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This paper concemns the design of editors that perform checks on a language’s context-dependent constraints. Our par-
ticular concern is the design of an efficient, incremental analysis algorithm for systems based on the attribute-grammar
model of editing.

With previous incremental evaluation algorithms for arbitrary noncircular attribute grammars, the editing model
required there to be a restriction on the operation that moves the editing cursor: moving the cursor was limited to just a
single step in the tree — either to the parent node or to one of the child nodes of the current cursor location. This paper
describes a new updating algorithm that can be used when an arbitrary movement of the cursor in the tree is permitted.
After an operation that restructures the tree, the tree’s attributes can be updated with a cost of
O ((1 + |AFFECTEDI)- ‘/r;), where m is the size of the tree and AFFECTED is the subset of the tree’s atiributes that
require new values, when the cost is amortized over a sequence of tree modifications. The editing cursor may be
moved from its current location to any other node of the tree in a single, unit-cost operation.
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1. INTRODUCTION

Because of their ability to declaratively express a wide variety of context-dependent relationships in dif-
ferent languages, attribute grammars [Knuth 1968] are a good basis for specifying and generating
language-based editors. Such editors represent programs and documents as (consistently attributed) deriva-
tion trees of an underlying grammar. At each stage during editing, the editing cursor is positioned at a
node of the derivation tree. An editing session is viewed as a succession of cursor motions and operations
that restructure the tree, such as subtree pruning and grafting [Demers et al. 1981].

One example of an editor-generating system that is based on the attribute-grammar model is the Syn-
thesizer Generator [Reps & Teitelbaum 1984, 1985, 1987]. With this system, a language’s context-
dependent constraints are incorporated in an editor by defining an attribute grammar in which certain attri-
butes receive values that indicate whether or not the constraints are satisfied. In addition to the attribute-
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grammar component of an editor specification, the editor designer also furnishes an unparsing specification
that defines how programs are formatted on the screen. Atiributes used in the unparsing specification cause
the screen to be annotated with values of attribute instances. In particular, the attributes that indicate satis-
faction or violation of context-dependent constraints can be used to annotate the display to indicate the
presence or absence of errors.

When a derivation tree is restructured, the values of the atiributes at the modification point, which were
previously consistent, may no longer have consistent values. Incremental analysis of context-dependent
language features is performed by updating attribute values throughout the tree in response to
modifications. If an editing operation modifies a program in such a way that formerly satisfied constraints
are now violated (alternatively, formerly violated constraints are now satisfied), the attributes that indicate
satisfaction of constraints will receive new values; the changed image of these attributes on the screen pro-
vides the user with feedback about new errors introduced and old errors corrected.

Fundamental to this approach is the idea of an incremental attribute evaluator, an algorithm to produce a
consistently attributed tree after each restructuring operation. After each modification to the tree, only a
subset of the tree’s attributes, denoted by AFFECTED, requires new values. When updating begins, it is
not known which attributes are members of AFFECTED; AFFECTED is determined as a result of the
updating process itself. Nevertheless, there exists an atiribute updating algorithm that uses
O (1AFFECTED) steps, where an application of an attribute definition function is counted as an atomic
step [Reps 1982, Reps et al. 1983, Reps 1984]. Because O (1 AFFECTED/) is the minimal amount of work
required to update a derivation tree after a modification, this algorithm is asymptotically optimal.
{Throughout the rest of the paper, the editing model described above will be referred to as the standard
editing model and the updating algorithm described in [Reps 1982, Reps et al. 1983, Reps 1984] as the
standard updating algorithm).

After the tree has been modified, an incremental attribute evaluator traverses parts of the derivation tree
to establish a consistent set of values, reevaluating some of the tree’s attributes as it progresses. To choose
the next attribute to reevaluate during this process, the algorithm may make use of auxiliary information.
For instance, the standard updating algorithm makes use of information about the dependencies that exist
among the tree’s attributes; part of this information is stored at the individual nodes of the tree.

We must also consider the cost imposed on each editing operation for keeping this auxiliary information
up-to-date. For example, besides making the value of one or more attributes inconsistent, a restructuring
operation may also invalidate some of the auxiliary information that is used by the incremental attribute
evaluator, Consequently, we can think of there being two phases to updating a tree, although in some algo-
rithms they may actually be interleaved. First comes the phase for overhead-updating, during which the
auxiliary information used to choose the correct order for reevaluating attributes is updated. This is fol-
lowed by the phase for attribute-updating, when the tree or the tree’s attribute dependency graph is
traversed and attributes are reevaluated. (The auxiliary information may also have to be updated after a
cursor motion operation, so the term overhead-updating will also refer to any updating carried out after a
single operation that moves the editing cursor).

With the standard algorithm for attribute updating, the limitation on cursor-movement operations was
introduced to prevent the overhead-updating costs from dominating the attribute-updating costs. If arbi-
trary cursor movements are permitted, the overhead-updating cost associated with moving the cursor is
proportional to the length of the path in the tree from the cursor’s former site to its new site. In contrast,
when the cursor’s movement is restricted to a single step in the tree, overhead-updating costs can never be
more than a constant amount.



This paper describes a new algorithm for updating attributes when arbitrary movements of the cursor in
the tree are permitted; if this algorithm is used as an editor’s incremental attribute evaluator, then the edit-
ing cursor can be moved from its current node to any other node of the tree in a single, unit-cost operation.
After an operation that restructures the tree, the tree’s attributes can be updated with a cost of
O ((1+ | AFFECTEDI)-Vim ), where m is the size of the tree, when the cost is amortized over a sequence
of tree modifications.

