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Introduction

This paper describes a generalization of univariate cardinal spline theory to several
variables. Multivariate cardinal splines are defined as linear combinations of translates of

box splines,

Sy :=span {By (- —j) : je 7%},

The box spline By : IR? — TR is a natural generalization of the univariate cardinal B-spline

which is apparent from its Fourier transform

By(z) = H sin(mv/Z).

zv/2

The freedom in the choice of the vectors V results in rich theory which has attracted
considerable interest. Some multivariate results are rather unexpected from the univariate

theory, others do not have a univariate analogue.

Box splines were introduced by de Boor and DeVore [BD] and their basic properties
have been described in [BH82/83|. Subsequently, many different aspects of approximation
by box splines have been studied. De Boor and I [BH83, BH86| have applied box spline
techniques to analyze bivariate smooth piecewise polynomials on regular meshes. Further
results along these lines, in particular on approximation order, have been obtained by Dah-
men and Micchelli [DM83,, DM84], Jia [J84,], Barrar and Loeb |BL] and Chui [CL85;,
CW]. In a series of beautiful papers, Dahmen and Micchelli [DM85,, DM86] have studied
the combinatorial properties of box splines and established intriguing connections to dio-
phantine equations and multivariate difference equations. De Boor, Riemenschneider and

2



I |[BHR85,_3, BHR86,_2] have generalized several of Schoenberg’s theorems on univari-
ate cardinal interpolation [Sch73;|. Extensions of these results and related questions are
subject of current work by Jetter and Riemenschneider [JR] and Chui, Jetter and Ward
[CIW]. Finally, subdivision algorithms for rendering of box spline surfaces have been inde-
pendently developed by B6hm [B683], Cohen, Lyche and Riesenfeld [CLR83], Dahmen and
Micchelli [DM833] and Prautsch [Pr]. The variety of results, obtained in a short period
of four years, is remarkable. It reflects the rich mathematical structure of the theory and,

sometimes, “competition” among the authors.

The material discussed in this survey is based on my joint work with Carl de Boor and
Sherman Riemenschneider. Moreover, some of the recent work on subdivision of box spline
surfaces is discussed. The selection of topics reflects my prejudiced view of the subject and
I apologize for having omitted beautiful results which have been proved and which have

yet to be proved [77].

Basic Properties

Generalizing the geometric interpretation of univariate B-splines due to Curry and
Schoenberg [CS], de Boor [Bo] defined multivariate B-splines as volume densities of sim-
plices. This idea led to the following more general definition [BH82]. The multivariate
B-spline B : R? — IR, corresponding to a convex polyhedron Q C IR%T™ with nonzero

volume and a linear map P : R*"" — IRY, is defined by (cf. Figure 1)

B(z) := vol,,{Q n P 'z}, (1)
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i.e. B(z) is the n-dimensional volume of the cross section of @ which is mapped by P onto

z.

IR"
IRd
IR
B(x)®
o L J U
X (Rd
( Figure 1)

The box spline is a special case of definition (1) with @ the centered unit cube.

Multiplying (1) by a smooth test function ¢ and integrating over IR? yields the identity

|, B@etadz = [ opu)ay.

Q@

This formula is the basis for the following analytical definition of box splines.

Definition 1 [BH82/83]. Let V be a multiset (i.e. a collection of not necessarily
distinct objects) of vectors v in IR¢ with integer components. Denote by #V the number
of vectors in V', counting multiplicities, and by (V') their linear span. The box spline By

is the linear functional defined by
(By,p) := / go(z ty,v)dt  for o€ Co(IRY). (2)
[—1/2,1/21%V iy
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Unless stated otherwise, it is assumed that (V) = IR®. Then By can be identified with

the function

By (z) = volu{t € [-1/2,1/2]#V : Y " t,v = z}, (3)
veV

and (By,p) = fBV(x)ga(x)da:.

