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Lisp has been a popular programming language for well over 20 years. The
power and popularity of Lisp are derived from its extensibility and flexibility.
These two features also contribute to the large semantic gap that separates Lisp
from the conventional von Neumann machine, typically leading to the inefficient
execution of Lisp programs. This dissertation investigates how the semantic gap

can be bridged.

We identify function calling, environment maintenance, list access, and heap
maintenance as the four key run-time demands of Lisp programs, and survey the
techniques that have been developed to meet them in current Lisp machines.
Previous studies have revealed that Lisp list access streams show spatial locality
as well as temporal locality of access. While the presence of temporal locality
suggests the use of fast buffer memories, the spatial locality displayed by a Lisp
program is implementation dependent and hence difficult for a computer architect
to exploit. We introduce the concept of structural locality as a generalization of
spatial locality, and describe techniques that were used to analyse the structural
locality shown by the list access streams generated from a suite of benchmark
Lisp programs. This analysis suggests architectural features for improved Lisp

execution.

The SMALL Lisp machine architecture incorporates these features. It partitions




functionality across two specialised processing elements whose overlapped execu-
tion leads to efficient Lisp program evaluation. Trace-driven simulations of the
SMALL architecture reveal the advantages of this partition. In addition, SMALL
appears to be a suitable basis for the development of a multi-processing Lisp sys-

tem.
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Chapter 1
Introduction

Over the last two decades, a gap has been emerging between computer
architects and high level programming language designers. This gap is described
in terms of what has come to be called the semantic gap. To quote Myers
[Myer82a],

Most current systems have an undesirably large semantic gap in that the
objects and operations reflected in their architectures are rarely closely
related to the objects and operations provided in programming
languages.... There is a large gap in semantics between the program-
ming environment and the representation of program concepts at the ar-
chitecture level, ... (which) contributes to a large number of significant
problems, among them ... (program) execution inefficiency.

Several approaches for overcoming the semantic gap problem come to mind,
with the general idea of either raising the machine to the level of the language,
or lowering the language to the level of the machine. Under one approach, a
machine would be incrementally designed by adding to it the common architec-
tural features desirable for the various languages to be used on it. Under
another, the machine would be of a simple design, but time and effort would be
invested in complicated software language processors to translate source pro-
grams into an efficiently computable form for the machine. Yet another
approach would design special purpose machines for specific languages, accept-
ing as a fact that the semantic gap cannot be effectively bridged otherwise.

Today, with the von Neumann model of computer architecture still largely
dominant, few languages suffer from a wider semantic gap than Lisp. Despite
this handicap, Lisp has been a popular programming language for well over 20
years. The power of Lisp is derived from the ability to build a powerful, friendly
system from a few basic primitives and data types; it is extremely extensible. It
has been likened to a ball of mud [Mose69a]: you start with a small one, add
features to it, and it is still a ball of mud. Further, Lisp is dynamically typed and
ideally suited for incremental program development, making it a good choice for
the fast prototyping of software systems. As a result, several current symbolic
manipulation and algebraic systems [Mart71a, Gris78a], design and graphic
description systems, expert systems, and other heavily used non-numeric systems
are based on an underlying Lisp system. Recent interest in Fifth Generation
Computer Systems has sparked renewed interest in systems for the efficient exe-
cution of Lisp and Lisp-like languages. Typically these systems do not run effi-
ciently due to the large semantic gap between list manipulating languages like
Lisp and the conventional von Neumann machine.

This thesis investigates the semantic gap separating the programming
language Lisp from conventional machines, and how that gap can be bridged or
made smaller. Our research goals were two-fold: first, to characterize the nature
of the locality of reference displayed by Lisp list access streams, and second, to
design a Lisp machine architecture that takes advantage of this locality of refer-

ence to execute Lisp programs efficiently. This dissertation begins with a survey:




in Chapter 2 we identify function calling, environment maintenance, list access,
and heap maintenance as the four key run-time demands of Lisp programs, and
survey the techniques that have been developed to meet them in current Lisp
machines. Based on this survey we examine issues relating to list access and
representation in more detail in Chapter 3; we describe empirical studies of Lisp
list behaviour that we conducted along with studies performed by other research-
ers. Previous studies have revealed that Lisp list access streams show spatial
locality as well as temporal locality of access. The drawback of these studies has
been that they were highly dependent on implementation details. We overcome
this problem by extending the concept of spatial locality into what we refer to as
structural locality of reference. In Chapter 3 we describe studies that we con-
ducted into the structural locality of list referencing; we develop techniques to
partition a Lisp list access stream into structurally related locales of high temporal
Jocality of reference which we call list sets. This partition suggests architectural
features that can improve Lisp execution efficiency. Chapter 4 contains a
description of the organization and operation of SMALL, the Structured Memory
Access of Lisp Lists architecture, that incorporates these features. The SMALL
architecture partitions functionality across two processing elements whose over-
lag)ped execution leads to efficient Lisp program evaluation. We evaluate the
effectiveness of the SMALL organization using a trace driven simulator in
Chapter 5. In Chapter 6 we examine how the architectural ideas of SMALL can
be extended to multiprocessor systems. We conclude, in Chapter 7, with a sum-
mary of the results reported in the thesis along with suggestions for future work.



Chapter 2

Supporting Lisp Execution

2.1. Introduction

Lisp ranks, along with Fortran, as one of the oldest programming languages
in wide-spread use today [McCa78a]. It originated in the late 1950°s as a list
processing language [McCa60a], This version of Lisp is today known as Lisp 1
or "pure Lisp” and was mathematically elegant but awkward to program. Since
the 1950’s, Lisp has undergone a steady evolution, with Lisp 1.5 [Weis67a],
Lisp 2 [Abra66a], Maclisp [Moon74a], Interlisp [Teit75a], Scheme [Suss75a],
Franz Lisp [Fode79a], and T [Rees82a] being among the more prominent stages
on the way. This proliferation of Lisps has prompted efforts to arrive at a Lisp
standazd, irst in Standard Lisp [Mart78a] and, more recently, in Common Lisp
[Stee84a].

The studies described in this dissertation are not directed at any specific Lisp
implementation; we aimed to study issues that are important to all Lisps. We
start this chapter, therefore, by discussing what takes place during typical Lisp
execution. Based on this, we enumerate the run-time requirements of a Lisp
system and identify potential obstacles to good machine performance. In section
2.3, we provide a classification of the Lisp machines that we encountered during
our survey and examine the techniques employed in these machines to cater to
Lisp’s run time requirements.

2.2. Run Time Requirements of a Lisp System

A Lisp program is organised as a collection of functions that call each other.
Lisp execution can therefore be thought of as a series of nested function evalua-
tions. Extensive function calling is typical of Lisp. Another characteristic of
Lisp is the data structures on which these functions operate - they are, by and
large, lists. Understanding these Lisp hallmarks lays the foundation for discuss-

.

ing and contrasting different Lisp machine architectures.

2.2.1. Function Calling

In general, function calls and returns are expensive operations. Lisp func-
tion calls, however, are more complicated than those in a lexically scoped
language like Pascal, since Lisp function evaluation takes place in a dynamically
bound context; the latest active value bound to a variable name is used when that
variable is referenced. At any instant in Lisp execution, there are a number of
dynamically nested, uncompleted function calls. Only one of these, the most
recent, is active. Each of these function calls has a referencing context associ-
ated with it. The referencing context is a set of name-value pairs that specifies
the current bindings of the variable names used in the function. We will use the
term environment to refer to the collection of referencing contexts corresFonding
to all the function calls that are uncompleted at a given time. When a function
call completes and returns control to its caller, the referencing context of that




caller must be restored to allow it to become active and continue execution. It
therefore becomes necessary to update the environment upon every function call
and function return. When a variable name is encountered during the evaluation
of the body of a function, the environment is interrogated for the current binding
of the name. We will also refer to environment interrogation as name lookup.
Maintaining the environment is not conceptually difficult; a simple scheme using
a name-value binding stack would simply have to add and delete items from the
top of the stack on function calls and returns in order to update the environment.
In Lisp, where function calling is very frequent, it is essential that environment
interrogation be fast; the simple name-value binding stack could result in slow
lookup.

In a simple form of Lisp function evaluation, the definition of a function
specifies exactly how many arguments the function expects. Calling a function
with a different number of arguments would be an error. When the function is
called, the arguments in the call are evaluated and then bound to the formal
arguments of the function. The environment must be modified so that these new
bindings are present in the currently active referencing context. The body of the
function is next evaluated, and a return value made ready for the calling func-
tion. Finally, the environment is again modified to mirror the referencing con-
text of the calling function, to which control is now being returned. Several vari-
ations to this mode of function evaluation have arisen. In one variation functions
are allowed to accept a variable number of arguments. This is useful in program
development, and has made Lisp a popular proto-typing language. Other varia-
tions do not evaluate arguments before binding them to formal arguments. The
syntactic conventions used to specify these function calls vary from Lisp to Lisp
[Jone82a). For example, in Franz Lisp the user can define
(1) exprs, i.e., functions with a fixed number of arguments that are all
evaluated, using
(DEF <function name > (LAMBDA (<lambda variables >) <function body >)).
(2) lexprs, i.e., functions with a variable number of arguments that are all
evaluated, using

(DEF <function name > (LEXPR (<lambda variables >) <function body >)).
(3) fexprs, i.e., Tunctions with a variable number of arguments that are not
evaluated, using
(DEF <function name > (NLAMBDA (<lambda variables >) <function body>)).

Finally, there are variations in which a function is allowed to return more
than one value to the function that called it. All of these variations make it diffi-
cult to provide generally applicable architectural support for function calling in
Lisp.

Unfortunately, the woes of Lisp function calling do not end there. In Lisp
functions can be passed as arguments. This adds to the complexity of function
calling. Such a functional argument gets bound to a formal argument as with all
ar%guments, but when it is executed, the evaluation must be conducted in the
referencing context that was present when the functional argument was initially
passed as an argument. The problem of maintaining the environment con-
sistently under such conditions is called the funarg problem; a funarg is a
function-environment pair [Alle78a]. This implies that function calling and
returning is not strictly LIFO (last in first out) in Lisp, and complicates the
implementation of environments. If function calling and returning was strictly



LIFO, the environment could be implemented using a LIFO stack. With the
advent of functional arguments, information about the referencing context of a
function call might have to be retained even after the call has returned. A tech-
nique to deal with this is described in [Bobr73a]. This technique has become
fairly well accepted, and we will therefore not address this issue further.

Thus, there are two problems associated with supporting function calling in
Lisp - the existence of a number of calling conventions, and the need to maintain
the environment across function calls. Other than the funarg problem, Lisp
function calls are not more complicated than function calls in other languages. It
is the frequency with which these calls taks place and the updating of the
environment that makes efficient function calling critical to Lisp system perfor-
mance.

2.2.2. Dealing With Lists

The fundamental data structure in Lisp is the list. More specifically, Lisp
data objects are called s-expressions, short for symbolic expressions. Two special
cases of s-expressions are atoms and lists. Examples of atoms are numbers and
names (character strings). A listis a collection of atoms and other lists. This
definition makes recursive data structures possible. In Lisp notation, a list con-
sists of a left parenthesis followed by zero or more atoms or lists separated by
spaces and ending with a right parenthesis. Lists are typically represented as
linked lists of list cells; a list cell is composed of a pair of pointers - the car
pointer points to the contents of that list cell (which could be an atom or another
list), and the cdr pointer is a link to the next Jist cell in that list. The special
atom nil terminates lists. We will use the term heap memory to refer to the
memory containing all the list cells. Figure 2.1 illustrates a list cell, with its car
and cdr pointers, and how these list cells are used to represent lists.

Lisp provides a set of pre-defined, primitive functions to manipulate lists.
This includes cons (used to create a new list cell), car (remurns the first element
of a list argument), cdr (returns everything following the first element of a list
argument), rplaca (used to replace the car pointer of the list argument), and
rplacd (used to replace the cdr pointer of the list argument). The data manipu-
lated by Lisp programs is stored in lists, and accessing it often involves traveling
down several pointers at run-time using this set of primitive functions. It has
been conjectured that a large fraction of Lisp execution time is spent in following

these pointers [Fate78a].

There are no type declarations in Lisp. This facilitates quick program
development, but complicates Tun time operation. Due to Lisp’s dynamic nature,
all data type checking is done at run-time. This could be less efficient than con-
ducting these checks at compile time. As a simple example of the need for run-
time type checking, consider an arithmetic function call (subtract X Y). The
values of X and Y could be either integers or real numbers; a different action
must be initiated in each case. This can be decided only at run-time. To facili-
tate this run-time type checking, Lisp machines use tagged memories and usually
contain type checking hardware.

Another important issue in dealing with lists is the management of heap
space. In a language like Fortran a compiler can predict the exact run-time




/ / \
car cdr
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(a) A list cell, with car and cdr pointers

This is
N 1
- . a list

— nil pointer

(b) Representation of (This is (a list)) using list cells
Figure 2.1. A List Cell and a Sample List.
memory requirements of any program. This is not possible in Lisp, where the

number of list cells required during the evaluation of a program cannot be
predicted by examining the program. Further, while the programmer explicitly



causes new data objects to be created, the programmer does not explicitly cause
them to be reclaimed when they are no longer referenced. Left to itself, then, a
Lisp program would soon run out of heap space. To prevent this from happen-
ing list cells have to be recovered, and made available for reuse, when there are
no more extant pointers pointing at them. This task is performed by the Lisp sys-
tem. Heap management has become an issue of prime concern to Lisp system
designers. Lisp did not attain wide-spread popularity until there were efficient
solutions to this problem.

2.2.3. Summary

Based on the discussion of the last two sections we consider the four major

problem areas in efficient Lisp execution to be :

(1) efficient function calling,

(2) environment maintenance,

(3) list access and representation, and

(4) heap maintenance.
This assessment is confirmed by a survey of current Lisp machine designs; most
of the special architectural features included in these machines address one or the
other of the issues listed above.

2.3. Approaches to Lisp Machine Design

The first implementation of Lisp was done between 1958 and 1960 on an
IBM 704. In fact, it is from the architecture of the 704 that the Lisp access
primitives car and cdr get their names. The 36 bit data word of the 704 had two
15 bit fields, called the address and the decrement, that could be independently
fetched to index refgisners using special instructions. The names car (contents of
the address part of the operand) and cdr (contents of the decrement part of the
operand) evolved from the representation of two-pointer list cells in these data
words. Later on, it was with Lisp in mind that the designers of the DEC PDP-6
and PDP-10 computers included half-word instructions and stack instructions in
these architectures. The Interlisp and Maclisp Lisp implementations developed at
MIT on these machines caused Lisp to gain in popularity in the artificial intelli-
gence community. Interactive Lisps on time-sharing systems soon followed, and
both user programs and Lisp implementations steadily increased in complexity in
the years that followed.

The next landmark in Lisp implementation came in 1977, with the MIT
Lisp Machine project [Bawd77a]. Inspired by work done on personal Lisp
machines at Xerox PARC [Deut78a, Deut73a, Deut80a, Burt80a], the MIT Lisp
machine was a single-user computer, thereby assuring the user of a higher
degree of service than that obtained on a time-sharing system. The MIT Lisp
machine was implemented with a microprogrammed architecture, using "a very
unspecialized processor” for reasons of speed, cost, and ease of microprogram
debugging. Key Lisp primitive functions were implemented directly in micro-
code. Many of the commercial Lisp machines that have appeared on the market
since then are based on the MIT Lisp Machine design experience. Examples
include the Symbolics 3600 [Road83a, Moon85a], the LMI Lambda, and the TI
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Figure 2.2. Alternative Lisp Machine Organizations.



Explorer.Jr Another commercially available Lisp machine is the FACOM Alpha
[Haya83a]. At the same time, there has been on-going research on alternative
Lisp machine architectures, mainly at the university level.

The Lisp machines that we studied can be divided roughly into three classes
as illustrated in Figure 2.2. First, there are the Class M machines, which are
unspecialized microcoded Lisp processors, like the MIT Lisp machine or the
Xerox PARC Lisp machine projects mentioned above. Second, there are the
Class S machines, which are multiprocessor organizations where each processor
serves a specialized function. Examples of this are MLS (an airborne multipro-
cessing Lisp system at the University of Illinois) [Will78a], the Fairchild FAIM-1
multiprocessor Al machine [Deer85a, Davi85a], and a Lisp machine project
undertaken at Keio University in Japan [Yama8la]. Finally, there are the Class
P machines, which are multiprocessor systems composed of pools of identical
processing elements, aiming for high performance through concurrent evaluation
of different parts of a Lisp program on separate processors. Examples of this
class of Lisp machines are Guzman’s AHR Lisp machine [Guzm8la], the EM-3
machine [Yama83a], and the Evlis machine project at Osaka Universi
[Yama8la]. Within the framework of this classification we can discuss how dif-
ferent machines address our four architectural issues.

2.3.1. Function Calling

In section 2.2.1 we saw several Lisp function calling conventions. The sim-
plest convention expected a fixed number of arguments that were all evaluated
before the body of the function itself was evaluated, and the function returned a
single value. More complicated conventions allowed for a variable number of
arguments, arguments not being evaluated, or the return of multiple values. In
practise, it is not necessary for a Lisp machine to support all of these function
calling conventions. For example, suppose a function calling convention expects
a fixed number of arguments that are all to be evaluated. To implement a calling
convention that does not evaluate the function arguments, the evaluation must be
suppressed. In most Lisps this can be done using the quote function, which
suppresses the evaluation of its arguments. To allow a variable number of argu-
ments, the actual arguments can be passed as a single argument in the form of a
list, which is then split up into its parts (using car and cdr) in the function.
Similarly, to implement a calling convention that evaluates its arguments using a
calling convention that does not, we could cause the arguments to be explicitly
evaluated in the function before the function body itself is evaluated.

Lisp functions are represented as lists. Low level primitives, like car and
cdr, are typically implemented as a few machine instructions. During the
evaluation of user defined functions, however, the Lisp interpreter must access
the internal list representation of the function. The interpretation process thus
involves frequent accessing of the list representation of the function, interspersed
with the execution of machine instructions corresponding to primitive operations.
To speed up the evaluation process Lisp compilers have been developed. A

T Explorer is a trademark of Texas Instruments Inc.
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compiler reduces a function to a set of machine instructions, and results in faster
execution. On the negative side, compilation sometimes requires the program-
mer to declare the properties of functions and variables. This weakens the flexi-
bility of Lisp programming.

Class M and Class S machines typically provide a range of function calling
support. In the MIT Lisp Machine, for example, a function can exist in any of
three forms - as slow interpreted code, as slightly faster macro-compiled code, or
compiled directly into microcode. The programmer chooses from among the
three based on how frequently a function is used. In the case of interpreted or
macro-compiled code there are two function call instructions, CALLO for calls
with no arguments, and the slower CALL instruction for other functions. CALL
initiates the evaluation of the function’s arguments and their binding to formal
parameters. The Symbolics 3600 divides this functionality over several instruc-
tions - there is a set of function calling instructions (including a special instruc-
tion for function calls that have no arguments), and a set of argument binding
instructions. Both the MIT Lisp Machine and the Symbolics 3600 have function
return instructions that allow multiple values to be returned. An interesting vari-
ation on the CALL instruction was used in a MicroLisp project at Xerox
[Deut73a]. Based on an observation that most functions have between 0 and 6
arguments, 8 kinds of function calls are supported - for functions with 0, 1, 2, 3,
4, 5, 6, and more than 6 arguments. In the last case, the actual number of
arguments is specified as a separate argument in the call instruction.

Several Class P machines have attempted to add another dimension to func-
tion calling by evaluating the arguments of a function call in parallel. In
Guzman’s multi-microprocessor Lisp machine, AHR [Guzm3la], and the Evlis
multiprocessor Lisp machine at Osaka University [Yama8la], the evaluation of
each argument is forked off onto a separate processor. As soon as all of a
function’s arguments have been evaluated that function gets scheduled on a free
processor. The EM-3 machine [Yama83a] atiempis even more. To trigger
increased amounts of parallel evaluation, the EM-3 allows incomplete results to
be sent forward. Thus, when all of the arguments of a function have become
available, a pseudo-result is generated for that function and returned to its caller.
Since some of those arguments could themselves be pseudo-results, the evalua-
tion of a function keeps going in parallel with that of its arguments. Evaluation
gets blocked when actual results, as against pseudo-results, are needed. Such an
evaluation scheme clearly involves a complicated control mechanism. The com-
plexity of this control mechanism can be reduced if the programmer provides
hints by specifying the parts of the program where parallel argument evaluation
can be safely performed. Several researchers hace suggested language exten-
sions which enable the Lisp programmer to provide these hints [Hals84a]. We
will be discussing these and other issues relating to parallel argument evaluation
in Chapter 6.



11

2.3.2. Maintaining the Environment

Recall that we refer to the collection of referencing contexts (made up of
name-value binding pairs) in affect at a given time as the environment of Lisp
execution. This environment must be modified on function call and on function
return.