One novelty of the result is that the algorithm’s behavior is analyzed by an amortized-cost measure. One
part of the algorithm involves a delayed-update strategy of the kind used in [Tsakalidis 1984]. (One previ-
ous paper on attribute updating reports an amortized-cost result [Reps et al. 1986]; however, in that algo-
rithm, the amortized cost arises only because it makes use of link-cut trees, a data structure for which a
good amortized-cost complexity result is known [Tarjan 1983]).

A major drawback to the use of attribute grammars in language-based editors has been that attributes can
only depend on neighboring attributes in a program’s syntax tree. There have been several proposals to
overcome this limitation, including [Demers et al. 1985], [Johnson & Fischer 1982, 1985], [Hoover 1986],
and [Reps et al. 1986]. In trying to design a better algorithm for this sort of generalized updating problem,
a colleague conjectured that for some sequences of changes to some graphs, each change requires an
amount of overhead-updating that is linear in the size of the graph. He conjectured further that this situa-
tion could occur with attribute dependency graphs of (ordinary) attribute grammars. The algorithm
presented in this paper rebuts the latter conjecture.

It should be pointed out that the algorithm described in this paper is probably only of theoretical interest
because arbitrary movements of the cursor are already permitted if, as is the case for nearly all examples
that arise in practice, the editor specification falls into the ordered subclass of attribute grammars, defined
in [Kastens 1980]. For ordered grammars, all auxiliary information used to update the tree is static and
therefore unchanged by either a cursor motion or a tree restructuring; therefore, the updating algorithms
described in [Yeh 1983] and [Reps & Teitelbaum 1987] are optimal, even in the presence of arbitrary cur-
Sor motions.

After a brief introduction of terminology and notation in Section 2, the new attribute updating method is
described in Section 3.

2. TERMINOLOGY AND NOTATION

An attribute grammar is a context-free grammar extended by attaching attributes to the terminal and non-
terminal symbols of the grammar, and by supplying attribute equations to define attribute values [Knuth
1968]. In every production p: X ¢ — X1, ..., X, each X; denotes an occurrence of one of the grammar sym-
bols; associated with each such symbol occurrence is a set of attribute occurrences corresponding to the
symbol’s attributes.

Each production has a set of atiribute equations; each equation defines one of the production’s attribute
occurrences as the value of an attribute-definition function applied to other attribute occurrences in the pro-
duction. The attributes of a symbol X, denoted A (X), are divided into two disjoint classes: synthesized
attributes and inherited attributes. Each attribute equation defines a value for a synthesized attribute
occurrence of the left-hand side nonterminal or an inherited attribute occurrence of a right-hand side sym-
bol.

This paper deals only with attribute grammars that are well formed: An attribute grammar is well formed
when the terminal symbols of the grammar have no synthesized attributes, the root symbol of the grammar
has no inherited attributes, and each production has exactly one attribute equation for each of the left-hand



side nonterminal’s synthesized attribute occurrences and for each of the right-hand side symbols’ inherited
attribute occurrences.

Example. As a running example to illustrate the reevaluation algorithm, we will use a language of arith-
metic expressions that is extended with a lez construct for binding identifiers to values. The abstract syntax
of the language is defined by the following (ambiguous) context-free grammar:

ROOT — exp

exp —> exp + exp

exp ~> exp — exp

exp —> exp * exp

exp — exp ** exp

exp — let id = exp in exp ni
exp — id

exp —> integer

We define a scheme to compute an expression’s value by attaching an attribute val to each exp nonterminal
to represent the subexpression’s value. To define this attribute, we must also know the bindings of
identifiers established in enclosing let clauses; this is represented by the attribute env of exp. The equations
defining these attributes are:

ROOT — exp
exp.eny =&
exp —> exp + exp
expy.val = expy.val +exps.val
expy.env = exp).eny
exps.env = exp,.env
exp —> exp — exp
expy.val = expy.val —exps.val
exp,.env = exp.env
€Xp3.env = exp.env
exp — exp * exp
expy.val = expy.val * expy.val
€xXpo.env = exp,.eny
€Xp3.env = expy.eny
exp — exp ** exp
expy.val = expy.val ** exps.val
€Xpy.env = exp.eny
€Xp3.env = expi.env
exp — let id = exp in exp ni
expy.val = expa.val
exp,.env = exp,.env
exps.env =expi.env W {<id,exp,.val >}
exp —> id
exp.val =LookUp(id, exp.env)
exp —> integer
exp.val = ValueOf(integer)

The value of the entire expression is represented by the val attribute of the exp nonterminal derived from
the tree’s root.

A derivation tree node that is an instance of symbol X has an associated set of atiribute instances
corresponding to the attributes of X. (We shall sometimes shorten ‘‘attribute instances’” and ‘‘attribute
occurrences’’ to ‘‘attributes’’; however, the intended meaning should be clear from the context). An artri-
buted tree is a derivation tree together with an assignment of either a value or the special token null to each
attribute instance of the tree. To analyze a string according to its attribute-grammar specification, first con-
struct its derivation tree with an assignment of null to each atiribute instance, and then evaluate as many



attribute instances as possible, using the appropriate attribute equation as an assignment statement. The
latter process is termed attribute evaluation. An attribute instance in an attributed derivation tree is said to
be consistent if its value is equal to the value obtained by evaluating the right-hand side of its defining attri-
bute equation. An attributed derivation tree is consistently attributed if all of its attribute instances are con-
sistent.

