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ESTIMATES FOR MULTIGRID METHODS
BASED ON RED-BLACK GAUSS-SEIDEL SMOOTHINGS

by

Seymour V. Parter

ABSTRACT

The M GR|v| algorithms of Ries, Trottenberg and Winter, the algorithms 2.1 and 6.1
of Braess and the Algorithm 4.1 of Verfiirth are all multigrid algorithms for the solution
of the discrete Poisson equation (with Dirichlet boundary conditions) based on red-black
Gauss-Seidel smoothing. Both Braess and Verfiirth give explicit numerical upper bounds
on the rate of convergence of their methods in convex polygonal domains.

In this work we reconsider these problems and obtain improved estimates for the
h—2h Algorithm 4.1 as well as W-cycle estimates for both schemes in non-convex polygonal

domains. The proofs do not depend on the strengthened Cauchy inequality.



1. Introduction

The MGR|[v] algorithms of Ries, Trottenberg and Winter [12], the algorithms 2.1 and
6.1 of Braess [2], [3] and the algorithm 4.1 of Verfiirth [14] are all multigrid algorithms for
the solution of the discrete Poisson equation (with Dirichlet boundary conditions) based
on red-black Gauss-Seidel smoothing.

The analysis of [12] is based on Fourier Analysis and is limited to the case where
1 is a rectangle. The discussion in [2], [3] and [14] is for the case where ] is a convex
polygonal domain whose boundaries lie on the horizontal, vertical or diagonal lines of a
uniform grid. Recently Kamowitz and Parter [5] and Parter [11] described a variant of the

basic algorithm for the general diffusion equation

-V pvVu=f (1)

with Dirichlet boundary conditions.
One interesting point about all these papers is the fact that the error estimates are

specific numbers. That is, if € represents the error before a multigrid cycle and & the error

after that cycle, then these papers provide estimates of the form

lglla < pllella (2)
. . 11 2 .
where p is a specific number, e.g. 2'3° 57 etc. Such results should be contrasted with
the recent general convergence results of [1], [4], [6], [7], [8], [9], [15] where
C
_ . 3
= a5 (3)

with k& the number of smoothing steps and C a constant which is, in general, very difficult
to estimate.

Clearly, such explicit numerical estimates are preferable to the general estimates (3).
Nevertheless, it is worthwhile to keep in mind that the estimates of [3] and [14] are greater
than Fourier Analysis estimates of [12] for the special case where (1 is a square. Moreover,
experimental results [13] indicate that these estimates are far from sharp. In particular,
the V-cycle results of [3] and [4] are limited to convex domains as described above while the
experimental results of [13] show excellent V-cycle convergence for domains with re-entrant

corners.



In this paper we reconsider the analysis of the algorithms of [3] and [14]. Their analysis

is based on the following:

(i) A finite-element interpretation of the equations based on a particular triangularization

of the domain.
(i) “The strengthened Cauchy Inequality.”

(iii) Certain “energy” estimates.

We use the finite-element interpretation and implicitly use another view of the process
(i.e. the choice of the interpolation and projections operators I }}, I }I:I as described in [5]
and [11]). We also rely on the basic energy estimates on smoothing of Braess [3]. However,
we do not use the strengthened Cauchy inequality. In the case of convex domains as
described above our results for algorithms 6.1 of [3] are identical with those of [3]. On the
other hand our estimates for algorithm 4.1 of [14] are stronger than those of [14]. Indeed
our estimates for this A — 2h multigrid scheme are (essentially) the same as those for
the h — (v/2)h multigrid scheme of [3]. In addition we observe that while the estimate on
smoothing and this approach are not strong enough to yield V-cycle convergence estimates
for nonconvex domains they do give estimates for the W-cycle in such domains. This is
unimportant for the h — (\/i)h algorithm since the W-cycle is not efficient for such cases.
However, for the h — 2h algorithms the W-cycle is a viable option and it is worthwhile to
see numerical estimates for its rate of convergence. In general, there are very few rigorous
results for domains with re-entrant corners. Thus, these results for nonconvex polygonal
domains are also of particular theoretical interest. Nevertheless, we recall the fact that
the experimental evidence of [13] implies that these results are quite weak. Thus, it is
important to continue to seek methods of analyses for multigrid schemes.

In section 2 we develop the finite element formulation of [3] in some detail. We do this
both for the sake of completeness and because the discussions in [2], [3] and [14] are both
correct and terse. In section 3 we describe the algorithms in detail. Finally, in section 5
we obtain the estimates. In order to avoid some of the confusion of notation we employ
the “coloring” conventions of [2], [3] and [14]. Hence, it is not red-black Gauss-Seidel but
black-white Gauss-Seidel.