The definition (2) is more convenient for computations than the geometric definition
(3) since it does not require that the vectors V span R However, if this condition is
not satisfied, then By is a linear functional with support contained in a hyperplane and

identities involving By have to be interpreted in the sense of distributions.

The box spline has the following properties:
(i) By is positive,
(ii) supp By ={d_, tov:—-1/2<1t, <1/2},
(i) By is a piecewise polynomial of degree < n := |V | — d,
(iv) By is g times continuously differentiable, where g := min{#W : (V\W) # R} — 2.
Properties (i) and (ii) follow directly from Definition 1. The last two assertions are less

obvious and will be verified using identity (10) below.

If the vectors V form a basis for IRd, then By is the normalized characteristic function
of a parallelepiped spanned by the vectors V' and centered at the origin, i.e.

_J1/|det V], ifz =73 t,v with -1/2 <t, <1/2;
By (z) = {0, otherwise. (4)

If V consists of the unit vectors e, with multiplicities m,, then By is the centered tensor
product B-spline of degree m, —1 with respect to the v-th variable and with equally spaced

knots. In particular, the univariate B-spline

Bp(z):=(n+1) [~(n+1)/2,—(n—-1)/2,...,(n + 1)/2}4(t — =)}
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corresponds to V = {1,...,1} with #V = n + 1.

Setting p(z) = exp(—iyz) in (2), one computes the Fourier transform of the box

spline,
By (y) = H sinc(yv/2), (5)
veEV
where sinc(t) := sin(¢)/t. This formula stresses the analogy to univariate B-splines with

equally spaced knots and is useful for deriving the basic recurrence relations for By.

Let D,, denote the derivative in the direction of the vector w, i.e. D, = > w, 8, with
0, the derivative with respect to the v-th variable, and denote by é,, the corresponding
centered difference operator, i.e. (6,9)(z) = p(z + w/2) — p(z — w/2). It follows from
(5) that the derivative of a box spline is the difference of two box splines of lower degree,

D,B = é,By\,. More generally, if W C V,
Dw By = éwByv\w, (6)

where Dy = [],cw Dw and éw is defined analogously. Setting W = V in (6) yields a

generalization of the Hermite Genocchi formula,

(Bv,Dyvp) = (6vp)(0), (7)

i.e. the box spline is the Peano kernel for a product of centered difference operators. The

convolution of two box splines yields a box spline of higher degree,

By #+ Bw = Byuw. (8)
A special case is the identity
1/2
By uw(z) = / By (z + tw)dt, (9)
~1/2
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i.e. the box spline By, is obtained by averaging the box spline By in the direction w.

This is illustrated in the following

Example 1. The box spline B((1,0),(0,1)} is the characteristic function of the square
[-1/2,1/2]%. Applying (9) with w = (1,1), one obtains the piecewise linear “hat” function
on the triangulation generated by the three vectors (1,0), (0,1) and (1,1). Similarly,
averaging the linear box spline in the direction of the vector w = (—1, 1) yields the piecewise
quadratic element first studied by Zwart [Z] and independently derived by Powell [Po] and

Sabin [PS]. Figure 2 shows the support of these box splines and the corresponding mesh.

v={(1,0),(0,1)} V={(1,0),(0,1), (1,1}

V={(1IO)I(OI1) 1(111)1(” 1r1)}

( Figure 2 )

From (4) and (9) it is clear that B is a piecewise polynomial of degree < #V —d and it
is also not difficult to derive its exact smoothness. An alternative derivation of properties
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(iii) and (iv) is based on the following

Lemma 1. Denote by V. the set of all subsets W of V with (V\W) # R? Then,
for any y € IR?, there exist constants ay so that
D= 3 awDw + > aw DI~ #W Dy, (10)
WCV, #W=r, W¢V, WCV, #W<r, WeV,

This Lemma is proved by induction on r. For the induction step, (10) is differentiated

in the direction y. If W C V and W ¢ V., the vectors in V\W span R Therefore,

DyDW - Z awaDW - ZawaUW7
weEVA\W

which yields (10) with r replaced by r + 1.