The most straight-forward way to implement the environment would be as a
linear linked list of name-value pairs. New items get appended to the head of
this association list on function calls, and deleted from the head of the list on
function returns. Whenever a variable is referenced during the evaluation of a
function the association list is searched (from the head) for the first, and hence
most recently active, instance of that variable name. In the worst case, this vari-
able lookup might involve scanning the entire association list. This implementa-
tion of the environment is called deep binding. Figure 2.3 illustrates how the
association list changes over a function call. An alternative, called shallow bind-
ing, would be to maintain a table with one entry for each variable name, contain-
ing the current value binding of that name. The table is often called the oblist or
global symbol table. Each variable name thus has a value cell (in the table)
associated with it. Figure 2.4 illustrates how a shallow bound system maintains
the environment over the same function call used in Figure 2.3. Shallow bind-
ing changes the name interrogation problem from one of list search to a simple
table lookup. To maintain consistency, the table of value cells has to be modified
on function call and return.- Bindings that are in danger of being over-written by
a newer value have to be saved (typically on a stack), to be used in restoring the
table to its original state on function retrn. This modification procedure is more
complicated than environment modifications in a simple deep bound association
list, where all deletions and additions to the list take place at the head. In choos-
ing one implementation over the other, there clearly is a trade-off to be made
between fast function calling and fast variable lookup. Further, it is possible to
conceive of a continuum of implementation schemes between deep and shallow
binding. These schemes selectively cache portions of the environment in dealing
with this trade-off.

The MIT Lisp Machine supports a shallow bound environment. Variable
referencing is done through an invisible pointer 0 the value cell of the variable
name. Invisible pointers form a special data type, distinct from ordinary
pointers. A reference to a list cell containing an invisible pointer is automati-
cally dereferenced by the hardware to the list cell pointed at by that invisible
pointer. On a function call, some of these value cells get modified to reflect the
new name-value bindings associated with the call. These values are stored on the
control stack, from where, on function return, the modified value cells are
restored to their original values. A similar scheme is used in the Symbolics
3600. As an optimization, there is a bit in each frame on the control stack that
indicates whether or not there are value cell modifications associated with that
call. This saves simple function calls from having to pay the shallow binding

overhead.

Most of the other machines that we surveyed support a deep bound imple-
mentation of environments. The penalties associated with variable lookup are
reduced with the help of architectural support. For example, in [Deut78a] and
[Deut73a] a caching scheme is used so that repeated references to the same vari-

.

able in the same function cause only one expensive lookup to be made. Deutsch




12

A 1 B | 25 Cc| 10

(a) The Association List is a linked list of name-value binding pairs.
On variable lookup the list is searched starting from its head.
The environment shown has 'A’ bound to the value 1, ’B’ bound

to 2.5, and ’C’ bound to 10.

C| 6 X| 8 A 1 B| 25 c| 10

(b) When a function call takes place new bindings get added to the
head of the association list. In this example, two new bindings
are added, one for *C’ and one for ’X’. The current environment
still has ’A’ bound to 1 and "B’ bound to 2.5. °C’ is now bound

to 6 and "X’ 10 8.

Al 1l B| 25 c| 10

(c) On function return the bindings that were added on that function’s
call are removed from the head of the association list, leaving
the environment in the same state that it was in before the call.

Figure 2.3. Deep Binding: Association List Modification over a Function Call.
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Al l
B | 25
c| 10
x| -
Oblist Binding Stack

(a) A shallow bound environment is maintained with a table of bindings (oblist)
and a stack of old bindings for names that have been reused. This stack is

initially empty.

Al 1l

B| 25

C| 6 cC| 10

X! 8 X| -
Oblist Binding Stack

(b) On a function call some oblist entries get updated to reflect new bindings.
The old values of these bindings are pushed onto the stack. Variable lookup
is simplified to oblist table lookup.

Al 1
B | 25
Cc| 10
X
Oblist Binding Stack

(c) On function return, the items are popped from the binding stack and used to
update the oblist. The environment is thus modified to the state that it was
in prior to the function call.

Figure 2.4. Shallow Binding: Oblist Modification over a Function Call.
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estimated that a cost savings of as much as 80% results from this. He also
describes a compiler optimization for references to variables that are bound at the
top level and never re-bound. In a normal deep bound implementation, each
such reference would involve a search of the entire association list, since the
bindings made at the top level would be at the beginning of the association list.
The compiler deals with such references by resorting to a shallow binding tech-
nique - using the value cell of the name directly. Unfortunately, this optimiza-
tion cannot be used for interpreted code.

The FACOM Alpha [Haya83a, Akim85a] supports deep bound environments
with a value cache. The value cache is an associative memory device that is
searched before the association list during the lookup process. The association
list is maintained in the frames of the control stack; the name-value bindings
added to the environment on a function call are stored in the control stack frame
associated with that function call. Each value cache entry is made up of a valid
bit, a stack frame number (to identify which function call it belongs to), and
fields for the variable name and value binding. When a function is called, the
value cache is searched for the names of its formal arguments and local variable
names referred to in it. Such cache entries are invalidated. Then, for each vari-
able lookup that is a miss in the value cache, the usual lookup (in the association
list) is done, after which the corresponding value cache entry is updated, and the
value cache entry validated. On function return, the value cache is again
searched, and ali entries whose frame numbers are the same as that of the
current function are invalidated. Figure 2.5 illustrates how using a value cache

improves lookup time in system with deep bound environments.

Class P machines have added problems in maintaining the environment.
The environment of each on-going evaluation must be available; instead of an
association list, there is an association tree rooted at the global environment of
the top level. A new branch gets added on each function evaluation. Since argu-
ments get evaluated in parallel, these branches grow in parallel. To perform a
variable lookup, a processor specifies the variable name and the head of the asso-
ciation tree branch corresponding to its environment. Class P machines typically
use deep bound implementations of environments. An efficient method of speci-
fying which branch of the association tree a reference belongs to is described in
[Padg83a].

Though we have described Lisp as being dynamically scoped, several
modern Lisps are lexically scoped.” Examples include Scheme, T, Common Lisp
and NIL. Under lexical scoping, a variable name is visible only in the lexical
context of its binding, as in a language like Pascal. This modification simplifies
the task of compiling Lisp functions, and removes the name look-up problem.
Lexical scoping also raises language issues; the designers of Scheme argue
against dynamic scoping since it violates referential transparency, i.e., the
requirement that "the meanings of the paris of a program be apparent and not
change, so that such meaning can be reliably depended upon” [Stee78a] through
its global effect on the meaning of names.

In summary, there are two main schemes for maintaining run-time
referencing environments - deep binding and shallow binding. Deep bound
environments allow for fast function calls and returns at the expense of poten-
tially slow name interrogation, while shallow bound environments make name
interrogation fast at the expense of slower function calls.



(a) Th

Name

Value

Valid?

Frame No.

A

10

Yes

1

B

4

Yes

1

C

1

Yes

1

15

s

1

4

10

Frame 1

a Value Cache and an association list (maintained

e FACOM Alpha uses
in the control stack) in i
Name | Value | Valid? Frame No.
A 10 No 1
B 4 Yes 1
C 1 No 1

(b)If a function call with
variable name is

P

Name

Value

Valid?

Frame No.

A

11

Yes

2

B

4

Yes

1

C

0

Yes

2

(c) When °A’ and ’C’ are referenced in th
is searched for the latest binding. The
Name | Value | Valid? Frame No.
A 10 No 2
B 4 Yes 1
C 1 No 2

’A’ as formal argumen
the value cache and s

t’s optimized deep bound environment.

L

0

11

Frame 2

1

4

» w0 > |0

10

'

Frame 1

t and using *C’ as a local
tack are updated as shown.

0

11

Frame 2

1

> w la > |0

4
10

Y

Frame 1

e Vfunction body, the a-list
al then updated.

ue Cache is

C

1

B

4

A

10

Frame 1

d) On function return a stack frame_is po, ed and all Value Cache entries
¢ )withﬁl that frame number areﬁ;'nvalidait,eip

Figure 2.5. Facom Alpha Value Cache Operation.




16

2.3.3. Efficient List Representation

In early Lisps, lists were represented as linked lists of two-pointer list cells.
Each of the two pointers was large enough to address all of memory. Figure 2.6
illustrates the two pointer list cell representation. This representation proves to
be efficient as far as list accessing is concerned. With these two-pointer list
cells, both the car and cdr primitives can be implemented as simple memory
read operations, rplaca and rplacd as simple memory write operations, and cons
as a list cell allocation followed by two memory write operations. However, one
of the problems with this representation of lists can be seen when we try to
traverse a list, i.e., access all the elements of a list. During a traversal, the
address of the list cell to be accessed next is contained in one of the pointers of
the cell that has just been accessed. The address can be forwarded to the
memory system only after the previous access has been completed. This address-
ing bottleneck slows down list traversal; the two pointer list cell representation is
considered time inefficient. Further, the representation is highly space ineffi-
cient; studies have shown that it is not necessary for both the car and cdr
pointers to span the entire address space [Clar77a]. Lisp machines generally
provide more compact representations of lists. We classify these compact list
representation schemes as being either vector-coded ot structure-coded.

et
(._——-
PP A -
Pa—
P a—

-~ nil
pointer |

Figure 2.6. Two Pointer Cell representation of (A B C (D E) F G).
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2.3.3.1. Vector-Coded Representations of Lists

The basic idea behind vector-coded list representation schemes is to
represent linear lists as linear vectors of symbols. We call a list linear if none of
its elements is itself a list. Under such a scheme, a list cell is represented by a
vector element, with its car pointer assumed by default to be a pointer to a sym-
bol, and its cdr pointer assumed by default to be a pointer to the next element in
the vector. Pointers that differ from these default types are dealt with by provid-
ing for exception conditions. In traversing a list the address of the next list cell
to be accessed is, by default, the next location in the vector. The address genera-
tion bottleneck appears only when the exception condition occurs. This kind of
representation was first proposed in [Hans69a]. Two examples of this basic
vector-coded representation are the conc representation [Kell80a] and the linked
vector representation [Li85a].

The conc representation calls its vectors tuples. A tuple is a list of elements
stored in contiguous memory locations. It is accessed through a descriptor which
specifies the number of elements in the tuple, and a pointer to the beginning of
the tuple. There are special tuples called conc cells whose elements are pointers
to other conc cells or to tuples. Conc cells are used to implement list concatena-
tion without having to modify the list structure; in concatenation of lists L1 and
L2 in the two-pointer list cell representation, list concatenation involves modify-
ing a pointer at the end of L1 to point to L2. In the conc representation the
operation involves allocating a conc cell and setting its fields to L1 and L2.

The linked vector representation is another basic vector-coded representa-
tion. To take care of exception conditions, each vector element is tagged as
either being a default cell or an indirection cell. Default cells contain list ele-
ments, while indirection cells contain pointers to elements in other vectors (or to
nil). The last cell in a vector is assumed to be an indirection cell. Further, as
an optimization to make frequent vector compactions unnecessary, each vector
element can be tagged as unused. All of the information about a vector element
can be encoded into a two bit tag, with the four tag field sequences being use to
differentiate among the cdr being nil, the cdr starting from the next cell, the
current cell being an indirection cell, and the current cell being unused. Figure

2.7 illustrates the linked vector representation.

Notice that vector-coded representation schemes are both space efficient and
time efficient. The main problem with the basic vector-coded representation
scheme follows from the fact that the unit of memory allocation is the vector. If
fixed sized vectors are used, either internal fragmentation (if the vectors are 00
large) or an excessive number of indirection cells (if the vectors are too small)
results. If, on the other hand, variable sized vectors are used, memory manage-
ment becomes difficult. A separate free list must be maintained for each vector
size, and on every vector allocation, a decision must be made as to which vector
size should be allocated. The cdr-coding schemes that we describe next over-
come this problem by allocating memory in units of vector elements.

The cdr-coding representation scheme is used in the MIT Lisp Machine,
the Symbolics 3600, and many other Lisp machines. In it, list are represented
using cdr-coded list cells, which are made up of a large car pointer and a small
cdr-code. For example, in the MIT Lisp Machine, the two fields are 29 bits and

2 bits wide respectively. The four possible cdr-code bit sequences are called
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A|lB|C]| ,|FIG
| D E
Key: X | Content Cell Unused cell
, Indirection Cell Nil
1 - .

Figure 2.7. Linked Vector representation of (A B C (D E) F G).

cdr-normal, cdr-error, cdr-next, and cdr-nil. Cdr-next and cdr-nil provide an
approximation to a vector-coded representation. A vector is made up of a set of
contiguous cells whose cdr-codes are cdr-next, except for the last cell in the vec-
tor, which has a cdr-code of cdr-nil. The cdr of each list cell is simply the cell
next to it. The cdr-normal code is provided for cases where such a vector
representation is not possible. A cell with a cdr-code of cdr-normal is assumed
to have its cdr pointer in the next cell. The car of such a cell is in its 29 bit car
field. Its nei%hbouring cell will have a cdr-code of cdr-error. Thus, if a cell has
a cdr-code of cdr-normal, then that cell and its neighbour resemble a normal
two-pointer list cell. When lists get destructively modified (by rplaca and rplacd
operators) during Lisp execution, the compact vector-coded parts of a list might
have to be modified into less space-efficient structures, possibly using indirect
pointers. Dereferencing such indirect pointers during list access involves extra
memory activity. Invisible pointers can be used to reduce this indirection cost.
Recall that an invisible pointer is automatically dereferenced by the hardware,
thereby creating little or no overhead in the data structure reference. Figure 2.8
illustrates the MIT Lisp Machine cdr-coded representation.

The compact list representation scheme employed in [Deut78a] is also called
cdr-coding. This scheme uses a 24 bit car field and an 8 bit cdr-code. A cdr-
code of 0 means that the cdr is nil, while cdr-codes between 1 and 127 are inter-
preted as offsets to be added to the current list cell address to obtain the address
of the cdr of that list cell. A cdr-code of 128 means that the cdr is located at the
address specified in the car field of the list cell, and cdr-code values 129 to 255
represent the offset from the current list cell where the address of the cdr is
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cdrnext] [

cdrnext| 1T~

cdrnext| T

cdr next cdrnextf "~ D
cdrnextf [ F cdrnil| T E
cdrnil| T G

Figure 2.8. MIT Lisp Machine cdr-coded representation of (A B C(DE)F Q).

located. This interpretation of cdr-codes was chosen largely from working set
considerations, since the Lisp system operated in a paged virtual memory system
with a page size of 256 words.

2.3.3.2. Structure-Coded Representations of Lists

The basic idea behind structure-coded list representation schemes is to
attach to each list cell a tag that specifies the position of that cell in the list struc-
ture. In addition, list structures are stored on associative memory devices. The
combination of detailed structural information at each node and associative search
capabilities leads to the potential for fast list access and traversal. In list traver-
sal, the address of a list element can be generated without having to look at the
list cell that was accessed prior to it.

A scheme for representing binary trees on associative devices is described in
[Mins73a]. Each node of the tree is tagged with a pair (1,k), where [l is the depth
of the node in the tree, and k is the maximal number of nodes at level [ that
could precede (I,k) in left to right order. Figure 2.9 illustrates this list represen-
wation. An extension of this node tagging scheme is suggested for use in the
BLAST Lisp machine architecture l[§ohi85a], where the pair (,k) is compressed
into a single node number, N = 2"~ +k A list can be mapped into such a tree
with all the symbols in the list mapping into leaves in the tree. The symbolic
information contained in the list is present in the leaf nodes of this tree, and the
structural information of the list is described by the shape of the tree. It then
becomes possible to represent a list compactly by remembering only its symbols,
and tagging each with its node number from the corresponding tree; a list is thus
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E nil G nil
Node value | Minsky pair | BLAST number

A (2,0 2

B (3,2) 6

C (4,6) 14
D (6,28) 60
E (7,58) 122
F (6,30) 62
G (7,60) 126

Figure 2.9. Tree Coded representation of AB C (D E) F G).

encoded as a set of (nodennumber,symbol) tuples. In BLAST, these tuples are
stored in tables called exception tables. An associative searching capability on

such tables is useful in implementing list manipulation operations efficiently.

Two schemes that achieve a similar encoding are described in [Pott83a].
One of these, called CDAR coding, tags each symbol in a list with a string of 0’s
and 1’s. This string specifies the series of car (represented by 0’s in the string)
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and cdr (represented by 1’s in the string) operations that when applied to the list
yield that symbol as the result. This is equivalent to the node number used in
BLAST; it specifies the position of the symbol in the list, and can be used to
make list access operations efficient. The other encoding scheme, called the
explicit parenthesis storage (EPS) representation, (ags each symbol with 3 pieces
of information - the number of left parentheses in the list preceding the symbol,
the number of right parentheses in the list preceding and immediately following
the symbol, and the position of the symbol in the list. Figure 2.10 illustrates the

(ABC((DE)FQG)

t‘ EPS Representation *‘

Node Value | CDAR Code|| Left | Right|Position
A 000000 1 0 1
B 000001 1 0 2
C 000011 1 0 3
D 000111 2 0 4
E 010111 2 1 5
F 001111 2 1 6
G 011111 2 2 7

Key: Left : Number of left parentheses in list to left of atom

Right : Number of right parentheses in list to left of and
immediately following atom

Position: Position of atom in list

Figure 2.10. CDAR coded and EPS representations of (A B C (D E) F G).
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CDAR coded and EPS list representations.

2.3.3.3. Summary

The traditional way to represent lists is using two-pointer list cells. The
major drawback with this scheme is that the information needed to address a list
cell is entirely contained in another list cell. Because of this, in performing a list
access, the processor must wait for one memory access to complete before the
next one can be initiated. We have seen two classes of more complicated list
representation schemes - vector-coded and structure-coded. Simple linear lists
can be represented compactly and accessed efficiently using vector-coded
representation schemes. Unfortunately, all lists are not linear, and vector-coded
representation schemes include exception conditions to take care of more complex
Jist structures. In such schemes, the information needed to address a list cell is
still partially contained in another list cell. The Lisp machines that we surveyed
used either ‘a naive two-pointer list representation or a vector-coded list represen-
tation (typically cdr-coding). Structure-coded representation schemes make it
possible to address the elements of a list independently by attaching to each list
cell a tag that describes its position in the list. There is no clear consensus on
which type of list representation scheme is preferable. A major factor in making
this determination would be how typical Lisp programs access lists. For
instance, if lists are accessed in a very poorly structured, or random, manner
then structure-coded representation schemes would be preferred; under such a
list representation scheme, the various elements of a list can be accessed in the
same amount of time, regardless of their position in the list structure.

2.3.4. Heap Maintenance

Finally, we turn our attention to heap maintenance strategies. By and large,
Lisp machines are tagged architectures. Tags are used to specify data types; type
checking in a dynamic language like Lisp in which there are no type declarations
is greatly facilitated by this. Tags also make it possible to distinguish between list
pointers and list data, which turns out to be useful in managing the heap space.
Recall that in Lisp, it is the system’s responsibility to manage the allocation and
reclamation of list cells in the heap, since the user does not explicitly deallocate
list objects. Since the reclamation of these garbage cells is its most complicated
part, heap maintenance has come to be largely identified with garbage collection.
Several basic garbage collection schemes are described in [Cohe8la]. Clearly,
;]he dgoal of garbage collectors is to reclaim garbage quickly and with a low over-

ead.

Garbage collection is a two stage process. We call the two stages garbage
detection and garbage reclamation. The garbage detection stage involves identi-
fying which heap memory cells are no longer referred to, after which the gar-
bage is treated and made ready for reuse in the garbage reclamation stage. Gar-
bage reclamation often only involves adding the newly recognised garbage cell to
a List of free list cells available for re-allocation. In systems where lists are
represented using compact representations, reclamation might also involve com-
pacting the parts of the heap that are in use. Garbal%e detection can be done in
two ways, either by using reference counts or by marking.
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In marking [Scho67a], all accessible list cells are marked starting with a set
of root cells that are known to be non-garbage cells, following the pointers con-
tained within them to other list cells, and so on. All list cells that are not marked
at the end of this operation are not accessible and are hence reclaimable as gar-
bage. Marking involves an overhead of at least one bit per cell to be used for the
mark. In marking schemes, garbage collecting is initiated only when there is no
more heap space available and a request for more space is made. So, the over-
head of heap management need be felt only when there is no more heap space.

In reference counting [Coll60a], a count is maintained for each heap cell of
the number of extant pointers to it. A cell is known to be garbage when its refer-
ence count goes to zero. Reference countin has several drawbacks. One prob-
lem is the actual size of the reference count %eld. It would seem that each refer-
ence count field would have to be large enough to hold the total number of list
cells in the heap. Another problem is that heap users pay the price of garbage
detection continuously in the form of a space overhead (a reference count field
for every list cell), and a time overhead (the updating of these counts on heap
accesses). Further, reference counting has the disadvantage of not, in general,
being able to reclaim circular lists. Also, reference counting can lead to poor
real time performance. Consider what happens when the reference count of a
list cell goes to zero. Before the list cell can be added to a free list of cells, the
reference counts of the two list cells that it points at are decremented by one.
This could cause the reference counts of these two cells to go to zero, in which
case they would have to be reclaimed, with the reference counts of their descen-
dents being decremented by one. Thus, the seemingly simple operation of
reclaiming a list cell could initiate an arbitrarily large amount 0 reference count
updating and list cell reclamation.

