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Abstract

In parallel computer architectures many events are of constant duration. For ex-
ample, a fetch of a cache block, ignoring resource contention, takes a fixed number
of clock cycles. Analytical performance modeling techniques that include determin-
istic time have previously been proposed. However, serious restrictions on the set
of allowed models are imposed in these previous techniques. In this dissertation we
extend these previous modeling techniques by removing those restrictions. Those
restrictions fall into two classes: those involving the construction of the state space
and those involving the analysis of the state space. We propose interpretations for
performance measures when those restrictions are removed. In this general case, the
state space represents an arbitrary, finite state, discrete parameter Markov Chain.
We also present algorithms that efficiently construct and analyze the state space in
the general case.

Our technique is called Generalized Timed Petri Nets (GTPN). It has been
implemented in a tool and has been used to develop models for several interesting
architectures. The two most important studies examine bus-based multiprocessors.
Performance degradation due to memory and bus interference in multiprocessors
with a single-stage interconnection network has been frequently examined. Using
the GTPN we are able to derive exact performance estimates in the important
case when memory access times are constant and interrequest times are non-zero.
Previously only approximate estimates and simulation results existed.

Caches are an important means for reducing memory contention in bus-based
multiprocessors. Our second study is the first analytical performance comparison of
the key features of protocols that maintain cache consistency when a single shared
bus is assumed.
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Chapter 1

Introduction

1.1 Deterministic Times and Analytical Models

The goal of our research is to develop analytical performance models of parallel
computer architectures. An important feature of computer architectures is deter-
ministic time. Events—for example, a clock cycle or a fetch from memory—often
take a constant amount of time. Little work has been done in developing analytical
modeling techniques that allow representing deterministic times. Consequently, a
substantial part of our work has involved developing a new modeling technique that
supports deterministic times.

This new technique is called Generalized Timed Petri Nets (GTPN). As the
name suggests, our technique is an extension of a group of previous techniques based
on Timed Petri Nets (TPN). Timed Petri Nets are a graphical model description
notation. The general approach used by these techniques is as follows. The system
is described by a model formulated as a Timed Petri Net. An initial state is also
specified. The modeling tool constructs the state space formed by all the states that
can be reached from that initial state. The state space is then analyzed in order to
determine various performance measures.

The previous TPN models had substantial limitations with respect to both con-
structing the state space and analyzing the state space. To simplify constructing
the state space, restrictions are imposed on the connectivity of the model descrip-
tions when viewed as a graph. These restriction prevent representing important
aspects of system behavior. Restrictions are also imposed on the structure of the
state space in order to simplify the analysis phase. These restrictions are especially
limiting, because of the large semantic gap between the model description and the
state space. A model description of 30 lines can easily have a state space of 45,000
with complex probabilities on edges and times-in-state.

A substantial portion of our work has involved removing these restrictions. The



only remaining requirement is that the model’s state space be finite (in practice
it is usually obvious when an error in the description causes the state space to be
infinite). Removal of these restrictions involved two classes of issues: conceptual
issues and computational issues. At the conceptual level we had to find reasonable
meanings for the situations that are no longer prohibited. At the computational
level we had to propose and implement efficient algorithms for constructing and
analyzing the state space in the general case.

The state space analysis is based on Markov Chain theory. The use of Markov
Chain theory was suggested in the earlier TPN models. However, even in the re-
stricted case they allowed, a rigorous treatment of the relationship to Markov Chain
theory, was lacking. We have supplied such a treatment.

Of course, the extensions to previous TPN models we have made in our GTPN
are a significant research contribution only to the extent that the GTPN adds to our
ability to model interesting systems. We contend that the GTPN does significantly
add to our modeling abilities. That contention is based on several modeling studies
that have been conducted using the GTPN. By providing a flexible, efficient mod-
eling tool that supports deterministic time, we have been to reach some interesting
new results. For example, in a general model of multiprocessor memory and bus
interference in single-stage interconnection networks, we are the first to derive exact
performance estimates. Previously, only approximate derivations and simulations
existed. In another study we provide the first analytical comparison of a wide range
of cache consistency protocols that assume a shared bus.

An important result of our studies was demonstrating that interesting systems
can have “unusual” state space behavior. By “ynusual”, we mean two things, both
of which will be defined more completely later. First, a system may have multiple
long run behaviors. Second, a system may be “periodic” which loosely means that
the system may indefinitely oscillate among several probability distributions across
the states.

1.2 Organization of this Thesis

In this section we describe the organization of the remainder of the thesis. The
remainder of this chapter reviews related work in modeling techniques. In particular,
it looks at untimed Petri Nets, the general class of Petri Nets with time, and lastly,
the most relevant previous TPN models. The next three chapters present and
discuss the GTPN. Chapter 2 discusses the GTPN model description semantics and
the algorithms used in constructing the state space. Chapter 3 discusses the analysis
of the state space. The first part of this chapter discusses how Markov Chain theory
can be used to analyze an arbitrary finite state space. The remainder of the chapter
covers the numerical issues involved. Stochastic Petri Nets (SPNs) are an important
alternative method of including time and probabilities into Petri Nets. Chapter 4
compares and contrasts the GTPN with the SPN models.
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Chapters 5 through 7 present applications of the GTPN. Chapter 5 looks at two
model studies. The first is of the Dining Philosophers problem. The second is mod-
eling typical workloads on the scalar mode portion of the CRAY-1 supercomputer.
Chapter 6 examines memory and bus interference in a multiprocessor with a single-
stage interconnection network. Chapter 7 addresses the performance evaluation of
alternative shared bus cache consistency protocols.

The last chapter, Chapter 8, concludes the thesis by summarizing our work and
then discussing possible future research directions.

1.3 Related Work

In this section we describe untimed Petri Nets and previous Petri Net models with
time. This provides a foundation for the presentation of the GTPN which starts in
Chapter 2. Subsection 1.3.1 describes untimed Petri Nets. A more thorough intro-
duction to untimed Petri Nets can be found in Peterson [PET81]. Subsection 1.3.2
surveys performance-oriented Petri Nets. Subsection 1.3.3 reviews the most relevant
previous: the work of Zuberek, and Razouk and Phelps. :

1.3.1 TUntimed Petri Nets

Untimed Petri Nets (PNs) contain places P, transitions T, and arcs A. The arcs
are directed and can only connect transitions to places and places to transitions. If
an arc exists from a place to a transition, then the place is an input place for that
transition. If an arc exists from a transition to a place, then the place is an output
place for that transition. Places may contain tokens. The state of a PN is defined
by the number of tokens in each place and is represented by a vector M called the
marking vector. M[i] is the number of tokens in the sth place.

Petri Nets are often illustrated graphically, as shown in Figure 1.1. Circles
represent the places. Black dots in the circles represent the tokens. Bars represent
the transitions.

The number of arcs connecting a place to a transition is that input place’s
multiplicity. A transition is enabled if each of its input places contains at least as
many tokens as there are arcs from the place to the transition. The tokens on all
input places which exactly equal the input’s multiplicity are the transition’s enabling
tokens. An enabled transition can fire. A transition fires by: 1) removing all of its
enabling tokens from its input places, and 2) placing on each of its output places
one token for each arc from the transition to that output place. Each firing of a
transition changes the assignment of tokens to places and thus creates a new state.
The reachability set of a PN and a given initial state is the set of all states that can be
reached from that initial state via a sequence of transition firings. The reachability
graph associated with a reachability set can be constructed as follows. Represent
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Figure 1.1: Example of an untimed Petri net

each state by a vertex and place a directed edge from vertex v; to vertex vz if the
state vq can result from firing some transition enabled in state v;.

1.3.2 Performance-oriented Petri Net Models

Ramachandani [RAMT74] was the first Petri Net model to include time. His approach
introduced a fixed firing time with each transition in a Petri net. Since 1974 many
other models have been proposed. These models may be distinguished by two simple
criteria. One, is by whether firing times are associated with transitions or with
places. The second is by whether firing times are constants or random variables
(models with random variable firing times, also sometimes allow constant firing
times as a special case).

The second criteria is much more significant. The models assuming constant
firing times we will refer to as Timed Petri Nets (TPNs). We will refer to the
models assuming firing times are random variables as Stochastic Petri Nets (SPNs).
Several of the TPNs use an algebraic approach to the analysis. Ramamoorthy and
Ho [RAMS0] consider the structure of the net as a graph. For a very restricted class
of nets, they find the longest circuit in the graph using a matrix algorithm. Coolahan
and Roussopoulos [CO083] derive lower and upper bound timing equations from
the net, again by viewing the net as a graph and determining the possible paths
through the graph. In contrast to the approaches by Ramamoorthy and Ho and by
Coolahan and Roussopoulos, Stotts and Pratt [STO85] build the net’s state space.
However, they do not introduce a stochastic process interpretation.

The SPNs, models that assume firing times are random variables, on the other
hand, almost invariably construct the net’s state space, to which stochastic process
techniques are applied. The first models assumed that all firing times are exponential
random variables. These models were independently proposed by Natkin [NATS80],
Symons [SYM80], and Molloy [MOL81,MOL82]. The restriction to exponential ran-
dom variables allows a simple analysis because the underlying stochastic process is a




continuous-time Markov Chain. Loosening this restriction supports a more flexible
semantics, but implies a more complex underlying stochastic process. The more re-
cent models have attempted to deal with this problem. An important such model is
Generalized Stochastic Petri Nets (GSPNs) by Marsan, Balbo, and Conte [AJM84].
In the GSPN instantaneous firing times as well as exponential firing times are al-
lowed. The ESP of Cumani [CUMB85] is an extension so that firing times have an
arbitrary phase-type distribution. The Extended Stochastic Petri Nets of Dugan,
Trivedi, Geist, and Nicola [DUGB84] is a very general model. The firing times have
arbitrary distributions. If the underlying stochastic process is analytically solvable,
then it is solved; otherwise, the net is simulated.

Some work has been done on attempting to merge the TPN and SPN ap-
proaches. Two noteworthy attempts are Molloy’s Discrete-Time Stochastic Petri
Nets [MOL85] and the Deterministic Stochastic Petri Nets of Marsan and Chi-
ola [AJM85b]. Both approaches allow deterministic firing times, but only with
fairly strong restrictions.

An alternative perspective is reflected in the models of Zuberek [ZUBS80], and
Razouk and Phelps [RAZ84]. Their models are TPNs but they build the state
space and analyze it as a stochastic process. For many systems to be modeled,
deterministic time is the right semantics. In addition, interpreting the evolution ofa
system as a stochastic process allows the powerful results of stochastic process theory
to be used. Moreover, often when deterministic time is not the right semantics, the
desired random variable can be constructed from deterministic firing times. For
these reasons, our approach is built on their work.

Despite the promise of their approach, serious problems existed. They assumed
fairly strong restrictions on the structure of the net. In addition, the stochastic
process foundation of their analysis was unclear. A more detailed description of
their models and restrictions is in the following subsection. In Chapter 4 we compare
and contrast our extension of their work with the SPN models.

1.3.3 Most Relevant Previous TPN Models

In this subsection we describe the TPN models of Zuberek, and Razouk and Phelps.
The TPN model [ZUBSO,RAZ84] is a Petri net which has been augmented to include
a set of firing durations (D), a set of firing frequencies (F), and a set of named
resources (R). Each set is associated with the transitions in the net. Letting S
denote the set of reachable states, R+ denote the positive reals, and P denote the
power set, the model is formally defined as follows:

TPN = (P,T,A,M,, D, F, R)

where



P = {p1,p2,.--sPn} (places)
T = {t1,t2,+ - tm} (transitions)
A:{P x T} u{T x P} — {0, 1,2,..} (directed arcs)
My: P —{0,1,...} (initial marking)
D:T x 8 — %+ U {0} (firing durations)
F:T x 8§ = Rt u{0} (firing frequencies)

R:PUT — P({r1,72,--+s7k}) (resources)

The state of a TPN is defined differently than in untimed Petri Nets because
firing a transition is not an atomic operation. A transition has an associated deter-
ministic firing duration. There is a start firing, and an end firing event. In between
the firing is in progress. The removal of tokens from a transition’s input places
occurs at start firing. The placement of tokens on a transition’s output places oc-
curs at end firing. While the firing of a transition is in progress, the time to end
firing, called the remaining firing time (RFT), decreases from the firing duration to
zero (without causing a change in the marking of the net). Because firings can be
in progress when a marking change occurs, a state is only partially defined by the
distribution of tokens. A state must also include the RFT of each firing in progress.
A state is thus a marking vector and a set of RFT’s.

Also unlike an untimed Petri net, the next state is not generated by a single start
firing or end firing event. Instead it is generated by a set of start firings or a set
of end firings which occur simultaneously. Given a particular state, the basic rule
for finding the possible next states is straightforward. Find how many enablings of
cach transition exist. (Instead of a transition being either enabled or not, it has
a nonnegative number of enablings. N enablings of a transition exist if each of its
input places contains a number of tokens equal to at least N times its multiplicity.).
Find the mazimal sets® that can start firing simultaneously. Each maximal defines
a next state. The time spent in the original state is zero. The RFT vectors of
the transitions which just started firing are set to their transition’s duration. The
frequencies are used in assigning probabilities to next states formed by the start
firings of maximal sets. If there are no enablings, but there are some firings in
progress, then the next state is generated by the end firing of all transitions with
the smallest RFT (Tmin). The time-in-state value in this case is Tmin. If there are
no enablings and no firings in progress, then the net remains in the current state
forever.

The rule that next states are generated by sets of events that occur simultane-
ously, is not strictly necessary. The advantage of having it is that the state spaces
generated are dramatically smaller. The disadvantage is that the algorithms for
building the state space are more complicated.

Zuberek suggested that the reachability graph of the Timed Petri Net be viewed
as a Markov Chain and that performance measures be computed using standard

1A get with property « is a mazimal set with property a if it is not a proper subset of any other
set with property o.



techniques for analyzing the Markov Chain’s long run behavior. Extensions of his
work, however, are desirable in two areas. One, he only proposed a method for
constructing a net’s reachability graph for a restricted class of nets: nets that are
safe and free choice. A net with a given initial state is said to be safe if, for
every state in the reachability set, no place has more than one token. A net is free
choice if each place that is an input to more than one transition is the only input
to those transitions. Two, even for safe and free choice nets, the structure of the
reachability graph (i.e. the Markov Chain) may be such that Zuberek’s approach
gives incorrect values for the performance measures. The states in a discrete time
Markov Chain can be divided into classes. A set of classes, called recurrent classes,
is important because in the long run the model will reach and stay in one of these
classes. Zuberek’s approach gives correct values only when there is exactly one
recurrent class.

Razouk and Phelps [RAZ84] extend Zuberek’s work in the first of the two areas
above. They allow a superset of the class of safe, free choice nets. Two or more
transitions are said to be in the same conflict set if their sets of input places intersect.
Two conflict sets overlap if at least one transition is in both. Razouk and Phelps
make the restrictions that conflict sets do not overlap and that all transitions in a
conflict set are mutually disabling, i.e. firing of one, disables all the others. They
maintain Zuberek’s restriction in the second area (they call this, requiring a cyclic
net).

Razouk and Phelps also introduce the concept resources, originally proposed in
E-Nets [NUT72]. A resource in their model can be associated with one or more
transitions. Whenever one of those transitions is firing, the resource is in use. If
more than one of these transitions is firing simultaneously, the resource has several
usages occurring. By building and analyzing the net’s reachability graph we can find
the average number of uses of a resource over time. This average, if properly imple-
mented and interpreted, can be used to obtain a variety of meaningful performance
estimates.



Chapter 2

The GTPN Model

The GTPN model extends the models of Zuberek and Razouk and Phelps by: 1)
removing all restrictions on the net except the obvious one that the state space be
~ finite, and 2) computing correct performance estimates for any reachability graph
(i.e. an arbitrary embedded discrete parameter, finite state Markov Chain). We
also allow the firing duration to be an arbitrary real number (the non-integer case
is not discussed by Zuberek or Razouk and Phelps) and we allow resources to be
associated with places as well as transitions.

A third extension we have found useful involves firing durations and frequencies.
In the models of Zuberek and Razouk and Phelps, the duration and frequency are
state-independent constants. In the GTPN model a transition’s firing duration and
frequency can be expressions containing immediate values (real and integer), names
of places, names of transitions, and arithmetic, relational, and logical operators. A
place name stands for the number of tokens in that place in the current state. A
transition name represents the value one if at least one firing of that transition is in
progress in the current state, and is otherwise zero. The state-dependent durations
and frequencies become deterministic values when used to determine time-in-state
and next state probabilities for a state in the reachability graph. (Note that Petri
net inhibitor arcs can be modeled using the state-dependent frequency expressions.)

Besides a firing duration, frequency, and set of resources, a GTPN transition has
a flag associated with it that is used in computing the next state probabilities as
described in section 2.2.

Figure 2.1 shows an example GTPN net, including the initial state distribution
of tokens. Each place and transition is labelled. Each transition has, from left to
right, its firing duration expression, its frequency expression, its flag, and its list
of resources. This example models users at terminals, who with a geometric think
time generate requests for a server. There is one token on place P1 for each user.
Transitions T1 and T2 implement the think time. Transition T3 implements a load-
dependent server with a firing duration that depends on the number of tokens on
P2.

In Figure 2.2 and Table 2.1 we show t18 reachability graph for the simple GTPN
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T2 T1
(1,0.6,yes,(Terminal)) (0,0.4,yes,0))

T3
((P2*2)+4.73,1.0,n0,(Server))

Figure 2.1: Example of a GTPN net

Figure 2.2: Reachability Graph for example

Table 2.1: Reachable States for example

States Marking REFT Set Resources
PI]P2]|P3
0 1]01}1 {} {}
T [0 [0 1] {1100} O
2 0 | 0 | 1 | {T2,1.0} | {Terminal(1)}
3 o[1]1 {}
4 0| 0| 0o [{T36.78} | {Server(1)}
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in Figure 2.1 assuming only one user. The labels on the edges of the graph are the
next state probabilities. The labels on the vertices of the graph are the values
for time-in-state. The marking vectors are shown in the table. The RFT sets are
shown as a list of pairs, with one pair per in-progress firing of a transition. The first
component of each pair is the name of the transition. The second component is the
remaining firing time. The resources used and their number of uses are also shown
in the table.