We have chosen to limit the discussion to the Poisson equation, i.e. the constant
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coefficient case. Since the results depend on “energy estimates” the extension to the
general diffusion equation (1) follows along the lines indicated in [5] and [11].
Finally, I must express my appreciation to Naomi Decker and David Kamowitz whose

assistance and insightful discussions were a great help in the development of this work.



2. Preliminaries

Let hg > 0 be given. Let
R(ho) = {(zk,y;) = (kho,Jho); k.5 =0,%1,£2,...} (2.1)
be the associated mesh points in the (z,y) plane. Let
B(ho) = {(zk,y;) € R(ho); k+j =1 (mod 2)}, (blackpoints),

W (ko) = {(zk,y;) € R(ho); k+j =0 (mod 2)} , (white points) .

Let 2 ¢ IR? be a bounded polygonal domain whose sides have slope &1, 0 or co . We
assume that each corner point of {2 belongs to W(ho) . Thus, the domain 0 “fits” the
mesh. We define

Qp, = R(ho)N O, (2.2a)

8, = R(ho) N ONY . (2.20)

Following Braess [2,3] we triangulate {2 as follows. At each point (zx,y;) € W (ho) N Qp,
we draw the four lines of slope 1, 0, oo and consider the eight triangles with vertices
(zk,y;) and the eight nearest neighbors (zk+1,¥;), (Zh, Y1), (Tht1, Yj+1), (Zht1,YjF1)-
At each point (zk,y;) € B(ho) N 0, we draw only the two lines parallel to the coordinate
axis. In this way we obtain four triangles at (z,y;) whose vertices are (zx,y;) and the

four nearest neighbors (zx+1,¥;), (k, yj+1) - see figure 1.

® black points

o white points

Figure 1: The Triangulation.

Let Sy, be the space of continuous functions which are linear on each triangle of this

triangulation and vanish outside 2 . These functions are piecewise differentiable and have
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constant gradient \yu on each triangle. For u,v € Sy, we define the inner product and

luli, = (), (2.30)
with
(w0} = 5hE Y () - () (2.35)

where the sum on the right is taken over all triangles.* We also introduce the usual mesh

inner product defined as follows. For each u € Sy, let

uk; = u(zk,y5) » (2.4a)

and
(u, 'U)ho = hg Z Uk Vkj - (2.41))

Finally, we introduce some operators on Sp,. Let

1
[LhoUlk,; = 7z {4Uk,; — Uk—1,5 — Ug+1,j = Uk,j—1 — Uk 511} (2.5)
0

1
[MioUlks = 53z {@kiUkij = Ukt1,41 = Ukir,5-1 = Uk—r541 = U121} (2:6)
0

where

(1) ax; = 4 if all four of the points (Tx41,Yy+1)s (Tht1>Yj-1)s (Th—1,Yj+1)s (Tk—1, Y5-1)
belong to (p, U I, .

(2) oxj =4+ ¢r; where ¢i; is the number of neighbors not in 0z, U 304, . Let
[WhoUlks = zf%g {BkiUk;s — Uk—2,j — Ur42,5 = Uk,j—2 — Uk,j42} (2.7)
where fj; is defined in a manner analogous to oy;. That is
ag; =4 + number of {Ugtz ;, Uk j+2} outside Q2.

Remark: These formulae for ax; and fi; in the definition of M}y, Wj, are consistent
with the requirement of Braess that one double the weights (in certain semi-norms)

when a neighbor is outside {2 .

* We insert the factor 1 to keep our notation near the notation of [3] and [14].
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It is convenient to introduce the “averaging operator”
[a(ho)Ulk; = i [Ukt1,5 + Uk-1,5 + Ukyj—1 + Uk 1] - (2.8)
A basic result (which is easily verified by a direct computation) is
(U, V) ho = (Lngu, V) g - (2.9)

Let H; = —-1\5 ho. The mesh R(H;) includes all points of R(ho) plus the points
of the form ((k + %—)ho, (7 + 2)ho) . We will describe such points as (zs,y,) with the
understanding that (o,p) = (k,5) or ((k+ %), (5 + 1)), i.e. either a pair of integers or
a pair of half odd integers. The points of R(H;) are viewed as points on the rotated grid
(45°) and the points are separated by H; . The sets 1g,, 9y, are defined in the obvious
manner. We color the points of R(H;) as follows. The “old” points, i.e. those belonging to
R(ho), are white - W (H,) while the “new” points are black. Hence, as before, the vertices

of {1 are white. We also add the secondary color for white points as follows:
white/red <=> “old” black points : B(Ho) ,

white/green <=> “old” white points : W (ho) .