Functional dependencies among attribute occurrences in a production p (or attribute instances in a tree

T) can be represented by a directed graph!, called a dependency graph, denoted by D (p) (respectively,
D (T)) and defined as follows:

a)  For each attribute occurrence (instance) b, the graph contains a vertex b ",

b) If attribute occurrence (instance) b appears on the right-hand side of the attribute equation that
defines attribute occurrence (instance) ¢, the graph contains an edge (b’, ¢ "), directed from b’ to ¢’.

An attribute grammar that has a derivation tree whose dependency graph contains a cycles is called a circu-
lar attribute grammar. This paper deals only with non-circular grammars; that is, grammars for which the
dependency graph of any derivation tree is acyclic.

Example. Figure 1 shows a derivation tree for the expression ““leta=2inletb=3inletc=1inb**2
— 4 * g % ¢ nini ni”’. Nonterminals are connected by dashed lines; the dependency graph consists of the
instances of the attributes env and val, linked by their functional dependencies, shown as solid arrows.
(The solid arrows emanating from the constant & and the tree’s id and integer leaves indicate dependen-
cies on constants and tree components, respectively; strictly speaking, they are not part of the dependency
graph). The subscripts on the interior nodes will be used in subsequent examples that refer to Figure 1.

Creating a file using a language-based editor entails growing a derivation tree. During development, a
file tree is a partial derivation tree that may contain unexpanded nonterminals. This is potentially a prob-
lem because at an unexpanded nonterminal X , we have no means for giving values to the synthesized attri-
butes of X or to any of their successors. This conflicts with our desire to maintain values for every attri-
bute of the tree.

To avoid this problem, we require that the grammar include a completing production, X —» _|_, for each
nonterminal symbol X. The symbol _|_ denotes ‘‘unexpanded’’, and the attribute equations of the complet-
ing production define values for the synthesized attributes of X. By convention, an occurrence of an unex-
panded nonterminal is considered to have derived | . By this device, all partial derivation trees (from the
user’s viewpoint) are considered complete derivation trees (from the editor’s viewpoint), and so a program
tree may be fully attributed at any stage of development.

3. AN INCREMENTAL EVALUATOR WITH COST O(AFFECTED]|- Ym)

This section describes a new incremental attribute evaluation algorithm for arbitrary noncircular grammars.
Although it is more expensive than the standard updating algorithm if cursor motions are restricted to sin-
gle steps in the tree, the new algorithm performs better if arbitrary movement of the cursor is permitted.
When the cost of attribute updating is amortized over a sequence of editing operations, the cost is
O ((1+ 1 AFFECTEDI)- %), where m is the size of the tree. (The constant of proportionality depends on
the quantities MaxAutrs, the maximum number of attributes of any grammar symbol, and MaxSons, the

‘A directed graph G =(V ,E) consists of a set of vertices V and a set of edges E, where E ¢V XV. Eachedge (b,c)€ E is direcied
from b to ¢. Throughout the paper, the term ‘‘vertex’’ is used to refer to elements of dependency graphs, whereas the term *‘node”
refers to elements of derivation trees.
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Figure 1. A derivation tree and its dependency graph.

maximum number of symbols on the right-hand side of any production, both of which are constants for a

given attribute grammar).

a)

Throughout the discussion of our algorithm, we make the following assumptions:

We assume that any of the children of a tree node can be accessed in constant time, that each node is
labeled with a descriptor that can be used to determine the node’s arity, and that a constant number
of bits are associated with each node so that insertion, deletion, and membership operations on a set
of tree nodes can be implemented as unit-time operations.



b)  We assume that all operations introduce at most a constant number of new nodes into the tree. This
assumption is made purely to simplify the presentation of the method. As stated, it forbids cut and
paste operations on subirees; however, the assumption can be relaxed by modifying the algorithm so
that it is applied to the entire ‘‘forest’” of editable objects rather than fo just a single tree. If this step
is taken, we must still retain the weaker assumption that each editing operation creates at most a con-
stant number of new nodes in the forest.

c)  We assume that some of the nodes in the tree are labeled with their subordinate and superior charac-
teristic graphs. A node’s characteristic graphs provide a convenient representation of transitive
dependencies among the node’s attributes. The vertices of the characteristic graphs at node r
correspond to the attributes of r; the edges of the characteristic graphs at r correspond to transitive
dependencies among r ’s attributes.

The subordinate characteristic graph at r is the projection of the dependencies of the subtree rooted at »
onto the attributes of ». To form the superior characteristic graph at node r, we imagine that the subtree
rooted at » has been pruned from the derivation tree, and project the dependency graph of the remaining
tree onto the attributes of ». To define the characteristic graphs precisely, we make the following
definitions:

a)  Given directed graphs A = (V,, E4) and B = (V3, Ep), that may or may not be disjoint, the union of
A and B is defined as:

AvuB=WV,,uVg, E4uEp)

b)  The deletion of B from A is defined as:
A -B =(Vy,E4 - Ep)
Note that deletion deletes only edges.

¢)  Given a directed graph A =(V,E), a path from vertex a to vertex b is a sequence of vertices,
WiV emvil, such thatt a=v,, b=v, and { (v;,v; ) li=1,..,k~1} cE.

d) Given a directed graph A =(V,E) and a set of vertices V' cV, the projection of A onto V' is
defined as:

AV =WV E")

where E” = {(v,w) | v,w € V" and there exists a path from v to w in A that does not pass through

any other elements of V'}.
The subordinate and superior characteristic graphs of a node r, denoted ».C' and r.C, respectively, are
defined formally as follows: Let » be a node in tree T, let the subtree rooted at » be denoted T, and let the
attribute instances at r be denoted A (r), then the subordinate and superior characteristic graphs at r
satisfy:

r.C =D (T)A(r)
r.C =D (T)-DT,)NA({r)

A characteristic graph represents the projection of attribute dependencies onto the attributes of a single
tree node; consequently, for a given grammar, each graph is bounded in size by some constant. For exam-
ple, if a characteristic graph is represented with a dependency matrix, it requires no more than MaxAttrs®
bits.