The Razouk and Phelps’ TPN model does not allow multiple tokens on place P1.
Allowing such nets complicates constructing the reachability graph. An overview of
our reachability algorithm, which handles these complications, is in Figure 2.3. The
TimeInState and ResUsages (number of usages of a resource) functions are used in
the performance analysis as described in Section 3. The algorithm has two complex
parts: 1) finding the next states when the next states are due to maximal sets of
transition enablings which start firing together, and 2) assigning probabilities to
next states. These two parts are discussed in the Sections 2.1 and 2.2.

2.1 Finding Maximals

Our first point is somewhat discouraging. In an arbitrary state in a net the number
of maximals in the worst case is exponential in the number of enablings.

Theorem 2.1 Consider a state S tn a GTPN with n enablings. The number of
mazimals ts (2 - 732%;)

pf. First we will construct a state in a net such that the number of maximals is (n72) .
Consider the case where n is even (The n is odd case is similar.). Consider the net
with n transitions and one place P which is an input place for all the fransitions.
Assume each of the n transitions also has another input place, with one initial
token, which is also an output place of the transition. Let the place P have n/2
tokens. In this state, there are n enablings (i.e. each transition is enabled once),
and (n72) maximals. Thus, the number of maximals is {1 ( n72) . The observation that
by Stirling’s approximation, n! = v/2wn(n/e)"(1 + O(1/n)), completes the proof. j

This result should not be given too much weight. In practice, we find that
the number of maximals is far less than exponential in the number of enablings.
Theorem 2.1 does, however, point out that the space of potential maximals is large.
Consequently, an algorithm for finding the maximals must be carefully thought out
in order to prevent poor performance when the actual number of maximals is small.
The algorithm described below meets this criterion. When we profiled our GTPN
tool, the percentage of total program time taken by this algorithm was less than 5%
for the analysis of large nets 1.

lwe profiled our program using gprof under 4.2 bsd UNIX”™ running on a VAX-11/ 780TM
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X.State « Initial State; X.Class «+ Frontier
while at least one Frontier state, Y do begin
if Y is a duplicate of an Interior state Z then
Y.Class «+ Duplicate
else begin
Find the set of enablings in Y
If no enablings and the RFT set is empty then
Y.Class + Terminal
else if any enablings then begin
Find the set of maximals of enablings
Compute the probability of each maximal
For each maximal M create a new state Z from Y
Remove tokens from the input places of
transitions that have enablings in M
Add a firing, f;, to the RFT set for each
enabling in M
Set the RFT of each added firing, f;, to the
firing duration of transition t
Z becomes a child of Y; Z. Class «+ Frontier
for all resources ResUsages[Y] < count uses
TimelInState[Y] « 0; Y.Class « Interior end
else begin
Let Tmin be the smallest RET in Y
Create state Z from Y by subtracting Tmin from
each RFT in Y
For each firing f; whose RFT = 0in Z do
Add tokens to the output places of transition t
Remove f; from the RFT set
7 becomes a child of Y; TimeInState[Y| «+ Tmin
for all resources ResUsages[Y] < count uses
7.Class « Frontier; Y.Class + Interior end
end

Figure 2.3: Overall State Space Algorithm
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Our algorithm consists of two independent subalgorithms Partition and Find-
Maz. The Partition algorithm partitions the set of enablings into Generalized Con-
flict Sets, such that maximals of the partitioned sets can be efficiently combined to
generate all the maximals for the original set of enablings. The Partition algorithm
does not specify how the maximals for each partition member are found. Maximals
are found for each member of the partition by FindMax.

2.1.1 The Partition Algorithm

The Partition algorithm has two parts. The first part constructs a static partition of
the set of transitions, T. Define the directly-conflicts-with relation on T as follows.
For all ¢t; and t; in T, t; directly-conflicts-with t; if the set of input places for t;
intersects the set of input places for 5. Define the conflicts-with relation on T as the
transitive closure of the directly-conflicts-with relation. The conflicts-with relation
is clearly reflexive, symmetric, and transitive, so it is an equivalence relation on T.
The partition of T induced by conflicts-with is denoted by {GCS[i]|1 < ¢ < N},
where GCS|i] is the ith member of the partition and N is the size of the partition
(GCS stands for generalized conflict set). Note that a transition which does not
share any input places with any other transitions forms a GCS of size one.

Part two of the Partition algorithm uses the conflicts-with partitioning of T' to
partition the set of enablings, Enablings(S), for each state S. The desired partition
of Enablings(S) is

{EGCS|[S,i] = Enablings(S) N GC S[i]|partition i}.

At this point, FindMax is applied to each partition member to find its local maxi-
mals. Let Mazimals|Enablings(S)] be the set of maximals over all the enablings.
We have constructed our partition such that Mazimals[Enablings(S)| is simply
the Cartesian product of the local maximals.

Mazimals[Enabings(S)] = FindMaz(S, EGCS[1])x-- -xFindMaz(S, EGCS|N))

2.1.2 The FindMax Algorithm

We want to find the local maximals for a generalized conflict set, G, in a given state
S. Any subset of EGCS|S, G] is a potential local maximal (for brevity’s sake we will
call a local maximal, a maximal, in this section) The power set, P(EGCS[S,G]),
unfortunately, can be a large search space. Our goal is to minimize the number
of members of this power set that we examine. Note that set inclusion defines a
partial order on P(EGCS|[S,G]) which, in turn, induces a directed acyclic graph
(see Figure 2.4). This graph has one root which represents the set EGCS|S, G|
itself. The FindMax algorithm does a breadth-first search of this graph searching
for vertices that are maximals. The traversal is implemented in the standard way
using a queue. Initially, the root vertex is the only entry on the queue.
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Searching the graph breadth-first causes the order in which vertices are examined
to have an important property: if 1) the set of enablings, E;, represented by a vertex
can fire together, and 2) E; is not a subset of any maximal already found, then E;
is a maximal. In other words, it is impossible that some vertex examined later will
have a set of enablings, Es, that can all fire together and for which E; is a subset.
Thus, to find the maximals we just do the breadth-first search, checking each vertex
to see if it satisfies properties 1) and 2).

Three methods are used to avoid searching the entire graph. One, if a vertex’s
set of enablings, E;, can all fire together, then none of its descendents needs to be
examined (so its children are not added to the queue). Two, a pointer is used to
ensure that vertices are never examined more than once. Note that the graph is
not a tree. Thus, a naive breadth-first search would cause vertices to be examined
multiple times. Three, the pointer used in method two is used to implement a
heuristic for pruning subtrees.

Methods two and three are based on a pointer, V,, associated with each vertex, V,
in the graph. Consider the set of enablings, F, represented by V to be described by
a vector of nonnegative integers. The ¢th component of the vector gives the number
of enablings of the 7th transition. V, points at one of the components in this vector.
The set of transitions to the left of V, is Vz. The set of transitions to the right of
V, and including the transition pointed to by V; is V.

The pointer V, can be used to ensure that a vertex is only examined once. The
method is as follows. Set the V, of the root vertex to point to the leftmost transition.
For each parent vertex, subtracting one enabling from the transitions in Vg defines
a child vertex. For each of these child vertices, set its V,, to point to the transition
that was decremented. It can be shown inductively that at each level in the graph,
the sets Vy are distinct for each vertex. Consequently, any child resulting from
decrementing Vi of one parent can never be the same as a child resulting from
decrementing Vz of another parent. Note, also, that the use of V, does not cause
any state to not be examined that should be examined. For each state, ¢, that
should be examined, there is a vertex, p, whose set of enablings over the transitions
in V; matches ¢’s set of enablings over the same transitions. Consequently, ¢ will
become a child of p.

Method three is a simple optimization made possible by the existence of V.
If the enablings in Vi cannot fire together, then it is irrelevant what enablings
are subtracted from Vg. Consequently, none of the child vertices resulting from
decrementing Vi need be added to the queue.

Figures 2.4 and 2.5 illustrates the FindMax algorithm. Figure 2.4 is the com-
plete directed acyclic graph defined on the power set of {1,2,3} by set inclusion.
Figure 2.5 shows only the edges that will be used in the breadth first search. The
vertical arrows in the middle row are the pointers used in the optimizations.

Partition and FindMax are used to calculate all maximal sets of enabled tran-
sitions which can start firing together. Next state transition probabilities must be
assigned to these maximal sets. This is discussed in the next section.
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{1, 2,3}
{2,‘/{1%} 23
o N (1}

Figure 2.4: FindMax Example: directed acyclic graph

{1,2, 3}

{%“2}
2 {3}\‘{1}

Figure 2.5: FindMax Example: optimized search
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2.2 Computing Probabilities

To interpret the reachability graph as a Markov Chain we need to assign probabilities
to next states. In the nontrivial case, we need to assign a probability to each
maximal set of transitions that can start firing together. From the previous section
we know that a maximal is the union of a set of independent local maximals, one
from each GCS. Thus a reasonable probability for the maximal is the product of the
probabilities for the local maximals. Suppose that LocalMaz[k,1] is the kth local
maximal of the 7th generalized conflict set. Suppose that there are N generalized
conflict sets and the jth global maximal is the union over all GCS’s of the jth local
maximal of the 7th generalized conflict set. Then

Pr{Mazimalfj]} = [ Pr{LocalMaxz|s,i]}
{i:i=1,...,.N}

In order to compute the probability of a local maximal, we take the product
of the frequencies of all the enablings in the local maximal. In some cases, this is
multiplied by a number NumComb discussed below. Then for each local maximal,
we normalize this product by dividing it by the sum of the products over all local
maximals. More formally, suppose the 7th GCS has M local maximals and the
frequency expression for the kth enabling in the ith GCS is fi. Then,if NumComb
is used, our formula for Pr{LocalMaz]|j;,%|} is

NumComb|LocalMazj;, t]| x I1 fx
h NumComb|Local Maz[m,1]] % I fe
{m:m=1,..,.M} {k:k€LocalMaz|m i}

If NumComb is not used, our formula for Pr{LocalMaz|j;,1]} is

T
PT{LOCalMa,zU‘, Z]} — {k:k€LocalMaz[j;,i]}

fe
{m:mz=1,...M} {k:k€LocalMaz{m ]}

NumComb means number of combinations and is a combinatoric value associ-
ated with each local maximal. This value is defined as the number of ways tokens
can be removed from input places in order to implement that local maximal. As a
simple example, suppose the local maximal consists of one enabling of one transition
with one input place, two arcs connect the place to the transition, and the input

place has three tokens. In this case, the combinatoric value NumComb is (2)

Computing NumComb|Local M az] is done by decomposing it first on the tran-
sitions in the local maximal and second on the input places for the given transition.
The number of ways that the tokens can be removed from the given input place
by the given transition is a binomial coefficient. As we consider each transition,
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the value in the upper position of this binomial coefficient is changed to reflect any
removals made by transitions considered earlier.

More formally, consider the local maximal, LM az, of the ith generalized conflict
set. Let InputPlace[t] be the set of input places for transition t. Let Enabt] be
the number of enablings of transition t in this maximal. Let T'okNeeded|[t,p] be
the number of tokens needed from input place p by one enabling of transition £.
Note that Enab[t] * TokNeeded|t,p] is the number of tokens needed from place p
by transition ¢ in this maximal. Let T'okLeft[p] initially be the number of tokens
on input place p in the parent state. After looking at an input place, p, TokLeft[p]
is updated to reflect the start firing of all the enablings of transition ¢{. With this
notation we have:

TokLeft[t,p]
NumComb[LMaz]= || II (
{t:tcLMaz} {p:p€InputPlaces[t]} E nab[t] * TokN eeded[t, p]

From practical experience it appears that in some cases it is reasonable to use
this combinatoric value when assigning probabilities to local maximals. A boolean
flag associated with each transition specifies whether this should be done. Only if
the flag is yes for all transitions in the maximal, is NumComb used. Note that if
NumComb is used, the next state probabilities are the same as if we constructed
the reachability graph by allowing one start firing event at a time with all CntComb
flags set to zero, and then summed the probabilities over all paths leading to the
state which represents the maximal set.

The motivation for our method of assigning probabilities to local maximals is
that it assigns the right probabilities in the important case where all the enablings
in a local maximal are independent events. In the case where there are depen-
dencies between the enablings it is difficult to envision a single formula that will
always generate the “right” probabilities. This case motivated our introduction of
state-dependent frequency expressions. Such frequency expressions can specify what
probabilities maximals should have in different markings. Allowing state-dependent
frequency expressions also allows the possibility that in some states a transition’s
frequency expression may evaluate to zero even though it has one or more enablings.
We remove these enablings from the set of considered enablings before finding the
local maximals.




Chapter 3

GTPN Performance Analysis

For the purpose of performance analysis, we view the GTPN as a stochastic process.
The time-in-state is a deterministic function, TimeInState, of the state. Neverthe-
less, the process is stochastic because of the probability distribution over the possible
next states. Since the time-in-state can be an arbitrary real number, the process is
a continuous time stochastic process. The parameter set is described in Section 3.5.
The states of the stochastic process are divided into classes. In the long run, with
probability one, the process will reach and stay in one of the set of classes called
recurrent classes 1. Consequently, the long run fraction of time spent in each state
depends on which recurrent class the process reaches in the long run. For each
recurrent class the long run fraction of time spent in each state forms a probability
distribution over the states. Thus, there is a vector of long run probability distri-
butions with one component for each recurrent class. In addition, we can compute
the probability (the absorption probability) of reaching each recurrent class in the
long run. These absorption probabilities allow us to assign relative weights to the
components of the vector of long run probability distributions.

The number of usages of a given resource is also deterministic for a given state;
it is a function ResUsages of the state. Consequently, ResUsages, being a function
of a random variable, is a random variable. A performance estimate for a resource is
a vector with one component for each recurrent class. The value for recurrent class
R’s vector component is the long run expectation and distribution of that resource’s
ResUsages random variable, with respect to R’s long run probability distribution.
In other words, the expectation is the weighted sum of the long run fractions of
time spent in each state, given that in the long run the process is in class RB. The
weight of a state is the number of resource usages in that state. The distribution
of a ResUsages random variable is obtained by summing the probabilities of the

1Note that a terminal state in the reachability graph is a recurrent class due to the self-loop we
- added (see Figure 2.3).
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states that use the resource the same number of times, given that in the long run

the process is in class R.

Our approach to computing performance estimates uses the key observation 2

that the times at which state changes occur form an embedded, discrete time, finite
state Markov Chain. Consequently, our approach has four parts: 1) building the
Markov Chain, 2) aggregating the states in order to reduce the size of the state space,
3) analyzing the Markov Chain, and 4) computing resource usage distributions and
expectations in the original stochastic process.

Building the Markov Chain involves building the reachability graph and assign-
ing next state probabilities, as described in Chapter 2. Our aggregation rule is:
Any state S; can be aggregated with its parent state, Sy, if and only if S is Sy’s
only parent and S; is Si’s only child. The number of usages of a resource in an
aggregated state equals the sum of its usages in the internal states weighted by the
relative fraction of time spent in each internal state. Part 3, the Markov Chain
analysis, has three steps: a) finding the chain’s recurrent classes, b) finding the ab-
sorption probability for each recurrent class, and c) finding, for each recurrent class,
the long run fraction of visits to each state. These steps are discussed, respectively,
in sections 3.1, 3.2, and 3.3.

Part 4 has two steps: a) for each recurrent class R, computing the long run
fraction of time spent in each state (the TimeInState function and the long run
fraction of visits to each state are used to do this), b) for each recurrent class R,
use the ResUsages functions and the long run fraction of time spent in each state
to find the long run distribution and expected number of usages of each resource.
These two steps are discussed in section 3.4.

As mentioned above, the long run resource usage distributions and expectations
are the performance estimates (given that the process is in class R in the long
run). For each resource we thus have a vector of performance estimates. If desired,
the expectations could be weighted by the absorption probabilities to give a single
performance estimate.

In section 3.5 we give a more precise definition of the parameter set of the GTPN
stochastic process. In sections 3.6 and 3.7 we discuss the important numerical issues
involved in analyzing the Markov Chain.

3.1 Finding Recurrent Classes

In order to find the recurrent classes we need to first define a recurrent class. Recall
that Vn P;j = Pr{X,41 = j| X, =1}. P = [P;] is the one-step transition probability
matriz. P, the n-step transition probability matriz is defined similarly. f,-(,.") is the
probability that, starting from state ¢, the first return to state ¢ occurs at the nth

transition. A state is recurrent if 3°02 ,-(‘-" = 1. In other words, a state is recurrent

2The GSPN model uses a similar observation.
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if and only if, after the process starts from state ¢, with probability one the process
returns to state 7 in a finite length of time. A state is transient if it is not recurrent.
State 7 is said to be accessible from state 1 if P,-(j") > 0 for some integer n > 0. Two
states i and j that are each accessible to the other, are said to communicate.

Note the following facts. Accessibility defines a partial order on the states. This
partial order implies a directed graph with the vertices being the states. Commu-
nication is an equivalence relation on the states. Thus it partitions the states into
subsets called classes. The communication classes are the strongly connected com-
ponents of the accessibility graph. These strongly connected components form a
directed acyclic graph, DAG.

All the states in a class are recurrent or none are, so we can speak of recurrent
classes and transient classes. In the case of a finite state space 3, the recurrent classes
are the leaves of the DAG [KEM76] of strongly connected components. The interior
nodes of the DAG are the transient classes.

Civen that the recurrent classes are the leaves of this DAG, the algorithm to
find the recurrent classes is immediate. The reachability graph of the GTPN is the
accessibility graph. Create the DAG by finding the strongly connected components
of the accessibility graph. We do this using Tarjan’s O(n) algorithm [SED81]. Then
find the leaves of the DAG by a depth first search starting at the initial state.