This grid is triangulated by the same algorithm (rotated by 45°) as was used to
triangulate R(ho). The space Sy, is now constructed analogously as are the inner products

(w,v)m,, (u,v)m,. We define

1
[a’('Hl)U]U,# = Z[Ua—{—%,p—{-% + Ua—l—%,u—% + Ua—%,u-{—% + Uaué,uné] (2'10)
4
(L, Ulows = 775 | Vo = [a(H1) Vo) (2.11)
1
1
{'MHI U]U,u = ﬁi[av,qu,u - Ua+1,u - U«7~1,u - UU‘,}H—l - Ua,n~1] (2-12)
1

1
[WHI U]a”' = Z_ﬁ—f{ﬁa’PUafﬂ - Ua'+1)l‘+1 - U0+1’ﬂ”1 - I]U"I)P"{"l - Ua"'l)ﬂ"l} (2'13)
+1

where o, and B, , are given by (essentially) the same algorithm as are ax; and Bi;.
The space Sp, C Sy, and the natural injection J,{fol : Spy, — Sp, simply defines

the identity map restricted to Sy, and takes piecewise-linear function into piecewise-linear
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functions. The projection J h‘i = (J ,ﬁ ')* where * refers to the inner product (, ). That

is, if w € Sy, , v e Sp, we have
(JZ‘;u,v)ho = (u,J,fi‘v)Hl (2.14)

However, there is another way to look at this imbedding which is related to the inner
product (, )p,. The functions of Sk,, Sy, are completely determined by their values at

the points of 13, and Q g, respectively. Thus we can consider the projection P}‘I‘i defined
by

(Pg‘;u)k] =Ugj, (TksY;) € Uno >, wESH, . (2.15)
Actually, in practice we omit reference to this operator. For example, if u € Sy, we write

Lp,u, Mp,u or Wy u

rather than Ly, P;‘I‘; u, Mp, P}‘I‘; or Wy, PI’}‘; .

Let hy = (71_5 Hl) = <%>ho. The mesh R(h1) is constructed precisely as was the
mesh R(ho) - with hy replacing ho. Observe that R(H;) C R(h;1) and we could have
considered R(h1) to have been constructed from R(H;) just as R(H;) was constructed

from R(ho). The points are now colored as above. That is
W(hl) = R(Hl)

B(h]_) = R(h1)\R(H1)

and

White/red := R(H;)\R(ho) ,
White/green := R(ho) .
The operators Ly, , My, , Wh,,a(h1) are constructed as before.
Remark: In the notation of [3], [14]
Wi, uw,uw) g, = (|ulm,,m)? . 1 (2.16)
The process is continued to construct the spaces
Shy C S, CSpy C...8q,, CSh,
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and the operators Ly, Lg;, Mp,, My, ,Wh, ,Wg,.

We close this section with some technical estimates required in our analysis.
Lemma 2.1: Let u,v € Sp,. Then

(u, 0}, = (U, V), - (2.17)

Proof: We need only observe that each term of the sum on the right hand side, e.g.

(Vu) - (Vv) occurs twice in the sum on the left hand side and

1

Lemma 2.2: Let h = h; or H; and let v € Sp. Then

0 < (Mpu,u)p < (Lpu,u)p (2.18)

Proof: This estimate is actually proven in passing in [3, page 512]. However, because this
estimate is central in our analysis we give the proof. For definiteness (and for consistency
with the discussion in [3]) we take h = h;. A direct “summation-by-parts” argument shows
that

(L, w)n =D (w41 — wry)? + ) (Ukt1,j — uk,)? . (2.19q)

Thus, in the notation of [3],

(L, u)p = [|ul® .
Similarly,
1 2 i) 2
(Mpu,w)n =5 ) {0k (ks — wet1,54+1)" + Ok,j(vn, — vey1,;-1)°) - (2.190)
2

where 0 ; = 1 if both (zk,y;) and (zx+1,Yj+1) are in () and Oy ; = 2 if either (z,y;) or
(Tk+1,¥j+1) is not in {1 (Note: if neither is in 0 then (uk; = ukt1,;41 = 0.), and b ; is

defined similarly. Thus, in the notation of [14]

(Mpu,u)n = (]ulh,ﬁh)z .

Consider a square of side h whose sides are parallel to the z,y axes - see figure 2.



| — 5 — |

Figure 2

We suppose that at least one vertex (say “1”) lies inside 2. A direct computation
yields

1 1

-24(u1 —ug)®+ E(uz —ug)® < S(u1 —u2)® + (v2 — ug)® + (va — ug)? + (va —u1)?] . (2.20)

S

We can think of the right-hand-side of (2.20) as being the contribution of this square to
(Lpu,u)p. The factor 3 occurs because most sides parallel to the = or y axis will also
appear as part of the contribution from another square. If we have a square in which all four
sides will appear from another square, then the left-hand-side is precisely the contribution
of this square to (Mpu,u). If that is not the case we must modify the arguments. We deal
with one case. Suppose point 3 is not in ). Then, since point 1 is in 2 both point 2 and

point 4 are on 8. Thus, the contribution of this square to (Mpu,u)y is (u1 — us)? = u?