Several variations to these two basic schemes have been developed. Some
variations use a combination of the two schemes [Deut76a]. Others use clever
marking schemes to enable marking to be done in parallel with the useful Lisp
evaluation [Dijk78a, Stee75a, Ram85a]. The two parallel processes are com-
monly referred to as the collector and the mutator. These schemes work by
using more than one bit to mark each list cell. These bits are used to implement
a form of mutual exclusion of access to the list cells by the collector and the
mutator. Another approach [Bake78a, Feni69a] divides the heap space into two
semispaces, the "oldspace” and the "newspace”, either one of which will be
undergoing garbage collection. The two semispaces are simultaneously active
but the garbage collector tries to relocate, or copy, accessible cells from the
"oldspace” to the "newspace”. When that job has been completed the two sem-
ispaces get flipped. These schemes are called copying garbage collectors. They
can be made to work in real-time by performing a fixed number of relocations on
every heap allocation request, yielding copying, incremental garbage collectors.

The MIT Lisp Machine supports Baker’s real-time, copying, incremental
arbage collection scheme [Bake78a]. Hardware features help in making this
~asible. For instance, since a tagged memory is used, it is possible to detect
whether or not a list cell contains a pointer by examining its tag. Further,
memory is organised as areas, where each area contains related list cells. The
user can declare an area to be static and save the garbage collector the task of
processing that area.
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The Symbolics 3600 uses a similar garbage collection algorithm with addi-
tional hardware support. Each memory page has an associated page-tag which
indicates whether or not that page contains pointers to memory areas that are of
interest to the garbage collector. These tags help in reducing the work of the
garbage collector. Unlike the MIT Lisp Machine, where static areas were
declared by the user, in the Symbolics 3600, areas are identified as static
(unlikely to become garbage), ephemeral (assumed to contain cells that are likely
to become garbage soon), or dynamic (assumed to contain cells of intermediate
lifetimes) based on how much garbage collection activity they have required in
the past. The virtual memory software maintains this information, as well as
tables with other information useful to the garbage collector. For example, it
maintains a table identifying the swapped out pages that contain pointers to
ephemeral areas. Since the garbage collector concentrates its attention on these
ephemeral areas, this table will help in reducing the amount of paging activity
due to garbage collection.

Despite its drawbacks, reference counting has also been incorporated into
Lisp machine garbage collectors. The Machine for Lisp Like Languages, M3L,
Project [Sans82a] uses a 3 bit reference count field. This count does not include
pointers that are on the run-time stack or in registers. The paper reports studies
which suggest that this reference count suffices to reclaim about 98% of all inac-
cessible list cells. If stack and register pointers are included, reference counts
would grow in proportion to the number of function calls, due to the fact that
arguments are passed on the stack. A separate 1 bit reference flag is therefore
maintained for each cell to indicate whether or not that cell is referred to by
pointers on the stack and in registers. This has the unfortunate consequence that
the reference flag might have to be updated on each stack operation. On a stack
pop that involves a stack item containing a pointer to a list cell, the entire stack
must be checked to see if there are any other references to that list cell in order
to determine whether or not to modify the list’s reference flag.

The Facom Alpha also uses a reference counting garbage collection scheme
[Haya83a]. The Alpha memory is organised as a number of sub-spaces. Refer-
ence counts are used to reclaim sub-spaces, not list cells. So, there is one refer-
ence count for each sub-space. To keep down paging activity due to garbage col-
lection, a table of reference count updates to sub-spaces that are currently
swapped out is maintained. Those reference count modifications are performed
when the page gets swapped back in. The reference count of a sub-space counts
only the pointers to cells in that sub-space that originate from other sub-spaces.
By not counting pointers that are in the same sub-space, it becomes possible to
reclaim those circular lists that are entirely contained in a single sub-space. In
each sub-space, a free list of list cells is maintained. A marking scheme is used
to detect garbage cells in sub-spaces. The marking process starts from the
pointers on the stack; these pointers were not included in the reference counts of
sub-spaces, and can therefore be used as root pointers in the marking process.
Marking is initiated either when the number of free cells in a sub-space goes
below a threshold value, or when the processor is otherwise idle.

In summary, there are two classes of techniques for dealing with garbage -
maintaining reference counts and using mark-and-sweep algorithms. Most
machines provide for some form of mark and sweep garbage collection. We
include copying garbage collectors in this class. Different machines support
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variants of this basic technique so that the time spent in garbage collection is
amortized over the entire run of the program. A few machines have also incor-
porated reference counting techniques into a basic mark and sweep strategy.

2.4. Summary

A survey of Lisp machines reveals that the designers had, by and large, four
issues in mind in arriving at architectural support for Lisp: fast function calls,
environment maintenance, efficient list representation, and heap maintenance.

We do not see much variety in the architectural support for function calling
and environment maintenance. Most machines provide a small set of call
instructions to support the most frequent forms of function calls. They use either
a shallow bound implementation of environments or a deep bound implementa-
tion. Some machines include a scheme for caching name-value bindings in
order to make name lookups faster. The interesting research in these two areas
seems to be in extensions to concurrent execution and arriving at new evaluation
paradigms.

All of the machines that we surveyed provide some degree of support for
heap maintenance. Commercial machines generally provide support for real-
time copying incremental garbage collectors. Hybrid reference counting and
mark-and-sweep schemes have also been used.

How should lists be represented internally? The simple list representation
scheme, with the two-pointer list cell, is both space inefficient and time ineffi-
cient in terms of the time required to traverse a list. We classified list representa-
tion schemes as either vector-coded or structure-coded; vector-coded representa-
tion schemes aim for space efficiency, while structure-coded schemes aim for
access efficiency. Which representation scheme is best? The answer to this
question will depend on what lists look like typically, and how they are accessed.
For instance, if most lists are simple linear lists that do not get modified much
then vector-coded representation schemes would be preferable. If they are not,
but happen to be accessed in well structured ways, then structure-coded list
representation schemes can make efficient list access possible; recall that list
traversal is more efficient in structure-coded lists than in vector-coded lists. We
investigate these issues further in the next chapter.
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Chapter 3

Lisp Lists and Their Manipulation

3.1. Introduction

In this chapter we will seek to answer the questions relating to Lisp lists that
were raised by the survey of Chapter 2. These questions fall into two broad
categories: those pertaining to how lists are best represented, and those about the
nature of detectable patterns in Lisp list access streams.

List representation is interesting since a given s-expression could be
represented in several different ways, each representation scheme with its advan-
tages and disadvantages. We define a representation scheme to be uniform if it
provides a unique representation for every s-expression. A non-uniform

representation scheme typically encodes structural information about a list in tags
to minimize the amount of space occupied by the list, at the expense of slower
accessing speeds. One representation scheme is more uniform than another if it
provides for fewer such exception cases. For example, the two-pointer list cell
provides a uniform representation (with no exception conditions), but is space-
fhefficient. The cdr-coded list cell, on the other hand, is space-efficient but less
uniform. Any representation scheme can be evaluated in terms of (a) how effi-
ciently it makes use of limited list memory space, and (b) how well it supports list
manipulation primitives. We will see that most Lisp list studies performed to date
provide data useful for an evaluation of list representation.

More important, however, from an architectural viewpoint, is an analysis of
Lisp list access streams. We need to determine whether these access streams
contain access patterns, and if they do, we need to study their exact nature in
more detail. For example, if there is temporal locality of reference to the list
structure we might expect access patterns to take the form of repeated or periodic
accesses to portions of the list structure. Such locality of reference can be exhi-
bited by appropriate architectural support, analogous to the way vector processors
take advantage of patterns in array accessing. In order to design such support we
need a better understanding of the nature of the Lisp list access stream.

3.2. Past Studies: At the List Cell Level

The main body of work on studying Lisp lists was performed by Clark
[Clar77a, Clar79a). In the first paper [Clar77a], Clark describes a series of
"static” Lisp list studies. The studies are called "static” since they examine the
list structure that survives program execution, and not the "dynamic” changes to
the list structure that take place during program execution.  These "dynamic”
properties of lists are the subject of the second paper [Clar79a]. Other studies in
the area [Deut78a, Fode81la, Olss83a, Pond83a, Smit85a] have been aimed at
specific Lisp systems, system features, or programs and do not yield sufficiently
general insight into the nature of Lisp list manipulation to justify describing them
here at length. They will, however, be cited wherever relevant.
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3.2.1. Clark’s Static Studies

Five large Lisp programs with substantial list activity were used in this
study. A typical run of each program was done and the lists extant at the end of
the run (either bound to an atom at the top level or in an atom’s property list)

were analysed. This technique was used in 2 different kinds of investigations.

In the first, statistics about the values of the list cell pointers were accumu-
lated to suggest guidelines for efficient alternative list representation schemes.
For instance, Clark found that cdr pointers rarely point at atoms; they point
mostly at list and nil, in_the ratio 3:1. Car pointers on the other hand rarely
point at nil, pointing mainly at atoms and lists, in the ratio 3:1. Also, few list
cells are pointed at more than once, indicating that there is not much sub-
structure sharing in Lisp lists. Further, pointers tend to point at list cells that are
a small distance away. This suggests that there is considerable scope for space
saving through compact pointer encoding schemes like cdr-coding hash
linking[Bobr75a] and offset addressing[Bobr79a]. In [Bobr79a] these results are
used in an analysis of alternative compact list encoding schemes. The difference
in content of car and cdr pointers also led Clark to investigate the advantages of
linearizing lists. Linearization is a procedure that relocates list cells so that list
cell pointers typically point at neighbouring list cells. This could be done either
in the car or in the cdr direction; in a list that has been linearized in the cdr
direction most cdr pointers point at their neighbours.

In the second set of static experiments Clark evaluated list linearization and
the effectiveness of various algorithms implementing the cons primitive. He ran
his benchmarks on interpreters that used different cons algorithms and used the
state of the list memory after program termination as a measure of the effective-
ness of these algorithms in linearizing lists. He observed that a naive cons algo-
rithm performed almost as well as a more clever one in keeping pointer distances

small, indicating that this is an inherent feature of Lisp list behaviour and not of
the efficacy of a particular cons algorithm.

3.2.2. Clark’s Dynamic Studies

In [Clar79a], Clark reports results from his "dynamic” studies, which were
conducted during short runs of 3 of the 5 programs used in the "static” study.
On every list cell access, the instruction doing the access, the list cell address,
the values (addresses) of the car and cdr pointers of that list cell, and (if it was a
modify operation) the replacement value (an address), were written into a trace
file which was later analysed.

Some of these "dynamic” observations roughly confirm the "static” findings
on pointer data type frequencies and list pointer distances. Among Clark’s other
dynamic observations: car and cdr account for the vast majority of all primitives
executed, with cdr being slightly more common. Recall the static observation
that pointer distances are, on the average, small. These two observations suggest
that there is considerable spatial locality of reference in Lisp list access streams,
something confirmed in the data cache simulations of [Smit85a] where the hit
ratios for Lisp workloads were as high as those for any other workload. Clark
found that among the other Lisp primitives, cons is the most frequently occur-
ring. He also studied the locality of list cell reference using the LRU stack
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model. 20-30% of all references were found to be to the most recently accessed
cell, with about 50% to one of the 10 most recently accessed, and about 80% to
one of the 100 most recently accessed cells. This suggests considerable temporal
locality of reference in list access streams. Finally, in studies on the persistence
of linearization Clark found that once a list was linearized it tended to stay fairly
well linearized. As a consequence, long-lived lists were typically well linearized;
their list pointer distances were either one or small.

3.2.3. Implications of Clark’s Studies

Clark’s studies into Lisp list behaviour provide at least three interesting
observations.

(1)  The car and cdr pointers of list cells get treated quite differently.

(2) Lisp programs show both spatial and temporal locality in access refer-
ence.

(3)  Once they have been linearized, lists tend to stay that way. OIld lists do
not change much.

The first of these observations has been widely recognized; in Chapter 2 we saw
that compact list representation techniques, like cdr-coding, are commonly
employed in Lisp systems. The other two observations have not received as
much attention.

We believe that Clark’s ”dynamic” studies were not dynamic enough.
Dynamic studies are preferable to static studies; they capture a better picture of
the system being studied by frequently sampling the behaviour of a system during
program execution. Static studies, on the other hand, capture only summary
information, which is often not truly representative of system behaviour. Clark’s
"dynamic” studies were performed on very small simulated runs of the pro-
grams. This was necessary for two reasons. First, the experimental setup was
based on a simulator whose speed made longer runs difficult. Second, garbage
collection could not be allowed during experiments since lists were studied 1n
terms of their physical addresses, which could change across garbage collections.
Further, even though the statistics were gathered dynamically, they were effec-
tively averaged out over time. No temporally local patterns in access were Stu-
died; neighbouring list access events were not studied relative to one another
other than in the limited sense of pointer distances, which is related to spatial
locality. Such access patterns might be significant and should therefore be inves-

tigated more carefully.

Our own studies of Lisp lists, described next, attempt to answer some of the
unanswered questions about patterns in Lisp list access streams.

3.3. Our Studies: At the Data Structure Level

We chose to conduct our studies at what we call the list data structure level.
At this level we are more concerned with the high level consequences of what
sequences of list operations do to the list structure than with what happens to
individual list cells. Rather than dealing with lists in terms of physical list cell
addresses as Clark did, we attempted a higher level study, tracing the history of
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list access and modification at the s-expression level.

The investigation was carried out in two stages. In stage 1 we repeated
some of Clark’s experiments in order to calibrate our benchmark programs with
his as well as to verify his results with observations made from a different per-
spective. In stage 2 we went on to investigate patterns in the access streams.

3.3.1. Stage 1: Benchmark Characterization

We know of no set of programs that can be described as "standard Lisp
benchmarks” particularly for a study as far removed from the hardware level as
ours. Lisp system benchmarking is a fine art. It could be conducted at several
levels, ranging from the machine level to the Lisp instruction level. The reader
is referred to [Gabr82a, Gabr85a] for guidelines on benchmark selection. Our
benchmark program selection problem is simplified by our not being concerned
with overall system performance, but only with list manipulation operations.

We used a suite of Lisp programs including a PLA generator (PLAGEN), a
circuit simulator (SLANG), a VLSI design rule checker (LYRA), an editor
(EDITOR), and PEARL (Package for Efficient Access to Representations in
Lisp). The programs were run on a Franz Lisp interpreter modified such that on
the call of a list access or modify function, the function name and its arguments
(in s-expression form) were written to a trace file which was later analysed. This
trace was not intended to capture all list accesses; if it did, we, like Clark, would
have had to confine our studies to very short runs. To ensure that the traces are
representative of the true list accessing behaviour of the five programs, they were
generated using realistic inputs to those programs. PLAGEN was used to gen-
erate a PLA for a traffic light controller [Mead80a]. The circuit simulator,
SLANG, was used to simulate the behaviour of a BCD to decimal convertor as
well as another simple Boolean function. The VLSI design rules checker,
LYRA, was used to conduct CMOS design rules checks on a portion of an 8 bit
multiplier. The program that we call EDITOR is actually the Interlisp TTY
function editor. We used it to perform an editing script on one of the editing
functions; this script included performing global substitutions, searches, modifi-
cations, as well as the tutorial session described in the Interlisp Reference
Manual [Teit75a]. Finally, PEARL was used to construct a small database
management system and perform lookup and update operations on it. The length
of the 5 traces (i.e. the number of list primitive calls made in the run) were as
follows: PLAGEN (59,967), SLANG (19,846), LYRA (252,951), EDITOR
(33,790), and PEARL (1,572).

We used a simple parameter to place our programs in perspective with
regard to Clark’s Lisp programs: the distribution of Lisp list primitives in each
execution trace. The primitive function frequencies are presented in Figure 3.1
for our five benchmarks along with those from three of Clark’s programs:
NOAH, CONGEN and PARSER [Clar79a]. The figure is a histogram of the
percentage of all traced functions that were car (lowest portion of each bar), cdr
(middle portion), or cons (uppermost portion); the other primitives together
covered less than 10% of all functions traced and were not plotted.

While the PLAGEN, LYRA and EDITOR runs follow Clark’s programs in
having a predominance of access primitives, the PEARL and SLANG runs show
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different characteristics, with SLANG having a higher cons, and PEARL a
higher rplaca/rplacd percentage than any of the other programs. So, some of
the members of our program suite behave like Clark’s programs did while others
show different characteristics. It would appear, then, that our programs cover a
wider range of Lisp program behaviour than Clark’s did.

As a further checkpoint we compared the complexity of the list structure
operated on by our program suite with that in Clark’s programs. Clark charac-
terized lists in terms of the percentages of all car and cdr pointers that pointed at
lists, or symbols, or nil, etc. We used simpler measures: for each list encoun-
tered we noted n, the number of symbols in a list, and p, the number of internal
parenthesis pairs in the list. These measures were chosen since they compactly
summarize information describing the complexity of a list. The metric p is a
measure of the structure of a given list; we loosely define a simple linear list as
being unstructured, while a list the depth of whose tree representation is far less
than the list’s length is considered as highly structured. Further, the sum n+p
is proportional to the amount of space required to represent the list using 2-
pointer list cells or cdr-coded list cells. Using a compact structure-coded list
representation only n cells are necessary to represent a list. So, these two statis-
tics can be used in evaluating alternative list representation schemes.

The two examples in Figure 3.2 illustrate this. It takes n+p 2-pointer list
cells (or cdr-coded list cells) to represent a list with n symbols and p internal
parenthesis pairs. For a more compact representation scheme like cdar-coding
the amount of space required is proportional to n.

Table 3.1 shows the average n and p values for each of the 5 runs. Notice
that in 4 of the 5 runs the average value of p is less than 3. This corresponds to
lists of, on the average, simple structure. The EDITOR run deals with more
complex lists. The n values average out to about 10, indicating that lists were not
too long other than in the EDITOR run. These observations are along the same
lines as Clark’s, which led him to speculate that lists on the average are not long.
Figures 3.3a and 3.3b give a better idea of the distributions of the observed n and
p values. We will be using these distributions in Chapter 5 to construct a typical
list access stream for our simulation.

3.3.2. Stage 2: Locality of Reference in Lisp List Access Streams

From the studies surveyed in Section 3.2 it appears that there is both spatial
and temporal locality in Lisp list access. In this section we will investigate this
locality of reference in an implementation and representation independent
manner. This is a major departure from the work of Clark; he studied list
pointer distances (which are highly representation dependent), on an Interlisp
system (making the study implementation dependent). We begin this section,
therefore, by describing our implementation and representation independent van-
tage point.
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Table 3.1. Average Values of n and p.

Benchmark n p

SLANG 10.04 1.99
PLAGEN 12.40 2.90
LYRA 9.70 1.55
EDITOR 74.74  20.98
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3.3.2.1. Structural Locality and List Sets

A Lisp trace shows spatial locality because it accesses different parts of a list
whose elements are close together in memory. This locality could probably be
better described as structural locality of reference. So, for example, stepping
through a cdr-coded linear list would display the same spatial locality as a DO
loop stepping through a one dimensional array by sequentially accessing its ele-
ments. In dealing with arrays, by storing the elements of an array close together
in memory, we can take advantage of the structural locality shown by array
access streams. Structural locality is manifested as spatial locality of reference
which can be exploited by simple architectural support. If the elements of a list
are not stored close together in memory, then even if a Lisp program is very
local in its referencing behaviour (in that it references only a small set of lists
most of the time), a study like Clark’s would detect little locality of reference.
Clark conjectures that the locality he observed was caused not by clever space
allocation in the memory management algorithms, but by an inherent Froperty of
how list structures get constructed in Lisp computation. Our study is far enough
removed from the representation level to make it possible to evaluate this from a
data structure viewpoint.

The concept of structural locality needs a little more elaboration. To this
end we extend the concept of spatial locality to the list s-expression level. We say
that two list references are related if one is the car or cdr of the other. A list
access reference stream can then be partitioned into list sets, where each list set
is a closure of related list references with the added constraint that no two tem-
porally adjacent members of the list set are separated in the access trace by more
than 10% of the total length of the trace. We further define the lifetime of a list
set as the distance between the temporally first and last members of that list set.

The list set concept is intended as a representation-independent means of
detecting the scope for spatial locality of reference at the s-expression level. In
very general terms, it seeks to divide the list structure manipulated by a Lisp pro-
gram into array-like domains of high spatial locality of reference. A list set parti-
fion of an access stream is, in some sense, a working set partition of the entire
list structure. The 10% separation constraint is included in the list set definition
to preclude list sets from having long lifetimes but few members; such a trivial
list set would not represent spatial locality that could be exploited by architectural
support. If there are several trivial lists sets in the partition of an access stream,
then that partition describes spatial locality of reference that is not temporally
important, and hence not of architectural significance. The separation constraint
thus serves to ensure that the lifetime of a list set is the period during which that
list set is being actively accessed. We chose 10% as a compromise between a
larger fraction, which would result in more trivial list sets, and a smaller frac-
tion, which would result in large list sets being split up into several smaller list
sets.

An analysis of the list set partition of an access trace can yield insight into
the nature of referential locality contained in the trace. Note, however, that a list
set partition of a reference stream cannot make a strong statement about the scope
for sub-structure sharing among the lists accessed. Each member of a list set is
a list reference, not a list. Two list references could be mistaken for each other
if they were made to identical lists. This does not overly concern us since, as we

.

have seen in Section 3.2.1, Clark’s studies suggest that typically there is little
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sub-structure sharing in Lisp programs.

