP_TYPE.h"
persistent fileof[< EMP_TYPE >] BOSTON_emps;
persistent fileof{< EMP_TYPE >] SEATTLE_emps;

Then the command

% erm employee.e
destroys the associated object module, employee.o, and the
physical files representing BOSTON_emps and
SEATTLE_emps.

5. WRITING GENERIC ACCESS METHODS

As described earlier, we expect the implementation of
new access methods to be one of the more difficult tasks
involved in implementing a DBMS for a new application class.
One of the problems that we mentioned was that the DBI's
code should be written so as to enable it to work with new key
types that might be defined long after the index code is written.
This problem worsens when we consider that index lookup
routines typically return object references. For example, if we

HActually, one may also apply persistent to classes whose data
members are (recursively) all files.

have an index on EMP name, then a lookup on "Smith" should
return a reference to Smith’s record (if it is found). In E, all
references are typed, so the value returned by the lookup rou-
tine is of type (EMP *). Just as the DBI cannot anticipate th.e
key type, the return type is also unknown when the code is
written.

5.1. Generator Classes

An elegant solution to this problem is the notion of a gen-
erator class, introduced in CLU [Lisk77] as parameterized
clusters. A generator is a class which is defined in terms of one
or more type parameters and, as such, defines a family of
related types. Both dbclasses and regular classes may be
defined as generators, and a type parameter may specify either
dbclass or class. To define a B+tree node, then, we would
make it a dbclass generator (since these nodes are to be stored
in a file), and the two type parameters would also be dbclasses.
Thus, the heading of the definition for the class generator
might look like:

dbclass BTnode[< dbclass {} keytype; dbclass {} enttype >)
O

The doubled bracket symbols "[<" and ">]" are new tokens in
E and are required to disambiguate the grammar,

Within a generator class definition, code can be written
(and compiled [Atki78]) without specific knowledge of what
actual types might be supplied as arguments, aithough certain
constraints may be declared (as we shall see in Section 7).
Within the BTnode class, keytype and enttype are used just
like any other type names. The advantage of this approach is
that the code implementing B+ trees can be written and com-
piled only once, and yet the DBI does not have to pass around
and manipulate low-level type information.

Given a generator class definition, one creates new classes
by providing actual parameters in the context of a declaration;
this process is called instantiating a class from the generator.
In this example, since keytype is specified as dbclass, then one
may instantiate BTnodes whose keys are, for example, dbint or
BOX; however, it would not be possible to ask for a Btree with
keys of type float. Similar comments apply to enttype. Instan-
tiating a BTnode with a given pair of type parameters can be
accomplished, as in CLU [Atki78], through a form of linking
(whereby a type parameter leads to an "under the covers”
implementation that is very similar to the sort of tricks that the
DBI would otherwise have to code explicitly in a language like
C). This leads to a fairly efficient implementation as there is
only one copy of the "generic" code for all specific instances.
Each new instantiated type adds only a small linkage table.
(Again, see [Atki78] for more details.)

There are several more issues to address, however, before
we can be completely satisfied with our solution to the BTnode
problem. The first issue is that we may need different com-
parison routines for different key types. Consider building a
B+ tree index over a file of BOXes. The usual comparisqn
operators for keys in a B+ tree are "less" and "equal”, but in
what sense is one BOX less than another? In area? Circumfer-
ence? Distance from the origin? Ideally, we would like to be
able to choose different ordering criteria for different key
types; even for different trees built over the same key type, we
might like to be able to use different ordering functions
[Ston86al.

The solution in E is that a generator class may be instan-
dated with functon parameters as well as type parameters.

These procedures effectively become part of the type’s
definition. It is important to note the distinction between this
approach and that of passing the comparison operator as a for-
mal parameter to each BTnode procedure: while the latter is
certainly possible in E, some agent external to the type system
(e.g., a catalog manager) would then have to keep track of the
association between specific B+ tree instances and their com-
parison operators. If the type is actually instantiated with a
specific comparison operator, then the type system can
remember this association.

Figure 5 gives a portion of the definition of the BTnode
class. The first few lines specify that BTnode is a generator
class that takes two dbclass parameters and two procedure
parameters. As we saw previously, enttype and keytype may be
any dbclasses; the parameters "operator==" and "operator<"
may be any two integer valued functions, provided that they
both take two keytype values as parameters.'? (Hopefully, the
semantics of these functions is somehow related to the con-
cepts of "equal” and "less", although of course the compiler
cannot enforce this.) With this specification, we are able to
build a B+ tree, for example, over BOX area, circumference, or
whatever we wish by instantiating BTnode with BOX as the
key_type and with the appropriate comparison routines, e.g.