2

1 1 .
and the contribution to (Lpu,u)p is —2—(u1 —u2)? + Z(ug — ug)? = w? . Thus, there is a

2
balance and the lemma is proven. N

The same argument yields

Lemma 2.3: Let H = hj or H; . Let u € Sy. Define

~ _ 0, (xaa yp,) € W(H) ’ a
Warlow = { Wetlow, (2o,yu) € B(H), (2210
- _ 0, (xaa yp.) € W(H) ’
[MH'U,]U,,,, = { [MH’U,]U,/,,, (xa,yp) ¢ B(H) , (2.21b)
Then
(WHu,u)H < (MHU,U)H : (2.22q)
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(WHu,u)H < (.MHu,u)H . (2.226)

Proof: The proof of both (2.22a) and (2.22b) follows exactly the same argument as the
proof of Lemma 2.2. Actually, since M g and My also have special points at which the

weights are doubled, the proof has some simplifying aspects.
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3. The Problems
In this section we describe the problem to be solved, several multigrid algorithms
based on black/white Gauss-Seidel relaxation and the spaces and operators of section 2.
Let h denote an h; or H; (j > 0) and let H denote the mesh size on the next coarser
mesh, i.e., H = Hj or hj_;. Similarly 2k is hj_1 or Hj_;. Let f € S, and consider the
problem: find U € Sy, such that
LyU=f. (3.1)

It is an easy matter, using (2.5) and the construction of section 2, to see that (3.1) is

equivalent to the finite-element formulation
(Uyo)n = (f,0)n,  YveSh. (3.2)

The black/white Gauss-Seidel relaxation is described by the half-steps G 2, Gy which

are themselves described in terms of the averaging operator a(h). Set
hz
[qu]k’j _ la(R)ulk,; + % fris (zr,95) bla.ck (3.3a)
Uk,j, (:I:k, yj) white

and
Uk js (zk,y;) black

GPu kj = .
(GReles { a(R)ulk,; + & frs (zk,y5) White
Let G}, denote the composition of r(r > 0) Gauss-Seidel half steps such that G

(3.3b)

and G alternate and a G% operation is performed last. Let G}, denote the execution of
the same steps, but in reversed order (see [14, page 120]). Observe that G% and G% (the
homogeneous parts of G}’ and G’% respectively) are self-adjoint in the (, ) inner product.

Therefore the homogeneous part of G};’r is the (, )5 adjoint of the homogenous part of
Ghy .

H

We now describe two multigrid iterative schemes for the solution of (3.1). Let G}, be

G, and Gj, be its homogenous part. Let U denote the solution of (3.1) while u° is our

current approximation for U. Set gg = U — u°.
Algorithm I:
(1) Smoothing Step. Given u°. Compute

i = Gpru’
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(2) Transfer Step. Compute r = f — L@ and

1 . .
rg = 3 r on white points .

(3) Correction Step. Let Uy € Sy denote the exact solution of
LygUg =rg . (3.4)

If H= ho set VH = UH
If H < ho set Uy = 0 and compute Vg by p iterations of Algorithm I applied to (3.4).

(4) Post smoothing step. Set
t=1u+Vy (3.5)

and

u' =G . (3.6)

Repeat.

Observe that in equation (3.5) we add an element of Sy to an element of Sj. This
causes no difficulty either because we think of Sy C S, and Vg is a function in Sy and
hence a function in Sp or because it doesn’t matter what values are given Vg at black

points. The first step of (3.6) changes these new values without the use of those values.
Algorithm II: We assume h = h;, H = H; and j > 0.
(1) Smoothing Step. Given u°. Compute

7= Grul.

. 1 . .
(2) First Transfer Step. Compute r = f — Lyt and rg = 5T on white points.
(3) Intermediate Step. Let Uy € Sy denote the exact solution of

LHUH =Trg — fH . (3.7@)
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Set U = 0 and, in terms of this problem compute

UL =G4,UY . (3.7b)

(4) Second Transfer Step. Compute p = ri — LU} and

1
ron = fan = 5/’ . (3-8)

(5) Correction Step. Let ¢ denote the exact solution of

Langan = fon - (3.9)

If 2h = ho, set th = q52h.
If 2h < ho set ¢3, = 0 and compute Q25 by p iterations of Algorithm II applied to
(3.9).