The characteristic graphs are employed by Propagate, the attribute updating procedure, to determine the
order in which attributes get reevaluated. However, a single subtree replacement can radically alter transi-
tive dependencies among attributes; as a consequence, a subtree replacement at node r can invalidate
characteristic graphs arbitrarily far away from r. Maintaining every characteristic graph in the tree would
make subtree replacements far too expensive — the overhead-updating cost to update the tree’s characteris-
tic graphs would dominate the attribute-updating costs.

One of the key ideas used in the standard updating algorithm is to only make use of a subset of all of the
tree’s characteristic graphs. This idea is also used in our new updating algorithm, but the subset of the
tree’s characteristic graphs that is used in the new algorithm is quite different from the subset that would be
maintained by the standard algorithm. In the new algorithm, the nodes of the tree at which characteristic
graphs are maintained are chosen to that they partition the tree in a balanced fashion. In particular, they are
chosen so that an m -node tree is partitioned into O (Vm ) components, with each component no larger than

0 (m).

The characteristic graphs of partition-set nodes get created when the tree is partitioned, and they are
updated each time the tree is modified. The invariant that is maintained by all editing operations is that
after each operation, the subordinate and superior characteristic graphs are up-to-date for each tree node in
the partition set. Although there are O (‘/'r;) such graphs, they can each be created in time O (\/—r;z"); hence,
their total contribution to the cost of the partitioning step is O (m). After the tree is modified, each of the
00m) graphs can be updated in unit time; thus, the incremental attribute evaluator’s overhead-updating
costis O (‘/E).

The actual updating of attribute values is carried out in a fashion very similar to the way updating is per-
formed by the standard algorithm. The chief difference is that expansions of the graph structure used to
schedule attribute reevaluations are done on a per-component basis in the new algorithm, rather than on a
per-production basis, as is done in the standard algorithm. Because an expansion is performed only when a
member of AFFECTED has been found and each component is of size 0(\/;1—), the total cost of the
attribute-updating phase amounts to O (| AFFECTED| -V ).

The second key idea used in the new updating algorithm is that the partition of the tree is not static: from
time to time the tree is repartitioned. In particular, if the tree contains m nodes when partitioned, the parti-
tion is used for the next Vm steps, at which point the tree is repartitioned according to its current size and
shape. Because of the assumption that each editing transaction introduces at most a constant number of
new nodes, Ym steps can introduce at most O (‘/_—) nodes; thus, throughout the sequence of Vm steps,
each component never contains more than O (‘/m ) nodes. Although the cost of repartitioning is O (m), this
cost is amortized over the previous m operations, which just adds an additional O (‘/— ) to the cost of
each operation; the extra cost gets absorbed in the constant of proportionality of the term
O ((1+ | AFFECTED!)-Vm ).

The ideas that have been outlined above are presented in detail in the next three sections.

3.1. Partitioning®

A set of nodes P partitions a tree T into components, where a component is a maximal-size, connected
region of T in which none of the interior nodes are elements of P. For example, the set {(E,C,G ) parti-
tions the tree:

?The presentation in this section borrows heavily from that given in [Reps & Demers 1987].



into the four components:

) (A ©) ©)
A A A~ §
A € 5 FC
7 \ J
D E

Werefer to A, E, C, and GG as the roots of the respective components, and {D,E,C}, {H,I}, {(F,G},
and {J ] as their respective leaves. A leaf that is also a partition-set node is referred to as an interface
node. For example, E and C are the interface nodes of component (1).

The goal of the partitioning step is to divide the derivation tree into O (Vm ) components, each of which
(a) is no larger than O (\/E) nodes, and (b) adjoins at most a constant number of other components. This is
accomplished in two phases: the first phase partitions the derivation tree into components of maximum size
0 (Vm ); the second phase further subdivides the components found during the first phase so that each com-
ponent adjoins at most MaxSons + 1 other components. Because both phases of partitioning carry out a
postorder traversal of the tree, in practice one would probably combine the two phases and partition the
tree during a single traversal.

The third phase of the tree-partitioning operation determines characteristic graphs for each of the nodes
in the partition set found by the first two phases.

A fourth phase of partitioning is also carried out. The motivation for this phase, as well as its descrip-
tion, is put off until Section 3.3.

Phase 1. The first phase of partitioning is carried out using the function Partition, stated in Figure 2.
Partition performs a scan of the tree, starting from the root, partitioning the tree into components that are
each no larger than O (Vm ) nodes. Partition is parameterized by an arbitrary constant SplittingFactor; Par-
tition constructs the set PartitionSet bottom-up, by traversing the nodes of T’ in postorder with the recursive
function PartitionBySize. PartitionSet is initially empty, and PartitionBySize adds a new node to Partition-
Set whenever a node is found that is at the root of a component larger than '\/-n7/Sp1ittingFactor.
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function Partition(T") returns a set of tree nodes
declare
T': a derivation tree
m: an integer
PartitionSet: a set of tree nodes
begin
PartitionSet := &
m := the number of nodes in T
PartitionBySize(root(T'))
return(PartitionSet)
end

function PartitionBySize(Y ) returns an integer
declare
Y: atree node
Y;: the i* child of ¥
L, i: integers
PartitionSet: a set of tree nodes (global)
m: an integer (global)
begin
L:=1
for i := 1 to NumberOfChildren(Y) do
L :=L + PartitionBySize(Y;)
od
if L > VYm /SplittingFactor then
Insert Y into PartitionSet

L:=1
fi
retarn(L )

end

Figure 2. Partition T into O (‘/-r;L—) components of size O (‘/;1— ), where m is the number of nodes in T".