3.2 Absorption Probabilities

In a finite state Markov Chain, if we start in a state in a transient class we will
eventually reach and stay forever in one of the recurrent classes. We are said to be
absorbed by a particular recurrent class. Computing the probability of absorption
in a particular recurrent class R given a particular initial state, i, can be done using
a standard technique called first-step analysis [TAY84]. On the first state change,
the process will move from state ¢ to a state j that is in a transient class or in a
recurrent class. If j is in class R, the future probability of being absorbed by class
R is one. If j is in another recurrent class, the future probability of being absorbed
by class R is zero. If j is in a transient class, then, by the memoryless property, the
probability of being absorbed by class R is the same as if j were the initial state.

More formally, suppose that the states in all the transient classes are numbered
0,..,7 — 1 and consider a fixed recurrent class R and fixed initial state t. Let
U; = Pr{ Absorption in class R|Xp =4} for 0 <z <.

r—1
U; = Z Pij‘i‘ZPijUjR, 1=0,1,..,7—1
{jeR} i=0
This equation cannot be be solved in isolation. However, if we consider all possible
initial states, then we have a system of linear equations that can be solved for the

3This is not true if the the state space is countably infinite. A simple counterexample is a one-
dimensional, asymmetric random walk.
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U;’s. The mean time to absorption can be computed using a similar system of linear
equations. Section 3.6 discusses the numerical issues involved.

3.3 Long Run Expected Fraction of Visits

If R is a recurrent class in a finite state space, then V5 € R a number 7; exists such
that Vi € R

. 1 m~—1 ) . m—1 (k)
S B[— > Lx=p|Xo =1 = lim — > Py’ =m;
k=0 k=0
The leftmost expression above is the long run ezpected fraction of visits spent in
state j. 1{x,=;} is the indicator random variable that equals one when the outcome
chosen is in the event {X} = j} and O otherwise.

We want to find these ;s for each class R. We do this by noting that each
recurrent class R in a finite state space has one and only one stationary probability
distribution and the vector 7 of its m;’s is this stationary probability distribution.
This stationary probability distribution is easy to find since it is the unique solution
to the set of equations

7I'R=7I'RPR and ZW,':].
Jjer

The matrix Pg is Pr = {P;;|¢ € R}. We solve this system of equations numerically
using an iterative matrix algorithm, the Power Method [SAU81|. The numerical
issues involved in computing this stationary probability distribution are discussed
in section 3.7.

It is also true that an arbitrary Markov Chain with a finite state space has at least
one stationary probability distribution over the entire state space. However, if the
Markov Chain has more than one recurrent class, then any linear combination that
sums to one of the stationary probability distributions of the individual recurrent
classes is a stationary probability distribution of the chain as a whole.

Our approach is correct regardless of whether the recurrent classes are periodic
or aperiodic. Recall that the S)eriod of a state is the greatest common divisor of all
integers n > 1 for which P,-(,-n > 0. A state is aperiodic if its period is 1, else is
periodic. All the states in a class have the same period so we can refer to a class
as periodic or aperiodic. Only for the states ¢ in an aperiodic recurrent class does
the limit lim,— 0 P,-(,-") exist. However, the long run expected fractions of visits and
the stationary probability distribution exist in both cases. Again we assume a finite
state space.
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3.4 Resource Usage Estimates

We find, for each recurrent class R, the long run expected fraction of time spent in
each state. Then, we find the long run distribution and expectation of each resource
with respect to each recurrent class.

Let S be the set of states. Let RelTime(S;) be the long run expected fraction
of time spent in state Sj, given that the process is absorbed in class B. From the
Markov Chain we know the long run expected fraction of visits to each state k, m,
given absorption in class R. RelTime(S;) can be computed, using the TimeInState
function, as follows:

lim 1 E E[l{x(t)_sl}szeInState(X(t))]

n—oo 1

‘RelTime(S) =
lim Z E[TimeInState(X(t))]

n—oo B

_ TimelnState(S)7s,

" Y TimelnState(k)my
k€S

Recall that 14 is the indicator random variable for the event A. To show why the
last equality holds we derive its denominator. A similar derivation holds for the
numerator. Let S be the set of states.

lim = Z E[TimeInState(X (t))]

n—-+o0 n =0

= lim — Z[Z TimeInState(k)Pr{X(t) = k}]

PO 420 kes
= ) TimelnState(k) lim ~ Z Pr{X(t) = k}
kes
= > TimelnState(k)m;
kes

To find the long run distribution of the number of usages of a resource for each
absorbing recurrent class, we simply sum over all of the states in the class that use
the resource the same number of times, the long run fraction of time spent in that
state. To find the long run expected number of usages of each resource for each
absorbing recurrent class, we simply take the expectation of the random variable
ResUsages:

E[ResUsages| = Y ResUsages(k) Pr{statek} = > ResUsages(k) RelTime(k)
kes kes
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3.5 Parameter Set of the Stochastic Process

Since firing durations can be zero in the GTPN model, a GTPN can be in two or
more states at the same “time”. This slightly complicates viewing a GTPN as a
stochastic process. In this subsection we discuss that complication and how it can
be resolved. The complication is that the right halfline cannot be the parameter
set of the GTPN stochastic process. To see this, recall that a stochastic process is
a family of random variables indexed by the parameter set and a random variable
is a function from the sample space into the reals. If the right halfline were the
parameter set, then on some sample path at some parameter t, the random variable
X (t) could simultaneously hold more than one value in its range. This contradicts
X(t)’s being a function.

This complication is resolved by using a different parameter set. The parame-
ter set used is the lexicographically ordered Cartesian product of the nonnegative
reals and the natural numbers. The parameters are assigned in the following way.
Consider an arbitrary sample path. At any time t in the nonnegative reals, if there
are n(n > 0) instantaneous state changes, then X (t,0) is the state before the first
(if any) state change, X(¢,1) is the state after the first state change, ... X(t,n—1)
is the state after the n — 1th state change, X(t,m),m > n is the state after the nth
instantaneous state change. Since at most a countably infinite number of instanta-
neous state changes can occur, the process is never in two or more states at the same
«time”. Note that the parameter set of the embedded Markov Chain need only be
the nonnegative integers with the nth parameter meaning the nth state change.

3.6 Computational Issues: Transient States

As discussed in section 3.2, two of the characteristics of the system’s performance
that we need to determine are the absorption probabilities and mean time to ab-
sorption. First Step Analysis was proposed as the method for computing these
characteristics. In this section we discuss the computational issues involved in de-
termining those characteristics. Section 3.6.1 discusses some of the efficiency issues
involved in implementing First Step Analysis for computing the absorption proba-
bilities. Section 3.6.2 describes an optimization which can significantly accelerate
solution of the First Step Analysis equations. Section 3.6.3 covers the analogous
material for computing the mean time to absorption. In an important special case
that arises frequently in GTPN models, an alternative to First Step Analysis can
be used to compute absorption probabilities. Section 3.6.4 describes this still more
efficient method.
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3.6.1 First Step Analysis

Using First Step Analysis implies that r systems of n linear equations are solved
where r is the number of recurrent classes, and n is the number of transient states
in the Markov Chain. Solving one system of equations determines the absorption
probability of interest for one recurrent class. Since the GTPN is intended to be a
practical tool, an efficient solution method is important.

We write the systems of linear equations in matrix form as follows:

Ugr = Prr + PrUg, (3.1)

where Uy is the n x 1 vector of absorption probabilities for recurrent class R
from transient states 0,1,...,n — 1, Prp is the n x 1 vector of one-step transition
probabilities from transient state i to any state in R, and Pr is the n X n one-step
transition probability matrix for the transient states.

The standard form for a system of linear equations is Az = b where AisnXxn,
is nx 1, and bis nx 1. Our form maps into the standard form by letting 4 = (P-1I),
T = UR, and b= "‘PTR:

(Pr — I)Ug = —Prg. (3.2)

There are many methods of solving systems of linear equations. Gaussian elim-
ination is the primary direct method. Iterative methods, such as the Gauss-Seidel
method, are much more efficient for large matrices. Before selecting a solution
method, however, we will discuss an important optimization that can be applied to
First Step Analysis.

3.6.2 Optimization of First Step Analysis

An optimization exists that can significantly accelerate solution of the linear systems
of equations for First Step Analysis. This optimization is based on a key observation:
by permuting the rows and columns of the matrix Pr, Pr can be put into block
upper triangular form, where each diagonal block represents the transitions within
one transient class of the Markov Chain. To see this, recall that the Markov Chain
classes are the strongly connected components in the reachability graph. They thus
form a directed acyclic graph (DAG), the condensed graph. As with any DAG, the
vertices of the condensed graph can be numbered via a topological sort so that the
number assigned to a vertex is always less than the numbers assigned to its children.
This numbering defines the permutation that generates the block upper triangular
form. We find the strongly connected components using Tarjan’s O(n) algorithm,
and perform the topological sort on the DAG using another linear-time depth-first
search [SED81].
After the permutation, equation 3.2 is of the following form:
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An A ... AN Uy —Pir
Azz Azn Uz | _ —Par (3.3)
ANN Un —InR

where the elements are matrices, each diagonal block A;; is square of order n;
and

N
Z ng = n.
=1

The system 3.3 can be solved as a sequence of N smaller problems. Problem i is
of order n; and the matrix of coefficients is Agu,i=1,2,...,N. The procedure is as
follows [PIS84] (see also [TART6]):

1. Solve the last subsystem, with Ayn as the maitrix of coefficients, for the last
ny unknowns. Compute the vector zn of order ny.

2. Subtract the products A;yzy from the right-hand side for y = 1,.., N — 1. A
block upper triangular matrix of order N — 1 is obtained, and the procedure
is repeated until the complete solution is obtained.

Note that the assumption must be made that the diagonal blocks in Equation 3.2
are nonsingular. The solution of each subsystem can be done by any method for
solving linear equations, such as Gaussian elimination or the Gauss-Seidel iteration.

3.6.3 Computing Mean Time to Absorption

The mean time to absorption can also be computed using a first-step analysis. One
system of n linear equations is solved where n is the number of transient states. Each
transient state ¢ has one equation. Starting in state i, the mean time to absorption
is the time-in-state for state ¢ plus zero if the next state is in a recurrent class and
plus P;; times the mean time to absorption for state j if state j is transient. Note
that the Markov property is again being used. Formally, each equation is of the
form:

n—1
U; = TimeInState(i) -+ Z P;jUj, t=0,1,...,n—1
=0

Tf the integer 1 replaces the time-in-state, then the mean number of visits to
transient states before absorption can be computed. The mean number of visits to
a given set of transient states before absorption can be computed if the time-in-state
is replaced by the integer 1 when visiting a state in the given set and is replaced by
the integer 0, otherwise.

The discussion in Section 3.6.2 applies here also. In particular, the system of
equations can be changed into the form Az = b, permuted into block lower triangular
form, and then solved as outlined.
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3.6.4 More Efficient Solution of an Important Special Case

In a special case that occurs frequently in GTPN models, an efficient alternative
approach based on the condensed reachability graph (i.e. one vertex per strongly
connected component) can be used to compute absorption probabilities. In this
alternative, probabilities are assigned to the edges leaving each vertex in the con-
densed graph A depth first search is then done. During the depth first search the
probability along each path to each leaf is determined by taking the product of the
edge probabilities along the path. The absorption probability for a given leaf is then
simply the sum of the path probabilities terminating at that leaf.

The difficulty with this approach is with determining the edge probabilities leav-
ing a vertex in the condensed graph, If all the exit edges originate at the same vertex
V; within the strongly connected component, then there is not a problem. Find all
the edges of which V; is the parent that are exit edges. Sum their probabilities as
edges in the original graph. The probability of each edge in the condensed graph is
its probability in the original graph normalized by this sum.

The problem is when more than one vertex, say V; and V3, in the original graph
are parents of exit edges. Determining the probability that each of these parent ver-
tices is the vertex from which exiting occurs is dependent on the detailed structure
of the strongly connected component. Our current implementation uses this con-
densed graph approach when the special case of one parent vertex in the strongly
connected component is met. When the special case is not met, first-step anal-
ysis with Gauss-Seidel iteration is used. We plan to implement the optimization
described in section 3.6.2 with subsystem solution by Gauss-Seidel iteration.

3.7 Computational Issues: Stationary Probabil-
ity Distributions

In this section we discuss the method we use to calculate the stationary probability
distribution for each recurrent class in the Markov Chain. Let R denote a recurrent
class with states j = 0,1,...,n, and let 7; represent the long run expected fraction
of visits to state j, given that the modeled system is absorbed in class R.

Recall that the vector 7g = (o, 71, ..., Tp) is uniquely determined by the follow-
ing equations:

n
g = TrPr and dom=1, (3.4)
i=1
where P is the n x n state transition probability matrix for R.

Because the matrix Py is sparse, but potentially very large, iterative methods
are more practical than direct methods. One of the most widely used iterative
methods, the Power Method [JOH82,WIL65], views equation 3.4 as an eigenvalue
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problem. In particular, 7f is the eigenvector associated with the unit eigenvalue of
Pg. Applying the Power Method to iteratively solve for 7g, is done as follows:

szﬂ

=T EP R
Since our current implementation uses the Power Method, the remainder of this
section focuses on issues related to it and, in particular, with ensuring convergence.

3.7.1 Spectral Distribution

An eigenvalue, ), of a real n X n matrix A, is strictly dominant, if its modulus
is strictly greater than those of all the other eigenvalues of A. Direct application
of the Power Method converges to an eigenvector corresponding to the dominant
eigenvalue, if and only if the matrix has a simple, strictly dominant eigenvalue.

This constraint on the direct application of the Power Method can be expressed
in terms of the periodicity of the recurrent class in the Markov Chain. In order to
make that connection between the spectral distribution and the periodicity of the
Markov Chain class, we need the theoremns of Perron and Frobenius [CIN75,SEN81,BER79].
These theorems state the following:

An irreducible non-negative matrix, A, has a real, positive, and sim-
ple eigenvalue, o, which is greater than or equal to all other eigenvalues
of A in modulus. The eigenvector corresponding to the eigenvalue o
is strictly positive. If A is aperiodic, (i.e. AR > 0 for some k), then
a is strictly greater than all other eigenvalues of A. A periodic matrix
with period 6, has exactly § eigenvalues with absolute values equal to c.
These eigenvalues are all distinct and are given by:

Ak = a[e%ﬂ'/&']k_l,k = ]_’ 2, .",6,2' — /___1

If A is a stochastic matrix (i.e. all rows sum to one), then a =1. An aperiodic
stochastic matrix thus has a simple unit eigenvalue and all other eigenvalues are of
strictly smaller modulus. A periodic stochastic matrix with period § has exactly
§ eigenvalues of unit modulus all of which are simple. These eigenvalues can be
regarded as a set of points around the unit circle in the complex plane, which goes
over into itself under a rotation of the plane by the angle 27/4.

3.7.2 Ensuring Convergence

According to the above discussion, the Power Method can only be applied directly
to find the stationary probability distribution when the recurrent class is aperiodic.
To handle the case of a periodic recurrent class, the following theorem [STET3]
concerning shifting and scaling the matrix becomes important:
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Theorem 3.1 Let A be a complez n X n matriz, and let X be an eigenvalue of A
with eigenvector z. Then:

1. a) 1s an etgenvalue of a A with eigenvector z.

2. A — b ts an eigenvalue of A — bl with esgenvector .

This theorem allows us to transform the matrix Pgr to ensure that the unit
eigenvalue is strictly greater than all other eigenvalues in modulus. In particular,
we make the following transformations on Pg:

PA=E(PR—I)+I=EPR+(1—E)I O0<e<l.

The first transformation, subtracting I, shifts all eigenvalues of Pr to the left by
one in the complex plane. The eigenvector mg now corresponds to the eigenvalue
zero. The second transformation, multiplication by €, shrinks all of the eigenvalues
except the zero eigenvalue corresponding to mg (the circle is now centered at —e and
is of € radius). The third transformation, adding I, shifts all eigenvalues to the right
by one, creating a unit eigenvalue corresponding to 7g whose modulus is strictly
greater than that of all other eigenvalues. Thus, application of the Power Method
using Pp, always converges.

3.7.3 Convergence Rate

The convergence rate of this method is essentially the rate at which AL¥ converges to
zero, where ), is the second largest eigenvalue of the matrix Pg [JOHS82]. The value
of ¢ indirectly influences the rate of convergence by scaling all of the eigenvalues.
Wallace and Rosenberg [WAL66] define a suitable value for & to be 0.99 X [maz(| P —
1])]~!. We have used this value, which equals 0.99 for most GTPN models, in our
implementation.

In general, the value of A} depends on the size and structure of the particular
GTPN model constructed, and convergence rates vary considerably. In particu-
lar, the convergence rate may be extremely slow. A recent paper by Stewart and
Goyal [STES85], suggests that successive overrelaxation is a better method for solving
steady-state equations for continuous time Markov chains. We plan to investigate
whether this approach would also be more efficient for the GTPN.



Chapter 4

Comparison with SPN Models

As discussed in subsection 1.3.2 the SPN (Stochastic Petri Net) models form an im-
portant alternative class of performance-oriented Petri Nets. Recall that the original
SPN models were independently proposed by Natkin [NAT80|, Symons [SYMBS0],
and Molloy [MOL81,MOL82|. In these models firing times are exponential ran-
dom variables. Marsan, Balbo, and Conte [AJM84] generalized the continuous-
time SPN model, GSPN, by allowing transitions which fire in zero time. Mol-
loy [MOLS81,MOL85] also proposed a discrete time SPN model with transition firing
times that are geometric random variables. The SPN models are interesting be-
cause the reachability graph for these models are (continuous-time or discrete-time)
Markov Chains. In this chapter, we compare the conflict resolution and probability
assignment methods of the GTPN model and the SPN models. We then compare
the modeling features of the GTPN and SPN models in four respects. Finally, we
comment on the complexity issues concerning deterministic firing durations.