BTnode[<
BOX, BOX,
int area_less(BOX, BOX),
int area_eq(BOX, BOX)
>] a_node;

The representation of BTnode also illustrates the use of
auxiliary type definitions. The type "kpp" (for key/pointer
pair) defines a structure suitable for building secondary indices.
Each key has a list of one or more associated pointers. A new
generator class varray implements the list. A varray is a vari-
able length array which can grow or shrink at arbitrary points
via the insertion or deletion of array elements.’® In order to
handle both internal and leaf nodes, the pointer type in this
example is a union of BTnode pointers and enttype pointers.

Like fileof and the fundamental dbclasses, varray is a
built-in dbclass (i.e. one implemented by the compiler) whose
operations appear as member functions of the class. These
operations include inserting and deleting elements, querying
the current array size, and of course, array indexing. For
example, given a varray A, the operation A.newslot(3, 10)
inserts 3 new slots in A such that the first new slot has index
10; other elements are "pushed down" to make room. An
inverse operation deletes slots from the array. The call
A.length() returns the current number of elements in A. We
should point out here that the inclusion of varrays in E is not
just an ad hoc device that is convenient for writing B+ tree
code. Varrays provide a way for the DBI to utilize the full
power and flexibility of the storage object abstraction provided
by the underlying storage system [Care86a].

As in the case of large, relatively simple classes, there are
certain physical details that the DBI may wish to influence for
performance reasons. As mentioned before, one such issue is
buffering, and the solution again is that the DBI may include

In C++, one may overload operator symbols with user-defined func-
tions. Thus, if vl and v2 are both keytype values, then "v1 == v2" is
equivalent to "operator==(v1, v2)".

BEqually descriptive terms might be "indexable list” or "sequence”.

dbelass BTnode[< // a Buree is a file of these
dbclass {} keytype;
dbclass {} enttype;
int operator<(keytype, keytype);
int operator==(keytype, keytype);
>] {
// Each key has a varray of pointers
typedef dbstruct {
keytype key;
varray[<
dbunion{ BTnode* child; enttype* entity; }
>] ptrs;

} kpp;

// The data part of each node:
dbint height; // leaf level ==
varray{< kpp >] slots; // the key/pointer pairs

// Simple binary search of node
status searchnode(keytype key, int* index) {

int min = (;

int max = slots.length() - 1;

int mid;

// NOTE: "<" and "==" are class parameters

while(min <= max){
mid = (min + max) >> 1;
if(slots[mid] < key)
{ min =mid + 1; }
else if(slots[mid] == key)
{ *index = mid; return FOUND; }
else
{ max =mid - 1; }
} // while
*index = mid;
return NOT_FOUND;

} // BTnode::searchnode

pubtic:
// Recursive tree search
status search(keytype key, enttype** ptr) { ... }

}; // dbclass BTnode

Figure 5: A Partial B+ Tree Example.

declarative, buffer-related hints. Also, since index nodes
should map one-to-one with disk pages, certain system param-
eters are available to the DBI in the form of ".h" files. One
such parameter, PAGESIZE, gives the maximum number of
bytes available in a small (one page) storage object; the DBI
can then write insert code, for example, such that node
overflow can be detected. Another issue is related to index
concurrency control and recovery — performance goals may
necessitate the use of non-2PL locking (e.g., {Baye77]) and dif-
ferent recovery techniques than those normally employed by
the storage manager. This is an issue that we plan to address in
the future via hints [Care86b].

6. ITERATORS FOR ABSTRACTION AND EXECU-
TION

A common notion in database system architecture is the
scan. A scan is a control abstraction that is used to structure
the execution of queries, providing a state-saving, record-at-a-

time interface between the lower level storage system calls and
the higher level operators. For example, a simple relational
select operation may "open a scan" on the desired relation,
examine the tuples one at a time, and pass on those tuples that
qualify under the selection predicate. The same operation may
also open a scan over an index if an index exists that can pro-
duce the tuples more efficiently. A common implementation
of scans employs a table to record the states of all currently
open scans. For example, the Wisconsin Storage System
(WiSS) keeps track of open scans, the file or index associated
with each scan, the cument position of each scan, etc.
[Chou85b]. The procedural interface to the scan routines
includes calls to allocate and open a scan, to retrieve the next
record, and to close the scan.