(6) First Back Transfer. Set
Ve = Gy Uk + Qzn) -
(7) Second Back Transfer and Post Smoothing Step. Set
4=i+Vy

and

Repeat.

Remarks: Algorithm I is Algorithm 6.1 of [3] while Algorithm II with Gp = Gp ry2 is
Algorithm 4.1 of [14]. When p = 1 we are discussing the V-cycle. When p > 2 we call this
a W-cycle.
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4. Analysis I

Both Braess [3] and Verfiith [14] use a “duality” argument to establish estimates on
the rates of convergence of their multigrid schemes. This approach is also used by [1], [4],
[15]. The following is our abstraction of this basic argument in a form sufficient for these
problems (see [10] also).

Following McCormick and Ruge [7] we let T} denote the {, ) orthogonal projection
of S;, onto the nullspace J. ,fl Ly, and let $5, denote the orthogonal projection onto the range
of J%. With each u € S, (or equivalently, each Gru) we associate a value o(u) € [0, 1].

Assume there are two functions g(o), p(o) defined on [0,1] and

1Grully < g(o)llullf (4.1a)
ITwGrullf < plo)g(a)ull} (4.10)
0<g(o)<1, 0<plo)<1, 0<o<1. (4.1¢)

Theorem 4.1: Let ¢; be the error before a multigrid cycle and let &; be the error after

that cycle.

Case 1: The V-cycle. Let § , 0 < 6 < 1 be a fixed number which satisfies

(1-86)p(o)g(o) +6g9(c) <6, o€0,1]. (4.2a)
That is
6 = sup {1 T p(l)of)(fg)(g;)(f)_ o) ; 0¢€l0, 1]} , (4.2b)
then,

&illn; < 6llejlin, - (4.3)

Case 2: The W-cycle. Let §,0 < § < 1 be number which satisfies
(1 —6*)p(o)g(o) + 6#g(0c) <6, 0<o<1. (4.4)

Then
1851lk; < 6llesllny - (4.5)
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Proof: The general functions p(¢), g(o) do not appear in the proof given in [3]. However,
that proof which is based on a duality argument immediately yields this theorem. See [10]

also. N
Remark: Consider the case p = 2 (standard W-cycle). Let

n = max p(o)g(o) . (4.6)

Then

- Ui
el < 5

el (4.7

Remark: In order for this analysis to yield a convergence proof and/or a convergence

estimate for the V-cycle it is necessary that
plo)=0  VoeDy,
where

Dy = {0¢€[0,1]; g(0) =1} . (4.8b)

Proof: Suppose there is a 0o € Dy and p(og) # 0. Then

p(00)g(00) _ploo) _ I
1+ p(oo)g(oo) — g(oo)  p(oo)

It is this condition which limits the V-cycle analysis of this work and of [3] and [14] to the

case of convex domains.

Remark: In [3] we find ¢ replaced by p and
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5. Analysis

Let h denote h; or H; and let H denote the mesh size on the next coarser mesh, i.e.,

H =1+/2h = H; or hj_;. Similarly 2k = h;_; or H;_;. Let

Np:={ueSp,u=00nW(h)}, (5.1a)
R} := {u € Sp,u = a(h)uon B(h)}, (5.1b)
R} := {u € Sp,u = a(h)u on W(h)} . (5.1c)

We will also make use of the spaces Ng, R;I and RI! which are defined as above with A

replaced by H. Let Qf, Q! denote the projections

. [a’(h)u’]k,]'a (xkayj) € B(h) s a
[Qlu]k,y = {uk,j, (z5,y;) € W(R) . (5.2a)
[k (zk,v;) € B(R) ,
Q% ulks = {[a(h)u]k,ja (zk,y5) eW(h) . (5.26)
Remember that
Qr=Qr, Qu=0Qu- (5.3)

If Gp,r is the smoothing operator of section 3 then (_}h,,, the homogeneous part of G, is

given by the alternating product

Grr=Q'Q"...Q (5.4)
N, e

r+1 factors

where ' = IT if r is odd and / = I if r is even.

Our first estimates are some results of Braess [3].
Lemma 5.1:
(i) If 2 is a convex polygonal domain, then
1T Qull} < WaQ'u,QTu)x . (5.50)
(i) If Q is a nonconvex polygonal domain, then

1QT QT ull} < 2(WuQ"v, Q") - (5.5b)
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(iii) Let Q = QT if r is odd and Q = Q7 if r is even. Set

e’ = Q*Euwl, €V+1 — C}EV .