4.1 Conflict Resolution

The addition of timing information to the Petri net model provides several options
for conflict resolution. The method of resolving conflicts in the GTPN is different
than the method defined for the GSPN model.

The GTPN conflict resolution submodel uses (possibly state-dependent) transi-
tion firing frequencies to resolve conflicts. Our underlying assumption is that the
conflict is resolved before one of the conflicting transitions starts firing. We also as-
sume that once a transition is in progress, it cannot be preempted by a new conflict.
This submodel is useful, for example, if the conflict is due to contention for a shared
resource (e.g. two processors requesting use of a shared bus in a multiprocessor).

In contrast, the conflict resolution submodel for timed transitions in the GSPN
is based on competing transition delays. The transition which fires first wins the
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conflict. This mechanism is based on the view that the physical events modeled
by the conflicting transition are in progress simultaneously and that the completion
of one event disables the other. For example, this view holds if one transition
models the successful acknowledgement of a message in a computer network, and
the other transition models a timeout process. (Note that the timeout process is
exponentially distributed in these models.) The removal of tokens at the time a
transition is enabled is not useful for this approach.

(0, P1, yes, )

(0, P2, yes ()

A 4

Figure 4.1: Competing Geometric Delays in the GTPN.

Each of the conflict resolution submodels is valid for the corresponding physical
systems. Both can be employed in the GSPN and in the GTPN model. For example,
the GSPN model uses firing frequencies to resolve conflicts for instantaneous tran-
sitions. Conversely, the GTPN can have conflicting geometric holding times such
that assigned next-state probabilities are equal to probabilities based on competing
delays. To do this, we assign the appropriate competing rate frequencies to instan-
taneous transitions at the start of a timestep and then model the geometric delays
in the usual way. Figure 4.1 illustrates this technique. In this figure, P1 = TI%\;
and P2 = 'A'{%G where A\; and ), are the means of the competing geometric holding
times.

Razouk and Phelps have defined enabling times in their TPN. An enabling time
specifies a deterministic time that a transition must be enabled before it will start
firing. The competing delays in this case are the deterministic enabling time (e.g. a
timeout), and a random delay that leads to enabling of a conflicting transition. We
plan to extend the GTPN reachability graph construction methods to incorporate
enabling times.

Alternative conflict resolution submodels are also discussed in [HOL85a,AJM85c]|.
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4.2 Probability Assignment

The continuous time GSPN model and the GTPN have an embedded discrete time
Markov Chain, while the discrete time SPN model itself is a discrete time Markov
Chain. In either case, probabilities need to be assigned to next states. Each model
assigns probabilities that are consistent with its conflict resolution semantics.

When no instantaneous transitions are enabled, the SPN models assign prob-
abilities according to competing transition delays. In the continuous time SPN’s,
with probability one, no two transitions in progress will finish firing simultaneously.
This simplifies probability assignments. In particular, the probability of the next
state associated with transition t;’s finishing first has probability equal to ¢;’s firing
rate divided by the sum of the firing rates of the transitions that are in progress.

In the discrete time SPN, with probability greater than zero, two or more tran-
sitions in progress can finish firing simultaneously. Though more complicated, it
is still possible to assign probabilities to next states using competing transition
delays [MOLS85]. Unfortunately, using competing delays to assign next state proba-
bilities restricts the allowed probability assignments in the important special case of
deterministic firing delays. A deterministic firing delay is represented as a geometric
firing delay that has probability one of firing in the next time step. Consequently,
using competing delays implies that all the next states have equal probability.

The GTPN uses transition frequencies to assign next-state probabilities, indepen-
dent of transition delays. The transition frequency method, unlike the discrete time
SPN, can assign non-uniform probabilities to next states in the case of conflicting
transitions with deterministic delays. In general, although the frequency method is
powerful, the assignment of static (state-dependent) frequencies which will be used
for the dynamic calculation of probabilities, requires careful thought during model
construction. The random switches used in the GSPN when there are instantaneous
transitions firing is a similar method which uses firing probabilities to determine
probability assignments. In the random switches method, however, instead of one
frequency expression per transition, a probability distribution is explicitly given for
each possible set of enabled transitions.

4.3 Modeling Features

The GTPN has capabilities for modeling and analysis lacking in the existing SPN
models, in the probability assignments discussed above and in two additional re-
spects: 1) firing durations, and 2) analysis of multiple recurrent classes.

The first respect is firing durations. The GTPN can represent deterministic
firing durations which are arbitrary nonnegative real values, including zero. The
GTPN can also model geometric holding times as can the discrete time SPN. Since
a holding time in the discrete time SPN must be a multiple of some unit step, the
GTPN can represent a larger class of firing durations, than the discrete time SPN.
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Also, since the geometric distribution is the discrete-time analog of the exponential
distribution, and since the GSPN cannot represent deterministic delays except with
certain strong restrictions [CHI85], the GTPN can also represent a larger class of
firing durations than the GSPN model.

The second respect is the GTPN’s analysis of multiple recurrent classes. The
GTPN allows the performance evaluation of systems that have several possible long
run behaviors. In contrast, the GSPN and the discrete time SPN analyses assume
that their Markov Chains are irreducible (i.e. have only one recurrent class). We
believe that the SPN analysis could be developed to support multiple recurrent
classes.

We note that the Extended Stochastic Petri Net (ESPN) model of Dugan,
Trivedi, Geist, and Nicola [DUG84] is a SPN model that, in at least one respect,
is more powerful than the GTPN. The ESPN allows arbitrary holding times, and
has been shown to be useful for analyzing system response to failure. However,
the ESPN is analytically tractable only for models with (simple) acyclic reacha-
bility graphs, or models where the firing times for all concurrent transitions are
exponentially distributed.

4.4 Complexity Issues

Representing deterministic holding times inherently leads to greater complexity than
when holding times are geometrically or exponentially distributed. This is because
the memoryless property of the geometric and exponential random variables does not
apply. Thus, both the GTPN and the discrete-time SPN model have the potential
for large state spaces when deterministic holding times are represented.

The GTPN contains new states for start firing as well as end firing events. If we
loosely identify these two state changes as one, there is an equivalence between the
states in the GTPN and the discrete-time SPN when geometric holding times are
in progress (i.e. one state change per time step, including a cycle back to a given
state with the probability that none of the geometric delays completes in the step).
When only deterministic holding times are in progress, however, the GTPN may not
contain state changes (or new states) for every time step, whereas the discrete-time
SPN must. Thus, it appears that the GTPN has at most twice as large a state
space as the discrete-time SPN and that for some deterministic models, the GTPN
has a smaller state space. We note that the RFT vector, which allows a potential
reduction in the size of the state space (in comparison with the discrete-time SPN),
adds minimal complexity. It is easy to assign new values to the RFT vector and to
find the smallest value in it.

Due to the inherent complexity of deterministic delays, two important goals
during our development of the GTPN were to minimize the size of the state space
and to minimize the cost of constructing and analyzing it. These goals are reflected
in the algorithms and performance analysis techniques presented in chapters 2 and 3.
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The GTPN state space is reduced by generating next states for mazimal set of events
that occur simultaneously (including multiple start-firings of a single transition).
Another example of reducing the cost of building the state space is our definition of
Generalized Conflict Sets (GCS) and the Partition algorithm. Generalized conflicts
sets are state independent and thus need only be calculated once. We thus are able
to avoid a large fraction of the conflict determination cost when we are calculating
the next states of the reachability graph. In contrast, the definition used in the
discrete time SPN is based on partitioning enabled transitions into sets that are
in conflict. This partition is state dependent and thus must be computed for each
state.

An even more important goal than minimizing complexity is to demonstrate the
usefullness of the GTPN modeling technique by applying it to interesting problems.
Our contention is that this goal has also been met. The applications supporting
this opinion start with the next chapter.




Chapter 5

Two Examples

This chapter begins the presentation of the applications that have been made using
the GTPN modeling technique. This chapter discusses two simple applications. The
first is the dining philosophers problem. The second is the scalar mode of the Cray-1
supercomputer. Chapter 6 derives exact performance estimates for multiprocessor
memory and bus interference in an important general case. Previously, such a
derivation had been considered computationally intractable. Chapter 7 is the first
analytical comparison of cache consistency protocols that require a single shared
bus.

5.1 The Dining Philosophers

The Dining Philosopher model is a well-known example which violates net restric-
tions in previous TPN models. Although performance of this system is largely
hypothetical in nature, it serves to illustrate the capabilities of the GTPN ana-
lyzer, and it yields some insight into the timing behavior of the dining philosopher
protocol.

A GTPN model of the 5 Dining Philosophers [PET81] is shown in Figure 5.1.
The initial marking of the net shows all 5 philosophers thinking. We have ana-
lyzed the model with deterministic think times, ThinkTime(i), as shown, for each
philosopher i. We have also used a slightly modified model (see Figure 2.1), to
represent think times that are geometrically distributed with mean ThinkTime(i).
After thinking, the philosopher competes for two forks which are shared with neigh-
boring philosophers on the left and right, respectively. After acquiring the forks, the
philosopher spends a deterministic amount of time eating, DineTime(i). This cycle
is repeated as many times as necessary to finish the meal. The firing frequencies,
f;, associated with transitions that model fork acquisition are used to compute the
probabilities that various maximal sets of competing philosophers get the forks they
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require. These probabilities are calculated as described in Section 2.2. Note that
all of these transitions are in the same Generalized Conflict Set.

* = (ThinkTime(i), 1, no, (thinki))
** = (0, fi, no, 0)
*4% = (DineTime(i), 1, no, (dinei))

Figure 5.1: Dining Philosophers GTPN Model

A unique resource is associated with each thinking and dining transition. The
GTPN analyzer will compute the long run expected usages of these resources,
(ThinkFraction(i) and DineFraction(i)), which correspond to the long run fractions
of time that philosopher i spends thinking and dining. From these measures, we
can calculate the long run fraction of time philosopher i is idle, waiting for forks
(IdleFraction(i) = 1 - ThinkFraction(i) - DineFraction(i)). Performance of the din-
ing philosophers is maximized when time spent waiting for forks and expected time
to complete the dinner are minimized.

The Dining Philosopher model can be analyzed quickly for various think times,
dining times, and firing frequencies (i.e. relative aggressiveness in grabbing forks).
We first consider the case of two classes of philosophers and deterministic think
times. The first class of philosophers, formed by any two non-neighbors, thinks for
N units of time and dines for N units of time. The second class of philosophers also
dines for N units of time. In one experiment, we let N=3, and vary the duration of




35

the think time of the second class of philosophers between 1 and 12 units of time.
The firing frequencies, f; for both classes of philosophers in this experiment are
set equal to one. Figure 5.2 and figure 5.3 show ThinkFraction(i), IdleFraction(i),
and DineFraction(i) for the model. Each of the four data points, corresponding to
ThinkTime(2) equal to 4, 7, 8, and 9, have two recurrent classes. In each case,
both recurrent classes have absorption probabilities equal to 0.5. In each case, the
resource usage estimates are the same for both recurrent classes. Each of three data
points, corresponding to ThinkTime(2) equal to 5, 10, and 11, have four recurrent
classes in the Markov Chain. In each case, all four recurrent classes have absorption
probabilities equal to 0.25. For ThinkTime(2) equals 5 or 11, the resource usage
estimates are also the same for all recurrent classes. For ThinkTime equal to 10, two
recurrent classes have identical resource usage estimates which are distinct from the
identical resource usage estimates of the other two recurrent classes. Both values
are shown in figure 5.2 and figure 5.3.

Our first observation is that the fractions of time the philosophers spend think-
ing, waiting, and dining, vary in a complex way with the input parameters in this
experiment. Reasoning about the behavior of the system for one parameter setting
(i.e. when ThinkTime(2)=3), shows that after 9 units of time, the system reaches
“steady state”, in which two philosophers are thinking, two are dining, and one
is waiting, (interchangeably), forever after. We note that this behavior is highly
dependent on the relative delays in the model.

We investigated the complex behavior of system performance as a function of
varying think times for the two classes of philosophers further. Assume that each
philosopher requires R=60 units of time dining to complete the meal. Let MaxDine-
Fraction be the maximum value of DineFraction(i) over all i. Then the expected time
that the first philosopher(s) complete their meal is Dmin = R/MazDineFraction,
which we define to be the "end of the dinner”. Figure 5.4 shows the total time
spent thinking, idle, and dining, and the amount of time needed to complete any
unfinished portions of the meal, for a few interesting parameter settings. Starting
with a “baseline” model (ThinkTime(i) = DineTime(i) = N), in (a) of figure 5.4,
we see that Dmin=2.5 hours, of which each class of philosopher spends 60 minutes
(40%) eating, 60 minutes thinking, and 30 minutes waiting for forks. This corre-
sponds to ThinkTime(2) = 3 in figure 5.2 and figure 5.3. All philosophers finish the
meal at the same time. Note that two philosophers is the maximum number that
can be dining at the same time, so the baseline model is optimum with respect to
DineFraction(s) = 0.4. The question is whether the idle time for the philosophers
can be reduced while still dining at full capacity. In (b) of figure 5.4, the second
class of philosophers reduce their idle time by slightly increasing their think time
by some amount z,z < % In (c) of figure 5.4 the second class of three philosophers
increase their think times to 3N, which reduces idle time to zero for all philosophers,
but causes the three to miss half their meal. This corresponds to ThinkTime(2) =9
in figure 5.2 and figure 5.3. In (d) of figure 5.4, both classes of philosophers have
think times set to ThinkTime(i) = 1.5DineTime(s) = 1.5N, which represents the
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Two

Classes of Philosophers. ThinkTime(l) =3 Vj f; = 1, DineTime(j) = 3. Idle
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optimum behavior.

For the experiments above, we varied the think time while holding all dining
times and firing frequencies constant. In the next experiment, we set the think time
of the second class of philosophers to N, and vary the firing frequencies of the first
class of philosophers. Figure 5.5 gives the results of these analyses. Note that the
maximum possible value for DineFraction for the given parameter settings, is 50%.
When the firing frequency for the aggressive philosophers is 5.0 the fraction of time
they spend waiting for forks is reduced by 70% (to 0.06).

Finally, we repeated the first experiment (figure 5.2 and figure 5.3) with geo-
metric think times. Figure 5.6 and figure 5.7 shows the performance estimates as
a function of mean think time of the class two philosophers. The trends in the
performance estimates as ThinkTime(2) varies are qualitatively the same as in the
deterministic model. However the performance curves are smooth, in contrast to
the erratic variations in figure 5.2 and figure 5.3. The erratic performance in the
deterministic models is due to cyclic dependencies. These dependencies also make
multiple recurrent classes more likely in the deterministic models.

5.2 The CRAY-1

In order to evaluate architectural designs for highly parallel supercomputers, it is
important to understand the behavior of the proposed designs under representative
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workloads (i.e. benchmarks). The development of accurate analytical models for
designs which can be parameterized for different workloads, would be a major step
towards the goal of choosing a good design rapidly. One goal of our GTPN model
is to aid in the creation of such analytical tools.

In this section we present some preliminary results on the use of the GTPN model
for analyzing a subset of the CRAY-1TM supercomputer. Our basic approach to per-
formance modeling of pipelined machines is to specify deterministic delays for each
pipelined functional unit, but to represent the instruction mix and resource demands
for programs probabilistically. This approach closely parallels current methods for
evaluating these machines using detailed simulation programs and system measure-
ment. A well-known set of scientific benchmarks, the Lawrence Livermore Loops,
and a detailed simulator for the scalar mode of the CRAY-1S [PAN83], were used in
our study. We derive parameters for our model directly from execution traces of the
benchmark programs, and validate predicted performance with simulation results.

5.2.1 The CRAY-1 Model

The CRAY-1S can operate in two modes: vector mode and scalar mode. For our
initial experiment, we have investigated the scalar mode operation for one important
type of instructions (i.e. the set of instructions that use the S registers). We assume
the workload only contains the classes of instructions represented in the model. In
the six loops studied this covers between 28% and 52% of the instructions in a
program.

Our GTPN for this model is shown in Figure 5.8 !. The initial marking has
one token on place GetInst and eight tokens on place Regs (representing the eight
S registers which are initially not in use). Except for the first transition, labels on
the transitions are only used to indicate firing durations which are greater than O.

Each instruction conceptually goes through three stages of execution. In stage
one, the instruction is issued, which takes a fixed number of clock periods (> 1)
depending on the opcode. In stage two, the instruction holds until all of its resource
needs are met. Resource needs may include source registers, a destination register,
and a destination bus (i.e. the S bus). To simplify the presentation of the net,
the portion of the net that models blocking for register resources is shown as a
dotted rectangle in the figure. The label in the rectangle, (m,n), indicates that the
instruction needs m source registers and n destination registers. In stage three, the
instruction ezecutes. Stage three takes a fixed number of clock periods (possibly
zero), again depending on the opcode. When an instruction completes stage two,
the next instruction can start stage one. Consequently, only one instruction can be
in the first two stages, but many instructions may be in stage three.

The opcodes represented in the model are grouped into 6 classes, according to
their issue times, resource needs, and execution times. The frequency expressions

1Places that have the same name in the drawing are the same place in the model.
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for the 6-way branch in the instruction issue stage correspond to the frequency of
occurrences of each instruction class in the workload.

Register contention is modeled (in the dotted rectangles) as a sequence of Bernoulli
trials, with parameter P. The current model computes the probability P based on
the number of tokens on Regs, assuming that register requests are independent and
uniformly distributed. Note that the m source register tokens are immediately put
back on Regs after the successful acquisition of registers, since these registers are
only needed for the first clock period of the instruction’s execution. An instruction
can also block due to bus contention. This is modeled using inhibitor arcs bridging
from one execution pipeline to another. For example, a token on GetBus3 (sixth
instruction class) indicates the instruction needs the S bus 3 clock cycles later. This
token must wait if place pipe63 contains a token.