3.3.2.2. Locales of Reference in the List Structure

Figure 3.4 shows how the list access siream for each of the five program
runs was partitioned into list sets. The graph is a plot of the cumulative number
of list sets against the cumulative percentage of all list references that they con-
tain. It indicates the number of list sets in the five access streams. In interpret-
ing Figure 3.4 we define the size of a list set as the number of list references that
it encompasses. The inverse-exponential nature of the plots indicates that there
are few large list sets and several small list sets in the list set partition of each
access stream. Further, notice that it took only as few as 10 list sets to cover as
many as 80% of all list references encountered. Our partitioning procedure has
thus determined that a small number (about 10) of significant structural locales
of reference represent a large percentage (about 80%) of all the list references in
each trace.

Our next concern was the lifetime of these list sets. Figure 3.5 shows how
the lifetimes of the list sets varied for the 5 traces and is a cumulative plot of the
number of list sets against list set lifetime, where list set lifetime is expressed as a
percentage of the total length of the reference stream. There is a wide variation
of behaviour over the programs. In the PLAGEN and LYRA ftraces the rapid
rise from the origin indicates that a large percentage (70-90%) of all list sets are
short lived, surviving less than 10% of the total program run. Further, from
Figure 3.5 it appears that in general there are few long-lived list sets. In all five
traces, less than 20% of the list sets survived for more than 60% of the program
trace length. Of the five traces, the LYRA trace has the highest percentage of
long-lived list sets; about 15% of all list sets had lifetimes of more than 95% of
the total trace length. In the other traces less than 10% of all list sets had life-
times of over 90% of total trace length.

How are list references distributed over these list sets? Do most lists belong
to short lived list sets or to long lived list sets? In Figure 3.6 we combine Fig-
ures 3.4 and 3.5 to Fain insight into this question. Figure 3.6 is a plot of the
cumulative number of list references that belonged to list sets of various lifetimes.
The plots show 2 kinds of behaviour: either an almost equal distribution of list
sets of all lifetimes, or most list sets being of short lifetime. The PEARL and
EDITOR plots can be approximated to straight lines through the origin with slope
1, indicating an even distribution of lists over list sets of all ligetimes. The
PLAGEN, SLANG and LYRA traces, on the other hand show near inverse-
exponential behaviour; this corresponds to most lists being in list sets of long life-
times.

Combining these observations on list set size and lifetime for our five refer-

ence traces, we have a list set partition where there are

(1) few large list sets and several small list sets,

(2) few list sets are long lived, and

(3) and most lists belong to long lived list sets.
We conclude that the few large list sets that survive for long periods of time con-
tain a large percentage of all list references, while other list sets are more tran-
sient in their access behaviour. List sets would therefore appear to be equivalent
to working sets of referencing locality. Note that the LYRA trace contains a far
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larger percentage of large, long-lived list sets than the other traces, and we would
therefore expect it to have a larger working set than the other traces as a conse-
quence.

3.3.2.3. List Access Characterization

Our next goal was to investigate the temporal locality of access to these list
sets. This amounts to taking a closer look at exactly how frequent and far apart
references to members of a list set are during the lifetime of that list set. The
Least Recently Used (LRU) stack model was used in this study. We used the
algorithm of [Matt70a], where a single pass over the program trace is enough to
calculate the success rates for a whole range of LRU stack sizes. Clark used the
same method. Fi§ure 3.7 shows the percentage of all list references that fall into
different depths of the LRU stack. Even though Clark’s LRU stack study was at
the list cell level his graphs are of the same general shape as ours. There is wide
variation in behaviour over the programs in both studies. What they show in
common is that a stack depth of 4 list sets captures from 70-90% of all accesses.
List sets are, therefore, objects of high temporal reference locality.

A list set is, in essence, a collection of list cells that are linked together by
car and pointers. Our studies show that at any given instant the Lisp working set
consists of a small collection of list sets. Architectural support for list manipula-
tion should provide fast access to the current working set. A hitherto
unanswered question is whether or not any specific paths into the list structure
should get preferential treatment - are there sequences of accesses into lists that
occur with sufficient frequency to warrant special hardware? To answer this
question, we looked for patterns in our list access streams. We say that primi-
tive function chaining has occurred if the value returned by one primitive func-
tion is immediately passed to another primitive function. Since higher level func-
tion calls are transparent to our studies these two primitive calls might actually be
separated by several function calls, but we are guaranteed that no list pointer
creation or modification has taken place in between. Table 3.2 below shows the
percentage of all car and cdr calls that were inside such function chains. The
percentages are significant in 4 of the 5 programs, with only the Pearl bench-
mark showing a low level of function chaining, and it would therefore appear that
function chaining is generally common. In Pear] the major program data struc-
tures are maintained as Franz Lisp hunks for performance reasons. These are
direct access data structures; each element of a hunk can be accessed without
having to go indirect through another element, as is the case for lists represented
by simple two-pointer list cells. A single hunk access would have been a
sequence of chained access function calls on a Lisp implementation that did not
support the hunk data structure. Though the most frequent primitive function
call sequences varied from program to program, certain short chains (e.g. car-
cdr) consistently occurred more frequently than others. The exact nature of the
chaining varied from program to program. In short, we can draw no generally
applicable observations regarding primitive function chaining patterns. The study
does indicate, however, that in a Lisp program that uses lists as the main data
structure, 25-80% of all list manipulating primitive calls are made from within
function chains.
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Table 3.2. Percentage of CxR calls that Occurred
inside a Function Chain

Benchmark | Primitive Function
Name CAR CDR

SLANG 55.68 26.71
PLAGEN 26.68 40.89
LYRA 82.75 68.99
EDITOR 47.21 38.72
PEARL 0.88 1.00

3.3.2.4. Sensitivity Analysis

The studies described in this chapter suggest that the list set partition of a
Lisp list access stream defines structural locales in the list structure that are
accessed with high temporal locality of reference. Our list set partitioning pro-
cedure used a separation constraint to define a window in the access stream
within which list reference relationships were searched for; we used a separation
constraint of 10% in gathering the observations reported thus far. How sensitive
are our observations to perturbations in this parameter? To answer this question

we conducted two sets of sensitivity experiments.

In the first set of experiments we varied the separation constraint from 5%
upto 100% and examined the resulting list set partition for the SLANG trace.
Figures 3.8-3.10 show the results of this study. These figures show how the
SLANG lines of Figures 3.4-3.6 get modified as the separation constraint is
varied. It is clear that while the graphs differ with different separation con-
straints, they consistently display the same general behaviour. Also, as we had
anticipated, a smaller separation constraint results in a smaller number of large
list sets.l The lines for the two largest separation constraints, 50% and 100%, are
identical.

In the second set of sensitivity experiments, we ran the PLAGEN, SLANG,
LYRA and EDITOR traces through the simulator using a separation constraint
that was constant over all four traces rather than a fraction of the length of each
trace. The constant that we chose was 10% of the length of the shortest trace
(SLANG); this was 0.79%, 3.34% and 5.91% of the lengths of the LYRA,
PLAGEN and EDITOR traces respectively. Figures 3.11-3.13 are the results of
this study. These graphs are the constant separation constraint counterparts of
the graphs of Figures 3.4-3.6, which were plotted using a 10% separation con-
straint. A comparison of Figures 3.4 and Figure 3.11 reveals little change in
behaviour other than for the LYRA trace. This trace shows a shift towards a list
set partition in which there are several small list sets and few large ones; Figure
3.11 shows that the 100 largest list sets in the LYRA trace represented only 88 %
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of all the list references in the trace, as against almost 100% in Figure 3.4 (the
10% separation constraint case). The other traces do not show such a pro-
nounced change. This is probably because of the extent by which the separation
constraint was changed for each trace - from 10% to 0.79% for the LYRA trace,
but only from 10% to 5.91% for the EDITOR trace.

The distribution of list set lifetimes over list sets, as plotted in Figure 3.12,
does not undergo much change either. Notice that the LYRA and EDITOR lines
do not contain any list sets that lived for more than 50% of the total trace length.
This indicates that these traces contain less structural locality than the other two
traces; a reduction in separation constraint window size results in a drastic reduc-
tion of the number of large, long-lived list sets. They are replaced by smaller,
shorter-lived list sets. This is re-iterated in Figure 3.13, which is a cumulative
plot of the number of lists belonging to lists o various list set lifetimes. Notice
that the SLANG and PLAGEN lines in Figure 3.13 do not differ much from
their counterparts in Figure 3.6.

We conclude that the observations we made are not very sensitive to minor
changes in the separation constraint of our list access stream partitioning pro-
cedure. We were able to anticipate the changes in the nature of the list set parti-
tion with varying separation constraint sizes.

3.4. Summary

The studies that we described in this chapter serve two purposes. Firstly,
they provide statistics describing the structure of Lisp lists. Clark’s results on list
cell pointer distances are one source of such information. Our studies used a
new set of measures (in n and p) to study this issue. These measures appear to
be both concise and informative.

Secondly, and more importantly, this chapter provided new insight into the
locality of reference present in Lisp reference streams. Previous studies of Lisp
list behaviour have revealed that Lisp programs show good spatial locality of
reference. Spatial locality in list access is dependent on the representation
scheme used; in a system where memory is largely dynamically heap allocated,
the spatial position of data items in memory is highly dependent on the heap
management policies employed. Our definition of list sets provides a means t0
study locality of reference in a representation independent way which we call
structural locality. The studies described in this chapter illustrate that there are
high levels of structural locality in Lisp program traces. The degree of primitive
chaining that we detected confirms this observation. When a Lisp list access
stream 1s partitioned into list sets using the procedure we described in this
chapter, most list references are members of large, lon g-lived list sets. We were
able to identify a small number of such large list sets in each trace that we
analysed. A Lisp machine should be able to take advantage of this accessing
regularity to improve list accessing efficiency.
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Chapter 4

A SMALL Lisp Machine Architecture

4.1. Introduction

Our studies reveal regularities in the list data access in Lisp execution that
suggest solutions to the data space management problem for Lisp systems. The
SMALL architecture we are about to describe is geared towards achieving effi-
ciency in

(1) accessing list data,

(2) use of limited processor-memory bandwidth, and

(3) the management of dynamically allocated (heap) memory space,
in an environment where function calls occur frequently.

The traditional approach to making data access efficient has been to take
advantage of locality in data reference; the use of register files and data caches
are examples of this approach. Processor-memory bandwidth is conserved both
by this and by the encoding of addressing information. Finally, support is tradi-
tionally provided for heap management in two main ways. The first involves
explicit support for garbage collection, say in the form of marking bits and
hardware to update them. The second involves atten uating the debilitating affects
of the heap management problem through parallel activity.

4.2. Rationale

Traditional solutions to the data space management problem will not suffice
in a high performance Lisp system. Consider the use of fast general purpose
registers. Since there are typically only a small number of such registers, they
can be addressed efficiently using a few bits. At the same time, register access
speed is far faster than main memory access speed. There is, however, an over-
head in using registers - work has to be done on each function call and return to
ensure consistency of the data space view presented by the register file and
memory. Multiple window register files have been used to reduce the register
saving overhead [Patt81a]. While this approach might work for a C program-
ming environment, it is not clear that it could cope with the magnitude of register
saving and restoring that would result in a Lisp environment. Elaborate register
allocation effort at compile time can make the use of registers worthwhile in cer-
tain function call intensive programming environments, like C. Lisp’s dynamic
nature makes this difficult. Register speed data access, then, seems out of the
question.

Another way to minimize the amount of time the processor has to wait on a
slow memory system is to introduce a fast buffer memory between the processor
and memory. Studies have shown that data caches can get reasonably high hit
ratios during Lisp evaluation [Smit85a]. Data cache designs typically use simple
replacement algorithms like LRU (Least Recently Used), approximations to
LRU, or random replacement. LRU replacement might displace data that is
going to be accessed in the near future even if the cache contains garbage, which
would obviously be the best data to displace. From the studies of Chapter 3 we
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have seen that there is considerable locality of reference in Lisp list access
streams related to the structure of Lisp lists. What we would like to see, then,
between the processor and slow memory system, is a fast memory structure that
selectively captures list data in a Lisp-specific way. This is what we aim for in
SMALL, the Structured Memory Access of Lisp Lists Architecture.

4.3. The SMALL Architecture

The organization we propose for a Lisp machine is shown in Figure 4.1.
The 2 main functional units are the EP (Evaluation Processor) and the LP (List
Processor). The EP is in charge of program control, all non-list related data
manipulation, and environment control (manipulation of the control stack and
association list over function calls). The EP passes all list related work to the
LP. This general organization is suggested in [Bake78a] but to our knowledge it
has not been developed further.

To make the communication between the EP and the LP efficient, the EP
does not directly deal with main memory addresses. In managing list memory,

Control Stack &
Environment
Auxiliary
Memory
Evaluation
CPU Processor
LPT
Heap
Controller
List
CPU Processor

Figure 4.1. Proposed Organization.
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the LP will have to move objects from place to place, and the EP must be
shielded from using an address that has been rendered obsolete by LP memory

management activity. We therefore map list cell addresses into small identifiers
through a translation table in the LP. We call this translation table the LPT.

The EP specifies lists by directly addressing entries in the LPT, which is
managed by the LP. In essence the LP and associated LPT virtualize a list. The
EP then operates on these virtualized lists. This referencing scheme serves to
reduce the semantic gap between the machine and the language. In most imple-
mentations the distinction between a list pointer and a Lisp object is lost. Though
conceptually Lisp functions pass each other object arguments, this passing is
implemented by passing pointers to those objects, and the concept of an object
loses in meaning. The LPT enables some of this distinction to be retained.
More importantly, the LPT serves as a buffer for the heavily accessed parts of the
list structure; the LP implements algorithms necessary to capture the currently
accessed portions of the list structure in the LPT.

Figure 4.2 shows the components of the LPT; the various fields of a table
entry will be described in detail later. The address mapping is contained in the
identifier and address fields. This mapping is similar to virtual memory mapping
since both make flexible use of physical memory possible without inconvenienc-
ing the user.

4.3.1. The Evaluation Processor

Of the various duties performed by the EP, the management of the environ-
ment is the most complicated. A Lisp environment changes on every function
call and return. On a function call the variable-value bindings must be made,
possibly with the saving of previous bindings. The environment is searched dur-
ing the evaluation of the function to determine the current bindings for the names
being referenced. If a referenced value happens to be a list object, then it is
represented by an LPT address. On function return some of these bindings have
to be undone, i.e. replaced with the values that they had before the function was
called.

1D CAR | CDR | REF | ADDR | MARK
L1 - - 1 al -
L2 - - 1 a2 -

Figure 4.2. Fields of an LPT Entry.
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Consider that the environment is maintained as a stack of name-value bind-
ing frames. This corresponds to a deep bound implementation of addressing
environments. Recall that a deep binding implementation leads to fast function
calls and returns at the expense of look-up time, while shallow binding leads to
fast look-up at the expense of slowing down function calling and returning.
Also, shallow binding is not the preferred implementation method for environ-
ments in multi-processor Lisps. For our purposes, a stack implementation of
environments is convenient for illustrating the principles involved.

We assume that Lisp code to be run on SMALL undergoes some simple
pre-processing. Part of this serves to speed up the name look-up process. The
pre-processing enables function arguments and locals to be looked-up as known
offsets in the environment stack, thus saving on look-up time. In the case of
non-locals the pre-processing cannot predict the run-time location of the name-
value pair, and so non-locals result in run-time searches of the environment.

The EP communicates with the LP using operations similar to the list mani-
pulation primitives of Lisp. The set of operations includes car, edr, cens,
rplaca, rplacd, copy, readlist, and writelist. For example, when the EP sends
a readlist request to the LP, the EP expects to receive an identifier in return. It
then binds this identifier to the program variable that is being read into. The LP,
in turn, initiates 1/0 activity and updates its view of the lists currently being
accessed to account for the newly created list object.

The EP also maintains the control stack, which contains a stack frame for
each active function call. There is one control stack frame for each function
call; there is also a set of bindings added to the environment for each call. We
will assume that the environment (name-value bindings) is incorporated in the
frames of the control stack. Each stack frame thus contains a set of name-value
bindings, and the information necessary to return from function call. This infor-
mation includes a return address, and a stack frame pointer to indicate how big
the frame is; the latter is necessary to determine how much of the stack must be
removed on return from that function. Stack items that contain name-value bind-
ings are composed of a name field, a tag field (specifying the type of the value),
and a value field (which contains an identifier if the value is a list). In the case
of list values, the tag field also indicates whether the value is a copy; this field is
set when a value is passed as a call-by-value parameter. Before such a value can
be modified the EP must create a copy of it by sending a copy request to the LP
and binding the returned identifier to the appro riate name. At function return
time, before control is transferred back to the t%nction that initiated the call, a
reference count decrementing request is sent to the LP for each stack item that
represents a name-value binding added during that call, and that item is then
popped from the stack.

4.3.2. The List Processor

The details of LP operation revolve around the manipulation of LPT entries.
Each entry in the LPT i1s basically an (identifier,address) tuple, where identifier
is the short address used by the EP to identify list objects, and address is the
actual physical memory address where that object is stored. For the LP to keep
track of the relationship between the various list pointers represented by these
LPT entries, we would like to be able to identify which entries belong to the
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same list set. So, we extend the LPT tuple with 2 more fields, car and cdr that
will relate LPT entries to each other. The car field of LPT entry L1 will be set
to L2, where L2 is an index into the LPT, and the list reference L2 is the car of
list reference L1. The first time that a car (cdr) is computed, an LPT entry is
created for the return value object and the identifier of that object is stored as the
car (cdr) of the argument list object. Future requests for the car or cdr of the
list object can then be satisfied directly from the LPT. The car and cdr fields
therefore serve to minimize recalculation of car or cdr operations on lists and
make list access faster. This feature enables the LPT to cache the more recently
and frequently accessed parts of the list structure in a Lisp-specific way.

4.3.2.1. LPT Management

The LPT as described thus far will keep growing until it has an entry for
each list object ever referenced. To reduce the size of the LPT, it becomes
necessary to manage the table space just as one manages the heap memory in
which the list cells reside. We consider a reference counting scheme
[Coll60a, Weiz63a] to be the logical choice for this scenario. Reference counting
does have its disadvantages, but we find that they are not critical in this setting.
It is true that keeping track of a reference count for every list cell is wasteful of
space and time. Since we have only one LPT entry for each list object currently
being accessed, as we shall see in Chapter 5, the number of counts being tracked
is not excessive. Further, the reference count updating cost is a distributed heap
management cost, and therefore not so much an overhead as an investment. So,
we add a fifth field, reference count, to the LPT tuple. An entry’s reference
count gets incremented when a new binding is made to that list object, and decre-
mented when a binding gets unmade or when a reference to the object from
within the table ceases to exist. An entry ceases to exist when its reference count
goes to zero.

In Chapter 2 we have seen that reference counting is generally considered
unsuitable for real time applications because of the potentially unbounded amount
of work that has to be done when a count goes to zero. We address this by the
following optimizations: when an object’s reference count goes to zero it gets
reclaimed, but the reference counts of its children (the list objects are specified in
its car and cdr fields) will get their reference counts decremented only when the
freed object gets re-used. This makes the amount of work on object reclamation
minimal at the expense of potentially keeping more LPT entries busy than neces-
sary. To partially deal with this expense, free LPT entries are not remembered
in a queue (first in first out) but on a stack (last in first out) implemented in the
table. A Top of Stack register indicates the identifier of the next LPT entry to be
allocated for use, and the stack is linked together through the addr LPT entry
field. Figure 4.3 illustrates this operation. When an entry’s reference count
goes to zero, the only work that has to be done is to push it onto the free stack.
[t the children of the freed entry now actually also have reference counts of zero,
they represent LPT space that is occupied but not actually referenced. This is
the price paid for trying to minimize the delay in the freeing of LPT entries.
Only when an LPT entry is allocated for reuse are the reference counts of it’s old
children decremented. Since we use a free stack rather than a free queue the
most recently freed entry will be the first to be re-used. This minimizes the
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iD | cAR | CDR| REF| ADDR
L1 | L2 L3 1 -
L2 ] - 1 - TOS
L3 - - 1
4 | - - 0 ] L6
L5 - o | L4
L6 - - o | Ls
\L L1 gets freed
iD | CAR | CDR| REF| ADDR
L1 | L2 L3 0 L6
L2 ] - 1 ) TOS
L3 - - 1 -
L4 . - 0 - L1
L5 - - o | L4
L6 - - 0 L5

J/ Request for new LPT entry

> | cAR | cDR| REF|ADDR
L1 | - - 1 ‘

| - | - o | Le TOS
13 | - ] 0o | L2

4| - _ 0 - L3
5| - _ 0o | L4

6 | - - o | Ls

Figure 4.3. LPT Entry Freeing and Allocating.
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period during which more LPT space than is necessary is occupied. So, both
LPT entry freeing and LPT entry allocation can be performed efficiently in fixed
amounts of time.