Proof of (iii). Ifr = #V —d+ 1 = n + 1, the first sum on the right hand side
of (10) is empty. Therefore, D} By is a linear combination of shifts of derivatives of the
box splines By\w with W € V.. The support of these box splines (as linear functionals)
is contained in hyperplanes which implies that all (n + 1) order derivatives of By vanish

on the complement of these hyperplanes.

Proof of (iv). Ifr = p+1, it follows from the definition of g that the second sum on
the right hand side of (10) is empty. In this case, Dy By is a linear combination of shifts
of the box splines By\w with W ¢ V.. Since for such W, (V\W) = IR%, these box splines

are bounded functions and it follows that all derivatives of By of order o+ 1 are bounded.

Recurrence relation [BH82/83]. 1If the box splines By, are continuous at z =

> v tyv, then

(#V — d)By(z) = Z((l/Z + 1) By\o(z + v/2) + (1/2 — t,) By y(z — v/2)). (11)



A technical difficulty in the implementation of the recurrence relation is that (11) is in
general not valid on the set where some of the box splines By, are not continuous. The
reason for this is that no consistent assignment at the discontinuities can be made which
replaces the univariate notion of “limit from the right (or left)”. Therefore, one should

start the recurrence relation at the level of continuous (usually linear) box splines.

Proof of (11). Denote by w, the v-th coordinate function, i.e. w,(z) := z,. By
(6),

ZwVBVBV(x) = D,By(z) = Ztv<BV\v(I +v/2) — By\o(z — v/2)).
v 14

Therefore, the right hand side of (11) equals

Zw,,c?,,BV + % > (Bl +v/2) + Byro(- — v/2))

and the Fourier transform of this expression is

Y (18,)(w, By) + ) cos(-v/2) By,

v

By direct computation one checks that this sum equals (#V —d) ﬁv, the Fourier transform

of the left hand side of (11).

Definition 2. Multivariate cardinal splines, denoted by Sy, are by definition linear

combinations of translates of box splines, i.e.
Sy :=span {By(-—j) :j € Z%}

where 7/, denotes the integers.

As for univariate splines with equally spaced knots, algorithms for computing with
box spline series are particularly simple. For example, a box spline series is differentiated
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by differencing its coefficients. With 6~ denoting the backward difference, i.e. 6ja; :=
a; — a;_u, one sees from (6) that

Dy (3o asBr(- = 4)) = Do bwas Byaw(- =i + &w) (12

J

where £y = %ZwEW w. This identity plays a crucial role in deriving many of the

properties of box splines.

Theorem 1 [DM83,, J84;]. The box splines By (- — j), 5 € Z%, form a basis of Sy
if and only if

|detW| =1 for any basis W C V. (13)

Proof. Assume that |detW| > 1 for some basis W C V. Then, the vectors W

generate a proper sublattice A of ZZ¢,
A= {ijw e ).
w

By (4) we have

> Bw(-—j—k)=1/|detW| (14)
JEA

for any k in the factor group Ed/A. From (8) one sees that (14) remains valid with W

replaced by V which shows that the translates of the box splines are linearly dependent.

For the proof of the converse assume that V satisfies the condition (13). If #V = d, the
supports of the box splines By (- — j) are essentially disjoint and their linear independence
is obvious. Therefore, by induction on the number of vectors in V, one may assume that
the Theorem holds for all V/ with #V’/ < #V. Let W C V be a basis. Since |detW| =1,
the vectors W can be mapped onto the unit vectors ey,...,eq by an integer matrix A with
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|det A| =1 and it is clear that AV also satisfies condition (13). Therefore, by a change of
variables, one can assume without loss of generality that V contains the unit vectors. For

the induction step one shows that

5= Za]Bv(- -7)=0
J
implies that a = 0 as follows. By (12),
0=081s=_&,0; B, (- —j+e1/2). (15)
J

There are two cases:

(a) If (V\ey) = IRY, the inductive assumption implies that

6. a=0. (16)

€1

(b) If (V\er) # RY then (V\e;) = {0} x R%"!. In this case, the same conclusion as
in (a) holds; but the argument is slightly more complicated. The sum in (15) has to be
interpreted as a functional with support in the hyperplanes {j; —1/2} x R%~! with 7, € Z,

i.e.