Then
e+ o 1l 50
le”lln — llev =l
(iv) If 2 is a convex domain then
— T
[Gae®l, _ [ (Worer 1) -
le°lls le™* % '
(v) If 2 is not a convex domain then
(;f 012 2UW r—I—1, r41 T
G0 [ (2 e e VY
€113 llem 1%

Proof: The basic estimates (5.5a), (5.5b) are actually proven in [3]. However, the
statement in [3] is a weaker statement, see lemma 3.1 of [14] for the estimate (5.5a).
The estimate (5.5b) follows from the same argument and the remarks on page 517 of [3].
Actually, this is a worst case estimate. For re-entrant corners of less than 135° one can
find a constant smaller than 2. However, that is a tedious, lengthy calculation and we
forego it. The estimate (5.6) is proven in [3]. We do not explicitly use this estimate but it
is used with (5.5a), (5.5b) to establish the important estimates (5.7a), (5.7b). 1}

Lemma 5.2: Let u ¢ Rf. Then
Lyu=0 on B(h), (5.8a)
Lyu=Lgu+Mgu, onW(h) = Qg . (5.8b)

Proof: Equation (5.8a) follows immediately from (5.1b) while (5.8b) follows from a direct

computation (see [5]). §

Theorem 5.1: Let J 1’{, and J ,fI be the natural injection and its adjoint as described in

section 2. That is, for u € Sy, v € Sy we have
(Jhu,v)p = (u, T v) g . (5.9)
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Let T and $ be the orthogonal projections onto the nullspace J ,‘ff Ly and the range of J Z .

For each u € S}, let

_ (MH éh,rua C:Yh,r'u')H

o = — - . 5.10
(LHGh,rU, Gh,ru)H ( )
Then
0<o<1. (5.11)
Moreover, let
1
plo) = 5 (1-o0). (5.12a)

Case 1: 1 convex. Define

o(0) = (;}5) . (5.12b)

Case 2: () non-convex. Define

g(c) = min { o 1}r . (5.12¢)

140
Then
1Gh,rullk < g(o)llull; (5.13a)
and
ITGhrully < p(o)g(o)llullf - (5.13b)

Hence, in the case of Algorithm I we have the following results.

(i) If © is a convex domain then the V-cycle is convergent and, if € is the error before a

symmetric multigrid cycle and & is the error after that cycle,
lElln < 6llelln (5.14a)

where 6 is given by (4.2b). Further the W-cycle is convergent with a § satisfying (4.4).

In particular
5 < p(o)g(o) (5.14b)

where p(5)g(5) = max {p(c)g(0),0 < o < 1}.

If 2 is not a convex domain then we do not know if the V-cycle is convergent. However,

if r > 1 the W-cycle is convergent.
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Indeed (5.14a) holds with
6 <

b | -

: (5.14c)

Proof: Lemma 2.2 implies (5.11). Observe that G, u € R}. Therefore, Lemma 5.2

asserts
_ 1 — — — —
HGh,Tu”IZz = E {(LHG},,,TU,, Gh,ru)H + (lMHGh,ru,Gh,ru)H] . (5.15)

Thus, the estimate (5.13a) follows from (5.7a), (5.7b) and (2.22b). Once we have proven
(5.13b) the convergence results contained in (5.14a), (5.14b) follow from Theorem 4.1. The

estimate (5.14c) follows from the following argument. In the non-convex case

40 \T 1
A <g<li
g(0) = { (3%5) ?— >3 (5.16)
1, l<o<1.
Clearly g(o) is bounded by the g;(co) obtained for r = 1. Moreover, in the non-convex
case, g1(o)p(o) assumes its maximum at ¢ = =. Hence
N o 1
p(0)e(6) < 5 -

Thus (5.14b) yields (5.14c).
Hence we turn our attention to the proof of (5.13b). Let

G’h,,.u = Y == T@h,ru -+ $G’h,,.u . (5.17)

Then, using Lemma 5.2 we see that

>

2]

— .;-[(Lﬂa,a)g + (Mya,5)x] . (5.180)
Using Lemma 2.1 and (2.9) we see that $% is determined by Uy, the solution of (3.4), and
1$z)|; = (LaUn,Un)u - (5.18b)

Lemma 5.2 and Step 2 of the algorithm yields
LuUg = % (Lt + Mya) . (5.18¢)

Thus
1 _
@HMLMﬂgzzumﬂ+Mﬁmﬂ+ngmmH,
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and