The resource of interest for performance estimates in this model is Instlssue.
The utilization estimate for InstIssue will represent the instruction issue rate (i.e.
the number of instructions issued per clock period) for the model.

5.2.2 Experiments

We have run a preliminary experiment to compare the GTPN model estimates with
the detailed performance simulation measures for six Lawrence Livermore Loop
benchmarks. An execution trace for each benchmark was filtered to delete any
instructions not represented in the GTPN model. Each trace was then analyzed to
compute opcode frequencies and register usage frequencies. The opcode frequencies
for each trace were used to parameterize the model. The GTPN analyzer was then
used to compute the instruction issue rate. The execution traces were also run on
the detailed performance simulator which also calculated the instruction issue rate.
The level of agreement between the analytic and simulation results is a measure of
the accuracy of the GTPN model. |

Figure 5.9 shows the results for the above experiment. Several observations can
be made. First, the GTPN model estimates are quite accurate for 3 of the 6 bench-
marks. Second, the TPN model shows an absolute error as high as 0.2-0.25 for
some benchmarks, as compared with the detailed simulator. Third, nevertheless,
the model estimates are in error in a predictable way in the following sense. All of
the GTPN predictions are optimistic (i.e. issue rates are too large). This can be
explained by the fact that the model assumes independent uniform register usages.
Statistical analyses of the benchmark execution traces indicate strong dependencies
in the register access patterns, particularly for Loops 2 and 6. The register depen-
dencies in the benchmarks accounts for larger “hold” times and lower instruction
issue rates. Modeling dependencies in the selection of instruction class does not
appreciably improve on the performance estimates. An encouraging sign is that
the amount of error in the current model estimates is roughly proportional to the
amount of dependency of register accesses computed from the benchmark traces.
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Chapter 6

Moultiprocessor Memory and Bus
Interference

Due to their potential for increased performance through parallelism, multiprocessor
systems (systems with more than one processor and with shared memory) have been
studied for many years. In this chapter we are interested in MIMD multiprocessors
with multiple independent memory modules and with a single-stage multibus inter-
connection network. A key issue in such a system is the extent to which contention
for the shared memory modules and the buses causes performance degradation.
An extensive literature has developed addressing this issue with stochastic mod-
els [BHA75,GOY84,TOW83]. Until now, however, no one has used exact solution
methods to derive performance measures for any model that contains four important
and realistic properties. These properties are:

1. both bus and memory contention are considered
the amount of time spent actively accessing memory per request is a constant

the processing time between memory requests is variable and non-zero

ol A

the distribution of accesses across the memory modules is not necessarily uni-
form

We have developed a model which can be used to derive performance estimates
for a system containing these properties. The solution method is based on the
global state transition diagram (i.e. discrete time Markov Chains). Previous re-
searchers [TOW83,YEN82] have concluded that this approach is computationally
infeasible except for very small systems. We demonstrate that this approach is feasi-
ble for useful size systems if the Markov Chain is properly formulated. In particular,
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we derive results for several models (with up to 16 processors and 16 memories) with
the four properties listed above.

We do not mean to underestimate the importance of approximate solution tech-
niques and simulation. As more functionality is encoded in a model, the Markov
Chain generated using the GTPN analyzer can still become prohibitively large. Our
point is that the GTPN allows symmetries to be discovered and used to reduce the
model complexity. Thus, with careful model formulation, the Markov Chain does
not become prohibitively large as soon as with earlier models. Because of the smaller
state spaces, there is more opportunity for exact results.

By using the GTPN model we reached several new conclusions about the effect
of memory and bus interference in multiprocessors. First, a widely used definition
of the processing power of a multiprocessor does not accurately reflect the true
increase in power of a multiprocessor over a single processor. Second, if the real
system has a constant memory access time and any number of buses, then to assume
that it has an exponentially distributed access time can lead to large errors in
the estimation of the probability distributions of processing power. We introduce
a new definition of processing power that does accurately reflect the increase in
power. Third, with respect to speedup, we have identified the phenomenon of critical
memory interrequest times in multibus systems. As long as the mean interrequest
time is longer than the critical value, only a very few buses are needed to attain
nearly the same performance as a crossbar.

In section 6.1 we describe the behavior of the multiprocessors we study and
review the relevant previous work in stochastic modeling of these systems. In sec-
tion 6.2 we present our multiprocessor model and results. Section 6.3 summarizes
the important contributions of our work and suggests some directions for future
research.

6.1 Background

6.1.1 Multiprocessor Characteristics

Figure 6.1 illustrates the multiprocessor systems we consider. The shared memory
is divided into independent modules, each of which permits only one access at a
time. The processors are connected to the memory modules through a single-stage
multibus (in contrast to multiple-stage networks such as banyan networks).

The process associated with each processor can be in three states: running on
its processor, waiting for a memory module, or accessing a memory module. The
processing time between memory requests is the processor’s interrequest ttme. In
much of the literature we reference below, the interrequest time is assumed to be a
geometric random variable. In this case, the parameter of that random variable is
the memory request probability(MRP). The MRP is the probability that an actively
executing processor will generate a request in the next memory cycle. A process
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Processor 1 Processor 2 Processor n

Module 1 Module2 | .vicccrcnnnesnvennns Module m

Figure 6.1: The Multiprocessor System

with an outstanding request blocks until it obtains an arbitrary bus and the desired
memory module. The amount of time spent actively accessing memory per request
is the memory access time which is a constant in our models. The distribution
of accesses across the memory modules by a processor is that processor’s memory
access probabilities.

Memory utilization is the fraction of time that a memory module is being ac-
cessed by some process. Processor utilization is the fraction of time that a processor
has its associated process running on it (versus accessing a memory or waiting
for a memory). Processor productivity is the probability that a typical process
is doing productive work (executing on its processor or accessing a memory, not
waiting for a memory). Memory utilization summed over all memories is the ex-
pected number of busy memory modules. In the literature, this has often been
called the effective memory bandwidth. Memory bandwidth and memory utiliza-
tion, however, are not the same, so we will not use the term effective memory
bandwidth. Processor utilization summed over all processors is sometimes called
processing power [AJM84,AJM82a.,AJM82b,AJM83]. Effective memory bandwidth
and processing power (as defined above) are the main performance estimates ob-
tained in the studies cited below.

6.1.2 Previous Results: Bhandarkar

Bhandarkar [BHAT75| is an important early work. He uses discrete time Markov
Chains to obtain performance estimates for up to a 16 processor /16 memory system.
The key assumptions of his model are:

1. all of the processors are statistically identical
2. the memory access time (memory cycle time)is a constant

3. MRP is 1, i.e. a process is never actively executing on its own processor.
When its current request is satisfied, it always generates another request at
the start of the next cycle.

4. the interconnection network is a crossbar
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5. requests made by each processor have an independent and equal probability
of being directed to any one of the modules, i.e. uniform memory access
probabilities.

In spite of these simplifying assumptions, the state space of his Markov Chain
grows rapidly. For example, the 16 processors /16 memories system has 300,540,195
states. Bhandarkar did not attempt to solve the steady state equations for a system
with 300,540,195 states. He solves the steady state equations for a much smaller
state space that takes advantage of the fact that the processors are identical. How-
ever, the only way he was able to compute the transition probabilities in the smaller
state space was by building and collapsing the larger state space.

Bhandarkar considered loosening assumption 3 so that the MRP is less than one,
i.e. a processor might spend some time executing between requests. This would have
implied a larger state space so he did not attempt an exact solution.

Most of the research in less restrictive stochastic models of multiprocessors since
Bhandarkar’s work has focused on approximate solution techniques. The studies
are divided into categories according to which of the above assumptions (2, 3, 4, or
5) are relaxed.

6.1.3 Less Restrictive Models

Bhandarkar [BHA75], Strecker [STR70], and Wulf and Bell [WUL72] deal with the
basic case of a constant memory access time, uniform access probabilities, a crossbar,
and a MRP of 1. One logical change is to consider to what extent performance is
degraded due to having fewer buses than in a crossbar. Towsley [TOWS83] gives
approximate solutions and simulation values for this case. Alternatively, a crossbar
could be assumed and a MRP less than one considered. This is a reasonable change,
because presumably each processor has some local memory or a cache that it is using
for most of its memory activity. Baskett and Smith [BAS76], Rau [RAU79D], Yen,
Patel, and Davidson [YEN82], and Towsley [TOW83] give approximate solutions
for this case.

More recent studies combine these two changes, i.e. they have constant access
time, uniform access, a MRP less than one, and multibuses. Lang, Valero, and Ale-
gre [LAN82| provide simulation results. Bhuyan [BHU84], and Mudge, Hayes, Buz-
zard, and Winsor [MUD84], Towsley [TOW83], and Goyal and Agerwala [GOY84]
give approximate solutions.

Some studies assume an exponentially distributed memory access time, an expo-
nentially distributed interrequest time, and use continuous time Markov Chains in
the solution. Approximate solutions of these models are given by Bhandarkar and
Fuller [BHA73], Marsan and Gerla [AJM82a], Marsan, Balbo, and Conte [AJM82b],
Marsan, Balbo, Conte, and Gregoretti [ATM83], Onyiiksel and Irani [ONY83], and
Jacobson and Lazowska [JAC82]. Exact solutions are in Irani and Onyiiksel [I[RA84],
Molloy [MOLS81], and Marsan, Balbo, and Conte [AJM84]. Several of these studies
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[MOLSI,AJM83,AJM84] are of special interest because they use a form of Petri
Nets, called Stochastic Petri Nets, to derive their continuous time Markov Chains.
We defer further discussion until section 6.2. Mudge and Al-Sadoun [MUD84] pro-
vides an approximate solution that allows the memory access time to be any discrete
time random variable that has first and second moments.

The last group of studies consider nonuniform access probabilities. All as-
sume constant cycle time, and a crossbar. Those that only allow a MRP of one
are Sethi and Deo [SET79] and Du and Baer [DU83]. The papers that allow
memory request probabilities less than one are: Hoogendoorn [HOO77], Mudge
and Makrucki [MUDS82|, Siomalas and Bowen [SIO83], Towsley [TOWS83|, and
Bhuyan [BHU84]. All the solutions are approximate except one of the ones given
in Du and Baer. The exact solution method in Du and Baer is a modification of
Bhandarkar’s exact method. Perhaps this is why they only consider a crossbar and
a MRP of 1.

In section 6.2 we develop a GTPN model of multiprocessors which can be mod-
ified easily (primarily by changing a few parameters) to reflect the various assump-
tions made in the above studies. We will compare the performance estimates ob-
tained from exact analysis of the GTPN with some of the results cited in this section.
We will also use the GTPN model to obtain results not previously reported.

6.2 Multiprocessor Analysis

We have analyzed the performance of multiprocessor systems using the GTPN. In
this section we define our performance measure of speedup, describe the GTPN
model used, and summarize the results of our experiments. We modeled several
systems that have been studied previously for the sake of comparison. First, we
conducted four sets of validation experiments. Second, we compared our results with
those of Marsan, Balbo, and Conte [AJM84] which assume exponential access time.
The important measure of speedup has not been studied in the stochastic modeling
literature cited in section 6.1. Consequently, our third set of experiments look at
speedup for some representative systems. Finally, we examine the performance of a
particular class of non-uniform access probabilities called favorite memory.

6.2.1 Measures and the GTPN net

Recall that previous evaluations of multiprocessors using stochastic models have
studied the expected number of busy memory modules and a measure of process-
ing power defined as: processor utilization summed over all processors. We are
more interested in a different measure of processing power: processor productivity
summed over all processors. To avoid confusion in the discussion below, we will
call our measure speedup, since it is the same as the speedup measure used in the
non-stochastic literature on multiprocessors. We will use the term processing power
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in the sense defined in previous studies. We argue that speedup is a more impor-
tant single measure of system performance because the goal of multiprocessing is
speeding up a program, not achieving high memory or processor utilization. The
expected number of busy memory modules and processing power are also easily
computed for our GTPN models as we show below.

The GTPN model used in the analysis assuming uniform access probabilities and
a multibus is shown in Figure 6.2 and Table 6.1. The net for the non-uniform access
case is a slight modification of this one. The net shown is for a system with three
processors, two memories, and one bus (P2). It is the model in Marsan, Balbo, and
Conte [AJM84], modified to support discrete time.

Figure 6.2: GTPN net for a 3 processor/2 memory /1 bus system. Uniform access.

Transition | Duration Frequency Cnt Combs Resources
T1 0.0 MRP yes (Spd,PP)
T2 1.0 1- MRP yes 0
T3 0.0 P7/3 no ()
T4 0.0 P8/3 10 0
T5 0.0 P5/3 no ()
T6 1.0 (P2=0)[(P4=0) | (P5=0)) no (Spd, MemBusy)
& (P3=0) & (T1=0)) * 1.0
T7 1.0 same as 16 no (Spd, MemBusy)
T8 1.0 same as T6 no (Spd, MemBusy)

Table 6.1: The attributes of each transition in the multiprocessor net.
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The tokens are shown in the initial state. The tokens in P5 represent free memo-
ries. The tokens in P3 represent processors that are active locally. The tokens in P2
represent free buses. Transitions T'1 and T'2 implement a geometric processing time
between memory requests. (Note that the GTPN can represent geometric, as well
as constant, holding times.) With probability equal to the memory request proba-
bility, each token in P3 moves to P4. A token in P4 represents a processor making a
memory request. The places along the bottom represent lengths of memory queues.
Because the memory modules are statistically identical we are just interested in the
possible combinations of queue lengths. For example, a token in the leftmost place
signifies that all three processors are waiting for the same memory module. In this
case, there can be no other tokens along the bottom places. We want each token on
P4 to have its memory request uniformly distributed among the memory modules.
If only one transition can start firing at a time, then the frequency expressions for
T3, T4, and T5 ensure uniformity. The place P1 is used to enforce that only one
token on P4 at a time moves to the bottom row (with zero delay). As tokens move
across the bottom, processors have their memory requests granted and return to
P3. The last processor to use a memory module (T8) returns the bus token to P2.

The frequency expressions for the transitions along the bottom enforce that none
of the transitions along the bottom row start firing until all possible tokens on P4
are moved into the memory subsystem. In these frequency expressions a vertical
bar represents a logical or. When the number of tokens on P2 or P4 or P5 is
zero and the number of tokens on P3 is zero, and there are no firings of T'1, the
expression evaluates to one, otherwise it evaluates to zero. The Cnt Combinations
column of Table 6.1 contains the value of the flag that determines how probabilites
for maximals are to be calculated for each transition that may appear in a maximal.
Three resources are used to derive performance measures. Spd generates speedup.
PP generates processing power. MemBusy generates the expected number of busy
memory modules.

6.2.2 Model Validations

Processors | Memories | Bhandarkar | GTPN
2 2 1.5000 1.5000
4 4 2.6210 2.6210
6 6 3.7809 3.7809
8 8 4.9471 49471
10 10 —_— 6.1150
12 12 —_ 7.2835
14 14 — 8.4527
16 16 —_— 9.6225

Table 6.2: Expected number of busy memory modules. Crossbar. MRP = 1.
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Buses | Towsley Approx | Towsley Sim | Exact
8 7.93 7.96 7.977
9 8.73 8.80 8.825
10 9.27 9.34 9.357
11 9.53 9.58 9.566
16 9.62 9.66 9.623

Table 6.3: Expected number of busy memory modules. 16 processor/16 memo-
ries/Multibus. MRP = 1.

We first consider four previous studies that assume constant cycle time and uniform
access, in order to validate our model. Bhandarkar [BHATS5] gives exact numerical
results for the expected number of busy memory modules up to a 8 processor/8
memory /crossbar and memory request probability (MRP) of 1. In Table 6.2 we
present his numbers and the results from our GTPN; they agree.

The GTPN model for 16 processors and 16 memories yielded a Markov Chain
with 8115 states. Bhandarkar’s approach yielded a Markov Chain with 300,540,195
states. As mentioned in section 6.1.2, Bhandarkar needed this large state space
as a means of indirectly reaching a smaller state space. The GTPN allows us to
describe the system such that we can directly derive the smaller state space. This
explains the difference in state space sizes. A similar direct method was used by
the GSPN [AJM84]. We feel that it is quite likely that deriving the smaller state
space without the GTPN is possible. Our point is that the GTPN aids in seeing
and expressing the symmetry which allows the direct derivation.

We use the Power Method, an iterative sparse matrix algorithm, to solve for
our results. The iterations terminate when the sum over all states of the absolute
value of the difference between the last two iterations, is less than the convergence
criterion. With our default convergence criterion, 5 x 107%, all of our values agreed
with Bhandarkar’s except in the 8 processor/8 memory case, where we reached
4.9469. We repeated the analysis with a smaller convergence criterion, 5 x 107¢,
and reached Bhandarkar’s value. We have used our default convergence criterion in
all of the other experiments reported in this paper. The default should be accurate
to at least three digits. We round all of our remaining results to three digits. This
should also be sufficiently accurate since all of the remaining comparisons are to
simulations and approximate solutions.

Towsley [TOW83] gives approximate solutions and simulation values for the ex-
pected number of busy memory modules for a 16 processor/16 memory system with
a MRP of one and a multibus interconnect. Our exact results are compared with
his results in Table 6.3. Our values are in each case within the 90% confidence in-
terval of his simulation, and provide further evidence that the approximate analysis
is accurate. A reasonable conclusion is that up to 6 buses can be removed from the
crossbar with only a small performance degradation. Lang, Valero, and Alegre is
another study that arrives at a similar conclusion.
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Buses | Lang Sim | Bhuyan Approx | Mudge Approx | Exact
1 1.00 1.00 0.98 1.000
2 2.00 1.97 1.88 2.000
3 2.87 2.79 2.57 2.898
4 3.33 3.27 2.99 3.352
5 3.45 3.44 3.16 3.458
6 347 3.47 3.22 3.469
7 3.47 3.47 3.23 3.469
8 3.47 3.47 3.23 3.469

Table 6.4: Expected number of busy memory modules. 8 processor/8 memory.
MRP = 0.5.