0= 6;a-/ (g1 —1/2,52,...,94) + tyv)dt.
D AR (e )+ D tw)

.7"-2)""’.7216% V\el

Since all vectors in V'\e; are of the form (0,v') with v’ € IR?™!, the integral equals

/ Byi(z)p(sn —1/2,(42, ..., Ja) + z)dz
IR:I—-I

where {0} x V' = V\e;. Since V' satisfies condition (13), (16) follows also in this case
from the inductive assumption.
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Clearly, (16) holds for any unit vector which implies that a is constant, and hence equal

to zero.

Identity (14) of the above proof implies in particular that the box splines form a

partition of unity, i.e.
Y Bv(-—j) =1 (17)
7

This identity is the simplest example of explicit box spline representations of polynomials

which are studied in more detail in the next section.

Approximation order

Denote by o, the scaling operator, i.e. (o f)(z) := f(z/h) and denote by S{ := 0, Sy

the “scaled” cardinal spline space. The approximation order from Sy is defined as
max{r : dist(f, S{) = O(h") for all smooth f}.

Strang and Fix [FS, SF] have developed a general theory for approximation by integer
translates of compactly supported functions. In particular they have given several equiv-
alent characterizations of the approximation order. Their theory can be applied to the
spaces Sy, and I think this will lead to progress on the difficult problem of computing the
approximation order for translates of several box splines. However, for cardinal splines, a
direct approach, based on the special properties of box splines, is simpler. The key result
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Theorem 2 [BH82/83|. Denote by 7, the polynomials of total degree < m and set

m:=,, "m. With V. defined in Lemma 1,

TN Sy = ﬂ ker Dy . (18)
wev.

Proof. Let
pi= Y a;By(-—j) € 7N Sy.
7
By (12),

Dwp = Zé‘v}a] By\w(-—J+ &w).
7

For W € A, the box splines By\w have support on a set of measure zero which implies

that the polynomial Dy p vanishes identically, i.e. lies in the kernel of Dy .

For the proof of the converse, note first that

K = ﬂ ker Dy C T4V —d-
wev.

This follows from Lemma 1. If r > #V — d, the first sum on the right hand side of (10) is

empty and therefore, all derivatives D; with r > #V — d vanish on functions in K.

To complete the proof, one shows by induction on r that
7, N K C Sy.
For the induction step, it is sufficient to prove that

p€ n,NK implies q:=p— Zp(j)Bv(- —-J)€m,_1NK. (19)
J
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IfW e V., it follows from (7) that é,,p = (Bw, Dwp(- — £éw)) = 0 and, by (12), Dwgq = 0.

‘This shows that ¢ € K. By (10),

(Dy)7qg = > aw (Dwp = Y _(6wp)(5) Brw (- — 5+ éw))-

WCV, #W=r, WgV. j

Since p is a polynomial of degree < r, Dwp = é;,p, and it follows from (17) that Djg=0.

Corollary 1. The maximal degree k for which 7, C Sy equals p + 1 (where p is

defined in (iv)).

Proof. By definition of p there exists W with #W = p + 2 and (V\W) # R
Therefore, by the Theorem, there are polynomials of degree g + 2 which are not contained
in Sy. On the other hand, #W > o + 1 for W € V., and it follows that 7,1, C Sy.