1
”$’U,H%L = Z{(LH’TZ + MHﬁ,ﬂ)H + (MH'U,,‘E)H -+ (MHTL,L;IIMH’U,)H} .
Thus ) ) )
ITall% = lallx — [I$alk
1 (5.19)
= Z (LH’U,,TL)H — (MH"L—L,LH MH'IL)H}
Observe that
(.MH’L_L, TL)H = (L;IILH'E,,MH'U,)H
< (Lg'Mpu, M) (Ly' Ly, Lgu) g
Thus \
_ Mya,a)
Myu,L;'M >  H
( HU, Ly Hu’)H_.. (LH'E,'U')H 3
and
1
ITal} < £ {(Lru,0)r - (Mys,0)} [(Lrw, 2} . (5.20)
Since
el Nali  leli’

we complete the proof of (5.13b) by noting that (5.20) and (5.10) give

1 1-0%2 1
< = ==(1-0).
=93 1t¢ ;(1-0. 1

72|

Il

Remark: In the convex case we reobtain exactly the estimate of [3]. To see this we set

20
1+0°

p:

Then

1 1—p

“(1-0)= >t

; L—0)=5—

We now turn to the analysis of Algorithm II. Consider the equation (5.18¢). Let us

consider Uy and P,fI % = % as being written in the form

o~

Ug=¢+U, a=n+Vy. (5.22)

where £, € Ny while f]H, VH € R}I.
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Lemma 5.3: Consider Uj, the function in Sy computed in the intermediate Step (3) of
Algorithm II. Then
Uy =¢. (5.23)

Proof: Both U}, and ¢ are zero on W (H). Hence both belong to Ng. By construction

LyUL = rg on B(H)N Qg (5.24a)
Ly(¢+Ug)=rgy onBH)NOy. (5.24b)

But, LyUg = 0 on B(H) N Qg. Since the equations (5.24) are explicit (with U} = & =
0 on W(H)) the lemma is proven.

Consider ¢y, the solution of (3.9). While @2 is defined only on {155, we may think
of ¢2p as being in RI{I. As we shall see, the values of ¢ at points of B(H) N 1y never

enter into our calculations. Observe that (3.8) yields

1 1 1
fen=5p=3 (rg—LuUy) = - Le(Un ~ Ug) .
2 2 2
Thus
1 1 -
Lo don = 5 L (Un - Uy) = 5 LuUn . (5.25)

Define the operators L#, M#, f,zh as follows. For v =¢ + f with $ ¢ Ny, f ¢ R{I

p#y — [ LES B(H)NQy , (5.250)
Lu$+2Lanf, W(H)N Qg .
Myv, B(H)NQg
#y=2{  H ’ 5.25b
M7 {,Mzhf, W(H)ﬂﬂH ( )
~ 0, B(H) Ny,
Lopv = 5.25¢
2h {L%f, W(H) N Q. (5.25¢)
Then
(L#*v,0)g = (Lus,$ + g + 2(Lanf, (5.26a)
and
(L#v,v)g = (LS, m + (Lanf, f)an - (5.260)
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Remark: Since ¢ = 0 on W(H), we can replace Moy f by Mapv and Lapf by Lopv on
W (H). Moreover Lg¢ = Lyv on B(H) N Qg .

Lemma 5.4: Consider Algorithm II. Let €3 = U — u®, € = U — 4. Let U} be given by
(3.7b) and let ¢ be the solution of (3.9). Then

Lyé = Lyé+ Myé = L*Eé+ M¥7& on Qy , (5.27)
and

1
L*(UY + b2n) = 5 (L#E+ M%&) on Qy . (5.28)

Proof: The first equality of (5.27) is merely the restatement of (5.8b). On B(H) N Qg
the second equality follows from the definitions of L# and M7, i.e. (5.25a) and (5.25b).
On W(H) N Qg the second equality follows from two observations. First, lemma 5.2 with
h replaced by H asserts that, if f ¢ RI{I then

Lyf=Lopf+ Mapfon W(H)N Qg . (5.29a)
Secondly, the definitions of section 2 show that

Lopé = Mgé€on W(H)N Qg = Qap, . (5.290)
The proof of (5.28) follows from (5.24a), the definition of rg, (5.25) and (5.27). 1

Consider Algorithm II within the finite-element framework utilizing only the spaces
Sh,; and the spaces Sy, are merely intermediate tools. With this in mind 7" and $ now
denote the orthogonal projections onto nullspace J ,thh and range JZhh where Jé‘h =JhJl
and J ,%h = (thh)* . We think of the operation of the “smoother” as the application of G,

and the addition of Uk. Thus, if G7¢* describes our smoother, then
GRevy® = 4+ U} . (5.30)

Remark: A simple calculation shows that GR°” is indeed an affine smoother. The estimate

(5.37b) shows its homogeneous part G7e¥ is of norm less than or equal to one.
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Lemma 5.5: Let u € Sj,. Then

Wgu,u)g < (M#u,u)y . (5.31)

Proof: Since Wy operates on points separated by (2H), Wy splits into two independent
operators. Wx (see Lemma 2.3) which essentially acts on the points of B(H) and another

operator WH which acts on the points of W(H) and is zero on B(H). However, it is easy
to see that

Wy = Mgy, on W(H) . (5.32)
Hence,
(Wgu,u)g = (Wgu,u)g + (Mapu,u) g .