Another common complaint with reference counts is their inability to
reclaim circularly linked garbage. This is not strictly true; if we follow
[Bobr80a] and [Frie79a], the LPT provides a means of distinguishing between
internal and external pointers (a necessary condition for reclaiming circular lists
using reference counts), and if we include an additional field in the LPT for the
circular list header of each circular list, we can also reclaim circular lists. This
would, however, impose an additional cost on all LPT accesses (the check to see
if we are dealing with or creating a circular list) which is unacceptable. We opt,
instead, to perform circular list reclamation at the time that the LPT is
compressed to recover from table overflow. This is described later in this
chapter.

4.3.2.2. LP List Manipulating Primitives

With this picture of the LPT in mind we now look in more detail at how
Lisp list manipulating primitives are carried out in the SMALL architecture.
Recall that in EP-LP communication lists are specified by identifiers which are
indices into the LPT. The next 4 sub-sections describe list I/O, simple list
access, simple list modification, and list consing. The illustrations show only the
relevant LPT fields.

4.3.2.2.1. Reading in List Data

Consider a Lisp list input function call of the form (read X). In evaluating
this call the EP determines what the name X represents by examining the
environment. If X has an identifier L1 associated with it the EP then sends a
readlist L1 request to the LP. Otherwise the EP sends a readlist 0 request to
the LP. If the EP’s request had specified a list object L1, the LP decrements the
reference count of LPT entry L1. The LP then initiates 1/O activity which
results in the list data being read into the heap memory. A new LPT entry is
allocated and updated with the address information returned by the heap memory
controller. The identifier of this LPT entry is returned to the EP as the return
value of the readlist request. The EP updates the environment by binding X to
this identifier. The case where the name X had no identifier associated with it is
illustrated in Figure 4.4.

4.3.2.2.2. Simple List Access

In evaluating a list access function call of the form (car X) the EP looks up
the environment for the identifier, say L1, corresponding to the name X and
sends a car L1 request to the LP. If the car field of the LPT entry for L1 is set
the LP returns the value of that field to the EP and updates its reference count by
one. Otherwise, the LP requests the heap memory controller to split the list
object L1. A split results in a heap list object being split into two list objects, the
car and the cdr of the original list object. The heap memory controller returns
the addresses of these two pieces; the LP uses the addresses in setting up two new
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EP EP

(read X)

Environment Environment

x1]

| identifier L

v ReadList
LP LP
id]car cdr|ref] addr id car| cdr| ref| addr
L L 1 A
+ Initiate 1/0 heap address A
Heap Heap .
AE:]/ New Objec
(a) (b)

To evaluate the read call the EP A new heap object is read in at heap
sends a ReadList request to the LP.  address 'A’, which is returned to the LP.
The LP allocates a new LPT entry, L,

The LP causes 1/0O to be initiated.
Notice that the name X has no value updates its fields and returns the value

bound to it, and entry L is unused. L to the EP which binds this value to X.

Figure 4.4. Reading in a List.

LPT entries corresponding to the car and cdr of object L1. The LP then returns
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from the car L1 request with the identifier corresponding to the car of the newly
stp]it object L1. Figure 4.5 illustrates the steps involved in performing list access
if a split takes place (the other case is straightforward).

4.3.2.2.3. Simple List Modification

In evaluating a list modification call of the form (rplaca X Y) the EP looks
up the environment for the identifiers corresponding to the names X and Y, say
Lx and Ly, and requests the LP to rplaca Lx Ly. The EP can continue with its
evaluation after initiating the LP. In the LP, if the car field of LPT entry Lx is
set, say to La, the LP decrements the reference count of LPT entry La, incre-
ments that of LPT entry Ly, and sets the car field of entry Lx to Ly. Otherwise
it requests the heap memory controller to split the list object Lx first. Figure 4.6
illustrates the case where no splitting is necessary.

4.3.2.2.4. List CONSing

In evaluating a primitive call of the form (cons X Y) the EP looks up the
environment for the identifiers corresponding to the names X and Y, say Lx and
Ly, and requests the LP to cons Lx Ly. The LP allocates a new LPT entry, say
Lz, increments the reference counts of entries Lx and Ly, sets the car and cdr
fields of LPT entry Lz to Lx and Ly respectively, and sets the reference count of
entry Lz to 1. The LP sends identifier Lz as return value to the EP immediately
after the LPT entry has been allocated and before the LPT entry fields have actu-
ally been set, allowing the EP to continue with its evaluation work. Notice that
consing involves no heap activity. This causes dynamically created parts of the
list structure to be built up as an endo-structure present only in the LPT (rather
than in the heap), and therefore readily available for fast access. Figure 4.7
illustrates the cons operation.

The decoupling of activity between the EP and the LP along with the virtual-
ization of heap addresses achieved in the LPT combine to create the scope for
arallel activity in the EP, LP and heap controller. As we have seen, in per-
orming a cons the LP returns a value to the EP as soon as a new LPT entry has
been allocated. While the LP is setting the fields of the new LPT entry and
updating the reference counts of the entries being consed, the EP can continue
with its evaluation work, possibly using even using the value returned by the
cons operation.

4.3.2.3. LPT Overflow

Since the LPT is a fixed sized table, it is possible that the LP runs out of
LPT space during Lisp execution. We call this condition LPT overflow. How-
ever, if there are LPT entries that are only referenced from within the LPT we
might be able to compress them into their parents (o make some table space avail-
able for immediate use. We call this condition pseudo overflow. Compression is
the operation that is performed on the LPT when there are no more free table
entries under a pseudo overflow condition. Figure 4.8 illustrates what happens
when a compression takes place. Since L2 and L3 have reference counts of 1

and are pointed at only from within the LPT, they can be compressed into their
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EP

Environment

x L]

™ 1dentifier La

y carll
LP LP
id |car|cdr|ref jadr id | car|cdr| ref}adr
L1] - | -12]|A LijLalLd| 2] -
Lal - | -|1]A
ldl -] -]1118B
| split A ™ Address B
Heap AD Heap A
gl
(a) ()
In executing a ’car’, control first Results are returned from the heap
flows from the EP to the LP to manager to the LP, and from the
LP to the EP. The identifier La

the heap manager.

is the value of (car X).

Figure 4.5. Simple List Access.
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EP EP
(rplaca X Y)

Environment

[x]ix
[¥ Ly

Environment

vy rplaca Lx Ly T Identifier Lx
LP LP
id |car|cdr|ref {adr id | car|cdr| ref{adr
Lx|LaJLd{ 1] - Lx{Ly|Ld] 1] -
Lal - [ - ]2 La| - | - |1
Lyl -|-]1]B Lyl -1 -121]B

IR A0

(@) (b)

In executing (rplaca X Y) the EP looks The LP modifies LPT entries to reflect
up the current bindings of X and Y and  the requeste modification. Control can
requests the LP to perform the list be passed back to the EP while these
modification operation. LPT changes are being made.

Figure 4.6. Simple List Modification.
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EP EP

(cons X Y)

Environment

Environment

LY [Ly]

' Identifier Lz

y cons Lx Ly
LP LP
id |car|cdr|ref|adr id | car|cdr| ref]adr
Lx| -] -|11A Lx|] -| -2
Lyl -1 -11[B Lyl - -121|B
Lz{Lx|{Ly] 1] -

Heap A] Heap A[]

gl ] g

(a) (b)

In executing (cons X Y) the EP finds The LP allocates a new LPT entry, Lz,
the current bindings of X and Y and sets its fields, updates the reference
counts of Lx and Ly, and returns Lz

passes the request on to the LP.
to the EP. No heap activity is involved.

Figure 4.7. consing two Lists.

parent, L1. The heap controller is instructed to merge the objects at addresses A
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and B, returning the address of the merged objects as C. Figure 4.8a shows the
pseudo overflow condition before compression and figure 4.8b shows the LPT
after merging has successfully completed. Two LPT entries are thus freed.
Notice that merge is the inverse of split.

There are several possibilities regarding when LPT compression should be
performed and how much LPT space should be freed on each compression. It
can be initiated either when the LPT actually gets full or after it reaches a pre-
determined threshold level of occupancy. Further, compression can be carried
out either until enough table space has been recovered to allow computation to
continue (we will call this the Compress-One compression policy), or until there
is no more compressible table space to reclaim (which we will call the
Compress-All compression policy). Note that it is possible that there are no such
compressible entries in the table; we call this a true overflow condition. When
true overflow occurs there are no LPT entries available for the LP to allocate in
carrying out operations requested by the EP. Itis essential that the LP be able to
recover from such this condition.

ID | CAR | CDR| REF | ADDR

L1 L2 L3 2 -

L2 - - 1 A

L3 - - 1 B
(a)

ID | CAR | CDR| REF | ADDR

L1 - - 2 C

L2 - - 0 -

L3 - - 0 -
(b)

Figure 4.8. Compressing LPT Entries.
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Recovery from true overflow turns out to be fairly expensive in terms of the
heavy performance degradation between the normal mode of operation (which we
call fast mode) and the operation under true overflow conditions (which we call
overflow mode). Therefore, before switching to the overflow mode of operation
the LP attempts to recover from true overflow by searching for hidden free LPT
space. This involves looking for cycles of unused LPT entries. This space was
not recovered under normal operation since we use reference counting to manage
the LPT. A simple cycle detection algorithm would be used, making use of the
mark bits to mark LPT entries and then performing a conventional sweep of the
LPT to reclaim the entries forming the cycle. If any LPT space is made available
by the breaking of cycles SMALL operation would continue in the fast mode.

Otherwise it degrades to overflow mode.

In overflow mode the LPT essentially gets bypassed; the EP communicates
in terms of heap addresses (through the LP) with the heap memory controller.
To accommodate large heap addresses in the value parts 0 name-value bindings
on the stack, there is a special tag value for overflow mode identifier, and the
actual (large) heap address is contained in the next stack item. The LP keeps
count of how many such large identifiers are referred to in the EP, and when
this count goes to zero, initiates a mode change back to the fast mode of opera-
tion. Note that in overflow mode the EP references lists in two ways: using the
LPT identifiers that are still valid, and using large heap addresses in other cases.
Overflow mode is slow for several reasons. Firstly, an extra tag condition has to
be checked for in the control stack for each lookup operation on the environ-
ment. Secondly, the EP-LP bus is no longer wide enough for EP-LP communi-
cation and more time is spent in operand specification. Further, the LP has to
check the addresses being returned by the heap in response to list manipulation
requests initiated by the LP in order to maintain the consistency of the LPT.

Clearly, operating in the overflow mode will result in performance degrada-
tion. One way to prevent this from happening is to provide an LPT large enough
to make true overflows rare occurrences. Our simulation studies, described in
Chapter 5, show that for an LPT with a few thousand entries true overflow does
not occur during runs of our set of benchmark programs. So, operating in the
overflow mode will not be a performance problem in a well tuned SMALL

machine.

4.3.2.4. Example

We illustrate some basic list manipulation operations in Figure 4.9. Figure
4.9a shows the LPT after 2 lists have been read in and designated as list objects
L1 and L2 respectively. (Recall that there are other fields associated with each
LPT entry.) The following operation is then performed on the two lists: {cons
[cons (car L1) (cdr L2)] (car L2)}. First (car L1) is evaluated and as a result
LPT entries L3 (for the car of L1) and L4 (for the cdr of L1) are created. Simi-
larly, when (cdr L2) is evaluated LPT entries L5 and L6 are created. The LPT
contents at that point are as shown in Figure 4.9b. The evaluation of (cons L3
L6) causes LPT eniry L7 to be created. Figure 4.9c shows the LPT after the
entire expression has been evaluated with return value L8. Note that to do 3 list
accesses only 2 accesses of the actual list storage were necessary. The cons
operations affect only the LPT and not the list heap memory. Due to this
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1D CAR CDR| REF ID CAR CDR| REF
L1 - - 1 L1 L3 L4 1
L2 - - 1 L2 LS5 L6 1
L3 - - 2
(@) L4 - - 1
L5 - - 2
L6 - - 2
ID CAR CDR| REF L7 L3 L6 1
L1 L3 L4 1 L8 L7 L5 1
L2 L5 L6 1
L3 - - 2 (c)
L4 - - 1
L5 - - 1
L6 - - 2
(b)

Figure 4.9. Examples of List Manipulation in the LPT.

handling of cons, a value is returned to the EP with very little delay. The EP
can thus continue its computation while the LP is in parallel updating LPT
entries and allocating a new list cell in the heap. At the end of this evaluation the
only external pointers are to the two initial objects, L.1 and L2, and to the return
value L8. If the LPT has size 8 entries, there is potential for a true overflow
condition to occur. Since there are no compressible LPT entry pairs, any LP
activity that requires an additional LPT entry at this point would cause a true
overflow. Note also that Figure 4.9b is a potential pseudo overflow scenario for
an LPT of size 6, since the LP could compress L3 and L4 into 1.1 to free 2 table
entries for immediate use.



65

4.3.2.5. Concurrency in EP/LP Activity

The examples of LP operation suggest that EP and LP activity can be over-
lapped during Lisp evaluation on a SMALL machine. The extent of this con-
currency will depend on implementation dependent parameters such as LPT
access time, LPT entry modification time, reference count update time, name
lookup time, etc. While the exact timing of EP-LP interaction will depend on
these factors, we can get an idea of the scope for concurrency in SMALL list
manipulation by assigning approximate values to these timing parameters and
constructing timing diagrams for typical operations. Figures 4.10 through 4.13
are such timing diagrams for the four primitive LPT list manipulating examples
that we used above. Each timing diagram contains two horizontal time lines, one
for the EP and one for the LP. The relative sizes of intervals on these time lines
are dependent on the specifics of the SMALL implementation. A gap in a time
line indicates that the processing element is idle for that interval of ime. We use
dasheg1 vertical lines to specify the action being performed in the indicated time
interval.

Each diagram starts with the EP interrogating the environment regarding the
current bindings of the names used in_the list manipulating instruction being exe-
cuted. The EP then sends a list manipulating request to the LP. Depending on
the nature of this request the LP then initiates 1/O, allocates a new LPT entry, or
updates the fields of a particular LPT entry. The LP returns a value to the EP as
early as possible, which is, in most cases, a short period after the request was
made. There are a few exceptions to this quick response. One example is in
reading in list data, as in Figure 4.10. Notice that the EP has to remain idle for
a period of time waiting for the return value from the LP. This is necessary
since the LP cannot predict the type tag of the value being read in until the 1/0 is
complete. Similarly, when car or cdr accesses are being made and splitting is
needed, the LP must wait for the return value from the heap controller specifying
the type of the newly split object, since the split could result in an atomic value.
In other cases, the time during which the EP is forced to wait idly for a response
from the LP is small.

One possible concern that these diagrams raise is EP-LP interaction during
primitive function chaining, or when the EP’s instruction stream contains several
consecutive list manipulating instructions. Even though the LP responds quickly
to each EP request, it is not ready to accept the next request from the EP for a
short period after that while modifying LPT entries. For example, in the case of
the cons operation, after the LP sends the return value to the EP, it still has to
update the LPT free list, set the fields of the newly allocated LPT entry, and
update the reference counts of the two LPT entries being consed before it can
accept the next EP request. If several such requests occur one after the other,
the EP might have to wait idly for the LP to become ready. This will depend on
the relative sizes of the various time parameters.
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i Lookup current binding of X, Lx

Send read Lx request to LP

: Update binding of X with returned value, Lz

i | Proceed with next instruction

EP ""‘ l i

read Lx . Return value Lz

LP HH+—+—
' Set remaining fields of LPT entry Lz
' Set car, cdr, ref fields of newly allocated entry, Lz
" Decrement ref field of Lx

: Update head of LPT free list

* Initiate 1/0. Find head of LPT free list, Lz

l J
) 1
1/0

Figure 4.10. Timing in Reading in List Data.




: Lookup current binding of X, Lx

g

A 4
car Lx

LP

: Send car Lx request to LP

i Push return value, Lcar, onto stack

: Proceed with next instruction

b

4 Return value Lcar

" Increment ref field of LPT entry Lcar

' Car field of LPT entry Lx, Lcar. Return to EP.

Figure 4.11. Timing in Simple List Access.
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i Lookup current binding of X, Lx
: Lookup current binding of Y, Ly
: Send rplaca Lx, Ly request to LP

i Proceed with next instruction

rplaca Lx, Ly 1

LP F——
" Increment ref field of Ly

' Set car field of LPT entry Lx to Ly

' Decrement ref field of LPT entry Lx.car

Figure 4.12. Timing in Simple List Modification.
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i Lookup current binding of X, Lx

g Lookup current binding of Y, Ly

+ Send cons Lx, Ly request to LP

Push return value, Lz, onto stack
i Proceed to next instruction

o
| 1

EP

cons Lx, Ly | 1 Return value Lz

LP H

| Increment ref field of LPT entry Ly
| Increment ref field of LPT entry Lx
E Set car, cdr, ref, addr fields of newly allocated LPT entry
E Update pointer to LPT free list

' Find head of LPT free list, Lz and return to EP

Figure 4.13. Timing in List consing
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4.3.3. Heap Memory

From what we have seen of LP operation it is clear that considerable func-
tionality is required of the heap memory controller. The controller has to
manage the free heap space, perform the splitting and merging of list objects,
and manage the input and output of list data. These are all strongly dependent
on the actual list representation scheme used in the heap memory; any list
representation scheme should be evaluated in terms of the ease with which these
operations can be performed. While we have not attempted a design of the heap
memory controller, the discussion that follows examines a few of the issues
involved in that design.

4.3.3.1. Managing Free Heap Space

The management of heap space is greatly simplified by the reference counts
maintained in the LPT. When a reference count goes to 0 and that LPT entry
gets put onto the LPT free list, the LPT signals the heap memory controller to
reclaim the space occupied by that object (using the address information from the
LPT entry). Freeing this space could be an arbitrarily complicated operation
depending on how list objects are represented. For example, if 2-pointer list
cells are used in the heap, reclaiming the space occupied by a list involves
traversing the list while adding the list cells traversed to the heap’s free list. This
requires a stack to keep track of the intermediate nodes that are ancestors of
untraversed parts of the list. The object freeing operation takes time proportional
to the number of list cells in the list representation. But, the stack space is only
used temporarily, and the LP need not wait for the heap controller to finish free-
ing the list object. There could, in fact, be a queue of free requests serviced by
the heap controller whenever convenient. The queue size could be limited as a
means of flow control. This prevents the LP from running far ahead and
ensures that there are not large portions of heap memory waiting to be freed, and

therefore unused.

The traversal would be simpler if list objects were represented usin; fixed
sized blocks of contiguous memory cells, as suggested, for example, for the
implementation of exception tables in the BLAST architecture [Sohi85a]. The
disadvantage with this scheme is the wastage of memory through internal block
fragmentation, i.e. large portions of these ixed sized blocks being empty. Since
SMALL list accesses involve splitting the object at the lowest level, there could be
considerable internal fragmentation depending on the choice of block size.
Using blocks of a few fixed sizes solves this problem to some extent but compli-
cates other aspects of heap management; it now becomes more difficult to allocate
blocks and to manage the free heap space.

4.3.3.2. Merging and Splitting List Objects

Recall that the LP requests the heap controller to split the object resident at
a specified address on the first access to every list. Subsequent accesses to that
object get satisfied from the information in the LPT. The amount of splitting that
takes place will depend on the extent to which list accesses are satisfied by the
information already contained in the LPT. However, even if splitting is a low
frequency operation it must be performed as quickly as possible. When the LP
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sends a split request to the heap controller, it must wait for the return informa-
tion from the heap controller before in turn returning a value to the EP. This is
necessary since the accessed value might be an atom, in which case a type tag
must be included in the value returned by the LP to the EP; this information
must come from the heap controller during the splitting process.

Splitting objects represented using two pointer list cells is simple. To split
the object at address X the heap controller simply returns the values of the 2
pointers and frees the list cell at address X. Splitting is more complicated in an
exception table represented list heap. A split involves scanning each entry of the
exception table corresponding to the object, copying each into one of two new
exception tables depending on which sub-tree of the parent list object it belongs
to. This is direct fall-out from the fact that the exception table representation
aims for compactness by encoding structure information in each table entry. The
more compact a representation scheme is the more difficult it becomes to split list
objects.

Merging two pointer list cell objects, say at addresses X and Y is, like split-
ting, a simple operation. A simple merging algorithm would allocate a new heap
cell, say at address Z, set its car and cdr fields to X and Y respectively and return
Z to the LP. Note that this value would be returned to the LP as soon as cell Zis
allocated, so that the LP could continue while the fields of the newly allocated list
cell are being set in the heap memory. In an exception table represented heap,
to merge exception tables X and Y a simple merging algorithm would allocate a
new exception table, Z, with just two entries in it - orwarding pointers to X and
Y  While these entries of exception table Z are being set, the heap controller
would return the address Z to the LP enabling LP computation to continue. This
makes merging quick at the expense of increasing the number of forwarding
pointers and the amount of internal fragmentation in the exception table memory.

4.3.4. Instruction Set and Function Compilation

To get a better feel for how Lisp functions get evaluated we developed
software tools to emulate their execution on SMALL. We assumed that Lisp
code is preprocessed into an executable form by a program transformer (which
we will call a compiler). Specifying a complete instruction set for SMALL was
not our goal in this experiment - we leave this for future work. This was
intended as an exercise to suggest what the SMALL instruction set might look
like and how Lisp functions might be compiled into it. We therefore started by
defining a basic set of primitive functions that the compiler would accept. The
set included the basic list manipulating primitives (car, cdr, cons, rplaca,
rplacd), cond and prog constructs (along with a goto function and label specifi-
cation), predicates (atomp, nullp, equalp, greaterp), arithmetic functions
(add, subtract, multiply, divide), logical functions (and, or, not), assignment
(setq), input and output functions (read, write), function definition (def) and
return. This subset is comparable to Lisp 1.0. Only the simple function call
described in Chapter 2 was supported. In this simple Lisp the only valid numeric
type is integer.