While the same implementation is certainly possible in E,
we provide a control construct that the DBI is likely to find
much more convenient and elegant, the iterator'* [Lisk77].
The E iterator construct is another that we borrow from CLU,
although we generalize its usage somewhat. Basically, an
iterator is a function that saves its state between calls; each
successive call resumes execution where the previous one left
off. The intended usage of an iterator is as a control abstrac-
tion which produces a sequence of items while hiding the
details of how the items are obtained. Clearly, the notion of a
database style scan fits this model extremely well [OBri86].
More generally, there is a nice match between the notion of an
iterator and the role of each operator method in the execution
of a query; we will say more about this correspondence in the
next section.

The syntax of an E iterator function is very close to that
of a normal E function. The symbols "(<" and ">)" replace the
usual parentheses, and the body may contain one or more yield
staternents. A yield is similar to a return in that it returns a
value to the caller and allows the caller to continue execution.
However, the iterator invocation is suspended at the point of
the yield rather than being lost as with a normal return. When
the caller next invokes the iterator, it continues from the state-
ment following the most recent yield. An iterator terminates
when it executes a normal return.

Clients may invoke an iterator only within the context of
an iterate loop, which may be viewed as a generalization of

. the for loop; both have a control variable which is initialized

when the loop is entered and "incremented" after each itera-
tion, and both have some stopping condition (which may never
be met). Often, an iterate loop is associated with only one
iterator function. (We shall see a more general example.)
When control enters the loop for the first time, the function is
invoked, and it executes until it yields a value. That value is
assigned to the loop control variable, and the iterate continues
execution. Each time control returns to the top of the loop, the
iterator resumes and yields another value. When the iterator
executes a normal return, the iterate loop terminates. Figure
6 shows a very simple iterator function/iterate loop pair. The
iterator yields the first N prime numbers.

The general approach to implementing scans via iterators
should now be obvious. All the data kept as table entries in a
WiSS-like scan implementation become either local variables
or parameters of the iterator function. There is no longer a

“The term “iterator” really refers to two cooperating agents, the itera-
tor function itself and the iterator client. We use the term interchangeably to
mean the iterator function and the cooperating function/client pair; context
should resolve the meaning.

need to allocate a scan explicitly, since this is implicit in the
initialization of the iterator. For example, the iterator in Figure
7 shows how one could implement a sequential scan over a file

of objects.!3 Each scan_class object is initialized with the file

main() {
iterate(int x = primes(< 100 >))
printf("%d ", x);

}

int primes(<int N >) {
int count=0;
int pr=2;

while(count < N){
if(is_prime(pr)) // assume is_prime() exists
{ yield pr; count++)
pr++;

Figure 6: A Simple Iterator.

to be scanned as shown in the constructor. The actual scan
occurs by invoking the next_tup(< >) iterator on the scan
object. Note that this routine yields object references rather
than the objects themselves. Also note that this example only
shows one possible way of implementing a scan. An alterna-
tive would be to pass the file as a parameter directly to the
iterator function; the scan_class would then need no data
members.

We mentioned above that E generalizes the CL.U usage of
iterators; this is because CLU’s for...in loop alone is not
powerful enough for certain applications. For example, con-
sider the problem of merging two lists of integers (or files of
tuples, as in a merge join), where each list is produced by a dif-
ferent iterator. Using a for...in loop, a client can interact with
multiple iterators only in a nested fashion, e.g.:

for i in iter_i() do
for j in iter_j() do
S;
end;
end;
In this code, S is executed over the cross product of i’s and j’s.

Unfortunately, it is not possible to treat iterators as streams
using the for...in construct, which means that our list merging
example cannot be solved using this construct. Essentially, the
problem is that each instance of a CLU iterator loop may be
associated with exactly one iterator. In E, therefore, an iterate
loop may have any number of active iterator functions, and the
programmer may "advance" each iterator independently via the
next statement. If control reaches the top of the loop and all
iterators have terminated, the loop terminates as well; if con-
trol reaches the bottom of the loop, and no next has been exe-
cuted during that iteration, then next is invoked on all iterators.
(Thus, an iterate loop having only one iterator and no next
statements reduces to a for...in loop.)