By Lemma 2.3 we have

(Wgu,u)g < (]\;IHu,u)H + (Mapu,u)g = (M#u,u)H A |

Lemma 5.6: Let v € S,. Then

(M#u,u)H
0< 27 77 1. 5.33
- (L#u,u)g - ( )

Proof: We observe that (using definition (2.21b))

Lopu onW(H)N g,
Mpu =< ~ 5.34
7Y {MHu on B(H)N Qg . (5.34)

Let PHu = ¢ + f. Using definition 5.29 and observing that ¢ = 0 on W (H),
~ 1
(M#u,u)g = (Mgu,u) g + 5 (Mapu,u)zn .
Using Lemma 2.2 we have
" ~ 1
(.M u,u)H < (.MH’U,,’U,)H + 2 (Lz;,,u,u)% .
Using (5.34) and Lemma 2.2 again yields

(M#u,u)g < (Mpu,u)g < (Lpw,w)g = (Le& O+ (Luf, Na - (5.35)
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But
(Luf e = Lonf, f)u + (Marf, f)u

<2(Lenf, f)u
Substituting this estimate into (5.35) and using (5.26a) we obtain (5.33). |

Theorem 5.2: Consider Algorithm II. For u € Sy, set

(M# @h,ru; éh,ru) H

O = = = .
(L# Gh,ru: Gh,ru) H

(5.36a)
Then Lemma 5.6 shows that
0<o<1. (5.36b)

Define p(o) by (5.12a) and g(o) by (5.12b) and (5.12c). Then (5.13a), (5.13b) hold. Hence
the conclusions of Theorem 1 also apply to this h to 2h algorithm.

Proof: Let & = G, ,u, let U} be the result of step of the smoothing in the homogeneous
case, f = 0. That is

. 0 on B(h) UW(H) ,
(IH = { B2 . (5.37@)
—2= Lyt on B(H)N Qg .
Set & =4 + U} = GT*%u. Then
(aa"'_L)h = <€L’ﬁ>h + 2<U11:I>{L>h + <U}17U111>h
= (U, U)p + Z(UIII,LH'Z'I,)},, +- (U}I, U}{)h .
Since we are in the homogeneous case
1.
LHUH =rg = — ~2—Lhu on QH .
Hence
(w,a)p = (@, 8 — 2(Uk, LuUn) g + (LaUk, U )m -
Using (5.24a) and the fact that U} ¢ Ng we have
Uk, LuUn)w = (U, LuUg)n = (Ug, Up)e -
Therefore
(@) = (@, @)n — (Ug, Ug)m < (8,85 . (5.37b)



Thus, (5.13a) follows immediately from (5.7a), (5.7b) and Lemma 5.5.
Turning to the proof of (5.13b) let

n = (Lnt,@)n — (Land2n, P21)2n » (5.38a)
d= (Lhu,u)h . (5.38b)

Using Lemma 2.1 and 2.9 we see that

(Lan®2h, D2r)2n = (P2hs P2r)2n

and hence

n=|Tully, d=ul.

Using (5.37b) and (5.26b) we see that
n = (Lpt,@)n — (L¥ (U} + d21), Uk + d2r) & - (5.39)
Using (5.27) and (5.28) of Lemma 5.4 we see that the action is constrained to Qg and
Lpii = (L*4+ M*4) onQy,

1
L* (U + 1) = 3 Lpi onQy.

A calculation completely analogous to the calculation in Theorem 5.1 (with Ly, My

replaced by L# and M*) yields
1 #Ho o~ _ #Haa N2 o
n< =3 L74u)g — (M7a,4)y /(L7 4,4)qg ¢ -

If u e RI then
d= -;- {(L#u,u)g + (M#u,u)H} .

Hence

Thus, the theorem is proven.
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6. Concluding Remarks

We conclude with a table comparing our results with those of [3] and [14]. As we have
pointed out in the introduction, our results for the V-cycle in convex domains are exactly
those of [3] for Algorithm I and are stronger than those of [14] for Algorithm II*. Finally,

we observe that our basic estimate for the V-cycle (and the estimate of [3, page 516]) is of

the form

1
6(r) = >

which is consistent with the results of [6], [9], see [10] also.

r

Algorithm I See [3] also

Algorithm II

Algorithm 4.1 Results [14]

B A=t ST ST
o] ot ==l N
O b afin] =] 00

V-cycle Convergence Rates, Convex Domains

*Recall that Algorithm IT is Algorithm 4.1 with r replaced by r — 2.
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