Experience with Crystal, Charlotte and Lynx
Second Report

by

Raphael Finkel
Bahman Barzideh, Chandreshekhar W. Bhide
Man-On Lam, Donald Nelson
Ramesh Polisetty, Sriram Rajaraman
Igor Steinberg, G.A. Venkatesh

Computer Sciences Technical Report #649
July 1986






Experience with Crystal, Charlotte, and Lynx
Second Report

Raphael Finkel
Bahman Barzideh
Chandrashekhar W. Bhide
Man-On Lam
Donald Nelson
Ramesh Polisetty
Sriram Rajaraman
Igor Steinberg
G. A. Venkatesh

Computer Sciences Department
University of Wisconsin—Madison

Abstract

This paper describes several recent implementations of distributed algorithms at Wisconsin that use
the Crystal multicomputer, the Charlotte operating system, and the Lynx language. This environment is an
experimental testbed for design of such algorithms. Our report is meant to show the range of applications
that we have found reasonable in such an environment and to give some of the flavor of the algorithms that
have been developed. We do not claim that the algorithms are the best possible for these problems,
although they have been designed with some care. In several cases they are completely new or represent
significant modifications of existing algorithms. We present distributed implementations of PLA folding, a
heuristic for the travelling-salesman problem, incremental update of spanning trees, ray tracing, the sim-
plex method, and the Linda programming language. Together with our previous report, this paper leads us
to conclude that the environment is a valuable resource and will continue to grow in importance in
developing new algorithms.

This work was supported by DARPA contract N00014-85-K-0788 and NSF grant MCS-8105904.
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1. Introduction

At the University of Wisconsin — Madison, we have built an environment for experimenting with
distributed programs. This Eaper is a sequel to a previous one, in which we described projects that use
Crystal, Charlotte, and Lynx"inkel86a,

The Crystal multicomputerPeWitt84a j5 a collection of about 20 VAX-11/750 computers called nodes
connected by an 80 Mb/sec token ring. A subset of nodes, called a partition, can be allocated to d distri-
buted program. Partition allocation is mediated by software that resides on a host machine running Unix.§
Crystal provides a low-level reliable message facility within each partition. A user can inspect output to
the node’s terminal through a virtual terminal facility that redirects terminal 1/0 to a terminal (or window)
on the host. Output on virtual terminals can be saved in Unix files for later inspection.

CharlotteA™sy862 js an experimental distributed operating system that can run in a Crystal ‘partition
of any size. Programs running under Charlotte communicate through links, which are two-way channels
whose ends can be sent in messages (and thus relocated to other processes). The Charlotte user interface
consists of a command interpreter process through which one can enter interactive commands to start
processes, read command scripts, or interpret a connector file. The connector utility process is called to
interpret connector files. These files specify what processes to start and how to interconnect them by initial
links. Policy matters, such as on which node to start a process, are decided by other utility processes that
the casual Charlotte user need not understand. Other utilities available to Charlotte processes include file
service and a name service (to find well-known servers).

The Lynx programming languageScot852 provides linguistic support for distributed applications run
under Charlotte. Any number of Lynx processes may be loaded into a Charlotte partition. Processes exe-
cute in parallel (with arbitrary interleaving of execution for processes on the same physical machine) and
do not share any memory. They communicate with each other across language-defined links, which are in
turn based on Charlotte links. Links initialized by the connector are presented as arguments to the main
procedure of a Lynx module. Other links can be created and disseminated dynamically. They can be
bound to entry points, which are like function declarations. If a process executes a remote call through a
link bound to an entry point, a new thread of control is created at the destination process to service that call.
Threads of control within the same process may share memory. They do not execute in parallel; the
current thread continues until it blocks. We call this the mutual-exclusion property of threads.

This paper presents several new implementations based on Lynx and presents an evaluation of our
distributed computing environment. These projects were conducted as part of a seminar in distributed
algorithms during Spring, 1986.

§ Unix is a registered trademark of Bell Laboratories.
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2. PLA folding
Experimenter: Sriram Rajaraman

2.1. Introduction

A programmable logic array (PLA) is an effective tool for implementing multiple output combina-
tional logic functions in VLSI circuitsMe24802, A PLA has the general structure shown in Figure 1. In this
figure, the inputs and their complements run vertically through a matrix of circuit elements called the AND
plane. The AND plane generates signals that are combinations of the inputs and their complements. These
signals then become inputs to another matrix of circuit elements called the OR plane. The outputs of the
OR plane are the sum of products form of the Boolean functions of the PLA inputs. Each horizontal line of
the PLA carries a product term. An example of a PLA is shown in Figure 2. A cross in the AND plane
shows the presence of corresponding input in the term. A cross in the OR plane shows the presence of a
corresponding product term in the output. In general, a PLA can be described in symbolic form by a
matrix called the PLA personality matrixfechte82a The personality of the PLA in Figure 2 is shown in
Figure 3. A 1 in position (i,j) means that the jth input (output) or its complement is present in the i th pro-
duct term. A 0 in position (i,j) indicates that there is no connection.

Most PLA personality matrices are sparse, so a straightforward physical design will result in a
significant waste of silicon area. That is, a significant fraction of the PLA area will be occupied by inter-
connect only and will not contribute directly to the implementation of logic functions. Row and Column
folding of a PLA are techniques that attempt to reduce the area of a PLA by exploiting its sparsity.

The remainder of the paper is organized as follows. In Section 2 we introduce the notion of folding
and then describe the optimal folding problem. In Section 3 we describe a heuristic algorithm presented by
HachtelHacht=82a for the optimal folding problem. In Section 4 we offer a distributed algorithm for solving
the folding problem. Section 5 describes the implementation of the algorithm in Lynx. Section 6 presents
some performance results obtained by running the Lynx program under Charlotte. Section 7 summarizes
the author’s experience with Lynx, and Section 8 contains directions for future work.

INPUTS OUTPUTS
A A
AND PLANE ¢ OR PLANE

Figure 1. General structure of a PLA
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Figure 2. Sample PLA

1 0 1 0 1 0

0 1 0 0 1 0
Figure 3. Personality of sample PLA

2.2. Optimal PLA folding problem

In general, many types of folding are possible, depending on the technology used to implement the
PLA. In the present paper, we restrict ourselves to one particular kind of PLA folding called SCF — sim-
ple column foldingHachte822 SCF consists of either input-column folding or output-column folding. In
either case, a physical AND (OR) plane column is divided into two parts so that two electrical input (out-
put) signals can share the same physical connections of the two signals in the given physical column. Of
course, as illustrated in Figure 4, the electrical connections of the two signals in the given physical column
must not be intermixed, but instead be grouped on opposite sides of a physical cut located somewhere in
the column. One of the folded input (output) signals must then be routed from the top of the folded PLA
and the other from the bottom. In the implementation of the algorithms described in this paper, we do not
distinguish between input and output columns while doing the folding (for the sake of simplicity).

Not all columns of a PLA personality can be folded. An obvious necessary constraint is that two
columns be disjoint, that is, the 1’s of the two columns (in the PLA personality) must be in different
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A A A A
D D C C O2
Figure 4. Column folding of the sample PLA

positions. In fact, the folding of two columns in a PLA personality introduces constraints on folding of
other columns. Folding column i with column j forces all product terms containing the 7 th input(output)
or its complement to be on top of or on the bottom of all the product terms containing the jth input (output)
or its complement. For example, consider the PLA shown in the earlier figure. Folding columns 1 and 2
makes it impossible to fold columns 3 and 4. Hence, to fold a PLA we have to specify the pairs of columns
to be folded and their relative position (top or bottom). For the folding to be implementable, the relative
position of the columns to be folded should be such that no cyclic constraint on the position of the rows of
the PLA personality is implied. The goal of folding is to minimize the area occupied by the PLA. Hence
the optimal PLA folding problem is to find a maximal set of folding pairs (the maximum number of such
pairs is half the number of columns) without introducing a cycle in the row ordering.

Hachtel has shown the above problem to be equivalent to a graph problem. What follows is an infor-
mal description of that problem. Consider the example PLA personality shown earlier. It can be
represented by an undirected graph, as shown in Figure 5. There is a one-one correspondence between the
vertices of the graph and the column numbers of the PLA personality matrix. There is an edge between
vertices i and j of the graph if there exists at least one row in the PLA personality that has non-zero entries
for both columns i and j. Each distinct folding for the PLA (each pair of non-adjacent vertices with no
vertex in common with any existing folding) can be represented as a directed edge on the graph. A
directed edge between columns i and j implies that all rows with non-zero entries for column i will be
placed above (or below) all rows with non-zero entries for column j in the folded PLA. For example, con-
sider the PLA represented in Figure 5. The directed graph associated with the folding set
{(c1,64),(c3,c2),(c5.c6)} is shown in Figure 6.

The folding problem reduces to finding the maximum number of directed edges that can be added to
the initial undirected graph without creating an alternating cycle. An example of an alternating cycle in
Figure 6 is the sequence of vertices [5,6,3,2,5].

2.3. Serial algorithm for PLA folding

Hachtel has shown that the optimal PLA folding problem is NP-complete. He presents a heuristic
algorithm for solving the folding problem, which is described below.
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C1 C2
C3 C4
& 22Y
Cs Ceé

Figure 5. Graph representation of the sample PLA

c1 c2
c3
ca
d
> 9}
cs c6

Figure 6. Graph with ordered folding set

procedure SerialFolder : set of edge;

const
Edges = ... — set of edges of graph.
Vertices = ... — set of vertices of graph
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var
Foldings : set of edge := (};
Top : set of vertex := Vertices;
Bottom : set of vertex = Vertices;
u, v : vertex;
begin
label:
while Top < {} do
v := TopSelect(Top); — returns element of minimal degree
Bottom := {u € Bottom | u<>v, (u,v) € E};
while Bottom <> {] do
u = BottomSelect(Bottom); — element of maximal degree
if Cycle(v,u) then
Bottom := Bottom — {u};
else
AddEdge(v,u); — update graph
Foldings := Foldings + { (v.u) };
Top := Top - {v,u};
Bottom := Bottom — {v,u};
exit; — inner while loop
end;
end;
Top := Top — {v}; — deletion from top column set
end;
return Foldings;
end SerialFolder;

This algorithm finds folding pairs as follows :

Tt first selects a vertex (v) which is of minimum degree and is not yet part of a folding pair. It then
tries to find a vertex (u) of maximum degree (and not part of a folding pair) such that the folding (v,u) does
not cause an alternating cycle in the graph. The graph is updated whenever a new folding pair is found.

The heuristic portions of the algorithm are represented by procedures TopSelect and BottomSelect.
The cycle detection portion of the algorithm is detailed below.
procedure Cycle(v,u) : Boolean;

var
Answer : Boolean := false;
Children, Parents : set of vertex;

begin
Children = { te Aslte ADJ(u)}; —ofu
Parents = { t€ Aslve TRANS(t)} —of v
return Children and Parents <> {};

end Cycle;

In this algorithm,

ADIJ(u) is the adjacency set of vertex u:
ADJ(@) = { vi{u,v} € E}

TRANS(v) is the transitive closure set of vertex v of the mixed graph:
TRANS(V) = Uyear (v)uAtADJ (u)

AP(v) is the set of all distinct alternating paths beginning at v.

At={tls(st) e A}

As= {slt(s)) € A}

A is set of directed edges in the graph.

The AddEdge portion of the algorithm updates the transitive closure of appropriate vertices in the graph.
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2.4. Distributed folding algorithm

An important characteristic of the serial folding algorithm is that computation of each folding pair
requires knowledge about all the folding pairs added to the graph till then. The distributed folding algo-
rithm is composed of a variable set of folder processes (depending on the degree of parallelism desired)
connected together as shown in Figure 7. We chose a circular structure of processes rather than a master-
slave structure (represented as a star), since we feared that the master might become a bottleneck. The 1/0
process performs the task of reading in the data, initializing the graph structure representing the PLA and
printing out the results when the program is done.

After the I/O process has read in the data, it initializes the graph structure and passes it on to its
neighboring folder process. The folder process uses this data to initialize its local data structures and
passes on the message to its neighbor. This pattern continues until all folder processes have initialized their
data structures to represent the PLA being folded. The top column set, which is initially a set of all vertices
in the graph, is divided equally among all the folder processes as follows. The vertices are numbered in
increasing order of degree. Folder process i gets vertices v such that vmodN =i. The PLA shown earlier,
if folded with three folder processes, would be distributed as shown in Figure 8.

We now describe the algorithm implemented by a folding process. Each folding process executes a
three-step sequence for every vertex assigned to it.

(1) It computes all the possible foldings with the current vertex as the upper column (using the current
state of the PLA graph).

Figure 7. Structure of the distributed algorithm

2 Ci C6
C4 C3 Cs

Figure 8. Distribution of vertices



PLA folding 9

(2) Ttreceives and processes messages from the other N-1 folding processes (through its left neighbor).
Each message consists of a folding pair (and some other information as detailed below). The mes-
sage is forwarded to the right neighbor unless the neighbor happens to be the originator of the mes-
sage. Processing the message involves pruning the local foldings that are either redundant or will
cause a cycle due to the addition of the directed edge mentioned in the message. An incremental
cycle detection algorithm is used to detect cycles. It makes use of the fact that the cycle could have
been created only by the addition of the directed edge mentioned in the message. Each message
received also causes the local graph to be updated to reflect the addition of a directed edge.