YThis example also suggests that one may use a class generator to ef-
fectively implement an iterator (or function) generator as found in CLU
[Lisk77]. If a generator class has no data members (which is legal), then
each instantiation simply produces a new set of member functions and itera-
tors.

class scan_class[<
dbclass {} T;
>] {

fileof[< T >] * fileptr;
public:

// constructor: saves pointer to file
scan_class(fileoff< T >] * p){ fileptr =p; }

T * next_tup(< >) {
T * objptr;

objptr = fileptr->getfirst();
while(objptr 1= 0){
yield objptr;
objpir = fileptr->getnext(objptr);

} // next_tup
}; // scan_class

Figure 7: Sequential Scan Iterator.

Figure 8 shows an iterator that merges two streams of
ordered integers. Assume that s1 and s2 in the figure are both
integer-returning iterators (and it may be that s1 == s2), When
control first enters the loop, each iterator function is initialized
and yields its first element (if any). The programmer has expli-
cit control over testing whether a stream is exhausted via the
call empty(). Thus, the iterate loop in Figure 8 tests to see if
either stream is empty; if so, then it yields the element from
the other stream and advances it. If both streams have ele-
ments remaining, the smaller is yielded and that stream
advanced. When both streams are exhausted the loop ter-
minates automatically.

int merge(< >) {
int choice;
iterate(int vall = s1(< >); int val2 = s2(< >)) {
if(empty(vall))

choice = 2;

else if(empty(val2))
choice = 1;

else if (vall < val2)
choice = 1;

else
choice = 2;

switch(choice) {
case 1: yield vall ; next vall ; break;
case 2: yield val2 ; next val2 ; break;
}

} /* merge */

Figure 8: A Generalized Iterator Example.

7. PIECING QUERIES TOGETHER — AN EXAMPLE

7.1. Operator Methods and Unknown Types

Let us finally consider the problem of implementing the
types and procedures associated with a data model in
EXODUS. As we pointed out early in this paper, there seems
to be a rather fundamental problem facing the DBI in writing
the operator methods. We have said that in EXODUS, user
schema definitions are translated into E type definitions. But
how can the DBI write operator methods when type informa-
tion is completely unknown? For example, how can the DBI
implement the relational project operator in E without knowing
the names of the fields to be projected?

The answer is actually quite simple. In the case of pro-
ject, the only part of the procedure that cannot be written by
the DBI is a series of assignment statements that move data
from source tuple attributes to target tuple attributes. The DBI
can thus write project() such that it expects a function parame-
ter which will be produced by the query compiler. This func-
tion takes two typed objects as parameters and contains exactly
the sequence of assignment statements needed to accomplish
the projection. Similarly, the DBI could write a select operator
method that expects a boolean valued function; the query
compiler can then produce and pass to select() an E function
that evaluates the desired selection predicate. Depending on
how we choose to implement operator methods, these function
parameters may be either part of the instantiation list for a
module or simply formal function parameters.

Before giving an example, let us consider the larger ques-
tion of how a user’s query gets compiled and executed. As
described in Section 2, a query is first translated into a tree of
algebraic operators which is optimized to produce a plan tree.
This tree represents an arbitrary composition of operator
methods and file scans. Two questions still remaining are:

(1) How can the DBI write the operators such that they are
composable?

(2) How does the query tree become an executable query?

To understand the issues surrounding question (1), con-
sider that project might receive its source tuples from a file
scan in one query, while in another it might be receiving the
results of a join. In general, then, we are interested in writing
operators such that they can be easily composed in a pipelined
manner. One possible approach is to write all operator
methods as iterator generators.'® In addition to type parame-
ters, we include iterator parameters to serve as tuple sources.
Thus if project() is to receive its tuples from a file or index
scan, we instantiate it with the appropriate scan iterator; if it is
to be the next stage in a pipeline following a join, we instan-
tiate it instead with the join iterator. Figure 9 shows how the
DBI could write pmject,17 illustrating each of the concepts in
the preceding discussion.

Each project_class will be instantiated with the types of
its source and destination tuples, and with a source iterator
class. As was mentioned in section 5, it is possible for a gen-
erator class to specify constraints on any actual types used to
instantiate the class; these constraints are expressed as declara-

1] e., as generator classes whose major purpose is to provide an itera-
tor.