If Zj p(7)Bv (- — j) =0, then {p(j) : Bv(z — j) # 0} must change sign for any z. In

particular, p cannot be a polynomial. It follows that the map

pr Ap:= Z p(7)Bv (- — 1)

is one to one on 7,,. Moreover, if 7, C Sy, it follows from (19) that
p—p—Ap ¢ Ty Ty, (20)

This implies that the range of 4|, is contained in 7,,, and therefore 4 is bijective on 7.

Using these facts, a quasi-interpolant can be defined by

[=Qf =Y AM(+J) Bv(-—j)

where A denotes a norm preserving extension of the functional p — (A~!p)(0) which is
defined on ,,. Since A is translation invariant, (A~ p(- + 7))(0) = (A7 'p)(y) for p € mp.
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Therefore, Qp = A(A71p) = p, i.e. Q reproduces polynomials of degree < m. By standard

arguments, it follows that

lonQor/nf = fllp = O(h™ )

for any smooth function f € LP(IRd). In conjunction with Corollary 1 this proves one

direction of
Theorem 3 [BH82/83]. The approximation order of Sy is g + 2.

To show that the order p + 2 is best possible, let p be a polynomial of degree g + 2
with Dywp # 0 for some W with (V\W) # IR% Assume that there exists a sequence of

splines sj, € SG with

lp = shllp.0 = o(h®*?)

where (1 is a bounded set. Let W = W' U w. By Markov’s inequality,
[Dwip = Dwishllpa = o(h). (21)

Since the support of D, Dwsp is contained in hyperplanes, Dys;, is piecewise constant

along any line {z +tw : t € IR} while Dwp is linear. Thus (21) cannot hold.

Chui and Diamond [CD] gave an explicit formula for the functional A in the defini-
tion of the quasi-interpolant (). This representation is based on the observation that the
operator A can be inverted explicitly on 7,,,

A7l = (1d — (zd — A)) 7 = i(id-—A)k, (22)
k=0
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where ¢d p := p. This identity holds since by (20) the operator (¢d — A) is degree reducing

which implies that (¢d — A)™*! = 0 on 7,,. Therefore, the functional A can be defined by

m

M =Y (i~ A)£1)(0). (23)

k=0

From the definition of A one sees that the right hand side of (23) is a finite linear combi-
nation of the function values {f(k —7) : k € 7%} with the corresponding weights given in

terms of By .

Convergence to Functions of Exponential Type

Schoenberg [Sch73;] showed that a sequence of univariate cardinal splines s, of degree
< n converges to a function f € Ly(IR) as the degree n tends to infinity if and only if f
is an entire function of exponential type 7. Moreover, cardinal interpolation is an optimal
approximation process. The analysis of the convergence of a sequence of multivariate
cardinal splines s,, € Sy, , |[V,| — o0, is more difficult. The results depend on the particular
sequence V,,. A natural choice is to let the multiplicities of the vectors in a fixed multiset

V tend to infinity. For this case, the analogue of Schoenberg’s result is

Theorem 4 [BHR86,]. Let nV denote the multiset consisting of n copies of V.
Define the set

Qv = {z: |By(z + 275)| < |By(z)], j # O}

Then, for f € Ly(IR%), there exists a sequence of cardinal splines
Sp — Z a'n,jBnV(' - ‘7')
J
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with coeflicients a, € Ez(ﬂd) which converges to f in Lz(IRd) if and only if the support

of the Fourier transform of f is contained in Q.

This Theorem is valid, more generally, for By replaced by any compactly supported
function. This becomes clear from the proof given below which essentially only uses the

decay of the Fourier transform of By, i.e. that |By(z)] = O((1 + |z])~}).

Lemma 2. The set {1 is a fundamental domain, i.e.

QN(Q+2715) =0, 5 #0,

measure <IRd\ U; (0 + 27rj)> = 0.