For each node Y, PartitionBySize computes how large a component there would be if ¥ were the root of
a component. Each recursive call on PartitionBySize(Y;), where ¥; is the i child of Y, either returns 1, if
Y; is a leaf, or it returns how large a component there would be if ¥; were the root of a component; thus,
the quantity returned from each call ranges from 1 to \/r_n—/SplittingFactor (assuming that
m > SplittingFactor?)>. The size of the component rooted at ¥ is computed by adding 1 (for Y itself) to the
sum of the values returned by the calls to PartitionBySize with ¥’s children. Because Y has at most Max-
Sons children, the number of nodes in the component can be no larger than
m MaxSons/SplittingFactor) + 1. Because each node is visited once during the postorder traversal of T,
the total running time of Partition is O (m).

*We are interested in the asymptotic behavior of the updating algorithm; for small m, the tree may be reevaluated exhaustively.
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Except for the component containing the root of the tree, the root of each component is shared by exactly
one other component; thus, for the set of components Cp, defined by a partition P, the sum of the com-
ponents’ sizes is related to the total number of nodes m by:
m=14+ % (lcl-1)

ceCe

Except possibly for the component containing the root of the tree, each component defined by the set Parti-
tionSet contains at least (Vm /SplittingFactor) + 1 nodes, so

m 2 1+ (1C panttionser — 1)(¥m /SplittingFactor)

Solving for | C pyisionse! >, We get:
{(m—1)SplittingFactor +
m

! CParﬁtionSct! < 1

< (SplittingFactor)(‘/;'z-) +1

Thus, the first phase of partitioning finds no more than (Splil[ingFactor)(\/Z) + 1 components, each con-
taining no more than (Vm MaxSons/SplittingFactor) + 1 nodes.

The only operations performed on PartitionSet are insertions and, in the next phase, membership tests, so
PartitionSet can be implemented using a single bit at each tree node and no other additional storage.

Example. The tree shown in Figure 1 has 30 nodes. If the splitting factor is chosen to be V30/7, so that
‘/;n_/SplittingFactor=7, Partition returns the set {exps, exp;s,expg}, which partitions the tree into four
components that have 6, 8, 9, and 10 nodes.

Phase 2. The components found during the first phase of partitioning may be adjacent to as many as
0 (\/;r_z_) other components. The second phase of partitioning further subdivides the components found in
the first phase so that each component is adjacent to no more than MaxSons + 1 other components. This
latter property is needed by both the attribute updating step described in Section 3.2 and to reduce the space
and time requirements of the projection step that is described in Section 3.3. The second phase of partition-
ing at most doubles the total number of components.

The second phase of partitioning is carried out using the function AddAncestors, stated in Figure 3.
AddAncestors constructs the set NewPartition bottom-up, by traversing the nodes of T in postorder with
the recursive function AddAncestorsinComponent. NewPartition is initially empty, and AddAncestorsIn-
Component adds a new node to NewPartition whenever a node is found that is the lowest common ancestor
of some pair of nodes that belong to OldPartition. Note that because for each node X,
LowestCommonAncestor(X , X ) =X, every node in OldPartition is put in NewPartition.

For each node Y, AddAncestorsInComponent returns true if the subtree rooted at Y contains a member
of OldPartition. The loop over the children of ¥ generates a recursive call on AddAncestorsInComponent
for each child ¥;, and counts how many children contain a member of OldPartition. If the count is two or
more, (or if Y itself is a member of OldPartition), then Y is the lowest common ancestor of some pair of
nodes in OldPartition, and is added to NewPartition. Because each node is visited once during the pos-
torder traversal of T, the total running time of AddAncestors is O (m).

The partition set computed by AddAncestors has two important properties:
a)  Each component defined by NewPartition is adjacent to at most MaxSons + 1 other components.

b)  The number of elements in NewPartition is at most 2 | OldPartition | — 1.
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function AddAncestors(T, OldPartition) returns a set of tree nodes
declare
T': a derivation tree
OldPartition, NewPartition: sets of tree nodes
begin
NewPartition := &
AddAncestorsInComponent(root(T'))
return(NewPartition)
end

function AddAncestorsInComponent(Y) returns boolean
declare
Y: atree node
Y;:the i* child of Y
i, SubordinatePartitionNodes: integers
OldPartition, NewPartition: sets of tree nodes (global)
begin
SubordinatePartitionNodes := 0
for i :=1 to NumberOfChildren(Y¥') do
if AddAncestorsiInComponent(Y;) = true then
SubordinatePartitionNodes := SubordinatePartitionNodes + 1
fi
od
if Y € OldPartition then
Insert Y into NewPartition
return(true)
else if SubordinatePartitionNodes = 0 then return(false)
else if SubordinatePartitionNodes = 1 then return(true)
else
Insert ¥ into NewPartition
return(true)
fi
end

Figure 3. Given OldPartition, a set of mnodes in 7T, build the set NewPartition, where
NewPartition= {Z | Z=LowestCommonAncestor(X ,Y ), where X ,Y € OldPartition}.

To see that property a) holds, consider the value of the variable SubordinatePartitionNodes at a node ¥ that
is a member of NewPartition. SubordinatePartitionNodes contains the number of leaves of the component
rooted at ¥ that connect to other components; this number can be no larger that MaxSons. In addition,
there is a connection to one more component at ¥ itself.