(3) The ““best” (in the sense of the heuristic algorithm of section 2) local folding remaining after the
pruning of step 2 is then chosen. The others are discarded. The chosen folding is sent to the right
neighbor after the local graph structure is updated. The algorithm terminates when each process has
finished the set of vertices allocated to it.

The following is a more detailed description of this algorithm.

const
U = set of all vertices in graph;
NumberOfNodes = ... ;

var
Foldings : set of (edges, parents, children) := {};

process Folder(FolderID, NumNodes);

var
VertexSet = set of vertex := all vertices assigned to this node;
CurrentVertex : vertex;
Count : integer;

begin

while VertexSet <> {} do
CurrentVertex := VSELECT(VertexSet);
VertexSet = VertexSet - { CurrentVertex };
Foldings = ComputeFoldings(CurrentVertex);
for Count := 1 to NumberOfNodes do
accept an incoming message, with (v,u) pair.
forward message to neighbor on right
unless that neighbor originated it;

AddEdge(v,u);
PruneFoldings(v,u);
end;
propagate Foldings;

end;
end Folder;
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procedure ComputeFoldings(v : vertex) : set of edges;
var
Answer : set of (edges, parents, children) := {};
Bottom : set of vertex;
u: vertex;
begin
Bottom= {ue Ulu<v, {uv) € E}
while Bottom <> {]} do
u := BottomSelect(Bottom);
if not Cycle(v,u) then
FoldCount +:= 1;
insert ((v,u), v’s Parents, u’s Children) in Answer;
end;
Bottom —:= {u};
end;
return Answer;
end ComputeFoldings;

procedure PruneFoldings(var v, u : vertex);
begin
foreach e in Foldings do
if v=e.v or u=e.u then
Foldings —:= {e};
else
if e.vin TRANS(v) then
e.parents +:= msg.parents;
endif;
if ve ADJ(e.u) then
e.children +:= {v};
endif;,
if e.parents and e.children <> {} then
Foldings —:= {e};
endif;,
endif;
end;
end PruneFoldings;

2.5. Implementation using Lynx
The Lynx program implementing the algorithm consists of two modules: I/O and folder.
The I/O module has three functions:
(1) Read a PLA personality matrix.
(2) [Initialize the graph structure and send it to the neighboring folder process, which will propagate it.
(3) Gather results from the last node and print them out.

The folder is a straightforward Lynx implementation of the algorithm described in the previous sec-
tion. The folder gets the graph structure corresponding to the PLA being folded. It also receives a set of
vertices it should use as upper columns in the foldings it computes. An entry is defined for receiving the
initialization data from its neighbor on the left. Another entry is defined to receive messages from the left
neighbor during the course of the algorithm (corresponding to the ProcessMessage part of the algorithm).
This entry is bound to the right link of the neighbor. The main loop of the process consists of three steps as
explained in Section 4.

Each folder executes until it has emptied its vertex set. It then tells its right neighbor. When all ver-
tex sets are empty, the algorithm is done.
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At the moment, the program is limited by stack space to PLAs with fewer than 300 rows and 150
columns.

2.6. Performance results

The Lynx program described in previous section was run on Charlotte. Even though the program
was run on a number of PLAs, we now describe the test results obtained by running the program on a
300x150 PLA. The entries in the PLA personality were generated by using the Unix pseudo random
number generator ‘‘random()’’. An entry in the PLA personality was 1 with a uniform probability of
0.035. The number of rows and columns of the PLA and its density were chosen so that the serial program
(also implemented in Lynx and run on one Crystal node) would take sufficient time for speedup measure-
ments to be meaningful. The serial program took 28.91 seconds of CPU time. (This was the time needed
to execute the two main loops of the algorithm in Section 3.)

The speedup curve for the distributed algorithm is shown in Graph 1. Speedup is the ratio of serial
execution time to parallel execution time. The speedup is plotted with the number of processors varying
from 1 through 7. In all cases, each machine had only one folder process. Graph 2 shows the variation of
total number of remote procedure calls (the basic communication primitive in Lynx) and number of remote
procedure calls (RPC) made by each process with increase in degree of parallelism. Graph 3 shows the
amount of time spent in the different tasks performed by each process. Graph 4 shows the percentage of
total time spent in each of these tasks. These graphs were plotted using statistics generated by one folding
process. Since the algorithm is symmetrical with respect to folding processes, this graph should be typical
for all folding processes. ‘‘Total computation time’ represents the time spent by each processor in com-
puting foldings. The time required to prune foldings was not considered, as it was negligible compared to
the time required to compute foldings. Since all possible foldings are computed for each vertex assigned to
the process, and only the best (in the sense of the heuristics of Section 3) is chosen, some of the work done
will be wasted. The ‘useful computation’ graph represents the minimum work needed to find the best
folding.

71 Perfect

Speedup Measured
3 E

0 1 2 3 4 5 6 7
Number of Processors

Graph 1: Speedup
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351
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Graph 3: Breakdown of time
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1001
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useful computation
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Number of Processors

Graph 4: Breakdown of time by percentage

The cost for remote procedure calls (synchronization and communication costs in Graph 3) decreases
with increase in degree of parallelism, even though the number of remote procedure calls increases (as
shown in Graph 2). This anomaly can be explained by a peculiarity of the Lynx implementation. Each
RPC involves sending a message and receiving a reply. It also results in creation of a new thread in the
receiver. However a context switch occurs only on blocking, that is, the receiver gets to send a reply only
when its current thread blocks. When the degree of parallelism is low, it is more probable that the receiver
process is engaged in some computation when it receives an RPC. Hence it takes more time to service the
RPC, explaining the higher synchronization and message cost for lower degrees of parallelism.

Graph 1 shows that speedup is almost linear (with a negative offset and a slope of 0.5). There is
almost no speedup obtained for a parallelism of 2, because a large percentage of the time (about 50%) is
spent in synchronization and communication. As the degree of parallelism increases, the amount of useful
computation done by each processor falls and the percentage of time spent in communication and syn-
chronization also falls. This reflects the speedup obtained.

2.7. Experience using Lynx

The concept of threads of control and policy of context switching only on blocking makes it very
easy to write synchronization protocols using Lynx. The author would have preferred a better I/O facility,
for example, one akin to that provided by C. A faster Lynx compiler would greatly help.

2.8. Conclusions and future work

This work demonstrates that control synchronism and resource usage are important factors in deter-
mining the execution time and speedup of a parallel program.

The performance results can be used to tune the program. It may be a good idea to reduce the
number of messages by letting each processor compute n foldings before communication with others (nis 1
at the moment). This may, however, result in a greater percentage of the work done by each processor
going to waste. It will also be interesting to compare the distributed algorithm presented here with one
having a master-slave structure.
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3. Travelling Salesman
Experimenter: Igor Steinberg

The Travelling Salesman Problem (TSP) is well known to computer science researchers. Given a
weighted directed graph G = (V,E), the problem is to find the minimal length tour of all the vertices in V.
In general, no restrictions are imposed on the set of edges, E. TSP is NP-complete®arey92, We concen-
trated, therefore, on a high-quality heuristic algorithm. !

3.1. The algorithm

The algorithm used to solve TSP is as outlined by Lin and Kernighanli1712 The algorithm works as
follows:

(1) A random tour, T, is generated.

(2) The algorithm attempts to identify a set of edges, X, in T and a set Y in (B-T), such that replacing
the set X with the set Y results in new tour, T’, of lower cost than T.

(3) Step (2) is repeated until the algorithm can no longer find a feasible set Y.

(4) 'When no further improvements can be made, the algorithm halts and reports its solution. Such a
solution is termed a ‘‘local optimum’’.

(5)  Steps (1) through (4) are repeated as many times as desired by the operator. The best local optimum
is then reported as the result.

This algorithm is not guaranteed to find the best tour, but it is very fast. The observed running time for the
algorithm is close to quadratic.

3.2. Implementation

The algorithm was distributed by allowing the computations of the different local optima to occur in
parallel. A Queen process coordinated the work of many Worker processes. The Queen process is just a
housekeeper. It first reads the graph and other data from a text file. These ‘‘other data’’ include a number
specifying how many Worker processes should be spawned. The Queen then the Workers and provides
each with a copy of the graph. The Queen also provides each Worker with a random seed used to generate
initial random tours. As each Worker reports a new tour, the Queen either instructs the Worker to continue
from a new initial random tour or to terminate. The new local optimum tour is broadcast by the Queen to
each of the other Workers. This added information allows the Workers to effectively avoid checkout time.
Avoiding checkout time will be discussed later in the report.

The function of the Worker is to generate a random tour, modify it until a local optimum is reached,
then report the result to the Queen. Each Worker runs the algorithm described by Lin and Kernighan for
one iteration. The reader is referred to that paper for a precise description of the algorithm. We present
only a sketch of the method here. An edge of the initial tour is broken, and a search evaluates the benefit of
healing the wound by adding various new edges, each of which will cause new wounds, which are them-
selves healed by a similar method. The most beneficial healing method is chosen, and then a new edge is
chosen for breaking. This process continues until no matter which edge is broken, no healing can improve
the tour. The phase of the algorithm that fruitlessly tries breaking each edge is called ‘‘checking out the
tour’. Lin and Kernighan claim that it consumes as much as 50% of the total computation, and our experi-
ence supports this claim.

Our implementation includes some of Lin and Kernighan’s refinements:

(1)  Avoiding checkout time. (Before breaking a new edge, the tour is compared with other local optima,
and if it is identical, the entire checkout process is avoided.)

(2) Lookahead.
(3) Partial reduction.

These features tend to improve the running time of the algorithm. We did not implement these
refinements:

(1) Nonsequential Exchanges.
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(2) Breaking the feasibility criterion, by choosing the alternate X2. This is described by the authors in
step 6(b). This step was avoided because including it would have made the program much more
difficult to debug.

These features tend to improve the quality of the solution found by the algorithm.

3.3. The Lynx program
The Queen process contains the following entries:

inform() This entry accepts results from the workers. It invokes entry broadcast() and also
informs the operator of the results of the program before termination.
broadcast() This entry connects to the checkout() entry of the Workers. It is used to transmit the

results of one Worker to all of the others.
The Worker process contains the following entries:

startup() This entry is invoked once by the Queen. It accepts the cost matrix as well as other ini-
tializing data from the Queen.
checkout() This entry accepts information broadcast from the Queen. A tour is represented by a

hash value. This value is inserted into an ordered list for future searching by the
worker() entry. Using a hash value instead of the actual tour saves in communication
cost and search cost, but can lead to erroneous pruning of new tours.

worker() This entry runs the Lin/Kemighan algorithm.

In addition to the graph, the data file contains 20 debugging flags. This feature allows the operator to
trace execution selectively. The Lynx compiler is slow, so using run-time debugging checks saved a great
number of compilation hours.

3.4. Experiments

The program was tested with two kinds of data. The first set of data used was random, with inter-
city distances uniformly distributed. The second set was specifically designed to make the algorithm per-
form poorly. Each set of data was run for graphs of 8, 12, 16, 20, and 24 vertices. Each graph size was run
using 1, 2, 4, and 8 Worker processes. We measured the amount of time needed to generate 20 local
optima. We also measured the number of checkouts avoided. To see how much time was actually saved,
we also ran problems with checkout avoidance turned off.

Each Worker ran on a separate machine. The Queen also ran on its own machine, except in the case
of 1 Worker, in which both processes executed on the same machine. The Queen was placed on its own
machine only to save it from a greedy Worker process. The Queen could become a bottleneck if it shared a
machine with a Worker, because the Worker would use most of the available CPU resource. This problem
could be solved elegantly if the Queen could run at higher priority, but Charlotte and Lynx do not have this
facility.

As mentioned previously, the non-random data were designed to make the algorithm perform poorly.
The data were constructed so that each vertex had, as its six closest neighbors, vertices 0 .. 5 (in order of
closeness). The algorithm constructs two sets of edges (X and Y) that are swapped if replacing the X edges
by the Y edges results in a tour of lower cost. The algorithm sequentially breaks an X-edge and tries to add
a Y-edge to the tour from one of the vertices with the broken X edge. The new Y edge has a vertex in
common with the X edge. When searching for a suitable Y edge, the algorithm only considers the shortest
k edges from this common vertex. (The parameter k is set in the data file; we used a value of 6.) The algo-
rithm performs quite poorly if the number of vertices is much greater than k.

3.5. Experimental results

Table 1 shows the results of running our algorithm using the random data. In each case, the queen
directed that 20 local optima be found. Some of these turned out to be duplicates, particularly for small
graphs; the table shows the number of local optima that were actually global optima. The times (given in
seconds) are reported both when checkouts are avoided and otherwise, along with the associated speedups.