Proof. To prove the first assertion, let z = lim,_,o, £, with z, € Q. Then, the

assumption z — 273 € {1 with 5 # 0 leads to the contradiction
1> |By((z — 27j) + 275)/ By (z — 277)| = lim |By(z,)/By (z, — 2nj)| > 1.
For the second assertion, consider the set
{fi(z) = |By(c +275)|* : €@}

If this set has a unique maximum, say for j = j,, then £ € Q1+ 27j,. Thus the complement

of U; (2 + 27y) is contained in
{z: fj(z) = fr(z), some j # k}.

Since the zero set of a nontrivial real analytic function is of measure zero, it remains to
show that f; — fi cannot vanish identically. But, f; = fi implies that f is periodic in the
direction 7 — k& which contradicts the decay of EV.
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Proof of Theorem 4. For
zeD:={zcR®: By(z) £0} D0,

we define
a;(z) := By (z + 275) /By (z)

and introduce the trigonometric polynomial

P, (z) := Z By () exp (ijz) = Z Buy (z + 275) = Boy (z) > aj (@)™, (24)

J J

where the last equality follows from (8) and holds, at least, on D. For any j # 0 and
z e,

|a;(z)] < 1€y, 2) (25.1)

for some positive €(7, z), while, because of the decay of the Fourier transform of By, there

exists a positive constant C such that for all but finitely many 7,
laj(z)| < 1/(1+ Clj]). (25.2)
Consequently, for z € (1,

Po(z)/Bnv(z) = Z(aj(x))n — 1, n — oo, (26)

and the convergence is uniform on compact subsets (13 of (2. This shows in particular that,

for large enough n, P, does not vanish on such ;.

(a) Assume that f € L, and that f vanishes a.e. outside {1. Denote by x the characteristic
function of a compact subset {1; of (0. Since (1 is a fundamental domain, we can expand

fx/Pr in a Fourier series,

(Fx/Py)(z) =: Zcm exp (ijz), T € 0, (27)
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with coefficients ¢, € £5(Z%). This implies that

Sy 1= ch,jan(- —J) € Ls. (28)
;

Since f vanishes a.e. outside (2 and, by Lemma 2, 2\ has measure zero,

The first term is estimated by

1f = 8nllae < If = xflle.a + Ixf = xfBuv /Pall2,0,

where the first norm on the right hand side is small if {7 is chosen close to 1, while, for
fixed (1;, the second norm is small by (26) if n is sufficiently large. The j-th term in the

sum is the square of

1Buv (- + 275) (Fx/ Pa)llz,2 = |(a5)" Buv (Fx/ Pr)llz,0

< (”ajHOO,Ql)nllﬁnV/PnHOO,Qx Hsz,Ql'

By (25) this implies that the sum is small for large n.

(b) Assume that s, =} . ¢n; Bnv (- — 7) converges to f in L. Since
Sn(z +277) = (a;(z))"8n(z), z€ D,

we see from (25) that for j # 0

13nll2,0, 4275 < (lla5]lo0,0,)™ [3nll2 — 0

for any compact subset ; of (1. Since IR%\ U; (2 + 275) has measure zero, it follows that,
as an element of L», f vanishes outside ).
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In this generality, little more can be said about the structure of the set {1y and
the construction of optimal approximations s,. However, if the polynomial P, is strictly

positive, then cardinal interpolation is an optimal approximation process.

Corollary 2 [BHR85,_,]. If P, = Zj Bnv(j5)exp(is-) is strictly positive, then for

any bounded function f, there exists a unique bounded spline I,f € S,y with
I.f(k) = f(k), ke Z"
If fe Lz(IRd) and supp f C Qy, then

|f = I.f|l2— 0, n — co.

Proof. The existence and uniqueness of a cardinal interpolant follows from standard
theory for Toplitz matrices. The convergence of s, := I,,f to f can be established as in

the proof of Theorem 4. Since (y is a fundamental domain and supp f C Qv,

f(z) = Zf(]’) exp(ijz), = € v, (29)

i.e. the Fourier coefficients of f are the function values of / at ZZ?. The right hand side
of (29) defines a periodic extension fp of J. Using that P,(z) = Z]~ ﬁnv(z + 2mj), one
veryfies that

1:;7 = prnV/Pn-

This shows that s, is given by (27, 28) with y the characteristic function of the set 1y

and the arguments in the proof of Theorem 4 apply.