Property b) is shown by induction on the height of the tree: Assume that b) holds when AddAncestorsIn-
Component is used to repartition trees of height less than height(7"). In particular, it holds for the subtrees
of root(T"), denoted T;, and the partition sets OldPartition;, where OldPartition; denotes the subset of Old-
Partition whose elements are nodes of T;. The recursive calls on AddAncestorsiInComponent generate the
sets NewPartition; c NewPartition, for which, by the inductive assumption,



—13 -

[ NewPartition; | <210ldPartition; ! —1

If the root of T has more than one child, then
NumberOfChildren(root(T))
INewPartition| <1+ > INewPartition; |

ie=1

NumberOfChildren(root(T))
<1+ Y (2101dPartition; | — 1)

i=1

<1+ 210ldPartition | -2

= 21 OldPartition| — 1

as was to be shown. A similar argument handles the case where the root has only a single child.

Example. AddAncestors happens to add no additional nodes to the partition set {exps, exp;s, exp;s) that
partitions the tree of Figure 1.

Phase 3. The third phase of partitioning determines the characteristic graphs for each of the nodes in the
partition-set found by the first two phases. This phase is carried out using the procedure BuildCharacteris-
ticGraphs, stated in Figure 4. BuildCharacteristicGraphs constructs the tree’s subordinate characteristic

procedure BuildCharacteristicGraphs(T', P)
declare
T: a derivation tree
P: aset of tree nodes
X,Y: tree nodes
i: an integer
X;: the i* child of X
p: aproduction
begin
for each node X in a postorder traversal of T do
p := the production that applies at X
XC=DPE)vXiC v ' UXNumberosonsx)-C YA X)
od
for each node X in a preorder traversal of T’ do
Y :=parent(X)
i := the son number of X with respectto ¥
p :=the production that applies at ¥
XC=QD@E)vYC vY.Cu - VY, € uYyCu U Y Numberomsonsr)-C YA (X)
od
Discard X.C and X.C forall X ¢ P
end

Figure 4. For eachnode X in P, determine the graphs X.C and X C.
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graphs bottom-up, during a postorder traversal of the tree. By properties of the projection operation, if X is
the parent node of a production instance p that consists of X and X ’s children X 4, ..., X, we have:

XC=D@)vXi.C v U XNumberOtSonsx)-C A (X)

The corresponding assignment statement can be evaluated in constant time using a constant amount of
space; thus, the space and time cost of the postorder traversal is linear in the size of the tree.

The superior characteristic graphs are constructed during a second traversal of the tree, this time in
preorder. The property used during this pass is that if X is the i child in a production instance p that con-
sists of parent node ¥ and Y’s children Yy, ..., ¥;1,X , Yii1, ..r Y NumberOfSons(r)> We have:

XC=@@)vYC uYiC v+ VY€ VY€ v U Y Numberotsonsry-C VA (X)

As with the traversal that builds the subordinate characteristic graphs, the cost of the traversal that builds
the superior characteristic graphs is linear in the size of the tree.

The final step of BuildCharacteristicGraphs is to discard all graphs of nodes that are not members of the
set P. (In our case, P is a partition set created by the first two phases of the partitioning operation).

3.2. Updating Attribute Values

The standard algorithm for incremental attribute evaluation achieves optimal behavior by obeying the fol-
lowing design heuristic:
If, in the course of propagating new values, an attribute is ever (temporarily) reassigned a value other than
its correct final value, spurious changes are apt to propagate arbitrarily far beyond the boundaries of AF-
FECTED, leading to suboptimal running time. To avoid this possibility, a change propagator should
schedule attribute reevaluations such that any new value computed is necessarily the correct final value.

That is, an attribute should not be reevaluated until all of its arguments are known to have their correct final
values.

[Reps et al. 1983]

In the standard updating algorithm, correct choices are made by taking into account both direct and transi-
tive dependencies among attributes. The standard algorithm can be understood as a generalization of
Knuth’s topological sorting algorithm. Like topological sorting, it keeps a work-list of atiributes that are
ready for reevaluation (enumeration); an attribute is placed on the work-list when its in-degree is reduced
to zero in a scheduling graph whose edges reflect dependencies among attributes that have not yet been
reevaluated (enumerated). Whereas in topological sorting the vertices of the scheduling graph are known a
priori, in the attribute updating algorithm, the set of vertices of the scheduling graph is generated dynami-
cally at the same time as it is being enumerated.

The scheduling graph maintained by the algorithm is of crucial importance in finding an optimal
reevaluation order. The initial scheduling graph represents dependencies among the atiribute instances of
the point of subtree replacement. The initial work-list consists of all vertices of the graph with in-degree 0,
as these represent the attributes whose arguments are guaranteed to have consistent values. As updating
progresses, the scheduling graph expands when changes propagate to attributes that are arguments of attri-
butes outside the current graph.

During this process, the presence of edges representing transitive dependencies is particularly important
in determining the optimal evaluation order. The presence of such edges ensures that an attribute is never
updated until all of its ancestors have their correct, final values. Conversely, removing such an edge allows
the algorithm to dispense in unit time with areas of the tree in which attribute values do not change.



— 15—

The new attribute updating algorithm, called Propagate, is presented in Figure 5. Propagate is quite
similar to the standard updating algorithm in the way it combines a topological-sort operation that removes
edges from the scheduling graph with an expansion operation that causes new vertices and edges to be
added to the scheduling graph. As long as attributes do not change value, the algorithm acts like topologi-
cal sort applied to the scheduling graph; however, an expansion is triggered as soon as the current schedul-
ing graph does not cover region of the tree in which attributes have changed value.