The compiler accepts a file containing a function call and any number of

function definitions. It scans the input file using lex and generates code for each
function by traversing the function definition tree, producing code for a node
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when code has been produced for all of its children, and backpatching forward
calls when the function definition is encountered. Code was generated for a
stack machine with the list manipulating functionality of SMALL. The instruc-
tion set included instructions for function call and return, adding a new binding
to the environment, looking up the current value bound to a name and pushing it
on top of the stack, pushing immediate values onto the stack, input and output,
list manipulating operations, arithmetic and logical operations, unconditional
branching, and conditional branching based on predicate testing of the current
value on top of the stack. We emulated the code produced by this compiler to
test its correctness. The emulator operated by tracing the state of three key
SMALL structures: the stack (control and environment), the LPT and the heap.

We present two examples of how a function gets compiled into this stack
machine instruction set. Figure 4.14 shows a function that computes the fac-
torial of a number and the stack machine code that it compiles into. Figure 4.15
shows an example of how list manipulation and function calling are compiled.
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(DEF fact(x)
(COND
((=x0) 1)
(T (* x (fact(- x 1)}

fact: BINDN X / bind argument to name ’X’

PUSHSTK 1 / push value of argument 1 (x) onto stack
/ argument ’x” at a known stack location

PUSHSYM 0 / push constant 0 onto stack
NEQUALP labl / goto *labl’ if top 2 stack values unequal
PUSHSYM 1 / push constant 1 onto stack
FRETN / return

labl: PUSHSTK 1 / push value of argument 1 (x) onto stack
PUSHSTK 1 / push value of ’x’ onto stack
PUSHSYM 1 / push constant 1 onto stack
SUBOP / subtract TOS from TOS-1 and push result
FCALL fact / recursive call to fact
MULOP / multiply TOS and TOS-1 and push result
FRETN / return

Figure 4.14. Factorial function.
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(DEF print(junk)
(WRITE (CDR junk)]

(DEF doit()
(PROG(list)
(READ list)
(print list)
(SETQ list (CDR (CDR list)]

print: BINDN junk / bind argument to name ’junk’
PUSHSTK 1 / push value of ’junk’ onto stack
CDR / cdr of list identfier at TOS
WRLIST / write value returned from CDR
FRETN / return

doit: BINDN list / bind stack item for PROG variable ’list’
RDLIST 1 / read list into ’list’
PUSHSTK 1 / push value of ’list’ onto stack
FCALL print / call *print’. Argument on the stack
PUSHSTK 1 / push value of ’list’ onto stack
CDROP / cdr of list identfier at TOS
CDROP / cdr of list identfier at TOS
SETQ 1 / assign TOS value to ’list’
FRETN / return

Figure 4.15. List manipulation and function calling.

Our comfpiler, instruction set and emulator provide guidelines for the
development of a more complete SMALL Lisp implementation.

4.4. Summary

The SMALL Lisp machine architecture is made up of two main processing
elements, one dedicated to heap activity (List Processor) and the other dedicated
to function evaluation (Evaluation Processor). The special-purpose hardware in
the LP should lead to efficient heap management. The EP-LP partition makes
concurrent evaluation and list access possible.

In the LP, the LPT captures that subset of list structure nodes that is being

actively accessed. Recalculation of Lisp access primitives is thus made unneces-
sary by storing some attributes of a list object in its LPT entry. Further, the
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organization deals effectively with temporary cons cells. This is a major part of
traditional garbage collection activity. The SMALL organization manages these
temporary cons cells efficiently since cons cells are created as LPT entries and
cease to exist when their reference counts go down to zero. So, transient cons
cells soon disappear while permanent cons cells survive.

While we have explained the rationale behind various SMALL features, it is
not clear how efficiently they will perform in practise. We address this issue
through a more detailed evaluation in the next chapter.
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Chapter 5

A SMALL Evaluation

5.1. Introduction

The art of evaluating a computer architecture typically involves a wide
variety of techniques that are used at different stages of its development. Early
paper design ideas can sometimes be evaluated using analytical models. When
this is not possible more qualitative techniques must be used. Once the details of
major parts of the architecture have been finalized, simulation is a powerful
evaluation tool. Further on in the design process, an actual implementation of
the architecture can be evaluated by timing the execution of benchmarks pro-
grams; the choice of benchmarks is usually guided by the nature of the features
that are being evaluated. In this chapter we describe our evaluation of the
SMALL architecture.

5.2. Quantitative Evaluation

We first describe our quantitative evaluation of SMALL’s chief features: the
LPT (translation table) and basic LP list manipulation. The possible problems
that we foresee with these features are:

(1) frequent true LPT overflow,
(2) excessive reference count modification activity, and
(3) low LPT hit rates.

5.2.1. Simulation Set-up

To investigate the issues listed above we used a trace-driven simulator of our
architecture. The traces to drive this simulator were derived from runs of a few
large Lisp programs including: a circuit simulator (Slang), a PLA generator
(PlaGen), an editor (Editor), and a VLSI design rules checker (Lyra). During
typical interpreted runs of each program we caused trace information to be writ-
ten on entry to and exit from (a) each Lisp primitive (primitive name and argu-
ments), and (b) each user defined function (function name and number of argu-
ments). The former information is needed to trace list object access and modifi-
cation history, while the latter is needed to trace the amount of EP-LP activity
relating to maintaining the program environment.

One difficulty with using this kind of trace is that two list arguments that
look identical could actually be different objects, i.e., they could have been
created independently and stored in different memory locations, but would be
mistaken for each other. Since we did not have access to the low-level details of
the Franz Lisp system that we used, we could not access the information needed
to overcome this difficulty. Thus, to deal with the traced list arguments, we can
either consider all the list arguments to be independent or that identical list argu-
ments always refer to the same list object. If we consider the list arguments to be
independent, i.e. unique list objects, then our evaluation would become unduly
pessimistic. We know from Chapter 3 that these lists are not all independent
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since there is locality of reference in Lisp programs. To simulate this locality we
used the following strategy. If the list returned by one primitive function is
identical to the argument of the next primitive function in the trace, we assumed
that the two lists refer to the same object. In other cases, we assume that the list
argument is either the value of some existing non-local variable, or that of some
existing local variable. One of these possibilities is selected for the list argument
based on a probability distribution specified as a parameter to the simulator.

We implemented this by first pre-processing the trace files. Each list argu-
ment was replaced by 2 integers: a unique identifier, and a chaining ﬂa%. Lists
that look identical are allotted the same unique identifier. The chaining flag was
set to 1 if the list argument happens to be the value returned by the previous call
in the trace. Otherwise it was set to zero. In the simulator, in deciding the
argument of a particular primitive, the chaining flag is first examined. If itis 1,
the argument is assumed to be available on top of the simulated run-time stack.
Otherwise, a local or non-local variable is selected based on a set of probability
distributions described later in this section. ,

The generated traces varied in length between 1437 and 160,933 primitive
accesses performed among from 342 to 11907 user-defined function calls, with a
maximum call depth of from 14 to 29. Table 5.1 characterizes this aspect of the
traces.

The simulator monitors the contents of the LPT and the control-cum-
binding stack over the function calls and list manipulating primitives of a trace.
The mechanics of stack update on a function call are as follows: using the trace
information (about the number of arguments to that particular function) a stack
item is pushed for each argument, which is then randomly bound to something
older to it on the stack. A randomly determined number of locals are then simi-

larly bound on the stack. On function return these stack items are popped.

For a given simulation run, 6 simulator parameters can be specified: (1)
TableSize, (2) OverflowPolicy, (3) ArgProb, (4) LocProb, (5) BindProb, and (6)
ReadProb. TableSize is the number of entries in the LPT, and OverflowPolicy s
the strategy to be employed on pseudo overflow (either Compress-One or

Table 5.1. Content of the 4 Traces.

Trace Functions | Primitives | Max Depth

Lyra 11907 160933 27
PlaGen 8173 34628 15
Slang 620 2304 14

Editor 342 1437 29
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Compress-All). The other four parameters specify probabilities to be employed
in the random selection of arguments to the list manipulating Lisp primitives.
They are used as follows: during the simulation, the argument of the fprimitive
function whose execution is currently being simulated could be chosen from any
of three classes of variables, viz (a) an argument of the currently active user-
defined function, (b) a local variable of that function, or (c) a non-local variable.
ArgProb, LocProb, and 1 - ArgProb - LocProb are the probabilities that we used
in making this selection. A particular variable was then randomly chosen from
among the members of the selected class. In order to enhance the realism of the
simulation we did not always use the value currently bound to that variable. The
current value was used with probability 1 - ReadProb; with probability ReadProb
we assumed that a new list object had been read in and bound to that variable
since it was last accessed. The primitive function was then evaluated using the
argument thus selected, resulting in a return value. This return value was then
cither bound to a randomly selected variable on the stack (with probability
BindProb) or just pushed onto the top of the stack (with probability I -
BindProb). Note that the four probability parameters are thus used to decide
three orthogonal issues:

(a) whether the primitive argument is a function argument, local or non-

local variable (decided by ArgProb and LocProb) ,

(b) whether the variable thus selected has been read into since last

accessed (decided by ReadProb) , and

(c) whether the return value should be bound to a variable or just pushed

onto the top of the stack (decided by BindProb ).

For all the runs reported, the probability parameters were set at 0.6, 0.3,
0.01, and 0.01 respectively. Note that this implies that 90% of all arguments 10
Lisp primitives are assumed to be arguments or local variables of the current
user defined function (leaving only 10% as non-locals), that 1% of all arguments
are to lists that got read into variables during the execution of the program (i.e.
not during the initialization of the program), and that 1% of all primitive function
return values get bound to a variables on the stack (as against just being pushed
onto the stack). We consider these parameter settings as reasonable for Lisp
based on our benchmark set. The sensitivity of the simulations to parameter
variations is discussed in Section 5.2.6.

The simulator used results from our own studies and from Clark’s studies to
determine the structure of the lists being manipulated. This information was
required to perform splits and merges of heap objects. In doing a split the
simulator assigned addresses to the car and cdr parts of the list object based on
pointer distance distributions from Clark’s studies. The actual size of each part
was assigned using the n and p distributions from our studies, as plotted in
Chapter 3.

5.2.2. LPT Size Requirements

The first two concerns expressed earlier in this section relate to LPT over-
flow conditions. When a pseudo overflow occurs the LP must spend some time
on compressing entries to free space for the immediate need, this is an overhead
that we would like to avoid. A true overflow has more severe penalties associated
with it. If we provide a sufficiently large table, overflow will rarely occur. Our
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first evaluation goal was to determine the expected LPT size requirements. Fig-
ure 5.1 shows sample results from the studies on required table size.

Each trace was run through the simulator with increasing values of the LPT
size parameter using the same random number generator seed for each run.
Three plots are shown on the graph, one for each of three of the sample traces.
The first point for each plot is the smallest table size for which true table over-
flow did not occur. Even for the long trace of 160,933 references (the trace that
was not plotted in Figure 5.1) true overflow occurred only when the table was
less than a few hundred entries large. We expect that true table overflow will be
extremely rare given a table of a few thousand entries. Each of the plots exhibit
the same basic shape, a line with a slope of 1 passing through the origin, con-
nected to a horizonial line. Such a curve will occur for any program trace. The
points on the sloping part of the curve represent simulation runs in which pseudo
overflows occurred; the peak LPT usage observed was equal to the LPT size.
The Compress-One policy was used in LPT compression in these runs. The
knee of each plot occurs at that LPT size for which no form of overflow (neither
true nor pseudo overflow) occurs. It represents the minimum LPT size required
for the trace to run without an overflow occurring. Icreasing the LPT size
beyond this value does not affect the observed peak LPT usage; this is seen in the
horizontal part of the plot after the knee. The curve for the Lyra trace is identi-
cal in shape to the three curves of Figure 5.1 but was not plotted for scaling rea-
sons. For the Lyra trace the maximal number of table entries needed was about
2000.

Figure 5.2 illustrates the largest number of LPT entries needed in each of
the traces. In this experiment we ran each trace through the simulator with
between 60 and 90 different seeds and estimated the table size value where the
knee (as seen in Figure 5.1) occurred. By re-seeding the random generator and
re-running a trace we simulate a totally different access pattern. So, we are
simulating the performance of different program behaviour. The number of runs
was chosen to obtain acceptable confidence intervals for the observation for each
trace.

The two points plotted for each trace in Figure 5.2 represent the extreme
values of the knee (highest number of table entries used) observed over these
runs. The interval for the Lyra trace stands out in this graph. This does not
seem to be due to the fact that it is the longest of the four, since the difference in
behaviour between the traces does not correlate with trace length. Even though
there is more than an order of magnitude difference in trace length between the
PlaGen and Editor traces, they show much the same trends in the graph of Fig-
ure 5.2. It appears that the behaviour shown by the Lyra trace is because of an
intrinsic difference in program behaviour from that displayed in the other 3
traces. Because of the nature of Lyra’s computation, it has a larger working set
than the other traces (recall that we concluded this from the curves of Figures
3.5 and 3.6 in Chapter 3); this is not entirely due to trace length. From this
graph we conclude that in a translation table with 2K or 4K entries even pseudo
overflows would rarely occur.
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5.2.3. Effect of Compression Policy

We next considered the two possible strategies for dealing with pseudo over-
flows; recall that we could either choose to compress LPT entries just enough to
satisfy the immediate need (Compress-One), or we could perform compression
over the whole table at the time of overflow (Compress-All).  Under the
Compress-One compression policy, when a pseudo overflow occurs the LPT is
scanned for compressible entries. The first compressible pair of LPT entries
found is compressed releasing two LPT entries and normal LPT activity is
resumed. Under the Compress-All policy, on the other hand, the entire LPT is
scanned for compressible entries and compressed when a pseudo overflow
occurs. Figure 5.3 shows how this policy affects table performance. Using the
same random generator seed with increasing limits on the table size we estimated
the average LLPT occupancy resulting from each of the policies. Note that these
are plots of average and not maximal table occupancy, hence the jagged nature of
the plots in Figure 5.3 compared to the straight line behaviour oil maximal occu-
pancy as plotted in Figure 5. 1. The graph shows results from the Slang and Edi-
tor traces. The other 2 traces exhibited the same general behaviour.

As might be expected, the Compress-One policy causes the average LPT
occupancy levels to be higher than the Compress-All policy. Given that the latter
policy involves a compression phase of unbounded length, it is undesirable in a
real time system. Fortunately, the graph indicates that the mean difference
between the average LPT occupancy resulting from the 2 policies do not greatly
differ. Recall that we left the reclamation of circularly linked garbage to be done
at true overflow compression time, implicitly assuming that the compress one
policy would be used. A hybrid scheme is also conceivable. In such a scheme,
Compress-One is used by default, but Compress-All is applied if pseudo over-

flows become frequent.

5.2.4. LPT Activity

The second concern we expressed earlier in this section was that there might
be excessive reference count arithmetic in the LPT. Our next evaluation goal
was to investigate this issue. Table 5.2 summarizes measurements of the degree
of LPT activify. The columns in Table 5.2 are: Refops (the number of times
reference count arithmetic was performed), Gets (the number of LPT entry allo-
cation requests), and Frees (the number of times reference counts went to 0 free-
ing an LPT entry). In computing Refops we assumed that when a reference
count goes to zero, the newly freed LPT entry, say L, gets pushed onto a stack of
free entries, but that the reference counts of its children get decremented only
when LPT entry L is re-allocated for use. RecRefops, on the other hand, is a
count of the number of times reference count updating operations took place if a
more simplistic policy is employed when a reference count goes to zero. Under
this policy, when an LPT entry’s reference count goes 10 Ze€ro the reference
counts of its children are immediately decremented. Recall that we had discussed
this in Chapter 4, but dismissed it as inferior since table freeing time becomes
non-deterministic. From the differences between the Refops and RecRefops fields
of Table 5.2 we see that this second policy leads to as much as a 47% increase
(in the Editor trace) in the amount of reference count updating taking place.
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Table 5.2. LPT Activity.

Trace Refops Gets Frees | RecRefops

Lyra 170232 | 29746 | 23006 213532
PlaGen 92414 7248 6971 106216
Slang 6852 1794 573 9580
Editor 4585 233 30 6749

Note that the LPT maintenance costs are not excessive; using the information
about the content of the traces from Table 5.1 we see that the statistics in Table
5 7 indicate between 1 and 3 reference count modifications per primitive list
access, and between 1 and 4 table entry releases or allocations per user-defined
function call.

Whether this amount of LPT activity seriously degrades performance
depends on the hardware implementation. Results from the study just described
suggest an optimization. We observed that a large percentage of the reference
count activity was related to references from the stack. We could choose to only
count references internal to the LPT in the reference count field. The LPT
would then have an additional bit field, StackBit, indicating whether or not there
are any references to that entry from the stack. A separate reference count table
could be maintained in the EP for list references from within the stack. Only
when one of those counts goes to zero need the LP be informed; it would then set
the corresponding StackBit field to false. This scheme has the advantage of still
maintaining strict control over all references to the heap while reducing the
traffic due to reference count activity over the EP-LP bus. To evaluate this
scheme we modified the simulator to keep track of reference counts using a
reference count table in the EP in addition to the counts maintained in the LPT.
The extent of the reduction in EP-LP traffic is illustrated in Table 5.3. The table
shows how the number of reference count updating operations changes from the
old scenario, where all reference counts are maintained in the LPT (labeled
Then), to the scenario, where reference counts of pointers in the stack are main-
tained in a table in the EP (labeled Now). It also shows how the maximum
values that these reference counts reached. From the near order-of-magnitude
difference between the Then and Now columns, it is clear that by splitting the
reference count up as described above the traffic over the EP-LP bus can be
greatly reduced. Further, the maximum sizes of the reference counts can be

used in deciding how large the count fields should be made.



Table 5.3. Evaluation of Split Reference Counts.

Trace Refops MaxCounts
Then Now In LPT | In EP
LYRA 170232 | 17905 8 47
PLAGEN 92414 6258 10 39
SLANG 6852 1363 7 39
EDITOR 4585 471 64 82
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5.2.5. LPT vs. Cache

The use of the LPT requires some non-trivial amount of memory to store
information about recently referenced lists. This is in fact a service that could be
provided by a data cache. We decided to evaluate whether the LPT or a data
cache was a more efficient use of memory by comparing the_hit rate for each
type of structure. Naturally, one must be “cautious when interpreting these
results since the LPT provides much more functionality than a cache. With a
cache, more memory accesses are required for bookkeeping functions than with
an LPT. None of these bookkeeping activities are accounted for in the results
reported below.

In this evaluation, we considered a fully associative, LRU replacement data
cache with the same number of entries as the LPT. Since our ftraces do not
include any actual address information we had to generate an address for each
list reference with which to drive the cache simulation. This was done as fol-
lows. We maintained a counter that represented the next address to be used; it
was initialized to zero. Whenever a new list reference was encountered in the
simulation, a size was assigned to it based on our n and p distributions of
Chapter 3. The value of the counter was assigned as the address of that list
reference, and remembered by associating it with the LPT entry corresponding to
that list reference (so that the next time that list reference was encountered the
address would be available for the cache simulation). The counter was then
incremented by the size. When an object was accessed (split), addresses were
assigned to its car and cdr based on the car or cdr pointer distances listed in
Clark’s thesis [Clar76a], and calculated as an offset from the address of the
object itself. Using this procedure we were able to generate an address for each
list reference in the trace. The simulator kept track of the contents of the cache
based on these addresses.

A 2 pointer list cell was assumed to be the cachable unit. Table 5.4 shows
sample results from a comparison where each cache line is the size of one such 2
pointer list cell and no prefetching is attempted. The miss counts in the table
represent the number of times car (cdr) requests were not satisfied by the car
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Table 5.4. Comparison with Data Cache.

Trace Size LPTMisses | HitRate | CacheMisses | HitRate
Lyra 1700 8221 97.27 12875 95.73
2000 5682 98.12 9514 96.84
2300 4314 98.57 7679 97.45
PlaGen 75 3510 94 .31 6167 90.01
150 825 08.66 1952 96.84
225 230 99.63 934 98.49
Slang 40 625 78.63 868 70.31
80 223 92.37 439 84.99
120 46 98.43 204 93.02
Editor 120 240 91.14 325 88.00
150 104 96.16 146 94 .61
180 53 98.04 89 96.71

(cdr) fields of LPT entries, or were misses in the data cache. We list both miss
counts and hit rates to make clearer the difference in performance. Note that the
LPT consistently produces more hits for the ranges of table size studied. In
almost all of the runs quoted, the cache misses outnumber table misses by at least
a factor of 2. For large table sizes (over 2K entries) this study showed high hit
rates for both cache and LPT, as seen in the Lyra results. However, the dispar-
ity between the actual number of cache misses and LPT misses displayed in
Table 5.4 continued. Figure 5.4 shows the relative hit rates for cache and table
for one of the traces (SLANG). The runs represented by Figure 5.4 were gen-
erated using a different random number sequence than was used in producing
the resulis of Table 5.4. As a result, the two sets of results do not correspond
exactly though they show the same general behaviour. The cache and LPT hit
rates are shown for different values of total cache/LPT size.