16 Travelling salesman

. global  checkouts . full full
cities | workers optima avoided time speedup time speedup

1 20 19 27436 1.00 52.626 1.00

8 2 20 18 16.648 1.64 28215 186
4 20 16 11.289 243 15.871 3.32

8 20 12 7.357 3.73 9.786 5.38

1 11 15 45.149 1.00 75.964 1.00

12 2 7 14 26.194 1.72 41.236 | 184
4 8 12 14.757 3.06 20.054 3.78

8 9 7 10.944 4.12 12.836 591

1 10 16 85.995 1.00 129481 °  1.00

16 2 7 11 47917 1.79 62.073 2.09
4 9 14 26.399 3.26 35.511 3.65

8 9 7 17485 4.92 19.656 6.59

1 6 12 108.218 1.00 148.055 1.00

20 2 7 9 62.837 1.72 76.449 194
4 3 6 33.844 3.19 38.995 3.79

8 4 3 21.781 497 24.612 6.01

1 1 9 170.139 1.00 207.553 1.00

24 2 2 8 88.313 193 104.732 1.98
4 1 6 43.765 3.88 49.613 4.18

8 1 2 28474 597 29.997 6.92

Table 1: Random data

The speedup obtained by distributing the algorithm appears to be directly proportional to the number
of processors. The speedups are worse when checkouts are avoided, because a checkout that might have
been avoided is often finished (or well underway) by the time a message arrives obviating it. The table
shows how the number of checkouts avoided falls with the number of workers. However, it is always

beneficial to avoid checkouts.

The data suggest that the time required to solve a problem increases linearly with the size of the
problem. If one considers how many of the 20 computations were really needed, however, then the time
grows faster than that. For example, one worker solving a 16-city problem finds the best solution in 10 of
20 attempts, while it finds the best only once at 24 cities. As the size of the problem increases, the number
of attempts should increase. The Queen could have the Workers continue until no significant improve-
ments have occurred for a while.

The checkout-avoidance savings fluctuate. For some problems the savings appear 10 be quite sub-
stantial, while for others this is not so. The checkout-avoidance savings would likely increase significantly
if the unimplemented features were added, since they tend to improve all local optima, and so more high-
quality tours would be found.

The true optimal costs for a few of the problems have been found by using DIBFinkel85a Ip each case,
our heuristic algorithm found the optimal solution. The largest verified problem is the (random) 12-city
problem,

Table 2 shows similar results for the non-random data. Far fewer checkouts were avoided, because
many different tours gave the same result. The speedup results for both the random and the non-random
24-city problems are shown in Graph 5.

3.6. Comments on Lynx

Lynx is a wonderful programming language. It made implementing this algorithm really quite easy.
As is the case with any software, it can be improved in some ways.

° It would be nice if Lynx had built-in file I/O.
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o global  checkouts .
cities | workers optima avoided time speedup
1 20 7 38.405 1.00
8 2 20 22.704 1.69
4 20 0 12.621 3.04
8 20 0 7.357 5.22
1 20 0 110.227 1.00
12 2 20 0 61.044 1.80
4 20 0 32.888 3.35
8 20 0 16.196 6.80
1 14 0 222971 1.00
16 2 12 0 124.137 1.79
4 13 0 62.584 3.56
8 13 0 37.826 5.89
1 6 0 335.107 1.00
20 2 9 0 176.838 1.89
4 8 0 95.683 3.50
8 4 0 61.526 544
1 1 0 469453 1.00
24 2 1 0 224.824 2.08
4 1 0 120.798 3.88
8 1 0 67.754 6.92
Table 2: Non-random data
81
7 o
64 random, not avoiding checkout
57 not random, not avoiding checkout
,\rydom, avoiding checkout
Speeduﬁ ]
3 o
2 r
1 r
0 T ,
0 1 2 3 4 5 6 71 8
Number of Processors

Graph 5: Speedup for the 24-city problem

It would also be nice if Lynx had a cast operator (like C).

17
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Any spoiled UNIX programmer would also like Lynx to have a debugger like dbx.

Lynx should allow the programmer to specify (with compile-time switches) both the amount of stack
space to be reserved and the size of the process’ link table. I encountered what I believe to be unrea-
sonable limits for both, and this severely limited the size of problem and the number of Workers that
I could run.

As previously noted, Lynx and Charlotte should let the programmer/user specify the run-time ‘prior-
ity levels for individual processes.

Lynx should also let the programmer specify priority levels for different entries within a process.
When broadcasting from the Queen to each Worker, it would be nice to interrupt each worker pro-
cess. This would allow some entries to act as interrupt handlers. Currently, await statements are
used to achieve a similar effect. This is much less efficient and much more cumbersome than the
code that would result from priorities. The run-time cost of await should not be underestimated. I
could not obtain precise timings, but I believe that a few await statements account for 25-40 percent
of the program’s running time. These statements are not in the program’s innermost loops.

3.7. Acknowledgement

We would like to acknowledge the help of Udi Manber, who determined the optimal costs for a

number of problems using DIBFinkel852, This information not only confirmed that the algorithm was per-
forming well, it also helped assure us that the algorithm was running correctly. A heuristic algorithm is
very difficult to debug simply because one cannot tell whether or not the generated result is correct. A rea-
sonable answer might be the solution that should be produced by the algorithm, or might possibly be due to
a subtle bug in the program.
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4. Minimal Spanning Tree Updates
Experimenters: Donald Nelson and Ramesh Polisetty

A spanning tree of a connected graph can be defined as a connected subgraph containing all the ver-
tices of the graph but no cycles. Hence, a spanning tree gives a unique path between any pair of vertices.
The weight associated with each edge represents a cost defined by the application. Examples of such costs
are transmission costs, time delays and distances. A minimal spanning tree (MST) is a spanning tree with
the least total cost. In applications such as distributed databases where broadcasting is a frequent
occurrence, MST information proves to be very useful in order to minimize the transmission cost associ-
ated with each of the channels. As the topology of the network changes, there is a need for incrementally
updating the MST information.

' |

In this project, as in the one reported in the first Experience reportFinkel86a_ the distributed algorithm
by Gallager, Humblet and SpiraGal28832 was used as the basis for constructing the MST. The MST infor-
mation is distributed, with each vertex of the network keeping track of its incident edges that are part of the
MST. Starting from this MST, we implemented the distributed algorithms suggested by ChenChen83a for
updating the MST information as the edge weights of the graph increase or decrease. These update algo-
rithms require only a subset of the vertices to participate in restructuring the MST, and hence are more
efficient than rebuilding the MST from scratch. By making use of a locking scheme in each vertex and
providing a deadlock detection mechanism, the algorithms for updates are allowed to proceed concurrently
to enhance their performance.

4.1. Construction of the MST

A fragment of an MST can be defined as a connected subgraph of the MST. For an n-vertex graph,
Gallager’s algorithm starts with n single-vertex fragments, each performing the same local algorithm,
Vertices in a fragment cooperate to find the minimum weight outgoing edge leading to a vertex in another
fragment. Each fragment is identified by a special edge called the core edge. The two fragments can then
be combined into a larger fragment and allowed to find the subsequent minimum weight outgoing edges.
The algorithm terminates when there is a single fragment, which is the MST. At the end of the algorithm,
each vertex knows which of its incident edges are in the MST. The two vertices at each end of the final
core edge recognize the termination of the MST algorithm and initiate the computation of the subtree ver-
tex sets (to be described in the next section).

4.2. Incremental edge updates

In a spanning tree, every non-tree edge defines a basic cycle. The basic cycle contains the non-tree
edge itself and the set of tree edges connecting both ends of the non-tree edge. For a given tree to be an
MST, a necessary and sufficient condition is that that every non-tree edge have the highest cost on the basic
cycle it defines. The effect of an edge change is summarized as follows:

° A tree edge, when its cost increases, may be replaced by the non-tree edge with the lowest cost
whose basic cycle contains the tree edge.

® A non-tree edge, when its cost decreases, may replace the tree edge with the highest cost in the basic
cycle.

In either case, the action to be taken is to replace a tree edge by a non-tree edge in the MST. All other
changes will not affect the MST.

To efficiently support the maintenance of an MST, a data structure called the subtree vertex set is
ased. A vertex has a subtree vertex set for every incident tree edge. These sets contain a list of all the ver-
tices in the subtree across that tree edge. A destination can be reached from any place in the network by
following the tree edges whose subtree vertex sets contain the desired vertex. Subtree vertex sets are also
useful during the search phase of an incremental update for determining if an edge connects two fragments.

The search phase is the first of the two phases of the incremental algorithm. The two cases that
might affect the MST are increased tree edge cost and decreased non-tree edge cost.

® Increased tree edge cost. If the tree edge whose cost is increased is removed, two fragments of the
MST are formed. One of the vertices of the affected edge, (the one with the fewer vertices in its
fragment or the one with smaller vertex id in case of a tie) initiates the process to determine the
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minimum weight outgoing edge from the fragment by passing SearchMin messages and accepting
ReportMin messages. If this edge is different from the tree edge, a new MST is formed by exchang-
ing the minimal edge and the tree edge.

® Decreased non-tree edge. The SearchMax message is routed through the vertices in the basic cycle
of the non-tree edge. The message returns with the highest cost edge in the basic cycle. If this edge
is different from the non-tree edge, then an exchange is initiated between the maximum cost tree
edge and the non-tree edge.

If an exchange has been decided in the search phase, the algorithm enters the update phase. During
this phase, each of the two vertices defining the non-tree edge (which is entering the MST) mark this edge
as belonging to the MST and send an update message to the neighboring vertices in the basic cycle. The
update message contains a list of vertices of the subtree across the edge being removed from the MST.
Vertices receiving this message update their subtree vertex sets using this list and forward the message to
the adjacent vertex in the cycle. When the two vertices defining the tree edge (which is leaving the MST)
receive the update message, they adjust their vertex sets and remove the tree edge from the MST to com-
plete the exchange.

4.3. Concurrent edge updates

1t is very common to have concurrent updates in a real network. However, any particular vertex can-
not participate in more than one edge update operation at a time. In order to resolve this conflict, an
exclusive lock can be used to serialize the updates at any single vertex. This lock is set whenever there is
an active update process involving the vertex.

Deadlock can occur when two update processes on each end of an edge are holding the lock the other
needs. This deadlock condition can be detected by storing (in the lock) the set of vertices the current
update process will traverse next. If the update process detects that the vertex it is visiting has already been
locked and the vertex it last visited is one of the next vertices recorded in the lock, a deadlock situation has
occurred. The update with higher priority is allowed to continue while the one with lower priority backs up
to the initiating vertex. If there is no possibility of a deadlock, an update process merely waits for the lock

to be released.

When the update phase at a vertex is completed, the lock is released. At this point, a waiting update
process or an update process originating at that vertex will resume.

4.4, Implementation

Our implementation of the distributed algorithm uses two modules, the IO (input/output) module and
the Vertex module. At startup, the IO process is connected to each of the vertex processes and to the Char-
lotte switchboard, through which the Charlotte fileserver is found. Each vertex process is initially con-
nected only to the IO process.

We implemented these algorithms in Lynx, using remote procedure calls instead of message passing
for interprocess communication. Each remote procedure call is counted as a “message’” in the results we
will present.

4.4.1. The IO process

The 1O process is the interface between the user and the vertices of the graph. This module obtains a
link to the fileserver, reads the graph information from the input file and initializes the Vertex modules by
sending the graph information to each of the vertices. A graph edge is represented by two vertices and an
edge cost. The IO process creates a new link to represent each edge, and passes the edge information to
both the associated vertices, giving one end of the link to each. After the entire graph is established, the
vertices are awakened by the IO process to start executing the distributed algorithm to construct the MST.
At the end of the MST computation, the IO process receives the local MST view from each of the Vertex
processes and sends the complete MST information to the screen.

The edge updates are then read from the input file and the two affected vertices are informed about
the change. After the completion of the incremental update algorithm, the IO process receives the result of
the update from one or both of these vertices, and, if necessary, updates its MST information. In order to
execute the updates concurrently, the IO process assigns a sequence number to each of the updates so that
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older updates could be given preference in case of a deadlock. (Concurrent updates were not completely
implemented). In our implementation, the IO process also receives the information about the subtree ver-
tex sets from each of the vertices facilitate debugging.

4.4.2. The Vertex process

Vertex processes collect the incident edge information from the 10 process. Once awakened by the
IO process, they start the distributed algorithm for MST computation. The termination of the MST compu-
tation is recognized by the two vertices of the core edge. These vertices initiate the computation of subtree
vertex sets by sending messages outwards, towards terminal vertices.

Computation of vertex sets follows a classical ““edge-in’’ structure: Each vertex that has heard from
all but one of its neighbors sends information to the missing neighbor, and when it hears from that last one,
it sends information to all the others. Terminal vertices, which by definition have but one neighbor, can
send information immediately. In our case, the information that is sent is the set of all vertices that can be
reached via all neighbors except the one to which the information is sent. '

All update requests involving a particular vertex are received by that vertex and are stored in a prior-
ity queue of pending updates ordered by sequence number. They are removed from the queue whenever
the lock becomes free. The type of the edge change is determined by noting whether the edge belongs to
the MST and whether the cost has increased or decreased. Depending on the two cases of the updates,
SearchMin or SearchMax messages are sent to the concerned vertices. Each vertex upon receiving a
search message tries to set the lock of the vertex if it is not already set. If it is set and there is no possibility
of a deadlock, the search process waits. If there is a deadlock, the low priority update (the one with higher
sequence number) backs up vertex by vertex until it reaches the initiating vertex. All the locks set by this
update are released as it backs out, and the update is put back into the pending queue.