""We ignore duplicate elimination for simplicity.

class project_class[<
dbelass {} src_type;
dbclass {] dest_type;
class { src_type* next_tup(< >); } src_iter_type ;
// means: src_iter_type must have a method, next_tup,
// taking no arguments and returning src_type pointers

>] {

// Defines type proj_type, which is a pointer to a function
// returning nothing, and taking pointers to source and

// destination type objects

typedef void (*proj_type)(src_type*, dest_type¥);

// data members
src_iter_type* srclter;
proj_type projFcn;

public:

// the constructor

void project_class(src_iter_type* isrc, proj_type p) {
srclter = isrc;
projFen =p;

// This iterator implements the project filter.
dest_type* next_tup(< >) {
dest_type* p2 =new dest_type;

iterate(stc_type *p = srclter->next_tup(< >)) {
projFen(p, p2);
yield p2;

destroy p2;
}

}; // project_class)

Figure 9: Project Iterator Example.

tions within the parameter class list. In this example, the class
parameter src_iter_type specifies that any actual class provided
as an argument must have a (public) iterator member named
"next_tup" which takes no arguments and returns src_type
pointers. In general, one may specify any number of such con-
straints. Furthermore, having named the constraints, the gen-
erator class is then free to invoke those members.

Question (2) is now fairly easy to answer. The query
compiler can produce an executable query through a rather
straightforward translation of the query tree into (in general)
some type definitions and E procedures. As an example, let us
consider a simple project query, assuming that the type EMP
has been defined as follows:

dbstruct EMP {
dbchar name[50];
dbint age;
dbfloat sal;
b
Assume also that "emp” is an existing file of EMP objects, and
that the user types in the following QUEL query:

range of e is EMP;
retrieve into proj_emp (sal = e.sal, age = e.age);

extern fileof[< EMP >] emp;

/! The class def of the result type.
dbstruct PROJ_EMP{

dbint sal;

dbchar name[50};
b

// The result relation
persistent fileoff< PROJ_EMP >] proj_emp;

// The projection function.

void proj(EMP* e, PROJ_EMP* p) {
p->sal = e->sal;
p->name = e-> name;

}

// Implements the query.
void main() {

typedef scan_class[< EMP >] EMPscan;
EMPscan scanObj(&emp);

proj_class[< EMP, PROJ_EMP, EMPscan >)
projObj(&scanObj, &proj);

// Execute the query by iterating over the results
// of the project. Spool tuples into file proj_emp.
iterate(PROJ_EMP * p = projObj->next_tup(< >)) {
// Create a new (uninitialized) object in then file.
// Then copy the projected tuple.
PROJ_EMP *p2 = proj_emp.newobj();
*p2 = *p;

Figure 10: Example of Query Compiler Output.

The query optimizer will ultimately produce a plan for
this query in the form of a tree of operator methods [Grae86].
This particular tree will have the EMP relation at the bottom, a
sequential file scan at the next level, a project above that, and
the main program at the top, spooling the projected results into
the proj_emp relation. Figure 10 gives a set of type and pro-
cedure definitions which collectively implement this plan.

Main() first declares a scan object, initialized to scan file
emp. It then declares a project object, initialized with the emp
scan object and the routine which projects the attributes. The
query then iterates over the results of the project, copying each
result tuple into the proj_emp relation. Certain details have
been glossed over for clarity here. For example, procedure and
type names generated by the query compiler probably will
have no mnemonic qualities. Also, we should note that the

types and procedures will generally be split up into a number
of ".h" and ".c" files in order to reduce the granularity of com-
pilation and dependencies.

8. SUMMARY AND FUTURE WORK

In this paper, we have described the programming prob-
lems faced by an EXODUS database implementor, introducing
the programming constructs provided to simplify the DBI's
task. These constructs are provided in the form of the E pro-
gramming language, an extension of C++ that aids the DBI in
dealing with data on secondary storage and with missing type

information. The major constructs include a typed file facility
with a notion of persistence, the dbelass construct permitting
the easy definition of nested and/or very large ADTS, generator
classes for dealing with missing type information, and iterators
for writing operator methods.