Clearly, the linear independence of the translates of the box splines is a necessary con-
dition for the well posedness of cardinal interpolation. In the bivariate case, this condition
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is also sufficient [BHR85;]. However, this is in general not true as the counterexample in
[BHR853] shows. In the univariate case, the well posedness of cardinal interpolation is a
consequence of the total positivity of the matrix {B,(7 —k)} (B is the univariate cardinal
B-spline) which implies that the minimum of the characteristic polynomial is attained at
7. For the multivariate problem, a comparable result could only be obtained in a very

special case.

Theorem 5 [BHR86,]. For V = {(1,0),(1,1),(0,1)}, the polynomial P, attains its
minimum at (27 /3,27 /3) mod 27Z? for all n. The fundamental domain 1y is the convex

hull of the points +(27/3,27/3), £(47/3,—-27/3) and +(27 /3, —47/3) (cf. Figure 3).

X2

O\
\ (211,211)

3 3

\ x
g

( Figure 3 )

Since the proof of the above result requires rather technical estimates it is not given

here.
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Subdivision Algorithms

Standard methods for graphic display of spline curves and surfaces are based on sub-
division techniques. The basic example is Chaikin’s algorithm |[Ch| for approximating a
quadratic spline curve

t—s(t) = Za]-Bg(t - 7)

7

with coefficients a; € IR® by a sequence of polygons. From the “control polygon” p which,
by definition, connects the vectors a;, a refined polygon p’ with vertices a; is generated by
the rule
(D) b2j10 = (a; + a540)/2, v = 0,15
(1) a; := (b; + b;41)/2.
Repeating this process, the polygons p, p/, p”, ..., converge quadratically to the spline
curve s. Typically, a few steps of the algorithm are sufficient to approximate the spline
curve within the resolution of standard displays. Similar algorithms exist for rendering
of splines of arbitrary degree as well as for other purposes (cf. [CLR80]). Subdivision
algorithms for box splines are very similar to the above example which, after all, is a

special case of the multivariate theory.

Definition 3. A box spline surface {s} is a two dimensional surface in IR® which

can be parameterized in the form
T — s(z) = Za]ﬂBv(z ~7), =€ R?, (30)
J

with coefficients a; € IR®. It is assumed that the parameterization is regular, i.e. that

1818(z) x Da8(x)| # 0 for all z € IR,



Two parameterizations s and § are equivalent (i.e. represent the same surface) if there
exists a smooth, 1-1 map ¢ : IR? — IR? with so¢ = §. For example, P(z) := Az + £ yields

an equivalent parameterization if A # 0.

One can assume without (too much) loss of generality that V' contains the vectors
U :={(1,0),(1,1),(0,1)} (up to symmetry, this merely excludes tensor product B-splines).

Then, the piecewise linear surface {p} which is parameterized by
z — p(z) = Zaj‘BU(:c ~J), z € R?, (31)
7

is called the “control polygon” for the surface {s}. Since

N J1, if5=0;
BUU)—{O, it 7 € 72\0, (32)

the function p : IR? — IR® interpolates the vectors a; at the lattice points j € 2.
Therefore, the surface {p} is the union of the triangles with vertices a;, a51(1,0)s 454(1,1)

and the triangles with vertices a;, a;1(0,1), @j4(1,1)-

Algorithm (cf. [B683, CLR83, DM833, Pr]). For a piecewise linear surface {p}, a

refined piecewise linear surface {p’}, which is parameterized by

z p'(z) =) djBy(z—j), z € R?,
;

is defined in two steps:
(I) bU,Zj-%—(V,;L) = (a'j‘ + a]"+(u,#))/2’ (v,u) = (0,0), (1, 0),(0,1),(1,1);
(II) W := U,

for v € VAU do:  bwuy,; := (bw,; + bw,;1v)/2;