In the case of a tree-edge update, a certain amount of pruning of the search occurs while nodes send
SearchMin messages outward. If the edge weight of the next edge is greater than or equal to the current
minimum edge weight found so far, a SearchMin message is not sent over that edge. While nodes receive
ReportMin results, if the minimum edge weight received so far is smaller than all the weights of edges yet
to report, subsequent ReportMin results are ignored. This pruning process does not affect the correctness
of SearchMin because of the properties of basic cycles in minimum spanning trees.

For any update, only one of the two affected vertices will initiate the search phase. At the end of the
search phase, the edge that should be the part of the MST is determined. If this edge is not already in the
MST, an update phase is initiated to update the subtree vertex sets of the vertices along the basic cycle. In
the case of a decrease in the non-tree edge weight, all the vertices in the basic cycle are locked during the
search phase. When a tree edge cost increases, only half the vertices of the basic cycle are locked during
the search phase, and the update must wait until all the vertices in the basic cycle are locked. Finally, the
two vertices corresponding to the changed tree edge inform the IO process of the edge which was changed
in the MST.

4.5, Testing and results
Testing was performed in two areas:

(1) Performance of incremental updates (Chen) versus recalculating the entire minimum spanning tree
(Gallager), and

(2) Speedup as more processors were used.
Both performance and speedup were measured with respect to the number of messages and time needed.

4.5.1, Incremental versus full recalculation

Graph sizes of 4, 8, and 16 vertices were tested. Within each graph size, edge densities of 50% and
100% were considered. Three graphs with four edge updates each were run to determine each data point.

Sequential updates to the minimum spanning tree were used to generate the data. The IO module
waits until it has heard from the last two vertices involved in the search or update process before reading in
a new edge change, so there is no concurrency between updates. The edges were randomly chosen. Edge
weights were random numbers uniformly distributed between 1 and 500.
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Four edge weight changes were randomly generated for each graph. Only some of these changes
affected the MST. For each of the updates that modified the MST, incremental updates were performed.
and also the entire MST was recalculated. The times and number of messages for these updates and recal-
culations were averaged to produce the data below. In addition, we measured the cost of calculating the
vertex sets, before any updates were considered.

The results from graphs with 100% edge densities are given in Table 3.

Vertices Algorithm MsgCount  Time in ms
Rebuilding MST 37 140
4 Incremental Update 8 121
4 Initial VSet Calculation 12 143
Rebuilding MST 129 307
8 Incremental Update 10 165
Initial VSet Calculation 28 304
Rebuilding MST 373 753
16 Incremental Update 14 189
Initial VSet Calculation 60 828

Table 3: Average MsgCounts and Time for 100% connected graphs

The test results using graphs with 50% edge densities are shown in Table 4.

Vertices Algorithm MsgCount  Time in ms
Rebuilding MST 31 162
4 Incremental Update 8 133
Initial VSet Calculation 12 158
Rebuilding MST 95 239
8 Incremental Update 8 183
Initial VSet Calculation 28 306
Rebuilding MST 305 602
16 Incremental Update 13 221
Initial VSet Calculation 60 814

Table 4: Average MsgCounts and Time for 50% connected graphs

Both the timings and the number of messages are significantly reduced in Gallager’s algorithm when
the edge density is reduced. This is expected with respect to the number of messages, since its behavior is
O(nlogn +e). However, the expected time complexity of Gallager’s algorithm is O(nlogn). In all other
aspects, the performance does not vary noticeably with respect to the edge density.

The time taken to perform all vertex-set computations is dominated by the initial vertex set computa-
tion. It takes as much time to calculate the initial vertex sets as it does to calculate the entire minimum
spanning tree for a fully connected graph. This result can be understood by considering the number of
entries called at each vertex during the vertex set calculation. Every vertex (except the core vertices) com-
municates with each MST neighbor three times during the vertex set calculation.

There is no doubt that incremental updates are much more efficient than recalculating the entire
MST. The discrepancy becomes more apparent as the size of the graph increases. This is to be expected,
since incremental updates limit their involvement to a single cycle in the graph, whereas the entire graph is
involved with calculating the MST. When the graph is small, the cycle is more likely to involve a larger
portion of the graph.

4.5.2. Speedup

Speedup measurements were performed on three 16-vertex graphs with 100% edge density. Because
of Charlotte limitations, a bigger graph could not be attempted. The graphs were run using 4 and 8 char-
lotte nodes. Again, because of Charlotte restrictions, more nodes could not be attempted. The speedup
measurements for Gallager’s and Chen’s algorithms are given in Table 5:
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Time Taken (in msec)
Charlotte
100% density 50% density
Nodes Gallager | Chen || Gallager | Chen
4 1034 179 705 199
8 753 189 602 221

Table 5: Timing results for 16-vertex graphs. «

The cost for incremental updates increased somewhat when more computers were used. This indi-
cates that the running time of Chen’s algorithm is so little that its performance is dominated by communi-
cation costs even with our largest graphs. However, a 15-25% reduction in running time is realized by
doubling the number of computers used to calculate the entire Minimum Spanning Tree using Gallager’s
algorithm. '

The time taken to calculate the initial vertex sets did not change significantly as a function of paral-
lelism, although the times were large enough that communication costs did not dominate its performance
(about 900 msec).

4.6. Experience with Lynx

° Too much time had to be spent finding out the details of performing I0. More documentation on this
subject should be provided to aid the programmer.

° Beiter 10 handling facilities should be provided. It would be much more convenient to be able to use
routines similar to printf and scanf.

® Many of the limitations of Charlotte are poorly documented. A few examples are restrictions in the
number of links allowed by any one process and limits in the number of links that any user can use.
Much time and effort would be saved if such parameters were easily accessible.

° The lynx language provides an elegant way to express and implement a distributed algorithm.

° Debugging a distributed program can sometimes be a very difficult process, especially when
deadlock is concerned. A distributed debugger would be a very useful tool in these situations. We
did not use TAPGordon85a_ byt it might have been helpful.

® A convenient way to fork new processes would allow more efficient initialization. Alternatively, we
could have processed the graphs into Charlotte connector files and used existing software.

) In order to avoid recompilation for running the program on graphs of different sizes, we had to con-
nect the extra links in the header of the IO process to the links of a series of dummy processes.
Alternatively, we could have had them linked to each other. What Lynx really needs is a way to per-
mit sets of links to be passed to processes by the connector.

4.7. Pseudo-code for concurrent updates of MST

process IO(SBlink, link1, link2, link3, link4, link5, link6, ... linkn:link);
— SBlink is a link to the switch board and
— each link—i is a link to i th vertex.

type
weightType = integer; —— real, integer etc.
— matrix to represent the graph connection
row = array [1 .. MAXNODE] of weightType;
matrix = array [1 .. MAXNODE] of row;
VsetType = set of [1 .. MAXNODE]; — set of vertices in the graph
Vrow = array [1.. MAXNODE] of VsetType;
VsetMatrix = array[1 .. MAXNODE] of Vrow;
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var
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graph : matrix;
MST : matrix;
Vsets ; VsetMatrix;

procedure InitGraph;

begin '
-— Read in Graph
—— Create a link for every edge and send them to
— the corresponding vertices.
— Wake up each vertex process to begin the
— Galleger’s algorithm.
end InitGraph;
entry RecordMST(Nodeld : integer; EdgeArray : TOW);
begin
<update MST array>
if <all vertices heard from> then MSTdone := true; end;
end RecordMST;
entry RecordVset(VertID : integer; VsetArray : Viow);
begin
< update Vsetarray>
if <all vertices heard from> then VsetDone := true; end;
end RecordVset;

procedure ReadEdgeChange;
— Read all the Updates until the end of file
— and send them to the corresponding vertices.
begin :
await(MSTdone and VsetDone);
SeqNo :=0;
loop
if eof then
exit;
RecordCount :=2;
seqNo := SeqNo +1;
ReadEdge(v1, v2, edgeWt);
if vi<—>v2 is a new edge then
EndA:= newlink(EndB);
else
EndA:= nolink;
EndB:= nolink;

connect EdgeChange(V2,SeqNo,EdgeWt,EndB {) on nodelink[v1];
connect EdgeChange(V1,SeqNo,EdgeWt,EndAl) on nodelink[v2];

end;
end;
end loop;
end ReadEdgeChange;
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entry RecordUpdate(change: boolean; oldvl, oldv2, newvl, newv2, integer; Vset:Vsettype);
— oldv1 and oldv2 define the edge which has been removed

— from the MST. It is replaced by the edge defined by

— newvl and newv2.

begin
if <two vertices have reported> then
< Update MST and Vset arrays>
MSTdone := true;
end;
end RecordUpdate;

begin — process IO
MSTdone:= false; VsetDone := false;
InitGraph;
ReadEdgeChange;

end IO.

process Vertex(ioLink: link); — ioLink: link to 10 process

const NOVERT =0;

type
weightType = integer; —- real, integer etc.
treenum = 1 .. MAXNODE;
MSTset = set of treenum;
lockType = record
set : boolean;
seq : integer;
kind  : (tree, nontree);
nextset : MSTset;

end; —lock

edgelnfo = record
linkend : link;
edgewt,

NBTO :integer;

state  : edgeState;

Vset  : VsetType,
end; —-edgelnfo
VsetType = set of [1 .. numNodes];
graphType = array[1 .. numNodes];

var minSon : integer;
pending_queue : priority queue;
graph : graphType;
myVertex,
CurXNode,
CurYNode,
firstvert,
outvert,
degree : integer;
lock : lockType;

< The calculation of the Minimum Spanning Tree (MST) using Gallager’s algorithm goes here. The
pseudo-code is in the First ReportFinkel86a_ When the computation is completed, InitiateVset is called at the
core vertices >
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entry Releasel.ock(seqno, vert: integer);

begin
if lock.seq = seqno then
lock.set := false; lock.seq :=—1;
if lock.kind = tree and minSon <> NOVERT then
connect ReleaseLock(seqno, vertl) on graph[minSon].linkend;
elsif lock kind = nontree and vert <> myVertex then
connect ReleaseLock(seqno, vert!) on graph{NBTO->vert].linkend;
if myVertex = vert then
<add edge update to pending_queue>
end;
end;
end;
end ReleaseLock;
entry CleanUp(seqno: integer);
begin
if lock.seq = seqno then
lock.set := false; lock.seq :=-1;
if minSon < NOVERT then
connect ReleaseLock(seqno, NOVERT I) on graph[minSon].linkend;
end;
<send CleanUp to every neighbor in lock.nextset and
remove it from lock.nextset>
end;
end CleanUp;

entry Abort(seqno, vertl, vert2: integer; edgeWt: weightType);
begin
if lock kind = tree then
if minSon <> NOVERT then
connect ReleaseLock(seqnol) to graph[minSon].linkend;
end;
if Inextset! > O then
<send CleanUp to each neighbor in lock.nextset
and remove it from lock.nextset>
end;
if myVertex <> vertl then
connect Abort(seqno, vertl, vert2, edgewt!) on graph[NBTO—>vert1].linkend;
else
<add edge update to pending_queue>
end;
end Abort;
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procedure ResolveConflict(seqno, from, vertl, vert2: integer; edgeWt: weightType);

begin
if lock.set then
if from in lock.nextset then — deadlock has occurred
— find out who has lower priority
if seqno > lock.seq then
connect Abort(seqno, vertl, vert2, edgeWtl) on
graph(from].linkend; \
else — wait for other process to release lock
await(lock.set);
end;
else — no deadlock; wait until released
await(lock.set);
end;
end;
end ResolveConflict;

— Update procedure terminates when A is reached. Removal of A<—>B

— is last action taken.
entry Update(A, B, X, Y, peerVertex: integer; AB_Vset: VsetType);
begin

if myVertex = A then — last vertex in update

<remove edge A<—>B from MST>

graph[B].Vset := {};
<inform 10 module of update completion>

else
' graph[NBTO->A].Vset := graph[NBTO—>A].Vset - AB_Vset;
connect Update(A, B, X, Y, myVertex, AB_Vsetl) on graph[NBTO->A] linkend;
end;
<free lock>
StartNextUpdate;
end Update;

— Update procedure is initiated. This isexecuted by X and Y.
entry InitiateUpdate(A, B, X, Y: integer; AB_Vset: VsetType);
begin
<Add edge X<—>Y to MST>
graph[Y].Vset := AB_Vset;
if X = A then —— first vertex in update is also last vertex
<remove X<—>B from MST>
graph[B].Vset := (};
<update is done; inform I0 module>

else
graph[NBTO->A].Vset := graph[NBTO—->A].Vset — AB_Vset;
connect Update(A, B< X, Y, myVertex, AB_Vset 1) on
graph[NBTO-->A].linkend;
end;
<free lock>
StartNextUpdate;

end InitiateUpdate;
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— X and Y define the edge which is to be included in the tree; A and B
— define the edge which will be removed.
entry StartUpdate (A, B, X, Y: integer; AB_Vset: VsetType);

begin
if myVertex =X then
call InitiateUpdate(A, B, X, Y, AB_Vsetl);
connect InitiateUpdate(B, A, Y, X, {1..numnodes — AB_Vsetl) on
graph[Y].linkend;
else
connect StarfUpdate(A, B, X, Y, AB_Vsetl) on graph[NBTO—>X].linkend;
end;
end StartUpdate;
entry ReportMin (A, from, X, Y, seqno: integer; MinCost: weightType);
begin
-— see if the other ReportMin calls can be ignored
if not MinReported then
if CurrentMin > MinCost then