Needless to say, while the design of E is basically com-
plete at this point, a significant research and implementation
effort still lies ahead. It was said that E will accept hints from
the DBI to help it in its job of "under the covers" buffering and
in the physical layout of objects; while we have some ideas of
useful hints, much research is needed to really solidify the
notion. A second issue (related to buffering) concerns the fre-
quency with which E emits calls to the storage manager. In
traversing a large matrix, for example, the simplest approach is
to issue a read request for each element touched; this would
obviously waste many calls, since many elements will be
brought in at once if they reside together on disk. We plan to
approach this as an optimization problem since it has certain
aspects in common with conventional problems such as com-
mon subexpression elimination and code hoisting. Finally, we
will need to address the problems of concurrency control and
recovery. The storage system already provides a transaction
facility, and by default, E will provide 2-phase, object-level
concurrency control with write-ahead logging. However, more
specialized protocols can increase overall performance, partic-
ularly where index structures and/or very large objects are con-
cerned.

ACKNOWLEDGEMENTS

We wish to acknowledge all of the members of the
EXODUS project for their many helpful discussions and ideas,
including David DeWitt, Goetz Graefe, Eugene Shekita, and
Daniel Frank. We would also like to thank Larry Rowe and
Marvin Solomon for their valuable insights and helpful crit-
cisms.

REFERENCES

[Alba85] Albano, A., Cardelli, L., and Orsini, R., "Galileo:
A Strongly-Typed, Interacive Conceptual
Language," ACM Trans. on Database Systems,
10(2), June 1985.

Atkinson, R., Liskov, B., and Scheifler, R,
"Aspects of Implementing CLU," ACM National
Conf. Proc., 1978.

Atkinson, M., et. al., "Persistent Object Manage-
ment System,"” Software Practice and Experience,
vol. 14, 1984,

Atkinson, M., and Morrison, M., "Types, Bindings
and Parameters in a Persistent Environment,"
Proc. of the Appin Workshop on Persistence and
Data Types, Glasgow, August 1985.

Batory, D., et. al.,, "GENESIS: A Reconfigurable
Database Management System," Technical Report,
#TR-86-07, University of Texas, Austin, 1986.

Bayer, R., and Schkonlick, M., "Concurrency of
Operations on B-Trees,” Acta Informatica, vol. 9,
1977.

Carey, M., and DeWitt, D., "Extensible Database
Systems," Proc. of the Islamorada Workshop on

[Atki78]

[Atki84]

[Atki85]

[Bato86]

[Baye77]

[Care85)

[Care86a]

[Care86b]

[Chou85a]

[Chou85b]

[Cope84]

[Daya85]

[Fran86]

[Grae86]

[Jens75]
[Kern78]

[Khos84]

[Lisk77]

[Maie86]

[Mano86]

(Mary86]

Large Scale Knowledge Base and Reasoning Sys-
tems, Feb. 1986.

Carey, M., DeWitt, D., Richardson, J., and Shek-
ita, E., "Object and File Management in the
EXODUS Extensible Database System,” Proc. of
the 12th VLDB Conf., Kyoto, Japan, Aug. 1986.

Carey, M., DeWitt, D., Frank, D., Graefe, G.,
Richardson, J., Shekita, E., and Muralikrishna, M.,
“The Architecture of the EXODUS Extensible
DBMS," Proc. of the Int'l Workshop on Object-
Oriented Database Systems, Pacific Grove, CA,
Sept. 1986.

Chou, H., and DeWitt, D., "An Evaluation of
Buffer Management Strategies for Relational
Databases,” Proc. of the 11th VLDB Conf., Stock-
holm, Sweden, Aug. 1985.

Chou, H., DeWitt, D., Katz, R, and Klug, R.,
"Design and Implementation of the Wisconsin
Storage System," Software Practice and Experi-
ence, 15(10), Oct. 1985.

Copeland, G., and Maier, D., "Making Smalltalk a
Database System," Proc. ACM-SIGMOD Int'l
Conf. on Management of Data, Boston, MA, 1984.

Dayal, U., and Smith, J, "PROBE: A
Knowledge-Oriented Database Management Sys-
tem,” Proc. of the Islamorada Workshop on Large
Scale Knowledge Base and Reasoning Systems,
Feb. 1986.

Frank, D., "The Functionality of the EXODUS
Type Manager,"” EXODUS Working Document,
University of Wisconsin, Madison.

Graefe, G., and DeWitt, D., "The EXQODUS
Optimizer Generator,” to appear, Proc. ACM-
SIGMOD Inr'l Conf. on Management of Data, San
Francisco, 1987.