Buses | Mean IRT | Goyal Sim | Goyal Approx | Exact
1 8 1.00 0.9997 0.9998
16 0.8584 0.8719 0.8588

32 0.4794 0.4811 0.4745

2 4 2.0000 2.0000 1.9983

8 1.6616 1.6655 1.6560

16 0.9316 0.9331 0.9365

32 0.4852 0.4847 0.4793

Table 6.5: Expected number of busy memory modules. 16 processor /16 memory.

We now present two validations that involve a MRP of less than one and a
multibus. First, we consider a 8 processor/8 memory system with a MRP of 0.5.
Expected number of busy memory modules is the measure reported in previous
papers. Table 6.4 gives the simulation values in Lang, Valero, and Alegre [LANS82],
the approximate values of Bhuyan [BHU84], the approximate values of Mudge,
Hayes, Buzzard, and Winsor [MUDS84], and our exact results. Our exact values
are within the 99% confidence intervals of the simulation results in all cases, and
provide still better values for evaluation of approximate results. Note that, again,
the number of buses can be reduced substantially from a crossbar with minimal
effect on performance.

Second, we consider a 16 processor/16 memory system with one or two buses. In
Table 6.5 we show Goyal and Agerwala’s [GOY84] values and ours. In this table we
adopt their convention of using the mean interrequest time (mean IRT = g5 —1)
instead of the memory request probability. Our values and theirs agree within the
range of statistical error.

6.2.3 Comparison with Exponential Memory Access Time
Models

Recall from section 6.1 that several studies have assumed an exponential memory
access time and have derived exact performance estimates using continuous time
Markov Chains. There are two possible reasons for the exponential assumption.
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One, is that the multiprocessor under study has an exponential memory access
time. Two, is that the multiprocessor under study has a constant memory access
time, but that assuming an exponential memory access time is a reasonable ap-
proximation which yields models that can be solved exactly. In this paper we are
interested in the stochastic modeling of multiprocessors with constant memory ac-
cess times. Consequently, we are interested in the second reason. One would expect
from queueing theory (as noted in Marsan and Gerla [AJM82a]) that the model with
constant access time will give higher predictions for speedup. We conducted several
experiments to see how large a difference the assumption of exponential access time
makes.

Marsan, Balbo, and Conte [AJM84] gives exact results for a 12 processor/2 bus
system. They vary the number of memories and the load. They assume that the
interrequest time is exponentially distributed with rate A and the memory access
time is exponentially distributed with rate . The load is the ratio, p, of A to p. Our
approach can be compared to theirs. We assume a constant memory access time
and an interrequest time which is, strictly speaking, a modified geometric random
variable. The important step is to make our models as similar as possible, so that
only the difference in modeling the memory access time is observed. In particular,
we need to represent the interrequest time distribution accurately.

In the limit, as the time length of a trial goes to zero, a modified geometric
random variable is identical with the exponential random variable with same mean.
Consequently, if trials are “reasonably frequent”, then a modified geometric random
variable is a good approximation to the exponential random variable with the same
mean. We can approximate the exponential memory interrequest time arbitrarily
closely in our GTPN model, by decreasing the duration of transition T2 and adjust-
ing the frequency expressions for transitions T1 and T2 appropriately. Furthermore,
for a selected duration of transition T2 (greater than zero), the variance of the modi-
fied geometric distribution is larger than the variance of the exponential distribution
we are approximating. The increased contention due to this larger variability will
result in lower estimates of processing power than if the exponential interrequest
time were represented exactly. Since we expect (and observe) that constant memory
access time model will have a higher processing power than the exponential memory
access time, the differences we observe due to approximating the interrequest time
will be conservative. (We verified this experimentally.)

In each of the experiments we conducted, a memory access time of 1 and an
interrequest time of 1/p approximated using a duration of 1 for T2, yields a reason-
ably accurate representation. We note that this selection of parameters was used
successfully in the validation against Goyal and Agerwala (in Table 6.5). Goyal
and Agerwala’s simulation assumed that the interrequest time is exponentially dis-
tributed.

Figure 6.3 shows their estimates of processing power and ours, as the number of
memories is varied, for a 12 processor/2 bus system with load of 0.3. The difference
in estimates is 6% at 2 memories and decreases to 2% at 10 memories. Thus, the
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exponential access time assumption underestimates but provides a good approxi-
mation of the expected value for processing power. Our estimates for speedup are
also shown. These results are qualitatively similar, but substantially larger than the
processing power results. If we are really interested in speedup, processing power is
a poor approximation.

Though expected values are important, the nature of the probability distribution
of processing power is useful in characterizing multiprocessor behavior. In Figure 6.4
we show the constant access time and approximating exponential access time prob-
ability distributions for a 12 processor/2 bus/6 memory system with load of 0.3.
The distributions are substantially different. As one might expect, the distribution
assuming an exponential access time has a higher variance.

Marsan and Chiola [AJM85a], concurrently with our work, have introduced de-
terministic firing times into the GSPN under certain restricted conditions. Those
restricted conditions imply that their multiprocessor models can only allow one bus.
They reach conclusions similar to ours for the one bus case. Thus, our work may
be viewed as a generalization of theirs to the case of an arbitrary number of buses.

6.2.4 Critical Memory Request Probability

We now describe the analyses we conducted that are not comparisons with previous
studies. Our first set of experiments measured speedup for a 10 processor/10 memory
system. The memory request probability is varied from 0.1 to 1.0. The number of
buses is 1, 2, 3, 4, and 10. Our results in Figure 6.5 suggest an important conclusion
about the effect of the number of buses on speedup. When the number of buses
is small, a critical memory request probability appears to exist. The horizontal line
drawn at speedup = 8.75 indicates approximately where this critical MRP lies on
each curve. Below that probability, speedup is close to that with a crossbar(even
for just two buses). Above that probability, speedup rapidly decreases and is equal
to the number of buses in the limiting case. This rapid decrease is clearly due to
the lack of buses. The drop is more gradual as the number of buses increases and is
to a larger and larger extent due to memory contention instead of bus contention.
We note that a functional relationship may exist between the number of processors,
memory modules, and buses, and the critical MRP. Further study is required to
determine whether this is true.

Our results are more specific than the conclusion reached by Lang, Valero, and
Alegre. With respect to the measure of expected number of busy memory modules,
they concluded that good performance is possible with the number of buses equal
to one half the number of processors with a MRP of 0.5. Note that their conclusion
is supported by Figure 6.5. Furthermore, we conclude that as long as the memory
request probability stays below the critical value, only a few buses are needed to
have close to the performance of a crossbar.
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6.2.5 Non-Uniform Access Probabilities

All of the experiments above assume uniform access probabilities. Many authors
have argued that this assumption is reasonable if the memory modules presumably
are interleaved by the low-order bits of the memory addresses. Rau’s [RAU79a] trace
driven simulations, however, show that, at least in some cases, even with memory
module interleaving, accesses are not uniform. Consequently, several studies have
considered the non-uniform case. One version of non-uniformity that is of interest
is called favorite memory. In favorite memory, there is one memory module, say
module i, that is accessed with a different frequency than the other modules by
all processes. Module i has probability, a, of being accessed while the probability
of each other module being accessed is uniformly distributed over 1 — a, for all
PTOCessors.

Teo o

Qeweow- -1 MRP = 0.3
1] 6—— o MRP=04
Arvevrecencnnns A MRP = 0-5
0
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Favorite Memory Probability

Figure 6.6: Favorite Memory nonuniform accesses. 6 processor /6 memory/3 bus.

We conducted an experiment assuming a favorite memory. We considered a
system with 6 processors, 6 memories, and 3 buses. Results are given in Figure 6.6
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for memory request probabilities of 0.3, 0.4, and 0.5. Each curve has seven data
points for when zero, one sixth, two sixths, up to six sixths of the memory requests
are directed to the favorite memory. Note that a modest favoritism (i.e. two sixths)
has only a small effect on speedup. As expected, the speedup decreases as the
favoritism increases and as the memory request probability increases. In addition,
as the memory request probability increases the importance of favoritism increases,
causing speedup to decrease more rapidly.

This favorite memory experiment illustrates the need to develop approximate
solution techniques based on the GTPN. Identifying one memory module as favorite
causes a significantly larger state space than when all the modules are identical.
For example, this 6 processor/6 memory/3 bus system has 3384 states while a 6
processor/6 memory/3 bus system without a favorite memory has only 496 states.

6.3 Conclusion

We have presented exact performance estimates for models of multiprocessors for
which only approximate and simulations estimates existed. These models include
the important properties of constant memory access time, memory request probabil-
ities less than one, and bus contention. One form of non-uniformity in the memory
access probabilities was also treated. We derived these results by using Generalized
Timed Petri Nets(GTPN). The GTPN is efficient for moderate size state spaces.
For example, a multiprocessor model with 12 processors, 10 memories, 2 buses, and
a geometric interrequest time of 5 time units has 2026 reachable states and requires
274 seconds to build the reachability graph and analyze it for performance esti-
mates. The results we have derived illustrate the advantages of the GTPN model in
specifying instantaneous, constant, and geometric holding times in analytical system
models. If constant delays are not needed, or if they satisfy restrictions in current
SPN models, then the SPN models may be more advantageous due to smaller state
spaces.

The previous stochastic modeling studies of multiprocessor memory and bus
interference have measured expected number of busy memory modules, and pro-
cessing power as defined by: processor utilization times the number of processors.
We suggest a better measure of processing power which is equivalent to the measure
of speedup that is commonly used in other bodies of literature on multiprocessors.

Our multiprocessor performance estimates provided several important insights.
One is that assuming an exponential access time for a model of a multiprocessor
with constant memory access time and any number of buses causes only a small
underestimation of the expected value of processing power. However, the probability
distributions for processing power differ substantially. The distribution assuming
an exponential access time has a higher variance.

Two, is that at low request rates only a few buses are needed to have almost
the performance of a crossbar. However, when only a few buses are used, a critical
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request rate exists. Exceeding that critical request rate causes a dramatic collapse
in performance.




Chapter 7

Cache Consistency Protocols

7.1 Introduction

MIMD multiprocessors with multiple independent memory modules and a single
stage multibus interconnection network form an important class of architectures.
To minimize contention for the shared global memory modules and the buses, the
processors are usually assumed to also have local memories. If the local memories
are used as caches, the problem of maintaining consistency among the caches im-
mediately arises [SMI82]. Two classes of dynamic cache consistency protocols have
developed. The first class allows a general interconnection network but requires that
a global directory be maintained by the shared memory modules. The second class
requires that the interconnection network be a shared bus, but cache consistency is
maintained in a distributed manner by the caches. We are interested in comparing
the performance of protocols in this second class: the shared bus cache consistency
protocols.

Several shared bus cache consistency protocols have recently been proposed
[GO083,FRA84,MCCS4,PAP84,RUD84,KAT85]. The Write-Once protocol, designed
for the Multibus(TM), was the first protocol to appear. Other proposals since then
have suggested modifications to the Write-Once protocol which may improve sys-
tem performance. Several of the proposals contain some analysis of the expected
performance gains for the proposed protocol. However, it is not clear which of the
modifications within a protocol are primarily responsible for the performance im-
provement. In some cases, the proposed modification requires a more complex (i.e.
more expensive) bus or cache controller. A study is needed to determine how much
increase in performance can be expected for each proposed modification. Archibald
and Baer’s simulation study [ARC85] is the most comprehensive performance com-
parison of the published protocols to date. In particular, they provide a uniform
description of the protocols and they identify the important differences between
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the protocols. We propose in this chapter a more precise model of the protocols
which improves the relevance of the performance comparison. Furthermore, instead
of modeling the protocols proposed in the literature exactly, we isolate four key
enhancements to Write-Once which have been combined in various ways in these
protocols. We then study the performance gains for each of the four enhancements.

In section 7.2 we describe our assumptions about the general characteristics of
the multiprocessor. In section 7.3 we describe a Basic protocol similar to Write-
Once, four enhancements to the Basic protocol, and how these enhancements are
combined in protocols proposed in the literature. In section 7.4 we describe our
GTPN models of the Basic and enhanced protocols. In section 7.5 we present our
results, and in section 7.6 we summarize our work.

7.2 Multiprocessor Characteristics

Figure 7.1 illustrates the multiprocessor configuration. Each processor has one local
cache. A single shared bus connects the caches and the main memory. A processor
is directly connected only with its local cache. Each local cache is directly connected
to its own processor and, through the shared bus, with main memory and all the
other caches.

Processor 1 Processor 2 Processor n
I | ............................. |
Cache 1 Cache 2 Cachen
Module 1 Module2 | e Module m

Figure 7.1: The Multiprocessor Configuration

The cycle times of the processors, caches, and the bus are the same and define
the basic time unit. The main memory cycle time is four of these basic time units.
Below the term cycle refers to the basic time unit.

7.2.1 Operation of the Memory and Bus

The cache memories and main memory are divided into words which are organized
into blocks. A cache entry is a physical location within cache memory that consists
of: 1) the cache’s copy of a memory block, and 2) a state. The number of words
in a block is the blocksize. The main memory is divided into blocksize modules
interleaved on the low-order address bits.
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A block is transferred to or from main memory by a sequence of transfers of one
word per bus cycle. The words in a block are always transferred in the same order,
as opposed to transferring the needed word first for a memory read operation. On
a main memory write, the bus is released as soon as the word(s) are transferred
to memory, although the memory module(s) will be busy for additional cycles to
complete the write operation. Thus, memory contention can occur although there
is only one bus.

An arbitrary number of the caches can simultaneously read the information on
the bus.

7.2.2 Operation of the Cache

The cache is used for both instructions and data. When a processor makes a cache
request, it holds until the request is satisfied. A cache request is either a read
(CPU-READ) or write (CPU-WRITE) for a particular word that is in a block that
might or might not have a valid copy in the local cache. If the processor’s cache can
service the request locally and immediately, then servicing takes one cycle.

A cache has two independent parts: a bus monitor and a controller. For every
bus transaction, each cache’s bus monitor determines if the referenced block has a
valid copy in the local cache. In the case of such a block match, the cache’s bus
monitor signals the cache controller.

In a given cycle a cache controller can simultaneously receive a request from
its processor and a signal from its bus monitor requiring action. To avoid a race
condition, the controller can service only one of the requests at a time. The bus
monitor request always has priority. Similarly, loading a block from the bus cannot
be done simultaneously with the cpu read or write operation that initiated a load
request.

There are four types of bus transactions: READ, READ-MOD, WRITE, and
INVALIDATE. A READ (READ-MOD) transaction is started by a cache that has
a miss on a read (write) from its processor. A WRITE transaction is due to a
cache writing a word to main memory via the bus. An INVALIDATE transaction
is started by a cache that wants to invalidate all the copies other caches have of a
particular block. For all four types of transactions, the main memory address of the
affected block is on the bus’s address lines.

Each bus transaction type has an associated bus control line. There is one other
bus control line, shared. It can be raised by more than one cache simultaneously. A
cache raises the shared line to announce that it has a valid copy of the block involved
in the transaction.

The READ and READ-MOD transactions implicitly involve main memory sup-
plying a block. However, it is possible for any cache to inhibit main memory and to
respond instead. Arbitration schemes determine which cache will respond if more
than one can, and which cache gains control of the bus to initiate a new transaction.
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7.2.3 States of the Cache Entries

Each cache entry has three bits of state information. The first bit indicates if the
entry contains a valid or invalid copy of a main memory block. The second and
third bits implement the two binary attributes that define the state of a valid copy
of a block: number of copies, and need to write back. Number of copies can be
ONLY or NOT-ONLY. ONLY means that the cache knows that it is the only cache
with a valid copy. NOT-ONLY means that the cache does not know that ONLY
holds. Other valid copies might or might not exist. Need to write back is WBACK
or NO-WBACK. WBACK means that on replacement this cache has to write-back
to main memory its copy of the block. The WBACK bit is a generalization of the
traditional “dirty” bit, which indicates that the contents of the block have been
written since the last time the block was written to main memory. In some of the
more sophisticated protocols, multiple valid copies may exist of a “dirty” block, yet
only one of these copies is in state WBACK.

7.3 The Protocols

We define a Basic protocol which does not use the snvalidate or shared control lines.
We then describe four enhancements to the Basic protocol. In Section 7.3.3, we
describe how the various protocols proposed in the literature are related to the
Basic protocol and the four enhancements.

The protocols are specified by defining the actions taken by a cache in response
to requests from the bus or local processor. Actions are defined for the type of
request, and the state of the relevant block copy in the local cache memory. Recall
that bus transactions have priority over processor requests. Thus a processor request
is blocked when there is a bus transaction that matches a valid local block copy. Lost
cycles due to cache, bus, or memory contention are not mentioned in the protocol
definition.

7.3.1 The Basic Protocol

The cache takes the actions 1 and 2 in response to bus transactions:

1. READ or READ-MOD

(a) No valid copy: Do nothing. If no cache has a valid copy, then main
memory supplies the block in 3 + blocksize cycles.

(b) (ONLY or NOT-ONLY, NO-WBACK): One of the caches is chosen to
supply the block and main memory is inhibited. (Note that no other
cache can have a copy in state (ONLY, WBACK)). On the cycle after
the bus request, the supplier puts the block on the bus for blocksize
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cycles. The block copies in all these caches go to state. (NOT-ONLY, NO-
WBACK) or are invalidated for a READ and READ-MOD, respectively.

(c) (ONLY, WBACK): At most one cache can be in this block substate.
It inhibits main memory. On the cycle after the bus request, the sup-
plier puts the block on the bus for blocksize cycles. It then writes the
block to main memory for blocksize cycles. The block copy goes to state
(NOT-ONLY, NO-WBACK) or is invalidated for a READ and READ-
MOD, respectively. Note that (NOT-ONLY, WBACK) is impossible in
the Basic protocol.