CurrentMin := MinCost;

CurXNode := X; CurYNode :=Y;

if son <> NOVERTEX then
connect ReleaseLock(seqno, NOVERT!) on graph[son].linkend;
lock.nextset := lock.nextset — {son};

end;

son := from;
else

lock.nextset := lock.nextset — {from};
end;

if <edges to children in MST fragment which haven’t yet reported
are all greater than CurrentMin> then
FindMinDone := true;
<connect ReleaseLock to all children who haven’t yet reported>
lock.nextset := {son};

end;
if FindMinDone then
if myVertex = A then
if <no new minimum edge has been found> then
<no update needed; inform IO module>
call ReleaseLock (seqno, NOVERT I);
StartNextUpdate;
elsif lock.seq = seqno then — if lock is still held
call StartUpdate(A, B, CurXNode, CurYNode, AB_Vsetl);
end;
else
if lock.seq = seqno then — if lock is still held
connect ReportMin(A, myVertex, CurXNode, CurYNode,
seqno, CurrentMinl) on graph[NBTO->Al].linkend;
end;
end;
end;

end ReportMin;
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entry SearchMin(A, B, seqno, from: integer; MinCost: weightType; AB_Vset: VsetType);
begin
ResolveConflict(seqno, from, A, B, MinCostl);
<set lock>
CurrentMin := MinCost;
CurYNode := —1; CurXNode := myVertex;
—— look at incident edges and update minimum edge to other MST fragment
foreach node in AB_Vset do
if <edge not in current MST> and
graph[node].edgeWt < CurrentMin then
CurrentMin := graph[node].edgeWt;
CurYNode := node;
end;
end; — foreach
—— proliferate SearchMin to children in MST fragment only if
—— edge weight is less than minimum non-—tree edge weight
BA_Vset := {1..numNodes} — AB_Vset - {from};
foreach node in BA_Vset do
if <neighbor in current MST and graph[neighbor].edgeWt < CurrentMin> then
connect SearchMin(A, B, seqno, myVertex, CurrentMin, AB_Vset 1)
on graph[neighbor].linkend;
end;
end; — foreach
minSon ;= NOVERT;
if <no children in BA_Vset> then
if myVertex = A
if CurYNode = —1 and CurXNode = A then
<no update required; inform 10 module>
call ReleaseLock (seqno, NOVERT I);

StartNextUpdate;
elsif lock.seq = seqno then —- if lock is still held
call StartUpdate(A, B, CurXNode, CurYNode, AB_Vset l);
end;
elsif lock.seq = seqno then — if lock is still held

connect ReportMin(A, myVertex, CurXNode, CurYnode,
seqno, CurrentMinl) on graph[NBTO——>A].linkend;
MinReported := true;
end;
end;
end SearchMin;
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entry SearchMax(maxcost: weightType; maxV1, maxV2, changedV1, changedV2, seqno:
integer; Vset: VsetType);

begin
ResolveConflict(segno, from, A, B, maxcost);
<set lock>
NBTO := graph[changedV2].NBTO;
— see if basic cycle hasn’t been completely traversed
if myVertex <> changedV2 then
< update maximum values, if necessary >
— continue the search process around the basic cycle
connect SearchMax(maxcost, maxV1, maxV2, changedVl, changedV2,
seqno, Vsetl) on graph[NBTO].linkend;
else — we are at the end of the cycle
if <Vset hasn’t been updated>
<no update necessary; inform IO module>
call ReleaseLock(seqno, changedV1 1);
StartNextUpdate;
else
call InitiateUpdate(maxcost, maxV2, maxV1, changedV?2,
changedV1, {1 .. numNodes} — Vset N;
connect InitiateUpdate(maxcost, maxV1, maxV2, changedV1,
changedV2, Vset |) on graph[changedV1].linkend;
end;
end;
end SearchMax;
procedure StartNextUpdate;
begin

if not Empty(pending_queue) then
<remove first update from queue; this will be of the form
(peerVertex, oldEdgeWt, newEdgeWt, Vset, seqno) >
if <edge in current MST> then
call SearchMin(myVertex, peerVertex, seqno, myVertex,
newEdgeWt, Vset );
else
call SearchMax(newEdgeWt, myVertex, peerVertex, my Vertex,
peerVertex, seqno, Vset I);
end;
end;
end StartNextUpdate;



Spanning trees 31

entry EdgeChange(peerVertex, seqno: integer; weight: weightType; endA: link);
begin
<if new edge is introduced into graph, store end of link in graph[peerVertex].linkend>
— determine whether this vertex or peerVertex proceeds with
— with search phase (if one is necessary)
if graph[peerVertex].state <> branch and — non-MST edge decreases
weight < graph[peerVertex] edgeWt then
<update graph array> |
— priority is based upon Vertex D
if myVertex < peerVertex then
if empty(pending_queue) then
<call SearchMax>
else
<add to pending_queue>
end;
elsif graph[peerVertex].state = branch — MST edge increases
and (weight > graph[peerVertex] .edgeWt) then
<update graph array>
<Calculate the size of the two MST fragments formed by removing the MST
edge which has changed. Do this using Vertex sets. If the fragment rooted at
myVertex is larger than the other fragment, proceed with the Search phase. If
the fragments are the same size, use Vertex IDs to arbitrate.>

if <this vertex proceeds> then
if empty(pending_queue) then

<call SearchMin>
else
<add to pending_queue>
end;
end;
else
<update graph array>
<no update is required; report to IO module that update is completed>
end;

end EdgeChange;
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—— This entry records Vertex Sets sent from other vertices and forwards Vertex
—— Sets for neighboring vertices (unless it is a terminal vertex)
entry ReportVset(peerVertex: integer; Vset: VsetType);
begin
edgeCount := edgeCount — 1;
— see if there is only one more neighbor to be heard from
if edgeCount = 1 then
firstvert := peerVertex;
outvert := <neighbor not yet heard from>;
<Form the union of the vertex sets received so far. Call this BranchVset.>
connect ReportVset(myVertex, BranchVset!) on graph[outvert] Jinkend;
else '
await(edgeCount = 0);
if peerVertex = outvert then
<form union of all Vertex Sets received except the one
from firstvert. Call this BranchVset.>
connect ReportVset(myVertex, BranchVsetl) on graph[firstvert] linkend;
elsif degree <> 1 —- not a terminal vertex
<calculate BranchVset (union of all Vsets received except
the one from peerVertex).>
connect ReportVset(myVertex, BranchVsetl) on graph[peerVertex].linkend;
end;
end;
end ReportVset;

entry InitiateVset (from: integer);
begin
edgeCount := <number of neighbors in MST>;
degree := edgeCount; firstvert := NOVERT; outvert := NOVERT;
—- proliferate InitiateVset calls throughout the MST
foreach <neighboring node <> from> do
connect InitiateVset(myVertex!l) on graph[node].linkend;
end; — foreach
— when a terminal vertex receives this entry, it begins the process of
— having each vertex calculate its initial vertex set (in ReportVset)
if edgeCount = 1 then
connect ReportVset(myVertex, {myVertex}!) on graph(from] Jinkend;
end;
end InitiateVset;

begin — Vertex
<Initialize graph>
end Vertex.

4.8. Current status

4.8.1. Completed work

Gallager’s algorithm has been implemented and extensively tested on graphs up to 16 vertices.
Much larger graphs were not possible due to a limit in the number of links any process is allowed to hold.

Chen’s algorithm for single edge updates has been implemented. This implementation includes edge
recovery and failure. Sequential updates have been tested on random graphs up to 16 vertices.

4.8.2. Future opportunities
Concurrent incremental updates have yet to be tested and measured.
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The implementation of vertex failures would be straightforward from our implementation of edge
failures. Vertex recovery would not be a difficult process either.
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5. Ray Tracing
Experimenter: Bahman Barzideh

Ray tracing is a technique for generating high quality computer images. It is different from other
computer graphics techniques in the way it approaches the problem. Hidden-line algorithms construct the
image by finding coherence characteristics in the object scene. Their main objective is to efficiently find
the visible portions of the objects in the scene. In contrast, ray-tracing algorithms attempt to construct the
image by simulating the behavior of light through the particular object scene. The algorithm needs to cal-
culate the total intensity of light that arrives at each pixel of the screen. This simulation involves calculat-
ing the intensity of light that arrives at the pixel directly from light sources in the scene as well as the inten-
sity of light reflected by and refracted through the objects.

Ray-tracing algorithms are extremely versatile. It is possible to consider illumination models and
optical effects that are extremely difficult, if not impossible, to incorporate into other graphics techniques.
The technique is, however, very expensive in computation time. The aim of this project was to develop
and examine the efficiency of a distributed ray-tracing algorithm.

In the following sections we will first give a short description of ray tracing. We shall then describe
the developed program and some of its features. In particular, we will discuss the use of k-d trees for
organizing the object scene.

5.1. Method

Ray tracing is a simulation of light’s behavior through an object scene. An observer who views an
object scene sees the objects by means of the light shed by the light sources that strikes the objects in the
scene and somehow reaches the eye. A ray of light reaches the viewer’s eye either directly, from the light
source, or indirectly, by reflection from and transmission through the objects. Tracing light from light
sources to objects to the eye is infeasible except for the simplest problems under trivial illumination
models. To make the problem feasible, ray-tracing algorithms trace the path of light in the reverse direc-
tion. The ray is fired from the viewer’s eye into the object scene and its path through the object scene is
traced.

The algorithm can best be though of in recursive terms. A pixel of the screen is picked and a ray is
fired through it into the object scene. The objects in the scene are examined to find the first object on the
ray’s path. When a ray hits a face of an object it decomposes into three portions.

° A part of the ray is absorbed by the object. The frequencies of light that are absorbed specify the
color of the object at the point of intersection.

® Part of the ray is reflected by the object. The angle between the reflected ray and the normal to the
object at the point of intersection is equal in magnitude to the angle the incident ray forms with the
same normal vector.

° The rest of the ray ray is transmitted through the object. The direction of the refracted ray is
governed by the direction of the incident ray and the ratio of the refractive indices between the two
media at the interface.

How much of the ray is absorbed, reflected, and refracted depends on the local properties of the object.
One or two of these classes may not exist at all. For example a ray that hits a rough, opaque surface is
completely absorbed. ’

For the intensity of the ray to be calculated where it hits the object, the intensity of the reflected and
refracted rays must first be calculated, giving rise to two recursive computations. Recursion terminates
when a ray leaves the object scene, hits a light source, or becomes too dim to be significant. This process is
repeated for every pixel of the screen. The reader is referred to the book by RogersR"ge’Sf‘Sa for a complete
discussion of ray tracing and other graphics techniques.

The above algorithm is the basic version of ray tracing. One may wish to add other optical effects
such as shading, shadows, antialiasing, and color graphics. These features are not hard to incorporate into
the algorithm but will increase its computational needs. For example, addition of color involves calculating
each intensity three times, once for each primary color of light, and then combining the results.
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5.2. Bounding volumes

Ray-tracing algorithms spend most of their time locating intersection points between rays and
objects. R()gersR°8‘3‘S35a estimates this time to be between 75 to 95 percent of the total time used. The
intersection algorithm must examine every face of the object for intersection with a particular ray. It
reports the intersection point (if any) with the least distance from the origin of the ray as the result. Since
the plane of the face and the line of action of the ray can be in any direction in three space, specialized
intersection routines cannot be used. Instead, general parametric equations are used to locate the intersec-
tion point of the ray and the plane of the face. A containment test is then performed to decide whether the
intersection point is within the boundaries of the face or not. It should be noted that techniques such as the
poor man’s algorithm (otherwise known as backface culling) can not be used with general ray-tracing algo-
rithms. Such techniques are used in hidden-surface algorithms to eliminate those faces whose outward nor-
mals do not point towards the viewer’s eye from the intersection process.

To eliminate some of the unnecessary intersection tests, ray-tracing algorithms use bounding-volume
techniques. A bounding volume is a simple volume such as a sphere or 2 box that completely encloses the
object. If a ray does not intersect the bounding volume, it can not intersect the object. Bounding-volume
tests are considerably cheaper and simpler than the intersection algorithm for the object.

The bounding sphere test is particularly simple. Since a sphere.is symmetric, the bounding-sphere
test is just a distance test. The ray intersects the sphere if the radius of the sphere is larger than the distance
from the center of the sphere to the ray’s line of action.

The bounding box test is more complicated, since in three faces of the box must be examined for
intersection with the ray. It is still cheaper than intersection of the ray with the object, which might have
many faces.