Expansions of the scheduling graph are handled by the calls on ExpandIfNecessary, given in Figure 6,
performed when an attribute of a partition-set node changes value. In ExpandIfNecessary, this attribute is
tested to determine whether it has successors that are not among the attributes represented by the vertices

procedure Propagate(T, r)
declare
T: a fully attributed derivation tree
r: a nonterminal node of T containing any inconsistent attributes of T
S': a set of attribute instances
M : adirected graph
b, c: attribute instances
OldValue, NewValue: attribute values
K: a component of T’
k: atree node

begin
if r € T .PartitionSet then
M =rC urC
else

K :=the component of T that contains r
M =D (K) 0100tK ).C U ¢ interfacs nodes of K*-C
fi
S :=the set of vertices of M with in-degree 0 in M
while § = & do
Select and remove a vertex b from §
OldValue := value of b
evaluate b
NewValue := value of b
if OldValue # NewValue and TreeNode(b ) € T.PartitionSet then
ExpandIfNecessary(T,M,5,S5)
fi
while there exists ¢, a successor of b in M do
Remove edge (b,c) from M
if in-degreey (¢ ) = 0 then Insert ¢ into S fi
od
od
end

Figure 5. Incremental attribute evaluation.
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procedure ExpandIfNecessary(T, M, b, S)
declare
T': a fully attributed derivation tree
M, Append, Discard: a directed graph
b, c: attribute instances
S a set of attribute instances
K: a component of the tree
k: atree node
begin
if there exists ¢, a successor of b in D (T) that is not in M then
if TreeNode(c) is a child of TreeNode(d ) then
K :=the component of T whose root is TreeNode(b )
Append :=D (K)o, interfacke)nodes of kkC
Discard := TreeNode(b ).C
else /* TreeNode(c) is the parent or is a sibling of TreeNode(b ) */
K :=the component of T in which TreeNode(b ) is a leaf
Append =D(K) urOOt(K_?'C Yk e interface nodexkof K, k#TreeNode(b )k'C
Discard := TreeNode(b).C
fi
M = (M —Discard) v Append
Insertinto S all vertices of Append whose in-degree in M is 0

end

Figure 6. Expanding the scheduling graph.

of the scheduling graph. If such successors exist, the graph is expanded to take into account these attri-
butes and their functional dependencies. Note that in ExpandIfNecessary an expansion introduces all the
vertices and edges corresponding to attributes and dependencies in an entire component.

‘When Propagate terminates, the nodes of scheduling graph M consist of the attribute instances that are
part of any component in which an attribute changed value. On termination, M has no edges at all; all
dependency graph edges inserted into M by the calls on ExpandIfNecessary have been removed from M
by the topological evaluation process.

Note that, as updating progresses, direct dependencies among attributes in a new component of the tree
are included in the scheduling graph only if the component contains an attribute instance that changed
value. The number of vertices and edges introduced into M by an expansion is bounded by O (Vm ), the
maximum size of a component. M is only enlarged when a new member of AFFECTED has been
identified; consequently, the maximum size of M is O (1 AFFECTED| - ‘/r_n_).

The cost of considering a vertex is one semantic function application and a constant amount of book-
keeping work. The cost of the expansion operation is O (‘/;n"). Consequently, the total cost of Propagate is
O (1AFFECTED| - Vm).

It may be helpful to think of Propagate as simply being the standard updating algorithm operating on a
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(compressed) tree whose nodes are the elements of T.PartitionSet* and whose productions correspond to
the T°s components. In fact, in the next section, it will be helpful to have an actual data structure to
represent such a tree; this structure will be denoted as T/P. Clearly, T/P can be constructed during the
second phase of partitioning, and its nodes can be given pointers to their corresponding node in T'.

3.3. Overhead Updating

What remains to be described are the parts of the algorithm that handle overhead updating, The overhead-
updating costs of the algorithm originate from two sources: the operation of updating the characteristic
graphs, and the operation of repartitioning the tree. As will be shown, both kinds of operations contribute
0 (‘/_m—) to the cost of each tree-modification.

Updating characteristic graphs

Each time the derivation tree is modified, the characteristic graphs associated with the nodes of the current
partition-set are updated. Because the number of graphs is O (Ym ), each characteristic graph must be
updated in unit time if the cost of this operation is to be O (Vm ).

This is managed by having the partitioning step creates some additional auxiliary information for use
when the characteristic graphs are updated. The information generated is the projection of each
component’s dependency graph on the attributes of the component’s partition-set nodes and is stored at the
root of each component. If X is the root of a component, the projected graph is denoted by X.D. This
information is used by the procedure UpdateCharacteristicGraphs, shown in Figure 7, to recompute the
characteristic graphs associated with each partition-set node. The parameter » represents the location at
which tree T was modified. The first step of UpdateCharacteristicGraphs is to recompute the X.D graph
for the component that contains r, information which may have been invalidated by whatever editing
operation was performed. When the size of the component is bounded by O (‘/;;), so this step runs in time
00 m).

The two loops in UpdateCharacteristicGraphs recompute the subordinate and superior characteristic
graphs of partition-set nodes. Note that this part is essentially the same as the operation BuildCharacteris-
ticGraphs except that it operates on the tree of partition nodes, T/P , where X.D , the projected dependency
graph for a component plays the role of D (p), the dependency graph of an individual production. Each of
the O (Vm ) graphs is updated in unit time; thus, the total cost of UpdateCharacteristicGraphs is O (Vm ).