Jensen, K., and Wirth, N., Pascal: User Manual
and Report, Springer-Verlag, New York, 1975.

Kernighan, B., and Ritchie, D., The C Program-
ming Language, Prentice-Hall, 1978.

Khoshafian, S., Bates, D., and DeWitt, D.,
"Efficient Support of Statistical Operations," I[EEE
Trans. on Software Eng., vol. SE-11, no. 10, Oct.
1985.

Liskov, B., Snyder, A., Atkinson, R., and Schaf-
fert, C., "Abstracdon Mechanisms in CLU,"
Comm. ACM, 20(8), Aug. 1977.

Maier, D., et. al., "Development of an Object-
Oriented DBMS," Proc. of the Conf. on Object-
Oriented Programming Systems, Languages and
Applications, Portland, Oregon, Sept. 1986.

Manola, F., and Dayal, U, "PDM: An Object-
Oriented Data Model," Proc. Int'l. Workshop on
Object-Oriented Database Systems," Asilomar,
California, Sept. 1986.

Maryanski, F., et. al., "The Data Model Compiler:
A Tool for Generating Object-Oriented Database
Systems," Proc. Int'l. Workshop on Object-
Oriented Database Systems," Asilomar, Califor-
nia, Sept. 1986.

[OBri86]

[Ong84]

[Osbo86]

[Rich86]

[Rowe79]

[Scha86]

[Schm77]

[Schw86]

[Shop79]

[Ston81]

[Ston85]
[Ston86a]

[Ston86b]

[Ston86¢]

[Stro86]

[Wass79]

[Zani83]

O’Brien, P., Bullis, B., and Schaffert, C., "Per-
sistent and Shared Objects in Trellis/Owl," Proc.
of the Int’'l Workshop on Object-Oriented Data-
base Systems, Pacific Grove, CA, Sept. 1986.

Ong, J., Fogg, D., and Stonebraker, M., "Imple-
mentation of Data Abstraction in the Relational
Database System INGRES," SIGMOD Record
14(1), March 1984,

Osborn, Sylvia L., and Heaven, T. E., "The Design
of a Relational Database System with Abstract
Data Types for Domains," ACM Transactions on
Database Systems, 11(3), Sept., 1986.

Richardson, J.,, "The E Reference Manual,"
EXODUS Working Document, University of
Wisconsin, Madison.

Rowe, L., and Schoens, K., "Data Abstraction,
Views, and Updates in RIGEL," Proc. of the
ACM-SIGMOD Int'l Conf. on Management of
Data, 1979.

Schaffert, C., et. al, "An Introduction to
Trellis/OwL," Proc. of the Conf. on Object-
Oriented Programming Systems, Languages and
Applications, Portland, Oregon, Sept. 1986.

Schmidt, I.W., "Some High Level Language Con-
structs for Data of Type Relation,” ACM Trans. on
Datrabase Sys., 2(3), 1977.

Schwartz, P. et. al., "Extensibility in the Starburst
Database System," Proc. Int'l. Workshop on
Object-Oriented Database Systems," Asilomar,
California, Sept. 1986.

Shopiro, J.E., "THESEUS — A Programming
Language for Relational Databases,” ACM Trans.
on Database Sys., 4(4), 1979.

Stonebraker, M., "Operating System Support for
Database Management," Communications of the
ACM, 24(7), July, 1981.

Stonebraker, M., personal communication.

Stonebraker, M., "Inclusion of New Types in Rela-
tional Database Systems," Proc. Second Int’'l Conf.
on Database Engineering, Los Angeles, Califor-
nia, February 1986.

Stonebraker, M. and Rowe, L., "The Design of
POSTGRES," Proc. of the ACM-SIGMOD Inr'l
Conf. on Management of Data, Washington D.C.,
1986.

Stonebraker, M., "Object Management in
POSTGRES Using Procedures," Proc. Int'l.
Workshop on Object-Oriented Database Systems,
Asilomar, California, Sept. 1986.

Stroustrup, B., The C++ Programming Language,
Addison-Wesley, Reading, 1986.

Wasserman, A. "The Data Management Facilities

of PLAIN," Proc. of the ACM-SIGMOD Int'!
Conf. on Management of Data, 1979.

Zaniolo, Carlo, "The Database Language GEM,"
Proc. of the ACM-SIGMOD Int'!l Conf. on
Management of Data, 1983.