5.3. K-d trees

Bounding-volume tests prevent many of the unnecessary intersection tests between rays and objects
and are relatively cheap. However, in an unordered object scene, the bounding volume test(s) must be per-
formed for every object in the scene each time we need to locate the first object a particular ray intersects.
This number of tests may acceptable if the number of objects in the scene is relatively small. But as the
number of objects increases, the cost of such an approach becomes prohibitive. One solution to this prob-
lem is to impose an ordering on the objects. Rogers proposes one method for imposing such an
orderingRogers858 in which a hierarchy of bounding spheres is placed around several spatially related
objects. If a ray does not intersect a particular sphere, the entities inside it do not need to be considered
further.

We chose to implement the ordering of the objects in the scene by using a variation of k-d
treesFriedmT7a_ A k-d tree is a binary partition tree with multiple partition keys. Each interior node contains
partitions its children by one of the keys (dimensions) at some value. As the tree is constructed, one usu-
ally chooses the dimension of largest spread and the median value in that dimension as the value of an
internal node. Each leaf node of the tree is a bucket containing a limited number of data items.

In our application, the k-d tree has the three partition keys X, y, and z. Each object in the scene is
represented by a single point located at the center of its bounding box. The buckets are rectilinear boxes
corresponding to regions of object space. The union of all the buckets is the total object space.

Tracing a ray through the object scene involves searching the tree for the bucket in which the ray is
found each time it moves from one bucket to another. This search is logarithmic in the number of buckets.
Our variant on standard k-d trees results in much faster searches. Each leaf node is associated with eight
pointers, one to each of its eight neighboring regions. A neighbor may be another leaf, the outside world,
or an interior node of the tree. The third case happens when the bucket has more than one neighboring
bucket along the given face.

To trace the ray from one bucket to another, we first determine the face through which the ray leaves
its current bucket. The appropriate pointer determines the neighboring region; if the neighbor is an internal
node, the search for the correct bucket starts at that node. The root of the whole tree starts the search when
the ray is initially fired into the object scene and in the rare occasions when it leaves a bucket through an
edge, not a face.
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The main problem in representing objects by points in a k-d tree arises when the partition value of an
interior node bisects an object. Three solutions were considered:

(1) Place the object in only one of the subtrees, and a *‘stub’ bounding box in the other. The stub
bounding box will contain information on where the object is really kept. This solution was not
chosen since it unnecessarily complicates the tracing algorithm.

(2) Cut the object into two sections along the plane of the partition value and place each half in its
corresponding subtree. This solution introduces an artificial transparent face between the two halves
of the object.

(3) Duplicate the entire object and place it into both subtrees. The cost of this solution is primarily in
memory space. This solution was adopted mainly because of its simplicity and low execution-time
overhead.

5.4. Distributing the algorithm

Since calculating the intensity of one pixel is completely independent of other pixels, one can distri-
bute the algorithm among n processes by breaking the screen region into n sections and putting one pro-
cess to work on each section. Each process has a complete copy of the k-d tree that represents the scene.
In such a scheme, inter-process communication is only needed for initialization and collecting resuits. One
expects that such a distribution scheme would achieve close to perfect efficiency, except near the end of the
calculation, when some machines might have finished, but others might still be busy. This sort of solution
could easily make use of DIBFinkel852 o assure a balanced distribution of work.

To make the problem more interesting, we decided to distribute the k-d tree itself, as well as the
responsibility for different regions of the screen. Each process keeps a complete copy of the k-d tree, but
only performs searches within its own part of it. As a search leaves that region, a remote call is made on
the process responsible for the adjacent part. Since remote calls start new threads, a thread of execution
will exist for each ray segment under computation at any time.

The performance of the distributed algorithm is heavily dependent on how we subdivide both the
screen region and the object space. Efficiency can be improved by:

° Reducing the number of requests that the processes must make to one another.

° Ensuring that a processes making a request has some other work to do and does not sit idle while
waiting for the results of the request.

5.5. The program

The developed program was written in Lynx, with a few C routines for string-number conversions.
Two process types were needed, the driver (one instance) and the tracer (as many instances as desired).
The driver first forms the bounding ball and bounding box of all objects. It then constructs the k-d tree and
forms the pointer sets of each leaf node. These pointer sets can be built during the same recursion that
builds the tree, with a second pass optionally used to improve the results. Figure 9 shows a simple object
scene, its initial k-d tree, with some of the pointers from the time the tree was built, and the improved k-d
tree. (This example is in two dimensions.) After forming the k-d tree, the driver partitions both the screen
and the tree buckets among the tracers, which are dynamically created at this stage. Changing the number
of tracers does not require any changes to the Lynx code. The driver also establishes a link between each
pair of tracers. (The Charlotte connector could easily have been used to perform the same function.)

When a tracer process starts, it first receives the k-d tree, the bounding volumes for all objects, and
the limits of the screen region it is responsible for. It then waits for a synchronizing start signal from the
driver. After it starts, it builds a ray for each pixel it is responsible for and starts tracing them. To insure
that a process does not run out of memory, we limit the number of pixels the process works on simultane-
ously. Each pixel whose computation is in progress is managed by a different thread of control. After
starting all the tracers, the driver waits for results, which are buffered by tracers to reduce communication
traffic. We could also have buffered ray-trace requests between adjacent tracers, but that would have made
the code more complex.

5.6. Input and output

The data for each object in the scene is supplied to the program in a separate file. A directory file
contains the identifier of each object in the scene along with the name of the file containing that object’s
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Initial k-d tree

Scene

........

Improved k-d tree
Figure 9: Relationship of scenes to k-d trees.

n to an output file by the driver. When the program terminates,
ssor that runs under Unix to draw the image on an alphanumeric

, all files are buffered. The size of the buffer is the maximum

data. The output of the program is writte
are grouped in a separate

this file is supplied as input to a postproce:

output device. To reduce the cost of file I/O
packet size for Crystal, approximately 2K bytes. All routines required for file /O

library. The library currently offers the following routines:
Open a file (either read or write mode can be specified). A file descriptor (an integer) is

fopen

returned.
fclose Close a currently open file.
fgets Get one line of text from the specified file.

fputs Write a character string to the specified file.
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5.7. Current status

The program has been completely written and coded. It has successfully been tested on a number of
test sets and is still being debugged. Unfortunately, performance results are not available at the time of this
writing.

5.8. Experience with Lynx ;

table sizes
Each of the two programs has an associated library. These libraries were created for the sole purpose
of avoiding overflows in the compiler’s internal tables.

floating point
Support for floating point would be of great help. The current program declares all floating point
variables to be of the user-defined type float, which is defined to be an integer. After Lynx compiles
the source code into C, we run an editor script to convert the appropriate declarations to float.
Although painless, this method is inelegant and error-prone.

pred and succ
Built-in predecessor and successor functions for set types would be useful and would have resulted
in more compact code.

file /O
Better file /O is a necessity! A more sophisticated version of the file I/O library written for this pro-
gram may not be a bad idea.

broadcast send
The ability to send the same message on more than one link at the same time can be a useful feature.
Its counterpart, that is the ability to receive a message on one of a number of links, would be of equal
value.

5.9. Pseudo-code

The following is the pseudo-code for the tracer processes. A possible improvement is to change Tra-
ceRay from an entry to a procedure, which would save some stack space when a tracer process calls itself.
An entry is still required so that a remote tracer can connect to this tracer.
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process Tracer;

entry TraceRay (ray)
hit := FALSE;
while (not hit) and (ray is in the object scene) do
if (ray hits an object in current bucket) or
(ray hits both bounding volumes of an object and
object owned by another process) then

hit := true;
else
move the ray’s origin to the appropriate bucket;
end;
end; -— while—

if no intersection was found then ‘
reply (background intensity); ‘
elsif bucket is owned by some other tracer process then
res := connect to remote TraceRay (ray);

reply (res);
else
intensity := ambient intensity for the intersected face;
if (the ray is reflected) then
obj := first object whose bounding volumes are intersect by
the reflected ray;
if obj is found then
if obj is owned by some other process then
res := connect to remote TraceRay (reflected ray);
else
res := CALL TraceRay (reflected ray);
end
else
res := background intensity;
end;
else
res = 0;
end
incorporate res into current intensity;
if the ray is refracted then
obj := first object whose bounding volumes are intersect by
the refracted ray;
if (obj is found) then
if (obj is owned by some other process) then
res := connect to remote TraceRay (refracted ray);
else
res := CALL TraceRay (refracted ray);
end;
else
res := background intensity;
end;
else
res :=0;
end
incorporate res into current intensity;
end; — if
reply (intensity);

end TraceRay;
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entry Start (x, y)

reply; — so that more rays can be started
initialize the incident ray; — both its origin and direction
locate first object whose bounding volumes are intersected by ray
if an intersection is found then
if the object is owned by this process then
res := call TraceRay (incident ray);

else
res := connect to remote TraceRay (incident ray);
end;
else _
res := background intensity;
end;

enter result into ResultCache;

if ResultCache is full then
connect to display_pixel; — entry is in driver
set ResultCache status to empty;

end

NumActiveRays —:=1;
end Start;
begin  — process: tracer —

initialize global variables;
receive this process’s id, and link to the file server;
receive number of ray tracer processes;
receive total limits of the object scene;
receive one communication link to each of the other tracer process;
initialize file IO library (link to file server);
receive a copy of the k—d tree;
read object data for all objects in this process’s domain;
calculate face equations for all faces of these objects;
receive start signal from driver;
y := maximum y value;
while y >= minimum y value do
X := minimum x value;
while X <= maximum x value do
await NumActiveRays <= max_active_rays;
NumActiveRays +:=1;

call Start (x, y);
X +:= delta_x;
end; — while —
y —i= delta_y;
end; — while —

await all active rays finished;
if ResultCache is not empty then
connect to display_pixel (ResultCache);
end;
send completion signal to the driver;
receive termination signal from the driver;

end Tracer.
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6. The simplex method
Experimenter: Chandrashekhar W. Bhide

The simplex method is one of the important linear programming toolsP2¥#632, Tt is used to solve a
system that consists of a set of constraints and an objective function. The objective function is a linear
combination of constrained variables. The aim of the method is to solve the system such that the objective
function is maximized.

_ The initial step of the simplex method consists of adding slack (and, if necessary, artificial) variables
to the constraint equation. This step is elaborated with an example.

Congider the set of constraints
2x+3y<6

3x+4y<10 x,y20
These inequalities are converted to equalities of the desired form by adding slack variables u and w.
2x+3y+u =06

Ix+dy+  w=10 x,y,u.w20

The purpose of adding slack and artificial variables is to create the starting basis, the details of which
are not discussed here. We assume that the set of constraints has been converted to the equalities by
adding necessary slack and artificial variables. As mentioned earlier, the objective function is a linear
function of the constrained variables. For example, the objective function might be 6x +4y.

6.1. Serial algorithm
We can represent the system in the matrix form as follows.
Ax=d
Maximize cx
where

A is an mXn matrix
x is a column of n elements
d is a column of m elements
¢ is arow of n elments

Let the matrix B be constructed as follows.

A d
B=
Cc -Z

The variable z denotes the value of the objective function. At the initial step, the value of the con-
strained variables is assumed to be zero. Hence the value of z, which is a linear combination of the con-
strained variables, is zero. In the following discussion it is assumed that the system has a unique solution.
The absence of such a solution can be easily detected.

The simplex method consists of repeated iterations of the following steps.
(1)  Select column j such that ¢;>0.
(2) Selectrow i with the smallest positive ratio d;/A, ;.
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(3) Perform row operations on matrix B to achieve
Bi_ J = 1

Bow,j=0, Osrowsm+l, row#i
A typical way to perform the row operations is as follows:

for row := 1 ..m+1 do
ratio := Brow,j] / Bijl;
for col:=1..n+ldo
if row <>1ithen
Blrow,col] —:= ratio * B[i,col]
else
Blrow,col] /:= B[i,col];
end;
end;
end;

Failure to find a positive c; in the first step implies that the objective function can not be improved
further and optimal solution is found. In step 2, if no i can be found that satisfies the criterion mentioned,
another column j is selected in step 1. Inability to find such an i for all columns with ¢ ppmn >0 means that
the optimal solution is found.

Selecting the proper i in step 2 ensures that even after row operations are performed, values
d, -+ d, are greater than or equal to zero. The physical significance of the nonnegative d column is that
the system is in the feasible region. At each iteration, the simplex method transforms the system increasing
the objective function but maintaining the system in the feasible region.

6.2. Rowwise distribution

Let us assume that the task is to be done by p processes such that p divides m. Rows are assigned to
calculator processes such that process & has the m/p rows starting with (k—1)m/p + 1. Each process also
has a copy of vector c, so that step 1 of the method can be carried out by each process independently.