Since there is spatial locality of reference in Lisp access streams, a cache
designer would opt for a more complicated cache structure than the unit cache
line size structure that we used in our simulation model. Cache hit rates would
be higher with line sizes greater than 1 due to the pre-fetching that would take
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place into a cache line. We therefore studied the relative hit rates for data cache
and LPT using a modified cache model. In this new model the cache was fully
associative, with an LRU replacement policy and of the same size as the LPT as
before. We assumed in addition that each” cache entry is half the size of each
LPT entry, which is more realistic than the previous model of equal entry sizes.
We varied cache line sizes from 1 to 16 entries.

Sample results for the Lyra, Slang and Editor traces are shown in Figure
5.5. The graph shows the ratio between the data cache miss rate and the LPT
miss rate, plotted against data cache line size. For each setting of the cache/LPT
size parameter, these miss ratios were estimated for increasing cache line sizes.
Increasing the cache line size with a fixed cache size results in a smaller number
of cache entries; while the cache size remains the same, the cache is configured
differently. Each trace was run with increasing values of cache/LPT size. Thus,
the 4 lines for the SLANG trace in Figure 5.5 represent 4 different values of the
cache/LPT size parameter. Several points must be noted in interpreting these
graphs. Based on our earlier cache comparison study, one might expect the LPT
to outperform the cache; the ratio of the cache miss rate to the LPT miss rate
should then be greater than one. Instead, in Figure 5.5 the ratio varies from 0.7
to 2.8, with several points below 1. This is due to the modified cache model -
since each LPT entry is twice the size of each cache entry there are half as many
LPT entries as there are cache entries, which results in more cache hits relative
to the previous study. Once again, we would point out that the results of this
cache comparison should be assimilated with caution since the LP provides far
more functionality than a simple data cache. As before, cache performance
improves relative to LPT performance as the size of the LPT (and cache)
increases; this is seen by the fact that the miss ratio line for each of the three
traces is lower with a higher LPT (and cache) size. In some of the curves, the
improvement in cache performance improves upto a point and then starts falling
off. This is governed by the degree of structural locality in the trace. A trace
that shows high structural locality will show improving cache performance with
increasing cache line size due to the prefetching achieved by fetching a whole
cache line at a time from the heap. The LP, on the other hand, does only lim-
ited prefetching into the LPT (in that it fetches both car and cdr in splitting an
LPT entry), and so the ratio of cache misses to LPT misses decreases. This
trend continues for increasing cache line size only upto the point where useful
data is being prefetched, which is dependent on the extent of structural locality
shown by the trace. Based on this explanation, the Editor trace shows the
highest degree of structural locality.

5.2.6. Sensitivity to Parameter Changes

Recall that our simulator accepted a set of probability parameters that were
used to select arguments to the primitive function calls in the traces. In all of the
experiments described, the same setting of these parameters was used, viz,
ArgProb = 0.60, LocProb = 0.30, BindProb = 0.10, and ReadProb = 0.10.
These values were chosen based on observations that we made during the selec-
tion of the 4 Lisp benchmarks.

To evaluate how critical the choice was, we conducted a limited investigation
of how sensitive our observations are to variations in the settings of the
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Figure 5.5. Ratio of Cache Misses to LPT Misses versus Line Size.
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probability parameters. We ran the SLANG trace through the simulator with 5
different settings of the parameters. The five runs were
(1) a control run that used the parameter values listed above.
(2) a high ArgProb run with all parameters as in the control run except
for ArgProb, which was raised to 0.85, and LocProb, which was lowered
to 0.125 to compensate.
(3) a high LocProb run with all parameters as in the control run except
for LocProb, which was raised to 0.60, and ArgProb, which was lowered
to 0.30 to compensate.
(4) a high BindProb run with all parameters as in the control run except
for BindProb, which was raised to 0.03.
(5) a high ReadProb run with all parameters as in the control run except
for ReadProb, which was raised to 0.03.
Sample results are shown in Table 5.5. Clearly, the measures fluctuate by small
amounts. - What the table does not show is that the general trends observed dur-
ing the course of this chapter do not change; for each setting of the parameters
we re-ran the experiments described in this chapter (on the SLANG trace), and
observed that the graphs did not change in general shape, but were shifted by
small amounts of the order of the fluctuations illustrated in Table 5.5. This
degree of sensitivity does not overly concern us, thou%_h it might if we were doing
a more detailed simulation of a more completely specified design.

Table 5.5. Sensitivity of Simulation to Probability Parameters.

Statistic Control | HiArg | HiLoc | HiRead | HiBind

Ave LPT Count 49 50 51 52 51
Max LPT Count 64 64 64 64 64
LPT Hits 2755 2725 2783 2622 2768
Cache Hits 2765 2730 2786 2630 2770
Max Refcount 29 34 24 30 39
Refops 12062 12127 | 12060 | 12088 12229
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5.3. Discussion

In this section we discuss the impact of the SMALL architecture on three
key aspects of Lisp execution: accessing list data, managing the list heap, and
support for function calling.

5.3.1. Accessing List Data

The average speed of list access in SMALL depends on the percentage of
accesses that are satisfied by the information in the LPT. A successful LPT
access returns a result in the time that it takes to index into the LPT and refer-
ence to the relevant field of the LPT entry. We studied this "LPT hit ratio”
through simulation earlier in this chapter. Other accesses result in splitting
activity in the heap, followed by the setting up of LPT entries for the two children
of the split object, before a result can be returned to the EP command that ini-
tiated the access activity. The actual difference in speed between these two types
of access is, of course, highly dependent on how the LP algorithms are imple-
mented.

One accessing question that we can address without simulation is how effi-
ciently list traversals can be performed on the SMALL architecture. We define a
list traversal as a sequence of accesses to several elements of the same list, and
an ordered traversal as a traversal in which each element of a list is accessed
once in some canonical order based on a structural relationship. Examples of
ordered traversals are in-order, pre-order, and post-order traversals. We further
define a random traversal as one in which extensive (not necessarily exhaustive)
accesses to a particular list are made, but in a random or repetitive order.

Not much can be said about random traversals on SMALL. When an
access is made to a list node that is not represented in the LPT a split takes place.
Future accesses to that node can then be performed by simply referring to the
LPT entry. The larger the number of such repetitive accesses in a traversal the
lower the total traversal time. Ordered traversals, on the other hand, correspond
to highly predictable access streams and therefore lend themselves to more
detailed analysis.

In discussing ordered traversals we will assume that an s-expression maps
into a binary tree in which symbols are represented by leaf nodes as shown in
Figure 5.6. The figure shows how the list (((AB)CD)EFG) is
represented in a binary tree. Leaf nodes correspond to symbols in the list.
Internal nodes describe the structure of the list. This is just one of several possi-
ble tree representations of lists. For a tree rooted at node T the three ordered
traversal mentioned above are defined as follows:

Pre-order(T):
Visit(T)
Pre-order(Left Subtree of T)
Pre-order(Right Subtree of T)

In-order(T):
In-order(Left Subtree of T)
Visit(T)
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Figure 5.6. Tree Representation of the list (A B) C D) E F G).

In-order(Right Subtree of T)

Post-order(T):

Post-order(Left Subtree of T)
Post-order(Right Subtree of T)
Visit(T)

The order in which the nodes of the tree are visited are
Preorder: 124A9BSCI11D3ETF15G
Inorder: A4B92CS5DI111E3F7G15
Postorder: AB94CD1152EFG15731

These are sub-sequences of the actual super-sequence in which the nodes are
touched in performing the traversal. In all three cases the traversal super-



93

sequence is ‘
124A49B9425C511D115213E37F715G 15731

Note that each internal (i.e. non-leaf) node is touched 3 times. The pre-order
traversal sub-sequence visits each internal node when it is first touched, while the
in-order traversal sequence visits internal nodes on the second contact, and the
post-order traversal visits an internal node on the third (and final) contact. For
all three traversals, if we assume that the LPT does not overflow during the
traversal, the number of splits that will occur is equal to the number of internal
nodes in the tree. The LPT entry corresponding to an internal node is split after
it is first contacted during the traversal. The earliest that it can be merged with
its sibling is after their descendents have been traversed and merged. So, exactly
the same sequence of LPT entry splits and merges will occur in each of the
ordered traversals.

A list with n atoms and p internal left parentheses has n+p+1 leaf nodes
(n atomic leaves and p+1 nil leaf nodes) and n+p internal nodes, with a total of
2n+2p+1 nodes in the tree. So, a complete traversal of the list without LPT
overflow requires n+p splits. Recall that each internal node is accessed three
times and each leaf node once. There would then be n+p LPT misses and
3n+3p+1 LPT hits, or a hit rate of 75%. Notice that this is a guaranteed hit
rate since even if pseudo overflow occurs during the traversal, the LPT entries
corresponding to the leaf nodes cannot be merged as noted above.

5.3.2. Recycling Garbage

As we have seen in Chapter 2, garbage collection has been a primary con-
cern in Lisp systems since heap space is not explicitly deallocated by the user.
Garbage is created when all of the references to a list object cease to exist. Gar-
bage collection involves two stages: detecting the presence of garbage (garbage

detection), and reclaiming the heap space occupied by it (garbage reclamation).

The SMALL philosophy on garbage collection is that while garbage must be
detected as quickly as possible in the LPT, the speed of the reclamation of the
heap space is not that critical. Quick garbage detection is greatly aided by the
mapping between list identifiers and heap addresses maintained in the LPT.
Heap addresses need not be known to detect the existence of garbage; the unique
identifier assigned to each list object suffices for this purpose. Having the LP
communicate with the EP in terms of object identifiers instead of heap addresses
also enables changes in the environment to be signaled to the LP efficiently.
Garbage is then detected almost immediately after its creation - when a reference
count goes to zero in the LPT. Garbage reclamation is initiated by the LP, and it
takes place in two stages. First the LPT space corresponding to the new garbage
is reclaimed by the LP. Then the actual space occupied by the object in the heap
is reclaimed by the heap controller. Transient cons cells get reclaimed quickly
since they get allocated in the LPT, not in the heap. These list cells form a large
part of the garbage collection load of traditional Lisp systems; a study of the sym-
bolic algebra system Macsyma [Fode8la] revealed that only 1 out of 385 cons
cells allocated did not become garbage soon after they were allocated.

This garbage collection policy is concurrent; there are no periods during
which computation ceases while waiting for the garbage collection process to
clean up the heap. It is also incremental, in that the garbage detection process
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could be considered to be constantly running and not just triggered when heap
space runs out. The cost of garbage collection gets amortized over the cost of
every LPT activity in the form of reference count activity. The reference count
updating and LPT space reclamation strategies described m Chapter 4 ensure that

the garbage collection related overhead added to each LPT operation is not too
large.

5.3.3. The Ecology of Function Calling

There are two major book-keeping overheads in Lisp execution: managing
the heap space and managing the dynamic name binding environment. SMALL
has a special purpose processor (the LP) to cope with the heap space manage-
ment overhead; the Evaluation Processor must see to the maintenance of the
environment. The speed of function calling in SMALL is dependent on how fast
the incremental changes to the environment corresponding to the call can be
made. Recall that in our discussion of the EP and the environment in Chapter 4
we did not make a strong case for either deep bound or shallow bound implemen-
tations of environments. In either implementation there is a burst of EP-LP
activity on every function call, as new bindings get made and added to the
environment (in the case of a call), or bindings are discarded from the environ-
ment (in the case of a return), which translates into reference count activity in
the LP: incrementing reference counts on a function call and decrementing
reference counts on a function return. The EP need not wait for these operations
to complete before continuing with its function evaluation work. Even if there
are several such consecutive reference count bursts, as would happen if several
small functions were called one after the other, the LP will not fall far behind the
EP, since updating a reference count is a simple operation that can be imple-
mented efficiently.

5.4. Summary

The SMALL architecture was evaluated using a trace-driven simulator. The
traces were derived from typical runs of 4 large Lisp programs. An LPT with 2K
table entries was seen to be adequate to capture the list activity of our Lisp pro-
gram traces. True LPT overflow will occur infrequently with a table of this size.
In the handling of pseudo LPT overflow 2 policies were studied, Compress-One
and Compress-All.  The Compress-One policy leads to faster LPT operation at
the cost of higher average LPT occupancy, while the Compress-All policy leads
to non-deterministic overflow recovery time. Our LPT/cache comparison
revealed that the LPT captures the temporal locality of Lisp list access compar-
able to an LRU data cache. Further, from our studies of the amount of refer-
ence count updating that takes place, it appears that reference counting is a viable
heap management scheme in the SMALL environment. Reference counting pro-
vides a mechanism for garbage to be detected concurrently with LPT activity, and
is guaranteed to detect garbage soon after it is created.
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Chapter 6

A SMALL Multilisp

6.1. Introduction

Over the past few decades, advances in technology and design have pro-
duced computers with steadily increasing performance potential. At the same
time, the complexity of the problems being solved on these machines has been
increasing. As part of this trend, when it was detected that the processing power
of sequential, uniprocessor architectures was no longer adequate, achieving
increased computing power through larger numbers of computing elements and
concurrent computation has become an important issue. Efforts to enhance Lisp
performance in this way have been underway for some time now
[Guzm8la, Hals81a, Mart83a, Sugi83a]. More recently, proposals have been
made for expressing concurrency in Lisp programs [Gabr84a, Hals84a]. We use
the term Multilisp to describe the language supported by such multiprocessing
Lisp systems.

Before discussing Multilisp systems in particular, we recall the communica-
tion techniques employed in general multiprocessing systems. Any multiprocess-
ing system must make provision for processors to communicate with each other
to achieve their common goal. This communication can either be done through
shared memory, or by inter-processor message traffic. In multiprocessors like
C.mmp [Harb8la] and Cm* [Swan77a] at CMU, the NYU Ultracomputer
[Gott83a], or the BBN Butterfly, inter-process communication is conducted
through shared memory. In more decentralized systems, like the Apiary
machine [Hewi80a] and Concert multiprocessor [Hals84a] at MIT, the AMPS

project [Kell79a], the Intel iPSC! (and other hypercube architectures), the Con-
nection machine [Hill85a], or the Bath Concurrent Lisp Machine project
[Mart83a] the multiprocessor system is made up of several processors, each with
its own memory, which communicate with each other via messages.

In this chapter we discuss some of the issues involved in designing a Multil-
isp system. We also indicate how the SMALL architecture can be extended to
provide a suitable environment for such computation.

6.2. Parallelizing Lisp

Whatever the organization of the Multilisp system may be, there are two
interesting sets of problems involved in programming it. The first set of prob-
lems is associated with determining what the parallel activity should be, and how
it should be distributed over the available processors. The second set of problems

is concerned with system run-time support, including both heap and environment
maintenance.

1iPSC is a trademark of Intel Corp.
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6.2.1. Detecting the Scope for Parallelism in Lisp Code

In Chapter 2 we saw that some experimental Lisp systems attempt to evaluate
the arguments of a Lisp function in parallel [Guzm81la, Yama83a]. These efforts
are aimed towards taking advantage of the implicit parallelism present in Lisp
code. Often there is scope for further parallelism that is not immediately obvious
from examining the program code, but which is known to the programmer.
Efforts have been made to make it possible for programmers to express such
instances explicitly. This is done by extending the language with features for
describing explicit parallelism. We next discuss these two kinds of parallelism.

6.2.1.1. Implicit Parallelism

Recall that in Lisp execution, a function’s argument list must be evaluated
before the body of the function can be evaluated. In sequential Lisp this argu-
ment list is evaluated from left to right. Frequently, these arguments can be
evaluated in parallel; this is one source of implicit parallelism in Lisp. There are
other potential sources of parallelism in Lisp code. One example is the condi-
tional construct, cond, which is made up of a series of (condition, body) tuples
called cond-legs. Cond is evaluated by evaluating the conditions one by one
from left to right until one returns a non-nil value, and returning the value of the
body of that cond-leg. All of the conditions could potentially be evaluated simul-
taneously in parallel, just like function arguments. Note, however, that it is
essential that parallel argument (or condition) evaluation be consistent with con-
ventional left to right sequential evaluation; parallel evaluation, if performed,
must not violate the semantics of sequential Lisp.

How can this consistency be ensured? In parallel argument evaluation on
the Evlis multiprocessor Lisp machine at Osaka University [Yama81la] con-
sistency is maintained by only evaluating function arguments in parallel when it
s obvious from the function definitions that the arguments cannot affect each
other by altering lists. In implementing this test it is necessary o be conserva-
tive, which reduces the number of cases where implicit parallelism can be taken
advantage of. Another technique that has been employed is to detect the scope
for parallel evaluation by compile time dataflow analysis [Mart80a]. Typically,
Lisp compilation is a simple process of storing functions as trees, and then
attempting to flatten these trees into a form that more closely resembles ordinary
machine code, but which provides support for Lisp like function calling and vari-
able accessing. This includes producing code for accessing local variables at
known offset locations in the run-time stack frame, tail recursion elimination,
and some peephole optimization techniques. Note that these are all local optimi-
zations, since Lisp functions are typically compiled independently. Marti’s com-
piler uses a less local dataflow analysis technique to detect a large subset of all
possible parallel argument evaluation possibilities. The compiler uses a set of
heuristics to determine which functions are worth parallelizing, and then com-
putes for each the set of functions that could be run in parallel with it. This
would amount to a fair amount of computing for a Lisp program made up of a
large number of functions; while it might be worth compiling frequently used
Lisp programs in this manner, the scheme is not generally applicable.

In Chapter 2 we saw that in the EM-3 data driven multiprocessor Lisp
machine [Yama83a] functions returned pseudo-results in order to spark
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additional parallel evaluation. This is an example of eager evaluation, where the
evaluator seeks to evaluate as much as possible as soon as possible (as opposed to
a lazy evaluator, which is demand driven, and evaluates a sub-expression only
when the result is needed). Even in eager evaluation, care must be taken that the
sub-expressions being concurrently evaluated are independent, and do not modify
lists used by each other. If they do, the semantics of sequential Lisp would be
violated.

6.2.1.2. Explicit Parallelism

The schemes that we have seen are not guaranteed to detect all the implicit
parallelism contained in a Lisp program; they tnight detect an insignificant part of
the parallelism that could actually be exploited in certain programs. More exten-
sive, and yet safe, implicit parallelism is difficult to detect [Gabr84a]. The alter-
native is to extend the language with constructs for expressing concurrency.
Several such Multilisp proposals have been made [Hals84a, Gabr84a, Prin80a].
Since the three schemes do rot greatly differ semantically, we discuss only one of
them in more detail below.

In Halstead’s Multilisp [Hals84a], the default form of evaluation is sequen-

tial. So, in the call to function F with arguments A, B and C, represented as
(FABC)
A, B, and C are evaluated one after the other in the usual left to right order. To
force the arguments to be concurrently evaluated, this call is changed to
(PCALL F A B C)

When this construct is evaluated, an implicit 3-way fork takes place (correspond-
ing to the evaluation of the three arguments), followed by a join, after which the
body of function Fis evaluated.

Halstead’s Multilisp includes one other extension, called futures. The
future construct enables the programmer to specify exactly where a pseudo-result
(borrowing the terminology of the EM-3) should be generated and returned while
an expression is being evaluated. The pseudo-result is called a future. Thus,
when the construct

(future X)

is evaluated, a future is immediately returned to the caller, which proceeds with
its evaluation. Concurrently, the expression X is being evaluated, and when that
evaluation is completed, the return value takes the place of the future. In the
mean time, any process that tries to access the future gets suspended. Thus, the
future construct enables controlled concurrency between the computation of a
value and its deployment. Note that the PCALL construct is more conservative
than the future construct. During the evaluation of a PCALL the concurrent
evaluation of its arguments is guaranteed to complete before the evaluation of the
PCALL is complete. On the other hand, while the expression in a future is being
evaluated an arbitrary amount of evaluation occurs in the rest of the program
before the future is required. The future construct thus provides a more flexible

source of parallelism.

Constructs for expressing explicit parallelism are gaining in popularity.
They leave the task of deciding the degree of parallel activity to the programmer,
who best knows how the program is likely to be applied. The programmers

expert knowledge can be used to exploit as much parallelism as possible from a
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program. On the other hand, the chore of debugging a program is made more
difficult by this added complexity; a future in the wrong place could lead to
unpredictable run-time behaviour.