The X.D graphs are computed by the procedure Project, given in Figure 8. This procedure is the fourth
partitioning phase that was referred to in Section 3.1. The projection operation that Project performs on
each component is done by a depth-first search from each inherited attribute of the root of the component
and each synthesized attribute of each interface node of the component. Each of the other three phases of
partitioning runs in linear time; the reason that Project also runs in linear time is that it is only ever applied
to the partition set generated by applying both Partition and AddAncestors to the tree — the second argu-
ment to Project has the value AddAncestors(T', Partition(T)). In this case, the number of nodes in P is no
more than O (‘/;z—), and, by the properties of AddAncestors, each component is adjacent to at most Max-
Sons + 1 other components.

The components created by the nodes found by the first phase of partitioning may be adjacent to as many
as 0 (\/m ) other components. This condition could cause Project to run in O (n ¥2y time, and to use O (m)

“For the remainder of the paper, we assume that certain structures are stored with a tree, such as the current partition set, denoted
T PartitionSet .
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procedure UpdateCharacteristicGraphs(T, P, r)
declare
T: derivation trees
P,Q: asetof tree nodes
r:anode of T containing any inconsistent attributes of T
X,Y: tree nodes
K: a component of the tree
k: atree node
begin
K := the component of T' that contains r
QO := {roo(K)}w{Y 1Y is an interface node of K'}
root(K).D =D (KYA(Q)
for each node X € P in the order of position in a postorder traversal of T/P do
K := the component of T whose root corresponds to X
XC:=@D v, inte;fackejnodes of kkCYAX)
od
for each node X e P in the order of position in a preorder traversal of T/P do
Y :=parent(X)
K := the component of T’ in which the node corresponding to X is a leaf
X.C = (¥.D vroo(K).C Yk e interface nodeskof K,k#TreeNodc(b)k'C YAX)
od
end

Figure 7. For eachnode X of P, recompute X.C and X C.
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procedure Project(T, P)
declare
T': a derivation tree
P, Q: sets of tree nodes
X: atree node
Kx: the component rooted at X
begin
for each node X in a postorder traversal of T do
ifX € P or X =root(T) then
Q = {X}u{Y 1Y is an interface node of Ky}
XD =D Ex)AQ)
fi
od
end

Figure 8. For each component defined by P, determine the projection of the component’s dependency graph on the at-
tributes of the component’s partition-set nodes. This graph is denoted by X.D, where X is the root of the component.

space; however, the second phase of partitioning further subdivides the components from the first phase by
adding to the partition set every node that is a lowest common ancestor of some pair of partition nodes.
This means that each vertex of an X.D graph can be connected 1o at most (MaxSons + 1)(MaxAttrs) other
vertices. Each component is of size O (‘/_nT) and contains no more than MaxSons + 1 partition nodes, so
the running time of the projection operation on the component is no more than O (‘\/—;{z—). Since there are
00m) components, the total running time of Project is O (m).

Example. Figure 9 illustrates the four graphs created by Project when the set that partitions the tree from

Figure 1 is {exps,exp;s, expig}. In this case, Project creates the graphs ROOT .D, exps.D, expys.D , and
explg.D .

Repartitioning the tree

The step of repartitioning the tree also contributes O (¥m) in overhead-updating cost to each tree-
modification operation. Repartitioning is handled by the procedure RepartitionIfNecessary, given below in
Figure 10. Each editing transaction increments T.OperationsSinceLastPartition ; if enough editing transac-
tions have been performed since the last time the tree was partitioned, RepartitionIfNecessary calls Parti-
tion, AddAncestors, BuildCharacteristicGraphs, and Project and assigns T.PartitionSet,
T.OperationsSinceLastPartition , and T.SizeWhenLastPartitioned appropriate values.

If a tree contains m nodes at the time it is partitioned, that partition is used by Propagate for the next Ym
editing transactions. Because of the restriction that each modification of the tree can introduce at most a
constant number of new nodes, at most O (Vm ) nodes are introduced by these transactions. Consequently,
throughout the sequence of steps, every component contains at most O (Vm ) nodes. The O (m) cost of
repartitioning is amortized over the previous m editing transactions, which amounts to O (m) per tran-
saction.
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Figure 9. The four graphs created by Project when the set that partitions the tree shown in Figure 1 is

{exps, expys, expig}. The graphs are created in the order shown: (1) expi.D, (2) expis.D, (3) exps.D, and (4)
ROOT,.D.
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procedure RepartitionIfNecessary(T )
declare
T: a consistent, fully attributed derivation tree
begin
if T.OperationsSinceLastPartition 2 NT.SizeWhenLastPartitioned then
T.PartitionSet = AddAncestors(T , Partition(T"))
BuildCharacteristicGraphs(T', T.PartitionSet )
Project(T’, T.PartitionSet )
T.OperationsSinceLastPartition =0
T .SizeWhenLastPartitioned = the number of nodes in T’

end

Figure 10. Repartitioning a derivation tree.

3.4. Summary

The procedures defined in the previous three sections give us the tools for updating a tree after an editing
operation modifies the tree. The first step is to call UpdateCharacteristicGraphs; this updates the charac-
teristic graphs for the nodes in the tree’s current partition set. The second step is to call RepartitionIf-
Necessary, which repartitions the tree if enough editing operations have been performed since the last time
the tree was partitioned. The final step is to call Propagate so that all the tree’s attribute values are given
consistent values. When the cost of updating the tree is amortized over a sequence of tree modifications,
the cost per modification amounts to O ((1+ | AFFECTED)- \/Z), where m is the size of the tree.

The updating algorithm described above extends the standard attribute-grammar model of editing so that
the editing cursor may be moved from one location to any other location as a single operation. Moving the
cursor neither modifies the tree nor invalidates any of the tree’s characteristic graphs, so no overhead-
updating operations are necessary; consequently, cursor motion is a unit-cost operation.
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