2. WRITE
(2) Any valid copy: Block copy is invalidated.
Actions 3 and 4 are taken in response to processor requests:
3. CPU-READ

(a) Any valid copy (“Read Hit”): Spend 1 cycle locally supplying the pro-
cessor.

(b) No valid copy (“Read Miss”): In the current cycle put a READ on the
bus with the desired block address. For the blocksize (+3) next cycles the
supplier (another cache or main memory) supplies the block. When the
block has been supplied, then if the supplier was a cache block in state
(ONLY, WBACK), then the supplier will use the bus for the next block-
size cycles for write-back to main memory. When the supplier is finished
with the bus, if a requester’s cache entry in state (ONLY, WBACK) had
to be replaced, then write it to main memory in blocksize cycles. When
the requester is finished with the bus, then in the next cycle it supplies
the desired word to its processor. Set block copy state to (NOT-ONLY,
NO-WBACK).

4. CPU-WRITE

(2) No valid copy: Same as l.a. except for three changes: 1) at the start
READ-MOD is raised, 2) the last cycle of servicing the request is an
update in the cache instead of a processor read, and 3) the new block
state is (ONLY, WBACK).

(b) (ONLY, NO-WBACK or WBACK) Spend 1 cycle locally updating the
word. Set block copy to state (ONLY, WBACK).

(c) (NOT-ONLY, NO-WBACK) Spend 1 cycle updating the word locally.
Then spend 1 cycle using the bus to write the word to main memory
with the WRITE line raised. This will be referred to as the broadcast
write. Set block copy state to (ONLY, NO-WBACK).
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7.3.2 Enhancements

We consider four independent enhancements. The first three reduce the times blocks
or words are written to main memory towards the minimum of only on replacement.
The fourth removes the restriction that when there is one writer of a block that there
are no other readers. Each of these enhancements is presented below as a change
to the Basic protocol. Their qualitative effects on performance are also assessed. In
section 7.3.2 we consider the interactions of the enhancements.

Reduced Memory Writes

The three enhancements that reduce memory writes are:

1. A cache raises the shared line when supplying a block to another cache. If
the shared line is not raised (i.e. memory is the supplier), the receiving cache
marks the block as ONLY. In this case, the broadcast write (action 2c above)
will be needed in fewer cases.

2. The cache supplier on a READ or READ-MOD request does not write its
copy to main memory even if its copy is in state WBACK.

3. Instead of a broadcast write, the cache raises the invalidate line for one cycle.

Enhancement two implies the some cache’s copy must stay in state WBACK so
that the updates are not lost. On a READ-MOD the supplier is going to invalidate
its copy so the requester must be responsible. On a READ the supplier must be
responsible since the requester might be a read-only cache.

Enhancements one and two clearly improve performance since they decrease
bus accesses and/or memory writes. The effect of enhancement three is less clear.
Raising the snvalidate line has a lower cost than a main memory write. On the other
hand, if the only write to that block is that one write to that one word, then using
the invalidate line implies that block write-back is needed on replacement. Which
approach is better depends on the probability that there is only one write to the
block before replacement.

Readers and Writers

The fourth enhancement allows multiple valid cache copies even if a data block is
modified. We refer to this as multiple readers/writers. The Basic protocol invalidates
other copies on the first write. The first write occurs on a READ-MOD, or on a
CPU-WRITE to an in-cache copy that has only been read previously. Thus the
changes to the Basic protocol are:

1. On a READ-MOD, the requester broadcasts the updated word, and all valid
copies go to (NOT-ONLY, NO-WBACK).
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2. On all CPU-WRITEs to NOT-ONLY blocks, the cache broadcasts the up-
dated word and writes it to main memory. All other caches with valid copies
update them. The state of the block in all caches remains (NOT-ONLY,
NO-WBACK).

Enhancement 4, alone, changes the Basic protocol to a pure “write-through”
protocol. Unless enhancement 4 is combined with enhancement 1, which uses the
shared line to notify the writing cache that it has the only copy of a block, the
performance of enhancement 4 is in most cases lower than the Basic protocol. From
now on we only consider enhancement 4 as combined with enhancement 1. The
requester on a READ-MOD only broadcasts the updated word if the shared line is
raised (by the supplier). Each cache then continues to broadcast writes if the shared
line is raised on the previous broadcast write. Otherwise, the writer goes to block
state (ONLY, WBACK).

The advantage of allowing multiple valid copies is that when a cache wants to
read or write its copy that copy is always valid. The disadvantage is that all writes
to NOT-ONLY blocks have to be broadcast. This slows the writing cache because
the bus has to be obtained and main memory has to be free. The caches with the
other copies are also slowed because they may have to block local CPU requests to
update their copies.

Whether the advantage or disadvantage dominates depends on the access pat-
tern. A good access pattern for multiple readers /writers is when the majority of the
caches with valid copies have high frequencies of accessing their copies and those
accesses have a fine temporal granularity of interleaving. A bad access pattern is
when one cache frequently writes its copy and the other caches very infrequently
read or write their copies.

An extension to the fourth enhancement is possible. The idea is to dynamically
switch between the multiple readers/writers approach and the invalidation approach
depending on the quality of the access pattern. The key is to find a simple, but
accurate dynamic measure of access pattern quality. The measure proposed in the
literature [RUDB84] is whether or not two subsequent writes to the given block are
by the same cache. If so, the interleaving of writes is considered not fine enough to
merit the multiple readers/one writer approach.

Combinations of Enhancements

The above enhancements are presented, except as noted, as independent changes
to the Basic protocol. When enhancements are combined, the changes to the Basic
protocol are somewhat different. The most noteworthy difference occurs when the
third and fourth enhancements are combined. Instead of the invalidate line being
raised, a write is broadcast but not written to main memory. Consequently, some
cache has to take responsibility for write-back on replacement. We assume the
broadcaster takes responsibility by going to state WBACK. The other caches remain
in state NO-WBACK.
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7.3.3 Protocols in the Literature

Our goal is to develop a general framework within which the key traits of the
protocols that have appeared in the literature can be identified and evaluated. Given
that framework, we are able to quantitatively assess the performance of the Basic
Protocol and of the various enhancements to it. We do not claim that the protocols
in the literature exactly conform to the framework above. We do, however, feel that
the correspondence is close enough to be of interest. Our performance models are
described in the next section. Here we relate the model to the specific protocols in
the literature.

The Basic protocol is essentially the Write-Once protocol [GOO083|, except that
another cache will supply the block on a READ or READ-MOD request even if its
copy is in state NO-WBACK. The Synapse protocol [FRA84] modifies the Basic
protocol by including enhancement 3. The “ownership-based protocol” [KAT85]
builds on the Synapse protocol by adding enhancement 2. Papamarcos and Patel’s
protocol [PAP84] uses enhancements 1 and 3. In addition, their protocol assumes
main memory is updated on the same bus transaction as the cache supply, which
should give similar performance to enhancement 2. The Dragon proposal [MCC84]
combines all four enhancements. Rudolph and Zegall’s RWB protocol [RUDB84]| uses
enhancements 1, 3, and 4, including the extension to dynamically switch between
the invalidation approach and the multiple readers /one writer approach.

7.4 The Protocol Models

We have created GTPN models to estimate the performance of the Basic protocol
and five protocols which include combinations of enhancements described in the
section 7.3.2. Enhancement 1 can be implemented easily if the bus contains the
additional control line we have called shared (e.g. as provided by Futurebus). Thus,
we have named the protocol which includes enhancement 1 only, the Smart Basic
protocol. The four additional protocols we have studied are called +(2), +(3), +(4),
and +(2,3,4), where the numbers refer to the enhancements included in addition
to Smart Basic. In this section we briefly describe the GTPN models and the
workload parameters. The performance estimates obtained by solving the models
are presented in Section 7.5.

7.4.1 The Basic Protocol: Net

The net for the Basic protocol is shown in Figure 7.2. Each token in place P1
represents a processor that has just completed an instruction cycle. We assume that
all processors are stochastically homogeneous (i.e. their memory access behaviors
are statistically identical). The tokens in places P2 and P9 indicate that the bus
and memory are available, respectively.
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Figure 7.2: GTPN Model for the Basic Protocol
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Each processor token acts independently. During each cycle, the processor con-
tinues instruction execution (T1), makes a cache request that can be serviced locally
(T3), or makes a cache request that requires the bus (T2). Requests that are ser-
viced locally may be blocked if the cache is servicing a bus request from or supplying
data to another cache (T6 or T7). CPU requests that require the bus are either
broadcast writes (T9, T13, and T17) or read (i.e. READ or READ-MOD) requests
(T8). Read requests are either supplied by another cache (T11) or by main memory
(T16). If supplied by another cache, the cache supplier will write the block back to
main memory if it was in state WBACK (T18 and T21). After the cache supplier
is through, the requesting cache may need to write back a replaced block (T22 and
T21). Finally, the CPU request is serviced by the local cache (T5 and T23).

The attributes associated with the transitions in the Basic Protocol model are
given in table 7.1 and table 7.2. The reader is encouraged to check that the durations
associated with each transition make sense for the model description above. For
example, transition T8, which represents a LOAD request on the bus, has a duration
of 1 cycle. Transition T10 has a duration of 0 because it is inhibited by certain net
markings which will be discussed below.

The frequency expressions may be marking-dependent. That is, they may con-
tain the names of places and/or transitions, which evaluate to the marking of the
place or transition in a given state. For example, the frequency of transition T6
evaluates to zero, unless T8 or T13 is firing (i.e. some other cache has a signal
on the bus). Similarly, transition T10 is inhibited if T14 or T18 is firing or if P13
contains a token (i.e. a cache request is being supplied by another cache). This
should also make sense from the model description above. The probabilities named
in the frequency expressions are derived from basic workload parameters, such as
the probability that a CPU request is a read (R) or write (W) for a private (P) or
shared (S) block. The parameters and the derivation of the frequency expressions
are discussed in the next section on the model workload.

The resources associated with the net transitions identify performance measures
to be calculated. The long run expected number of usages of each resource is cal-
culated automatically during analysis of the model. We are interested in three
measures: bus utilization (Bus), processing power (PP), and speedup (Spd). Each
of these resources is “in use” when any of the associated transitions are firing. Bus
utilization is straightforward. It is the long run expected fraction of time that T8,
T11, T13, T16, T18, or T22 is firing. Both processing power and our speedup
measure [HOL85b] can be defined as the average fraction of time a processor is
productive times the number of processors (for the homogeneous case). The differ-
ence is that processing power only counts the cycles the processor spends executing
(T1) as productive, whereas our speedup includes the one cycle required for each
cache request (T5 and T23). Processing power is most often used in the perfor-
mance modeling literature, and is included in our model to show how it is specified.
The speedup measure compares the effective computing power of the multiproces-
sor with a uniprocessor that has an infinite cache. We feel that speedup is a better




Transition Frequency
T1 1-ProcReq
T2 (PSRWM + PSWHumod) X ProcReq
T3 (PSRH + PSWHamod) X ProcReq
T4 1.0
T5 1 - Freq(T6) - Freq(T7)
T6 0.5 x (SRMiss + SWMiss) X T8

305 x (ShRead + ShWrite) X T13

T7 1/#processors x (T14 | P13 | T18)
T8 PSRWM / (PSRWM + PSW Humod)
T9 1-Freq(T8)
T10 1-(T14 | P13 | T18)
T11 CSupSR x SRMiss + CSupSW x SWMiss
T12 1 - Freq(T11)
T13 1.0
Ti4 WBCSupSW x SWCSup
T15 1-Freq(T14)
T16 1.0
T17 1.0
T18 1.0
T19 RepP X Priv + RepSW x ShWrite
T20 1-Freq(T19)
T21 1.0
T22 1.0
T23 1.0

Table 7.1: The Frequency Attribute of Basic Protocol Model Transitions
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Transition Duration Cnt Combs | Resources
T1 1.0 yes (Spd,PP)
T2 0.0 yes 0
T3 0.0 yes 0
T4 0.0 no 0
T5 1.0 yes (Spd)
T6 1.0 yes 0
T7 0.0 yes ()
T8 1.0 no (bus)
T9 0.0 1o 0
T10 0.0 no 0O
T11 blocksize no (bus)
T12 0.0 no 0
T13 1.0 no (bus)
T14 0.0 no 0
T15 0.0 1o 0
T16 3 + blocksize no (bus)
T17 1.0 no 0
T18 blocksize no (bus)
T19 0.0 no 0
T20 0.0 no 0
T21 max(4 - blocksize, 0) no 0
T22 blocksize no (bus)
T23 1.0 no (Spd)

Table 7.2: The Other Attributes of Basic Protocol Model Transitions
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measure of the perceived performance of memory intensive computations on the
multiprocessor.

Two approximations are made in the Basic protocol model. First, the amount of
time memory is held for a block write (T18 and T21, or T22 and T21) is sufficient
for the first module to finish the write operation. The other blocksize-1 modules
will still be busy for up to blocksize-1 cycles into the future. The model is accurate
if the next bus access is a load request, but will be slightly inaccurate if a (one-
word) broadcast write occurs to one of the modules that is still busy. Second, the
amount of time memory is held for a broadcast write (T13 and T17) is approximated
to be 2 cycles. The module written to is busy for 4 cycles, but this module may
not be the module addressed on the next memory access. Both approximations
are necessary because we are representing blocksize memory modules with a single
token in place P9. We have verified that the model results are not sensitive to these
approximations.

7.4.2 'The Basic Protocol Workload

The performance of the Basic protocol, and the relative improvement in performance
for each of the protocol enhancements, is highly dependent on the amount of data
sharing that occurs dynamically in the workload. For example, if there is no data
sharing, then enhancement 1 might yield some performance improvement over the
Basic protocol, but enhancements 2 and 4 will have no effect. Thus, the workload
model and parameter values are important considerations.

In the absence of experimental data for multiprocessor workloads, we have based
our model on the workload model proposed by Dubois and Briggs [DUBS82|. They
define the workload for an MIMD machine to be the merge of two memory access
streams: one stream for private and shared read-only blocks, and one stream for
shared writeable blocks. We have separated the first stream into two streams, one
for private, and one for shared read-only blocks. This allows us to define more
fundamental workload parameters for our more detailed protocol model. Thus, we
view the stream of memory requests in our model to be the merge of three streams,
for: 1) private blocks, 2) shared read-only blocks, and 3) shared writeable blocks.

The fundamental parameters for this workload model are shown in table 7.3 and
table 7.4. “ProcReq” is the probability that a processor makes a memory request
in a given cycle (see transitions T1-T3 in table 7.1 and table 7.2). We assign
interrequest times to be geometrically distributed with mean 2.5. This is based on
the assumption that a large fraction of interrequest times will be in the range of 0-2
cycles, but several instructions which occur occasionally, such as multiply, can be
much longer.

We consider three levels of data sharing: 1%, 5%, and 20%. The probabilities
that a memory request is for private (P), shared read-only (SR), and shared write-
able (SW) data are shown for each of these cases in the table. The 1% sharing case
has probabilities such as might occur if only the operating system shares data. The



Parameter

Meaning

ProcReq

Processor request

Priv,ShRead, ShWrite

processor request to a P, SR, SW block

HitP, HitSR, HitSW

hit given P, SR, SW

ReadP, ReadSW

read given P, SW

AmodPWH, AmodSWH

block copy is already modified

given PWH, SWH

CSupSR, CSupW

cache supplier given SR, SW

WBCSupSW cache supplier write back given SW
RepP, RepSW write back replaced block given P, SW
SmartRepP RepP given SmartBasic
+2RepSW, +23RepSW RepSW given +(2), +(2,3)
MrwHitSW HitSW given multiple readers/writer

Table 7.3: Meaning of Fundamental Workload Parameters

Parameter | Value
ProcReq 0.286
Priv,ShRead, ShWrite | 0.99, 0.00, 0.01
0.95, 0.03, 0.02
0.80, 0.15, 0.05
HitP, HitSR, HitSW 0.95, 0.95, 0.5
ReadP, ReadSW 0.7, 0.5
AmodPWH, AmodSWH 0.7,0.3
CSupSR, CSupW 0.95, 0.5
WBCSupSW 0.3
RepP, RepSW 0.2,0.5
SmartRepP 0.3
+2RepSW, +23RepSW 0.6, 0.7
MrwHitSW 0.95

Table 7.4: Values of Fundamental Workload Parameters
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20% case has probabilities indicating a tightly-coupled parallel computation that
frequently accesses shared read-only data, and thus has good potential for speedup
on a multiprocessor. The 5% sharing is an intermediate case.

The parameters for private blocks were chosen according to data reported from
extensive uniprocessor cache simulations by Smith [SMI85a]. This includes the
hit ratio (HitP), read ratio (ReadP), and Smart Basic probability of write back on
replacement (SmartRepP). The RepP parameter for the Basic protocol is somewhat
lower because private data is written through to memory on the first write. The hit
ratio for SR blocks is assumed to be the same as for P blocks, as in the Dubois and
Briggs model. Hit ratio and read ratio for SW data were chosen to be pessimistic
estimates which should show maximum performances differences among the different
protocols.

The probabilities that another cache will supply blocks on a miss for SR or
SW data, are set equal to the hit ratios. This assumes a high temporal degree of
sharing. The remaining workload parameters for SW data were also chosen to be
conservative.

The derivation of probabilities used in the frequency expressions of Table 7.1,
from the fundamental workload parameters, is given in Table 7.5. For example, a
memory request can be served by the local cache (transition T3) if it is a read hit
for a private or shared block (PSRH), or if it is a write hit for an already modified
block (PSWHamod), as derived in Table 7.5. The interested reader should be able
to follow the remaining derivations. Note, in general, “H” stands for hit, “M” stands
for miss, and “umod” stands for unmodified in the tables. “SRMiss” should be read
as “Shared Read given Miss”.