Lr— .
aj L= bv,].
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Geometrically, the vectors by 3,4 (v,u), (U, 1) # (0,0), defined in step (I) of the Al-
gorithm, are the midpoints of the edges of the triangles which make up the piecewise

linear surface {p} (cf. Figure 4). With sw := >"_bw,,Bw(- — 7), it is therefore clear that

{p} = {sv}.

( Figure 4 )

Theorem 6 (cf. [B683, CLR83, DM833, Pr|). Assume that s and p are given by
(30) and (31) respectively. Then, the sequence of piecewise linear surfaces {p}, {p'}, {p"},

..., generated by the Algorithm converges to the box spline surface {s}.

The proof is divided into three steps.
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(a) The parameterizations z — s(z) = 3_ ¢, Bv(z—j) and z — §'(z) := 3, a] By (z ~ j)

are equivalent.

This is clearly true for V. = U since then {s} = {p} and step (I) of the algorithm
leaves the piecewise linear surface {p} unchanged. In this case, it follows from (32) and

the definition of by ; that

Z%BW - J) ZbWJBW(z ~J = fw\v) = sw(2 - —Ew\v) (33)

holds for W = U. To show that (33) remains valid with W replaced by W U w, note that

by (9),

1/2 1
/ Bw(2(z +tw) — 7 —n)dt = / Bw(2z +tw — j — n)dt/2
—1/2 —1

= (Bwow(2z— = n') + Bwow(22 = j+w—1') ) /2

where 1 := &y\p and ' := n + w/2 = wyuy\v. Using this identity in (33), one obtains

ZCLJ'BWUw(' -J) = /1/2 (Zaij(' —]h+tw))dt

j —-1/2
= bwi (Bwow(2- =5 — 1) + Bwuw(2 - —j + w —n")/2
;
= (bw + bw,s1w)/2 Bwow(2- =5 = n')
J

= Z bWUw,jl?WLJw(2 ' “]- - 77,)
J

which proves (33) for any W C V. Since by step (II) of the Algorithm {syv} = {s'}, the

identity (33) implies that {s} = {s'}.

(b) The Algorithm reduces the distance of neighboring coefficients by a factor 2, i.e.

1
sup ]ag- - a3+w} < 5 _sSup la; — ajiwl (34)
JEZ* wel JEZ2 wel
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From the geometric interpretation of step (I) of the Algorithm it is clear that (34) is valid
for linear box splines, i.e. for V. = U. It is then easily seen that the averaging process in

step (II) of the Algorithm does not increase the right hand side of (34).

(c) Denote by {p(™} with p(®) = ; aj(-n)BU(- — j) the piecewise linear surface generated

by n applications of the Algorithm. By (a), {s} can be parameterized by

z— s (z) = Za](-n)BV(z - 7)
J

for all n. Using (17),

From (b) one sees that

;n) - a,(cn)l < ¢2™"  sup  |ag— Grgwl, i |7 —Elle <e.

e7? wel

la

Since the summands on the right hand side of (35) are nonzero only if j is in the support

of By(z — ), it follows that
[0 (z) — p(M ()| = O(27™)

if k is chosen as the nearest lattice point to z.

A more subtle argument [D] shows that, under appropriate assumptions, the con-
vergence of the sequence {p}, {p'}, ..., is quadratic. Hence, as for tensor products, the
subdivision algorithm yields a fast method for the approximate evaluation of box spline
surfaces.
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Example 3. Let V = U UU which corresponds to a C? quartic box spline. Then

step (II) of the Algorithm can be rewritten as
0 1 1
a)=1/8 |1 2 1]by,
1 1 0

i.e. @/ is a convex combination of neighboring coefficients b;.
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