Performing step 2 requires comparison of the ratios computed by different calculator processes. A
controller process carries out this task. The controller process also sends the selected row (B[i,*]) to all
calculator processes. The calculator processes need this row to perform the row operations. The selection
and dissemination of the appropriate row could also be achieved by arranging the calculator processes ina
tree structure, passing values up the tree to select and down to disseminate. The skeleton structure of the
processes is as follows.

process Calculator(id:integer,duplex : link);
repeat
select j ; — using step 1 criterion
select i ; — step 2 applied to m/p rows of this process
connect Selectlt (id, row—i | SelectedRow) on duplex;
RowOperations; — Perform row operations in step 3 using SelectedRow.
until finished ;
end Calculator.
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process Controller(link1,link2,... : link);

entry Selectlt (id, receiverow) : sendrow;
accept the row from the calculator process;
if necessary update the minratio and other data structures
— this depends on the ratio corresponding
— to the receiverow and previous minratio computed
count +:=1; .
await (count = NumCalculators);
reply (sendrow); — corresponding to the least positive ratio
end Selectlt;

begin — Controller
bind link1,link2,... to Selectlt;
other initializations;

end Controller.

The speedup achieved by this method depends on the communication cost and the wait periods in the
calculator processes. The principle disadvantage of this method is that the calculator processes have to
synchronize after each set of m/p row operations.

Thus step 2 of the simplex method is the bottleneck. If calculator processes are allowed to perform
some iterations using only their own rows, the system enters the infeasible region. Intuitive explanation of
this behavior is that for some steps the calculator processes try to maximize the objective function ignoring
other constraints. The amount of work required to bring the system back into feasible region is high
(approximately equal to the work done in the wrong steps). Hence this approach won’t lead to better
results. The interval between the wait periods can be increased by columnwise distribution.

6.3. Columnwise distribution

Let us assume that the task is to be done by ¢ calculator processes such that g divides n. Each cal-
culator process is allocated n/g columns of matrix B, such that process 1 has columns 1 through n/q, pro-
cess 2 has columns n /g +1 through 2n /g, and so on. Each process also has a copy of colurnn vector d.

The columnwise-distribution method allows several iterations to finish before any communication is
needed. We will call intervals between communication rounds to distinguish them from iterations. At the
start of each round, each process chooses any k columns from the set of columns having a positive ¢ value.
Of these kq columns, any s columns (s<kq) are chosen by a controller (or some other distributed algo-
rithm) to broadcast to all processes. Each process then has its own n/q personal columns, plus the s glo-
bally known columns, at most k of which are duplicates of its personal ones.

For each iteration of this round, all processes choose a globally known column (taking, for example,
the one with highest ¢ value), determine the appropriate row on which to base a row operation, and then
perform row operations on the columns they possess. All processes will make the same choices, since they
share globally known columns, and they will modify those columns identically, but without communica-
tion. A round continues until either a fixed limit on iteration number has been reached, or no globally
known column can be used (all ¢ values are nonpositive).

The method is illustrated by skeleton structures of the processes.
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process Calculator(id:integer, duplex : link);
— each calculator process has a personal matrix T[m+1 rows, n/q columns]
-— and column d[m+1]; the (m+1)st row of matrix T is called vector c.

begin
loop — each iteration is one round
Select k positive elements of vector C;
Send the k corresponding columns to the controller; '
connect GetCols(sendmatrix | receivematrix) on duplex;
if nothing received then exit end;
RowOperations; — perform all iterations of this round
end;
end Calculator;

process Controller(link1,link2,... : link);

entry GetCols (sendmatrix) : receivematrix ;
begin
if at least s good columns received then
reply (receivematrix);
exit;
end;
pick up good columns from sendmatrix;
add these columns to receivematrix;
await at least s good columns received;
reply (receivematrix);
end GetCols;

begin
bind link1,link2,... to GetCols;
other initializations;

end Controller;

procedure RowOperations;

begin
loop — each time through is one simplex iteration
pick a globally known column with ¢ > 0; if none, exit;
select row such that ratio (d[row] / Alrow,col]) is the least positive;
perform row operations;
end;
end RowOperations;

Selection of the values of k and s involve interesting tradeoffs. The controller will not have to wait
so long for s usable columns to arrive if k is large, but if k is too large, communications are wasted. Each
round can continue through more iterations if s is large, but the cost of each iteration increases with s.

6.4. Analysis of the columnwise distribution method

We assume that the time to select k columns for broadcast and the time to choose a column for an
iteration are both negligible. In each iteration, for some constants b and ¢,

time to choose column = 0 (by assumption)
time to choose row = bm
time for row operations = ¢ (n/g+s+1) (m+1)

Let us approximate the number of iterations in a round by s. Two messages are needed in each round
between each calculator process and the controller. Therefore, the communication delay per round is
2d+e, where d is the per-message cost (roughly proportional to s) and e is the synchronization time at the
controller. We can approximate the total number of iterations required to solve the problem by 1.5m.
Hence, the number of rounds is 1.5m/s. The total time taken is then
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(1.5m/s)bms+c (nig+s+1)(m+1)s+2d+e),
ignoring time for initialization and final output.
In contrast, for the serial method,

time to choose column = 0 (by assumption)
time to choose row = bm
time for row operations = ¢ (n+1) (m+1)

The total time needed by the serial simplex method is then
(1.5m)(bm+c (n+1)(m+1)).
The speedup for g processes is the ratio of these two quantities, namely,

(1.5mYbm+c (n+1)m+1))
(L.5m/s)(bms+c (nlq+s+1)(m+1)s+2d+e)

speedup=

We can predict speedup by assigning values to the parameters b, ¢, d, and e. The hardest part is
estimating e; we will take it to be equal to bsm. Typical values of the other parameters for a Lynx program
in the Crystal environment are shown here in milliseconds:

b=0.04
c=0.04
d =840

Table 6 shows expected values of speedup based on these constants, with s=6, k=3.
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Table 6: Expected speedup
As expected, speedup is better for larger problems.

6.5. Comments about distributed Simplex algorithms

Many distributed algorithms fit into the following pattern. There are two types of processes, a con-
troller process and many worker processes. The worker processes perform computations and pass inter-
mediate results (‘‘wisdom’’) to the controller. The controller process in turn passes this wisdom to other
worker processes. For the worker processes, getting up-to-date wisdom is helpful but not critical.

The distributed Simplex algorithm (and perhaps many other linear programming algorithms) do not
follow this paradigm. 1t is essential that the computations done by the worker processes not lead the sys-
tem to the infeasible region. Hence the worker processes must always have up-to-date wisdom. One of the
ways to improve performance is to increase the duration between the wisdom-collection epochs, this is
exactly what the columnwise distribution method does.

In spite of this constraint, in the columnwise distribution method, one calculator process may
advance many rounds ahead of other calculator processes. However, the controller must ensure that every
calculator starts the 7 th round with the globally known columns appropriate to that round.
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6.6. Current status

The implementations of rowwise and columnwise distributed algorithms have been successfully
tested for small matrices (9 x 21). Extensive experimentation with larger matrices needs to be done to
measure the performance of the algorithm. Initial results show that for small matrices, the communication
overhead dominates the calculation. Table 7 shows some preliminary figures for the serial and
columnwise-distribution methods. ‘

time (ms)
g=1 q=2
6 13 103 1003
9 21 478 1693
17 41 2784 5240
28 69 | 16787 14063
31 97 | 22773 18668

m n

Table 7: Timings for columnwise distribution

6.7. Experience with Lynx

° The connect statement which works like a remote procedure call was found to be very convenient to
use.

® The ability to pass arrays as arguments made implementation easy.

° Entries, which can have multiple instantiations, when used judiciously with await statements, lead to
a fairly straightforward and compact coding.

® Events occur only when all threads are blocked. This is one of the strong assets of the language.
Due to this feature, maintaining data integrity is a fairly easy task.

° The lack of support for floating-point arithmetic was a hindrance during the implementation. Since
Lynx compiler generates intermediate code in C, implementing floating point arithmetic should not
be too difficult.

e Argument lists do not accept conformant arrays. These would be very helpful, although their value
may not offset their implementation expense.

® The library of routines that shield the user from the details of the fileserver is not quite adequate.
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7. Implementation 1 of Linda’s tuple space
Experimenter: G. A. Venkatesh

LindaGelem832 i5 3 language that consists of a small set of communication primitives and process-
control operations to support creation and manipulation of distributed data structures. tuple space main-
tains the distributed information manipulated by Linda processes. The communication primitives in Linda
consist of three operations on the tuple space.

The out statement appears as '
out(list of parameters)

This statement causes the tuple constructed from the parameters to be added to tuple space. Each parame-
ter may be an actual or a formal; formals indicate ‘‘don’t care’” slots in the tuple. The first parameter must
be actual. This call does not block.

The in statement appears as
in(list of parameters)

This statement returns any tuple from tuple space that matches the parameters. Actual parameters must
match exactly; formals are used to return the value actually found in their slot. Again, the first parameter
must be actual. This call blocks until a matching tuple can be found; the matching tuple is removed from
tuple space. If there are several matching tuples, any may be chosen.

The read statement appears as
read(list of parameters)
It has the same meaning as in, except that the matched tuple is not removed from tuple space.

Our goal was to provide an implementation for tuple space using Lynx on Crystal. Two different
projects addressed this problem. This section describes the first of those projects, for which a Linda-Lynx
preprocessor was written to recognize Linda’s communication primitives embedded inside lynx programs
and replace them with appropriate lynx operations.

7.1. The preprocessor

The following restrictions were placed on Linda’s communication operations in order to simplify the
Ppreprocessor:

(1) Any operation can have at most 5 parameters.
(2) All the parameters must be of type integer.

(3) Formal parameters must be indicated by prefixing the parameter name with the symbol var. The
name must have been declared earlier.

These restrictions allowed enough flexibility to write some non-trivial programs using Linda’s opera-
tions. The operators are embedded inside Lynx programs. The operator name is prefixed with the charac-
ter ‘$’. The preprocessor replaces these operations with Lynx connect statements to communicate with
one of the processes implementing the tuple space.

7.2. A centralized tuple-space implementation

The first step was to implement a centralized tuple space manager to test the preprocessor as well as
to get acquainted with Linda’s approach to distributed programming. A single Lynx process manages the
tuple space. The tuples are stored in a hash table. The first element of the tuple, which must be an actual
parameter, is hashed using a modulus hash function. The tuple space process provides the following entry
interfaces to the user processes:
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entry OutTuple(
Argl,Arg2 Arg3,Argd,Args : integer — the tuple
Nargs : integer — Number of elements in the tuple
Bitl1,Bit2,Bit3,Bit4,Bit5 : Bits — O=actual, 1=formal
)

entry InReadTuple(
Inflag : Boolean; — true => IN operation
Argl,Arg2 Arg3,Argd,Arg5 : integer — the tuple
Nargs : integer — Number of elements in the tuple
Bitl,Bit2,Bit3,Bit4,Bit5 : Bits — O=actual, 1=formal
) : integer,integer,integer,integer,integer; — return tuple

The connect calls to these entries are generated by the preprocessor when the corresponding Linda opera-
tors are encountered.

If there is no tuple matching the parameters for an in or read request, the thread of control created
for that particular request waits until a tuple is inserted into the same hash bucket, where a matching tuple
is to be found. When a match is found, the tuple is deleted from the hash table if the request was an in
operation. An out operation inserts the tuple into the hash table. It also awakens any threads that may be
waiting for a tuple to be inserted into the same bucket.

7.3. A distributed tuple-space implementation

The centralized implementation is unsatisfactory for two reasons. First, all requests are serviced
serially by the single process, which creates a bottleneck in any computation. Second, a failure in the
machine running the tuple-space manager causes a breakdown in communication between the user
processes.

Two distributed implementations for the tuple space are discussed in the literature. In the first
implementaﬁon“dem“a, a copy of every tuple is stored in Vn machines where n is the total number of
machines in the system. Every in operation requests Vn machines. The machines that have copies of the
requested tuple must co-operate among themselves in order to provide the tuple to a single requesting pro-
cess. (Our second project, discussed in a later section, implements this idea) The second
implementationCamie862 jg gimilar to the first, except that a copy is kept in every machine.

Our implementation is radically different from the above two. It is based on the following observa-
tions:

° All tuples that have been generated by the user processes at any given time can be divided into dis-
tinct sets of related tuples.

° Each set of related tuples is generated and consumed by processes in a small set of machines as com-
pared to the total number of machines in the system.

The first element of the tuple (which we will call the tuple name) can be used as to partition tuples into
sets. Only those machines that are involved in the generation or consumption of tuples with a particular
name should participate in any protocol to service a request for a tuple with that name.

A second major difference from the previous implementations is that we only keep one copy of any
tuple at any time. No protocol is required to achieve mutual agreement involving more than one machine.

Let m and n be the number of machines involved in the generation (sources) and consumption
(sinks) of a tuple with a particular name. Then we store any tuple of that name at a source if m <n and at
a sink otherwise. To service a request, at most min(m ,n ) machines must be queried to obtain the tuple.

Since the number of sources and sinks for a given tuple name can vary as the computation proceeds,
the tuple space managers must transfer tuples from a source to a sink or vice versa. Currently, the tuples
are always kept in source machines. The design of a protocol for migrating tuples, in the presence of
requests for these tuple, is quite complicated and our attempts at obtaining such a protocol have not been
successful.
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7.4. Implementation details

The tuple space is implemented by a set of identical co-operating processes, one in each machine.
All user processes have links to the tuple space manager in the machine on which they are running. All
managers are connected to each other. The manager provides the same interface as the sequential manager
to the user processes. The storage structure in each of the managers is identical to the hash table imple-
mentation used in the sequential manager. In addition, the manager maintains information about the
sources and sinks for all the tuples that are hashed into the same bucket. This is an approximation to the
original design, which required the information to be maintained for each tuple name. Using hash buckets
instead of names reduces the amount of bookkeeping and consequently the response time of the managers,
at the cost of serializing requests for tuples that hash into the same bucket.