Probability Derivation
PWH Priv X (1-ReadP) x HitP
SWH ShWrite x (1 - ReadSW) x HitSW
PSRH Priv x ReadP x HitP + ShRead x HitSR
+ ShWrite X ReadSW x HitSW
PSRWM Priv x (1- HitP) + ShRead X (1- HitSR)

+ ShWrite x (1 - HitSW)
PSWHamod | AmodPWH x PWH + AmodSWH x SWH
PSWHumod (1- AmodPWH) x PWH +

(1- AmodSWH) x SWH

Denom ShRead x (1 - HitSR) + ShWrite x (1-HitSW)
+ Priv x (1-HitP)

SRMiss (ShRead X (1 - HitSR))/Denom
SWMiss (ShWrite x (1 - HitSW))/Denom
SWCSup (ShWrite x (1-HitSW))/(ShWrite X

(1-HitSW) + ShRead x (1-HitSR))

Table 7.5: Intermediate Workload Values
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7 4.3 The Other Protocols

The Smart Basic protocol requires no change in the net, but requires three changes
in the transition frequencies. A write-hit to an unmodified private block no longer
needs the bus, since the cache will always know it has the only copy of a private
block. Thus, the PWHumod term moves from transition T2 to transition T3. This
will increase the probability that a private block has to be written back on replace-
ment (RepP becomes SmartRepP for T19). Furthermore, the second term in the
frequency expression for T6 changes to 0.5 x T13, since all broadcast writes are to
shared blocks. These changes are also made for the remaining protocols. Note that
a write-hit to an unmodified shared block (SWHumod) will also not require the bus
if the cache has the only copy of the shared block. The probability of this is difficult
to estimate, so we choose the conservative approach of assuming the probability is
negligible.

Protocol +(2) requires one change in the net, and a further change in the tran-
sition frequencies. The column headed by transition T14 is removed and RepSW
increases to +RepSW (T19), since the cache supplier does not write back.

The +(3) protocol also requires a change in the net. The place P9 is removed as
an input and the column headed by P12 is removed as the output of transition T13,
since the invalidation signal does not require a main memory write. Also, +RepSW
is used instead of RepSW, since blocks are only written back on replacement. Note
that we estimate that the effect of enhancement 3 on RepSW is comparable to the
effect of enhancement 2.

Enhancement 4 requires a change in one firing duration, and several changes to
the transition frequencies. A requester must broadcast the updated word if a cache
supplies the block for a READ-MOD request. Thus, the firing duration of T15
becomes 1.0. Since all write hits to shared blocks are broadcast, SWHamod moves
from T3 to T2, and SWH replaces SWHumod in transition T8. Second, HitSW is
increased to MrwHitSW, because the shared blocks remain valid.

The +(2,3,4) protocol requires all of the above changes, and uses the ++RepSW
parameter instead of RepSW because both 2 and 3 are incorporated.

7.5 Protocol Performance

Using our GTPN model, we obtained a processing power estimate of 4.1 for the
+(2,3) protocol, with 5% sharing and nine processors. This value agrees well with
Papamarcos and Patel’s approximate analysis [PAP84] for a block transfer time of
4 and similar workload. At 4 processors the bus is only 50% utilized for the +(2,3)
protocol, and we find approximately a 10% increase in bus utilization for the Basic
protocol. This agrees with the trace simulation results in [KAT85] for 8 kilobyte
cache size. These results indicate that the model produces reasonable performance
estimates.
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The goal of our experiments is to compare the performance of the six protocols
(Basic, Smart Basic, +(2), +(3), +(4), and +(2,3,4)), given reasonable values for
architectural and workload parameters. Two architectural parameters considered
are the blocksize and the main memory cycle time. Both are four in our initial
experiments. The performance measure primarily used is speedup, as defined in
Section 7.4.1.

7.5.1 Effect of Enhancements

Figure 7.3 shows the results of our initial experiments. The curves start below one
on the y-axis because we have analyzed the uniprocessor with cache misses (but with
frequency O for T6, T7, and T11). The bottom dashed, dotted, and solid curves
are for the Basic protocol. The next set of curves are the speedup for the Smart
Basic protocol. The curve for Smart Basic with 20% sharing: is almost hidden by
the curve for Basic with 1% sharing. The top three curves are the speedup for the
+(4) protocol.

The curves for the +(2) and +(3) protocols are nearly identical to the Smart
Basic protocol. The speedup for +(2) is at most 2.5% greater than Smart Basic. The
speedup for +(3) is at most 0.1% less than Smart Basic. For the sake of readability,
these curves are not shown in the figure. Similarly, the +(2,3,4) protocol curves
are not drawn because they are indiscernable from the +(4) protocol. Table 7.6
summarizes the speed-up estimates for all of the protocols for the 10-processor case.

Protocol Percent Sharing
1% 5% | 20%
Basic 5.602 | 5.371 | 4.868
SmartBasic | 6.718 { 6.310 | 5.582
+(2) 6.746 | 6.370 | 5.715
+(3) 6.716 | 6.306 | 5.576
+(4) 6.913 | 6.983 | 6.929
+(2,3,4) |6.911 | 6.993 | 6.972

Table 7.6: Summary of Speed-Up Estimates for 10 Processors

Clearly, adding enhancement one substantially improves system performance.
Enhancements two and three have negligible effect when added to Smart Basic. In
fact, for the workload parameters used, the effect of enhancement 3 is very slightly
negative. Enhancement 4 shows a small improvement over Smart Basic for our
workload with 1% sharing, but shows more substantial improvement as sharing is
increased to 5% and 20%.

The spread between the solid, dotted, and dashed lines indicates that the amount
of sharing has a significant effect on the performance of the Basic, Smart Basic, +(2),
and +(3) protocols. This is reasonable because the number of broadcast writes and
the average hit rate are proportional and inversely proportional, respectively, to the
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amount of sharing in these protocols. In contrast, the amount of sharing has little
influence when enhancement 4 is included. This is because the hit rate for shared
data was assumed to be high for enhancement 4.

The effectiveness of enhancement 4 in Figure 7.3 requires further study because
our model assumed a good access pattern for multiple readers and writers (see sec-
tion 7.3.2). To model a bad access pattern we reran -+(4) at 20% sharing without
increasing the hit rate. The results were very slightly lower than the Smart Ba-
sic results, because there are more broadcast writes. Thus, enhancement 4 helps
significantly (especially at large amounts of sharing) when there is a good access
pattern and has negligible effect when there is a bad access pattern. It appears that
dynamically switching between this and the invalidation approach (enhancement 3)
offers no advantages.

The curves in Figure 7.3 terminate at ten processors because of rapid growth
in the size of the state space. Table 7.7 shows this growth for the Basic Protocol.
Nonetheless, none of the curves will rise much further because of bus saturation.
Bus utilizations vary from 89% to 98% at ten processors for the workloads and
protocols in Figure 7.3. In section 7.5.3 we show that the assumed hit rates in our
initial workload are primarily responsible for the bus saturation at 9-10 processors.

Processors | States
1 33
2 355
4 2,364
6 7,961
8 19,856
10 41,159

Table 7.7: State Space Growth in the Basic Protocol

7.5.2 Effect of Blocksize

Figure 7.4 shows our experiments which varied the blocksize. The experiments
in Figure 7.3 assumed a blocksize of four words. Blocksizes of one and eight are
considered here, for the Smart Basic protocol. The one word blocksize case requires
a change in the protocol. In this case, there is no need to load a block on a write
miss, since whatever value is loaded is completely overwritten. However, the other
caches still must be notified. Thus, a write miss can be implemented as a broadcast
write. The net does not have to be changed. The write miss probability (PSWM),
however, is moved from transition T8 to transition T9.

The key effect of changing blocksize on the workload is on the hit rate. Based on
Alan Smith’s results for an 8 kilobyte cache [SMI85b], we reduce HitP and HitSR
from 95% to 90% for a blocksize of one, and increase these values to 97% for a
blocksize of eight. HitSW is reduced to 40% for blocksize one, and increased to 55%
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for blocksize eight, compared with 50% for blocksize four. Other parameters, such
as AmodPWH, AmodSWH, WBCSupSW, RepP, and RepSW, were also suitably
modified.

Blocksize of one, with the protocol appropriately modified, performs best in
these experiments. However, smaller blocksizes have substantial disadvantages due
to a larger number of memory accesses during task switching, which we have not
modeled. A study of blocksize effects which includes task switching in the workload
would be worthwhile.

7.5.3 Effect of Hit Rate and Memory Speed

Figure 7.3 indicates that at most ten or so processors should be put on a single bus.
These results are likely to be very conservative because we have chosen many of
our parameter values very conservatively. Two parameter changes seem especially
worthwhile to consider. The first change increases the hit rate for private and SR
blocks from 95% to 99%. The second change assumes a faster main memory. In
particular, we investigate a shared memory cycle time of two instead of four. Note
that main memory accesses still require a minimum of 4-5 cycles, due to acquiring
the bus and memory, transmitting the bus request, and servicing the CPU when
the request is satisfied. The resulting four curves are shown in Figure 7.5 for the
Smart Basic protocol at 20% sharing.

Though both changes are significant, the hit rate increase is clearly more im-
portant. This is also demonstrated when bus utilization is considered. At nine
processors the bus utilization for the original model is 96%. The utilization for the
model with main memory cycle time of two and 95% hit rate is 90%. The utilization
for the model with main memory cycle time of two and 99% hit rate is 53%. Thus,
the faster memory probably only allows one or two more processors. The higher hit
rate should allow several more processors, perhaps six or eight, to be added. Recall
that this is for the 20% sharing level. Further increases in the number of processors
that can be supported can be expected for the reduced sharing workloads.

7.6 Conclusion

We have used an exact analytic technique, based on Generalized Timed Petri Nets,
to derive performance estimates for shared bus cache consistency protocols. Using
the GTPN model, we were able to specify both constant delays and instantaneous
events for detailed bus and memory activity, which must be represented to evaluate
these protocols. The GTPN can be solved for steady-state performance estimates
with these parameters, in contrast to previous Stochastic Petri Net models. Perfor-
mance estimates were obtained automatically using Markov Chain techniques.
The workload in these studies was based on the model used by Dubois and
Briggs [DUBB82], but included separate specification of private and shared read-only
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data access behavior. We considered three levels of data sharing in our workloads:
1%, 5%, and 20%. Parameter values for private data were based on uniprocessor
cache simulations by Smith [SMI85a]. We found that the level of sharing, and the
assumed cache hit rate for private and shared read-only data, have a substantial
impact on the performance estimates.

We evaluated four enhancements to the Write-Once protocol which have ap-
peared in the literature. One enhancement makes use of the shared bus line which is
raised by a cache when supplying another cache, as proposed in [PAP84,MCC84,RUDS&4]|.
This enhancement improves system performance by as much as 15-20% at all levels
of data sharing studied. Another enhancement (enhancement 4 in our models) al-
lows multiple readers and writers for a data block, as proposed in [MCC84,RUDS84|.
This enhancement further improves performance by as much as 10-20% for the 5%
and 20% sharing workloads, as long as there is a fine temporal interleaving of ac-
cesses to the data block by more than one cache. Also, this enhancement does not
decrease performance appreciably in other workloads we studied. The remaining two
enhancements which have been proposed in the literature do not show significant
performance improvement for any of the workloads studied.



Chapter 8

Conclusion

8.1 Summary

We have developed a modeling technique and used that technique in several mod-
eling studies. The modeling technique, Generalized Timed Petri Nets, significantly
advances the previous techniques that support the representation of deterministic
time. We described in chapter 1 the previous techniques that, like ours, are based
on Petri Nets. The work by Zuberek and Razouk and Phelps includes deterministic
time but imposes restrictions to simplify constructing the state space and analyzing
the state space. Our approach removes all of these restrictions except that the state
space be finite.

In chapter 2 the GTPN model was presented and the algorithms used in con-
structing the state space were discussed. The key algorithms involve finding next
states efficiently and computing the probabilities of next states. In chapter 3 the
methods for analyzing the state space were discussed. The GTPN is viewed as a
stochastic process with an embedded discrete-parameter Markov Chain. Methods
are suggested for handling the general case where there are possibly multiple recur-
rent classes, transient classes and some recurrent classes are periodic. Some of the
numerical issues involved are also discussed. Handling the general case is especially
significant, because in non-pathological nets we have generated state spaces with
transient classes, multiple recurrent classes, and periodic recurrent classes. Certain
of the Dining Philospher nets had transient classes and multiple recurrent classes.
A periodic recurrent class was generated from a GTPN net modeling the handling
of inter-process communication by a front-end processor [RAMS6|.

Four modeling studies were conducted using the GTPN. Chapter 5 discussed the
studies of the Dining Philosophers Problem and of the scalar mode of the CRAY-1.
Chapter 6 presented the study of multiprocessor memory and bus interference. Us-
ing the GTPN exact performance estimates were derived for many cases for which
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exact estimates were previously considered to be computationally infeasible. Chap-
ter 7 treats the study of shared bus cache consistency protocols. This study isolates
the key features of these protocols and determines the effect on performance of each
feature. No such comparison previously existed.

In conclusion, we feel that we have developed a promising modeling technique
and reached some interesting conclusions concerning the performance of parallel
architectures. In the next section we consider possible future directions.

8.2 Future Research Directions

There are a number of possible future research directions.

1. More General Resource Usage Estimates

Some straightforward changes to the GTPN are needed to support modeling
certain situations. In particular, resource usages should not just occur due to
transition firings. A token in a place should be allowed to count as a resource
usage. More generally, resource usages should be arbitrary expressions con-
taining the names of transitions and places as well as arithmetic, logical, and
relational operators.

2. Investigating Numerical Methods

Alternative numerical methods could be investigated for improving the perfor-
mance of the state space analysis. With respect to computing the stationary
probability distribution, currently the Power Method is used. To ensure a
unique dominant eigenvalue shifting and scaling of the transition probability
matrix is done. The current scaling factor is that suggested in [WAL66]. In-
vestigating the effect of other scaling factors on the convergence rate appears
worthwhile. The current shifting and scaling ensures that the unique domi-
nant eigenvalue is the real number 1. A simple shift by an arbitrary positive
real number also ensures a unique dominant eigenvalue though the value of
that eigenvalue is no longer 1. Implementing the simple shift and comparing
the two implementations is worth doing. As discussed in chapter 3, in the
case of reliability models based on continuous-time markov chains, a study
by Stewart and Goyal [STES5] has shown that the Successive Overrelaxation
(SOR) method is superior to the Power Method in many cases for finding
the stationary probability distribution. Comparing these approaches in the
setting of the GTPN is clearly a direction for future research.

3. Parallel Solution of the GTPN

The GTPN tool constructs a state space sequentially and then solves it sequen-
tially. Since handling the largest possible state space in a reasonable amount of
time is important, parallelizing the tool appears very useful. The state space
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analysis is almost totally numerical and so the algorithms for parallelizing it
fall in the domain of parallel numerical analysis.

Constructing the state space, on the other hand, is an issue more peculiar to
the GTPN. Expanding different parts of the state space concurrently seems
straightforward except for the issue of checking for duplicates. A shared mem-
ory paradigm seems reasonable. The array of already constructed states is
accessible to each ezpander of the state space. The addition of a new state
to the state space array by an expander must be implemented as an atomic
event to ensure mutual exclusion. This is needed because adding a state has
two parts: checking for duplicates (hash and then search a small set of past
states) and then either adding the new state or updating the duplicated state.

Whether this parallel algorithm improves or degrades performance depends
on the architecture of the machine on which the program executes. The ex-
panders need to be on different physical processors to have true concurrency.
Unfortunately, this might cause the access time to the shared memory con-
taining the state space array to be lengthened. The computational cost of
constructing a next state is small enough that little additional communica-
tion cost can be tolerated in order to maintain a reasonable communication
to computation ratio. Consequently, the architecture must be quite tightly
coupled.

. Approximate Models Using the GTPN

Parallelizing can only help to a limited extent. State space explosion remains
a major problem in the GTPN. In many situations a net detailed enough to
be a good model has too large of a state space. Consequently, approxima-
tion techniques should be considered. This, in fact, has already been done
successfully. In [RAMS86] Kishore Ramachandran uses the GTPN to model
support for interprocess communication by front-end processors. A single net
would have too large a state space. Instead the model contains two nets: one
for the server and one for the client. Each net represents the other net by a
state-dependent transition. Initial estimates are made for the firing duration
of these two transitions. The nets are iteratively solved until convergence.

Extensive research has been done concerning approximate methods in queue-
ing network models. De Souza e Silva, Lavenberg, and Muntz’s paper [SOU84]
is an excellent review of this work. It would be interesting to consider the ap-
plicability of the queueing network work to the GTPN.

. New Problem Domains

Other modeling studies should be conducted. It is important to characterize
the problem domains in which the GTPN is useful. Other areas, besides
parallel architectures, could be considered. Network protocols and concurrent




89

software have been modeled using other forms of Petri Nets [GR85,STO85].
The GTPN may be useful in those areas also.

Two more specific possibilities are program behavior at the basic block level
and reliability analysis. If a program is viewed as a sequence of basic blocks,
then the program’s mean time to completion could be computed. In this
application the important issue is the assignment of the probabilities between
basic blocks. In some cases (for example, for loops with immediate values as
limits) probabilities can be determined. In other cases, bounding probabilities
should be chosen.

The applicability of the GTPN to reliability analysis is suggested by the work
by Marsan and Chiola [AJM85b]. In that work they investigate the reliability
of a multiprocessor using the GSPN. The key is that the probability distribu-
tion (not just the mean) for each performance measure needs to be computed.
Given the distribution, we can state, for example, not only the mean number
of operational processors, but also what percentage of the time are at least x
processors operational. The GTPN does compute the probability distribution
for each performance measure, so the GTPN might also be useful in reliability
analysis.

. Alternative Model Description Languages

The use of a form of Petri Nets as the system modeling language might not
be essential. The analysis of the state space and perhaps some of the state
space construction algorithms seem independent of the modeling language.
The effectiveness of other modeling languages should be explored.

. Verification

Verification of logical properties has been studied using Petri Nets (as well as
other formalisms, such as temporal logic). Perhaps the GTPN can be used for
verification as well as performance analysis.
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