6.2.2. Heap Maintenance

We next discuss the second problem that arises in a Multilisp system - main-
taining the heap. Heap maintenance can be a major problem in a Multilisp sys-
tem. A list cell becomes garbage when it is no longer referenced by any proces-
sor. Thus, garbage collection will involve communication among the processors.
The extent of this communication overhead depends on the architecture of the
system and the particulars of the heap manager. We will examine two proposed
schemes in this section. ~

Baker’s two semispace scheme [Hals84a], which we saw in Chapter 2, is
extended in the heap manager described by Halstead for Muliilisp on the Concert
multiprocessor at MIT. This system is made up of 32 MC68000s sharing 20 MB
of memory, but with individual processors having slightly faster "local” access o
nearby memory modules. Processors interleave periods of garbage collection
with ordinary computation. Each processor has its own oldspace and newspace
in its "local” memory. It creates new objects there; with the expectation that this
will reduce memory contention, increase the fraction of accesses to "local”
memory, and dynamically increase the locality of reference observed. Object
relocation can go on in parallel in each processor’s garbage collection period but
for consistency reasons semispace swapping must be coordinated on all the pro-
cessors. A "non-local” object reference causes special difficulties if the object is
currently being relocated by its processor (in a garbage collection period). These
collisions are dismissed as being infrequent and unlikely. In general, to prevent
collisions such pointers would have to be locked prior to object updating and
objects would have to be locked prior to being relocated. One drawback with the
Concert style of heap management is that the strict partition of the heap space
over the processors might cause a particular processor to run out of space while
there is more memory available elsewhere. A suggested solution is to organize
the two semispaces as collections of dynamically allocated parcels rather than as
contiguous regions of memory. - when a processor’s newspace gets full, it asks
for and gets an extension parcel for that space.

Another modification of Baker’s scheme has been suggested by Lieberman
and Hewitt for the Apiary multiprocessor at MIT [Lieb83a]. This heap manager
tries to optimize garbage collection activity by spending more time on short lived
objects based on the empirical observation that they yield most of the garbage to
be reclaimed. It divides the address space into several regions rather than into
two semispaces. Regions are organized into generations. The object relocation
strategy sees that long lived objects end up in older generation regions which get
garbage collected less frequently than younger generation ones. Here too, each
processor is given a strict partition of memory. To take care of inter-processor
obiect references each processor maintains two tables: an Exit Table listing all
references that this processor makes to other processors, and an Interest Table
listing the references from other processors to this processor’s objects. These
tables are "scavenged” along with the local heap when a region in a processor’s
heap space has to be garbage collected. A related approach to heap management
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is described in [Moha84a].

Both of these heap maintenance schemes partition the heap address space,
allocating to each processor a portion of the shared heap, which we will call a
heaplet, to manage. When garbage collection is performed, either interprocessor
message traffic is generated (the more the locality of reference in program execu-
tion, the more the processors access their own heaplets, and the less the message
traffic), or objects/pointers/tables—entries have to be locked. This is because of
references made by processors to portions of the heap that are not under their
direct control (these references have been variously described as "external” and
"non-local” references) and the undesirability of forcing all the processors to do
garbage collection at the same time. Given a favourable allocation of tasks over
the processors and a high locality of reference, that would not pose much of a
problem since the number of such references should be low.

6.3. SMALL Multilisp

In this section we demonstrate how the SMALL organization can be
extended into a system that accommodates Multilisp execution. We will not con-
cern ourselves with the problems of how the concurrent Multilisp evaluation is
initiated; we have seen that this can be done by either taking advantage of the
implicit parallelism in Lisp code, or by allowing the programmer to specify expli-
citly where concurrent evaluation is to be performed. Thus, we start by assum-
ing the existence of concurrent computation (however it may be initiated) where
each process is a piece of code and an environment in which to execute.
Processes access a common shared heap space.

Several SMALL features make it a reasonable choice for extension to this
multiprocessing environment. The virtualization of list addressing achieved by
the address mapping performed in the LPT provides a means for efficient global
naming (addressing) and routing (address decoding) in a multiprocessor system.
List reference virtualization also serves to shield the EPs of the system from the
actual heap activity taking place at the LP level. Further, the SMALL philosophy
of continuous heap space management should lead to reduced communication
overheads related to garbage collection in a multiprocessor system. In the
SMALL organization of Chapter 4 this was achieved using reference counts; we

will see that such a scheme will not suffice for the SMALL Multilisp system.

6.3.1. SMALL Multilisp System Organization

The SMALL organization could be extended into a multiprocessing system
in several ways. In this section we suggest three alternative organizations. In all
three organizations the global heap is partitioned into a set of heaplets, each
managed by an LP.

In the homogeneous organization, the Muliilisp system is composed of pro-
cessing elements, each made up of an EP and an LP. The EP-LP pairs are con-
nected to a communication network through which they communicate with each
other using messages. Each processing element has a unique node identifier
associated with it; node identifiers are used in specifying the sender and receiver

of a message, and also in constructing unique system wide identifiers for list
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references. A list reference is composed of its identifier, as maintained in the
LPT of the LP that manages it, concatenated with the node identifier of the pro-
cessing element containing that LP. Note that this implies that all LPT fields that
are identifiers must be extended to hold the node identifier extension. An EP can
access lists managed by its LP faster than it can access non-local list objects,
which are managed by other LPs. This organization is uniform in that all pro-
cessing elements are identical, with fast local list accessing within a processing
element. Non-local references are made through messages containing the access
request sent to remote processing elements. The accessed value is sent back in
another message.

Computation starts on a single EP-LP processing element, other nodes get
activated when parallel evaluation is triggered. For example, when a future is
encountered, a new node is activated to execute the expression of the future.
Any reference to the value of the future is forwarded to that node, where it is
blocked until the expression has been evaluated. When new lists are created dur-
ing evaluation at a processing node, they are allocated in the heaplet managed by
the local LP. This is done with the expectation of increasing the locality of refer-
ence in list access, along the same lines as the schemes suggested for the Concert
and Apiary systems mentioned above.

Because of the distinction between local and non-local list accessing in the
homogeneous organization, the manner in which evaluation tasks are allocated to
processing elements determines the performance of the system. The decoupled
Muldlisp organization removes this problem by making all list accesses non-
local. In a decoupled organization, EPs and LPs are not associated with each
other on a one-to-one basis; the system is made up of a pool of pure EP nodes
and pure LP nodes connected through a communication network. Each node has
a unique node identifier associated with it, and just as in the homogeneous case a
list reference is made up of an LPT identifier and a specification of which LP
node it is managed by. Since every list access is non-local, the problem of allo-
cating processes on processors becomes trivial; it doesn’t matter which node a
process runs on. On the other hand, the speed of list access is guaranteed to be
slow. The decoupled organization thus provides an upper bound for the amount
of message traffic generated in evaluating a Multilisp program.

Recall that in the homogeneous organization each node managed a portion
of the heap, and was able to access the lists in that heaplet quickly. In reality
some of the concurrent streams of execution might require more heap space than
others. The decoupled organization went to the extreme of making all EPs equal
in having to do all list accessing non-locally. The hybrid organization, where the
Multilisp system is made up of EP-LP processing elements, EP nodes, and LP
nodes all connected to a communication network, provides a compromise
between the homogeneous and decoupled organizations. The EP-LP processing
elements are intended for the streams of concurrent evaluation that do excessive
local list accessing. Clearly, this organization will require a more complicated
task allocation algorithm than the other two.

Which of these organizations is preferable? We believe that there is no sim-
ple answer to this question; it is an issue worthy of further research. The decou-
pled organization suffers from an excess of non-local heaplet accesses; it would
result in more message traffic due to list referencing than in any of the other
organizations. The extent of this message traffic can be reduced in the
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homogeneous and hybrid organizations if processes are allocated to processors
appropriately. 1f a process ’s allowed to run on an EP-LP node whose LP
manages the heaplet that is most frequently accessed by that process, then much
of the heap memory activity can be handled locally, resulting in faster execution.

Under any of these organizations, the EP and the LP that we described in
Chapter 4 will have to be modified. Every node, be it an EP-LP processing ele-
ment, a plain EP node, or a plain LP node, must have a queue in which to
buffer incoming messages. It must also have a unique identifier with which to
be addressed by other nodes. These node identifiers will also be used to extend
LPT entry identifiers. Further, each processing node (a EP-LP processing ele-
ment or a simple EP node) will require a link to its parent node, i.e. the process-
ing node from which its activity was initiated. This link might be necessary in
doing non-local lookups. Figure 6.1 illustrates schematics of the three kinds of

nodes.

All three of these Multilisp organizations assume the existence of a globally
addressable heap that is distributed over several heaplets, with each heaplet being
managed by an LP. The LPT of each LP will contain all the list cells of the
heaplet that are currently being accessed along with all the list cells of the heaplet
that contain pointers to other heaplets. This follows directly from the way
mergeing and splitting are performed in the LPT. We next discuss how this

distributed heap can be managed.

6.3.2. Heap Maintenance

The simple SMALL organization was able to keep tight control over the
heap. This was possible largely due to the immediate detection of garbage made
possible by the use of reference counts. Unfortunately, reference counting does
not extend well to a multiprocessing system.

6.3.2.1. Reference Counting and Multiprocessing

There are two main reasons for the incompatibility of reference counting
and multiprocessing. One is the volume of message traffic generated by refer-
ence count incrementing and decrementing operations. In the simple SMALL
organization these operations were not much of an overhead since they were per-
formed in the LP concurrently with useful evaluation in the EP. In a Mululisp
system non-local reference count updating is done using messages. This uses up
communication network bandwidth, and might be preventing useful work from
using the network. So, the more the volume of this message traffic the more the
impact of heap management on useful computation.

A more serious problem falls out of the distributed nature of the systemn. At
any given instant, several reference count updating messages could be in transit
in the communication network. For example, in the simple situation illustrated
in Figure 6.2 there is a reference count increment message, M1, in transit from
node B to node A, and a reference count decrement message, M2, in transit
from node C to node A. Suppose that message M1 logically precedes message

M?2. Consider what happens if, due to delays in the communication network,
message M2 arrives at node A and is serviced before message M1. This
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decrement operation leaves the reference count at zero; the heap space associated
with the object will be reclaimed for reuse. So, when message M1 arrives at
node A and is serviced it will result in the error condition of attempting to incre-
ment the reference count of a non-existent object. Clearly then, in such a
scenario reference count messages must arrive in order to ensure error free
evaluation.

6.3.2.2. Reference Weights

One solution to these problems is to use reference weights instead of refer-
ence counts [Weng79a]. In such a scheme a reference weight is maintained for
each list object. Each list pointer also has a reference weight associated with it.
The sum of the reference weights of all the pointers to an object is equal to the
reference weight of that object. When a pointer P is destroyed, the reference
weight of the object P points at is decremented by P’s reference weight. This is
similar to how reference counting operates; in reference counting, the reference
weight of every pointer is 1. The two schemes differ in their treatment of pointer
copying. In reference counting, when a pointer is copied the reference count of
the corresponding object is incremented. In reference weighting, on the other
hand, when a new pointer, C, is created and initialized by copying the value of
another pointer, B, into it, the reference weights of B and C are adjusted so that
their sum is e(f]ual to the old reference weight of B. So, the reference weight of
the object itself does not have to be modified.

There are two conditions under which messages will be generated in main-
taining the heap. When a pointer P is no longer used, a reference weight decre-
menting message must be sent to the node where the object P points at. Unlike
in reference counting, no message need be sent to this node on pointer copying;
the new pointer gets a share of the old pointer’s reference weight. Occasionally,
however, reference weight incrementing messages have to be sent. For example,
if a pointer P is copied into pointer @, but P has a reference weight of 1, then
this reference weight cannot be split between P and Q. FP's reference weight
must first be incremented; this requires the reference weight of the object that P
points at to be incremented by the same amount. However, since these are the
only count/weight increment operations that are required, there will be less mes-
sage traffic than in the equivalent reference counting system. Notice also that
these messages need not arrive in order, given that increment messages are rare
and that the arrival order of decrement messages is immaterial. Reference
weighting is illustrated in Figure 6.3.

6.3.2.3. Reference Weights on SMALL

Note that reference weighting would not have been a viable alternative to
reference counting for the SMALL architecture of Chapter 4. Reference weight-
ing has a number of hidden costs associated with it. Whereas the updating arith-
metic involved in reference counting is restricted to incrementing and decrement-
ing by one, in reference weighting the increments and decrements could be arbi-
trarily large. So, while a reference counting LP could be optimized to manage
without an ALU to do this arithmetic, a reference weighting LP cannot be so
optimized. Another hidden cost is the additional space required for reference
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weights. Each LPT entry must have three reference weight fields : one for the
object it is pointing at, one for its car field, and one for its cdr field, as against a
single reference count field. The two new fields are necessary since the car and
cdr fields are actually pointers to other LPT entries. Further, every EP
increment/decrement request to the LP must be accompanied by a reference
weight. This will either necessitate a wider EP-LP communication path or more
clock periods to send a single request across. Finally, in the EP’s environment
each name-value binding that includes a list pointer must be extended with a
reference weight field. So, the environment will occupy more space. On the
other side of the balance, all that a reference weighting scheme can offer is a
reduction in the number of increment operations.

We have seen that reference weights are preferable to reference counts in a
Multilisp system. To implement this change in heap management policy minor
modifications have to be made to the LPT described in Chapter 4; the new struc-
ture of an LPT entry is as shown in Figure 6.4. The disadvantages of using
reference weighting as outlined in the previous paragraph still persist. They can,
however, be minimized.

If we assume that the allocation of tasks to processors has been done intelli-
gently, then the majority of all heap accesses will be local due to the locality of
reference shown by Lisp code. Suppose that all local reference weights are kept
at a value of 1. In addition, the following strategy is employed for pointer copy-
ing. We differentiate between cases where a pointer to an object is copied and
stored locally, and cases where the pointer is copied and stored non-locally. For
local copying the reference weight of the copy is set at 1, while for non-local
copying the reference weight of the copy is set to a value greater than 1. In each
case the corresponding local increment reference weight operation is performed
in the LP. As a net result, as far as local operation is concerned this strategy
reduces to reference counting. The LP hardware can be tuned towards this, giv-
ing local list accesses a quick response and making non-local references pay a

car cdr heap
identifier ref wt car cdr ref wt | ref wt address
2 % A
<ListiD > <NodelD> <ListID >

(since they could be on another node)

Figure 6.4. New LPT Organization.
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higher performance penalty. This strategy still retains the better features of
reference weighting; since non-local pointers have reference weights larger than
1 they can be non-locally copied without having to update the reference weight in
the LPT entry corresponding to the list object being pointed at as illustrated in
Figure 6.5.

At each LP, the updating of reference weights is a low priority operation;
other LP operations are more critical since the evaluation task of an EP could be
blocked awaiting the return value from such an operation. So, depending on the
level of activity in the system, reference weight update requests could get queued
up waiting to be serviced. A good measure of the success of our approach to dis-
tributed heap management would be the length of these reference weight update
messages queued up at the LPs of the SMALL Multilisp system. One approach
to cope with excessive queued up update requests would be to attempt to combine
them in the queue as illustrated in Figure 6.6.

6.4. Summary

Our goal in this chapter was to illustrate how SMALL can be extended into
a Multilisp system. Such a system could be organized in many different ways,
with the ease of task allocation being a degree of freedom in the selection of
which organization to use. The use of reference weights to overcome the disad-
vantages of reference counting in a multiprocessing environment was described.
We did not try to answer a key question: Is the SMALL philosophy of tight heap
control preferable to heap management schemes base on mark-sweep algorithms
in a multiprocessing environment? This and several of the issues that were
raised in this chapter are left for future research.
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Chapter 7

Conclusion

7.1. Summary of Results

Lisp has been a popular programming language for well over 20 years.
Recent interest in Fifth Generation Computer Systems has sparked renewed
interest in systems for the efficient execution of Lisp and Lisp-like languages.
Typically these systems do not run efficiently due to the large semantic gap
between list manipulating languages like Lisp and the conventional von Neumann
machine. This thesis presented an effective organization for a Lisp machine.

Our analysis of the run-time demands of Lis computation revealed four
potential areas for increased architectural attention: function calling, environment
maintenance, list accessing, and heap maintenance. Based on a survey of tech-
niques used in state of the art Lisp machines we chose to concentrate our efforts
on studying the behaviour of lists in Lisp. Previous studies have shown that Lisp
list access streams display temporal as well as spatial locality of reference. In a
Lisp system, where memory is largely dynamically heap allocated, spatial locality
is highly implementation dependent; the ‘spatial position of objects in memory will
depend on how the dynamic memory space is managed at run-time. The studies
conducted in the past examined only these spatial properties of Lisp list access-
ing.

To evaluate the regularity of access shown by Lisp programs in the dynamic
Lisp environment we extended the traditional concepts of spatial and temporal
locality of access with the concept of structural locality of access. Structural
locality of access provides an implementation independent means of describing
the scope for spatial locality. We used a partitioning procedure to partition a Lisp
list access stream into structurally related locales of high temporal locality of
reference, called list sets. Our studies of this list set partition reveal that it cap-
tures regularities in Lisp list access streams that can be taken advantage of by
suitable architectural features.

The SMALL Lisp machine architecture was the outcome of this investiga-
tion. In SMALL, the Lisp evaluation work is partitioned across two processing
elements. The Evaluation Processor (EP) manages this evaluation and maintains
the name-value binding environment. The List Processor (LP) manages the
storage and accessing of lists as well as the management of the heap using a
hardware table called the LPT. It is optimized towards efficient heap mainte-
nance (using reference counting), efficient list addressing (lists being addressed
with short LPT indices), and efficient list accessing (through the buffering of list
properties in the LPT).

In SMALL, both LPT space and the heap space of list cells are managed by
the LP using a reference count in each LPT eniry. Garbage is detected almost
immediately after it is created; the LP identifies an LPT entry as unused when its
reference count goes to zero. SMALL provides a list processing environment in
which reference counts can be maintained with low overhead, making the ela-
borate mark-and-sweep garbage collection schemes found in other Lisp machines
unnecessary.
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Trace driven simulations indicate that the SMALL organization deals effec-
tively with the problems of list accessing and heap maintenance. They also yield
indications as to the size requirements of the LPT. True LPT overflow will be
extremely rare 1%iven an LPT of a few thousand entries; even for our longest
trace, true overflow occurred only when the LPT was less than a few hundred
entries large. In a translation table with 2K or 4K entries even pseudo overflows
would rarely occur. In our evaluation of pseudo overflow recovery policies we
found that while the Compress-One policy results in less efficient use of LPT
space than the Compress-All policy, the mean difference between the average
LPT occupancy resulting from the 2 policies do not greatly differ. We suggest a
hybrid scheme, where Compress-One is used by default, and Compress-All is
applied if pseudo overflows become frequent.

Our evaluation indicated that the amount of LPT activity that occurred was
not excessive. But, in case the degree of LPT activity is found to be excessive in
a particular SMALL implementation we suggested an optimization. We observed
that a large percentage of the reference count activity was related to references
from the stack, which suggested the use of a split reference count. Our evalua-
tion showed that split reference counts can reduce the count updating activity in
the LP by almost an order of magnitude, at the expense of increased hardware
costs.

We also studied the list access buffering capability of the LPT by comparing
it with a data cache, and counting the number of misses on car and cdr accesses
in each case. The LPT performed almost twice as well as a data cache with line
size of ll . Even with larger cache line sizes the LPT compared favourably with a
data cache.

Finally, the decoupling of evaluation and list accessing achieved by the EP-
LP partition makes SMALL a prime candidate for extension to Multilisp systems,
i.e. multiprocessor systems in which the evaluation of a single Lisp program is
allocated across several processors. We investigated this possibility briefly in

Chapter 6.

7.2. Suggestions for Future Work

Several interesting questions about Lisp, SMALL and Multilisp implementa-
tions present themselves at this point. We describe them briefly in this section,
but leave their deeper study as future work.

In our analysis of Lisp program traces, we concentrated on the Lisp list
manipulating primitives, car, cdr, cons, rplaca, and rplacd, which are the
lowest level list manipulation operations. At a higher level, most Lisps include a
set of pre-defined functions that access lists in highly structured ways. For
example, in Franz Lisp, there are map, mapcar eic. In a way, these functions
are to Lisp what the DO loop is to Fortran. Their calling behaviour could be stu-
died to get a better feel for typical access patterns to lists, possibly leading to
more involved architectural support for list access.

As far as the SMALL organization is concerned, we see several interesting
research issues. One is the operation of the Evaluation Processor. We described
the EP’s operation in Chapter 4, but made no atiempt 10 evaluate its effective-
ness. The EP’s effectiveness would depend on how the environment was
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maintained (deep binding, shallow binding, or some new binding scheme), on
how the control stack was maintained, etc. Another SMALL issue of interest is
the choice of how to represent lists in the heap memory. While we addressed the
relative merits and demerits of a few schemes in Chapter 4, this is an issue
worthy of more careful analysis. The representation should be capable of quick
splitting and merging while not being too space inefficient. Also, we raised
several questions in describing SMALL Multilisp. We suggested three alterna-
tive organizations for the multiprocessor system, homogeneous, decoupled, and
hybrid. The advantages of using each scheme need to be studied more, as does
the effectiveness of using reference weights in multiprocessor heap mana ement.
Finally, the development of more detailed emulation and compiling tools for Lisp
on SMALL would be useful in fine tuning the architecture.

Finally, we would point out that while SMALL has an LP to make list pro-
cessing efficient, other specialized memory managing processors could be added
to make access to other kinds of data structures more efficient. For example, if
arrays were heavily used, a memory access processor that kept track of array
references could be used, as in the Structured Memory Access architecture
[Ples82a). The SMALL or anization could be extended with other such special
pUTpOse Memory accessing unctional units to improve performance.
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