For an out request, the tuple is stored in the local hash table. Any thread that m%\y be waiting for a
tuple in that bucket is awakened. If there are no entries in the Source set for that bucket, the manager
broadcasts to all the other managers identifying itself as a new source for tuples hashed into that bucket. In
response to this message, the other managers update their source sets for the corresponding hash bucket to
include the broadcasting node. However, if the source set already exists for that bucket, the manager
informs only those nodes in the source set to include this new node.

For an in request, if the source set for the hash bucket to which the requested tuple will hash is
empty, then the thread waits until a broadcast message updates the source set to include the new source.
Then a coordinator thread is created to retrieve the requested tuple. If the requesting node is itself a
source, the coordinator is in the same node; otherwise the coordinator is started on one of the source nodes.

The coordinator broadcasts requests all source-set managers to search their local hash tables. This
request creates a Search thread in each such manager, which searches for the tuple (waiting, if necessary,
for a new tuple). When the tuple is found, the bucket is locked, and the tuple is sent to the node on which
the corresponding coordinator is waiting. Then the Search thread waits for a commit message indicating
that the tuple has been accepted and must be deleted from the local hash table. The Search thread can also
abort itself at various points in the above procedure if an abort signal is received from the coordinator.
Since the requesting coordinator receives a reply message only if a matching tuple is found, it waits until it
receives the first message and commits the manager that sent the message. In addition, it sends abort mes-
sages to the other participating nodes. During this protocol, the nodes also exchange information about the
source sets and update each other’s information.

Read requests are handled just like in requests except that the tuple is not deleted. The implementa-
tion can be optimized by removing the commit protocol for read requests.

7.5. Analysis

The implementation requires a global broadcast until at least one source is known to all the nodes for
each hash bucket. However, the cost is amortized over any further operations involving tuples hashed into
that bucket. Although each in request generates several messages, the requesting user process needs to
wait for just two communication delays (ignoring the manager processing time) before it obtains the
requested tuple (assuming that the tuple was already generated). However, managers process many
requests at the same time, and services involving the same bucket are serialized, so there is some delay
before the managers can reply to any request. Hence the ideal situation holds only when the number of
outstanding requests at any time and the number of conflicting requests are low. Compared to the sequen-
tial case, however, each manager handles requests only for those tuples that have been generated at that
node and should perform better than the sequential implementation in which the manager handles all
requests serially.

Performance studies are currently being carried out to compare the two implementations.

7.6. Comments on Lynx

The lack of a non-deterministic control structure with input or output guards prevented a straightfor-
ward implementation of the protocols. A mailbox system coupled with conditional waits was implemented
to simulate such a structure.

The various coordinator threads share the same link for communication among themselves. The
implementation would have been simplified if virtual links could be defined over a single physical link.
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Then a thread could receive a message on a particular virtual link. Since each coordinator lasts for a short
time, and the number of such threads active at any time is not predictable, use of a physical link for each
coordinator thread is not feasible.

7.7. Pseudo-code

process TupleSpace(Nodeld : Integer; '
link1,link2......,inkN : link; — links to user processes
Tlinkl,......TlinkN : link); — links to other managers

function LookUp(.....) : hash bucket number;
~ called to find a tuple in the hash table

begin
HashValue := Hash tuple name;
index := First entry in the bucket;
while index <> nil do
if tuple names match and then
number of parameters match and then
tuple parameters match then
exit;
else
index := next entry in the bucket;
end;
end;
return index;
end LookUp;

entry NewSource (Bucket : HashRange; Sourceld : Nodes);
— called when a new source for a bucket is created
begin
HashTable[Bucket].SourceSet L:= {Sourceld};
end NewSource;
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procedure Enter( ); — enter a tuple into the local hash table

begin
HashValue := hash first element of tuple;
Insert new node into the hash table;
foreach thread waiting for a new tuple do
wake up thread;
end; '
if current node is not in the source set then
— source for the first time
if SourceSet = (} then
— No sources for this bucket known
foreach other manager m do
— broadcast to all nodes
connect NewSource(HashValue Nodeld 1)
on link to m;
end;
end;
else —- in source set
foreach manager m in SourceSet do
— Broadcast to only the other sources
connect NewSource(HashValue Nodeld 1) on link to m;
end;
end;
Update the Source Set for this node;
end;
end Enter;

entry MailMessage(MailBoxNo : MailBoxRange; Code : integer;
Mtuple : Tuple; Abort : Boolean) : Boolean;
— the coordinators and the search threads use a mailbox system to
— communicate over the same link
begin
with MailBox[MailBoxNo] do
if Abort then — the message is a abort message
Dispose MailBox;
Aborted ;= true; — set abort flag for the mailbox
elsif not Aborted then — a valid mail box
store the tuple and code in the mail box;
end;
reply (aborted); — reply with the status of the operation
end;
end MailMessage;
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entry Search( ) — The search thread
: ManagersSet, — to update source set information
MailBoxRange; — mail box with which the thread will communicate
begin
LocalMailBox := GetNewMailBox;
reply (SourceSet,LocalMailBox);
repeat
await bucket not locked or
MailBox[LocalMailBox].Aborted; — abort message from requesting node
if not MailBox[LocalMailBox].Aborted then ’
Lock hash table bucket;
index := LookUp( ); — look up tuple in the local table
if index = nil then ‘
await new entry into the bucket or

MailBox[LocalMailBox].Aborted;
else (
if curlink = nolink then — coordinator in the same node
call MailMessage(MailBoxId,Nodeld, Tuple,false | AbortFlag);
else — coordinator in another node
connect MailMessage(MailBoxId,Nodeld,Arg,false |
AbortFlag) on curlink;
end;
if not AbortFlag then
— the protocol has not been aborted
-— commit wait
await MailBox[localMailBox].aborted or
Commit message arrived;
if not Abort message then
if operation is an in then
DeleteNode(index);
end;
end;
Aborted := true; — operation completed
else
operation aborted
end;
end;
Unlock bucket;

end;
until operation is complete;
end Search;
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procedure Coordinator( );

begin
MailBoxId := GetNewMailBox;
repeat
foreach node in current source set not already requested do
if node is self then
Call Search(... | UpdateInfo,RemoteMailBox);
else Connect Search( ... | UpDateInfo,RemoteMailBox) ‘
on link to the manager;
end;
Use UpdateInfo to update the current source set;
if Message has arrived in the mail box then
exit; — taple found
end;
end;
if no more messages to send and no message in the mailbox then
await Message in the mail box or Source Set updated;
— further requests must be made
end;
until message in the mail box;
if InFlag then
returncode :=—1; — commit with delete tuple
else
returncode ;= —2; — commit without deleting tuple
end;
if tuple found in the same node then
call MailMessage(MailAddr{InfoCode] returncode,Arg false | dummy);
else
connect MailMessage(MailAddr[InfoCode] returncode,Arg,false | dummy)
on LinkArray(InfoCode];
end;
foreach requested node do — send abort messages
if node = self then
call MailMessage(MailAddr{j] returncode,Arg,true | dummy);
else
connect MailMessage(MailAddr[j],returncode,Arg, true | dummy)
on LinkArray[jl;
end;
end;
end Coordinator;

entry RemoteManager( ) : tuple;
— called to start a coordinator at a node different from
—— the node in which the in operation was requested
begin
Coordinator( );
reply (tuple);
end RemoteManager;

53
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entry InReadTuple(InFlag : Boolean;argl,arg2,arg3,arg4 arg5S:integer;
Nargs : integer;bit1,bit2,bit3,bit4,bit5: Bits)
: integer,integer.integer,integer,integer;
begin
HashValue := Hash with first element;
await at least one node in the Source set;
if this node is itself a source then
— coordinator in the — same node
Coordinator(Nargs,BitMap,Arg,HashValue,InFlag);
else
— start a coordinator in one of the source nodes
connect RemoteManager( ... tuple)
on link to one of the source nodes;
end;
reply ( tuple );
end InReadTuple;

entry OutTuple(argl,arg2,arg3,argd arg5S:integer;
Nargs : integer;bit1,bit2,bit3,bit4,bit5:Bits);

begin
HashValue := Hash using first element;
Enter(Nargs,BitMap,Arg);
reply;

end OutTuple;

begin — TupleSpace
initialize;
end TupleSpace.
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8. Implementation 2 of Linda’s tuple space
Experimenter: Man-On Lam

There are numerous distributed ways to organize tuple information across machines. The implemen-
tation described here is based on Gelemter’s method that uses a lattice topologyG‘“’lem“a. This method
always requires O(‘/; ) work for each of the three operations on tuples.

We made several simplifying assumptions.
° all operations only accept two parameters.
® the first parameter must be a single character.
® the second parameter to out must be actual.

’

° the second parameter to in and read must be formal. .
Each Linda process communicates with a tuple-server process, known as a kernel. The kernels are

arranged in a square lattice. Each kernel maintains an array of tuples stored there. All calls to out put a
note in the out-state table of the kernels in the same row as the kernel that services the out. All calls to in
and read put a note in the in-state table or read-state table of the kernels in the same column as the one
that services the in. These notes indicate both the name (that is, the first parameter) of the tuple and the

kernel that is actually storing the tuple (for out) or the request (for in).

When a kernel services an in (read) call, a message is sent cyclically to all the kernels of the same
column, setting a lock in the in-state (read-state) tables as they are encountered. Likewise, servicing an out
call sends a message cyclically to all kernels of the same row, setting a lock in the out-state tables that are
encountered.

As a request or tuple (let us call it R) moves down a column Or across a row, it might encounter a
note about a matching tuple or request M in the tables at some kernel K. In that case, a message is sent to
the kernel L responsible for M; if the match is still open, it is now satisfied. Then all notes about M are
removed from its row or column, and notes about R are removed from its column or TOW.

The locks are used on the tables to prevent accidental simultaneous update. When a kemel attempts
to modify a locked entry, it either waits (if the originator’s id is less then the lock’s id) or aborts (in the
other case). The locks are released once all a note has propagated to all tables in the row or column.

8.1. Pseudo-code

entry Out(tuple); — connected to by client
begin
reply -- no need to block
repeat
call OutRequest(tuple,myid | result);
until result <> rejected;
end Out;
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entry OutRequest(tuple, originator) : (accepted, rejected, recorded);
— connected to by neighbor on the West; respond true if taken
begin
if there is an unlocked matching Read R then
connect AcceptTuple(tuple | ok) on link to R.owner;
— AcceptTuple removes the note from all read-state tables
if there is an unlocked matching In I then
connect AcceptTuple(tuple | ok) on link to Lowner;
— AcceptTuple removes the note from all in-state tables
if ok then
reply accepted;
exit;
end;
elsif there is a locked matching Read or In then
if myid < originator then
await R unlocked;
call QutRequest(tuple, originator | result); — try again
reply result;
else
reply rejected;
end;
exit;
end;
record this tuple in local out—state table;
if neighbor on East is not the originator then
Jock the record in the out—state table;
connect OutRequest(tuple, originator | result)
on link to the East;
reply result;
unlock the record in the out—state table;
if (result = accepted) or (result = rejected) then
remove the tuple from local out-state table
end;
end;
end OutRequest;

entry In(name) : tuple; — connected to by client
begin
repeat
call InRequest(tuple,myid | result);
until result <> rejected;
await tuple arrives;
end In;

entry InRequest; — similar to OutRequest.

— Read is similar to In.

8.2. Current status

For the time being Linda programs with four kernels have been implemented. The kernel is
thoroughly tested. We are about to test larger versions with a matrix-multiplication application, where the
tuple space will record an entry for each inner product required, and all workers will have both matrices as
part of initial data.
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8.3. Comments on Lynx

Whether a procedure is blocking or unblocking depends on where the reply statement is put. Itis
very convenient to use the reply statement at the beginning of the entry for out and at the end for in.

implementing the unblocking OUT operation (by putting it at the beginning of the entry) and the
blocking IN and READ operations (by putting it statement at the end of the entry).

We found the link data type and the Charlotte connector facility made it easy to initialize the lattice
connections.

The await statement made the lock resolution algorithm simple to code.

4

The connector allowed us to assign a unique id to each kernel without inserting it in the source code.

Lynx lacks dynamic memory allocation. This restriction was one reason we did not allow arbitrary
tuples.

Debugging is a difficult task due to the concurrent execution of different processes and due to the
lack of debugging facilities in Lynx. Tracing each state table in each node used a very large portion
of the programming time. Fortunately, the process id was attached to each debugging message, and
threads do not execute concurrently, both of which helped us in debugging.

Although the strict type checking of Lynx prevents many bugs, it also restricts the flexibility for the
communication between different processes. A server that operates on integers might also be able 0
operate on real numbers. It is hard to write generic servers in Lynx.
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