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ABSTRACT

In this paper, we present the design, implementation techniques, and initial performance evaluation
of Gamma. Gamma is a new relational database machine that exploits dataflow query processing techniques.
Gamma is a fully operational prototype consisting of 20 VAX 11/750 computers. The design of Gamma is
based on what we learned from building our earlier multiprocessor database machine prototype (DIRECT)
and several years of subsequent research on the problems raised by the DIRECT prototype.

In addition to demonstrating that parallelism can really be made to work in a database machine con-
text, the Gamma prototype shows how parallelism can be controlled with minimal control overhead through a
combination of the use of algorithms based on hashing and the pipelining of data between processes. Except
for 2 messages to initiate each operator of a query tree and 1 message when the operator terminates, the exe-
cution of a query is entirely self-scheduling.



1. Introduction

While the database machine field has been a very active area of research for the last 10 years, only a
handful of research prototypes [OZKA75, LEIL78, DEWI79a, HEILL81, SU82, GARDS83, FISHS4,
KAKUS85, DEMUS6] and three commercial products [TERA83, UBELS5, 1DM85] have ever been built.
None have demonstrated that a highly parallel relational database machine can actually be constructed. Of
the commercial products the most successful one (the IDM500) does not exploit parallelism in any form.
Why is this so? First, it is obviously much easier to develop a new database machine on paper than it is to

turn the idea into a working prototype that can be measured and evaluated. Second, most academic research-

ers simply do not have sufficient funding to develop their ideas into something that works.! Third, since IBM
has not endorsed the concept of a database machine there has been limited interest on the part of the major
computer vendors to develop such a product.

Two recent events may, however, have radically changed the commercial outlook for database
machines. First, in part as the result of the entrance of Teradata into the IBM marketplace, a research pro-
ject to develop a database machine has begun at the IBM Almaden Research Center. Second, the Japanese
5th generation project [MURARS3] which is based on the establishment of a highly parallel database machine
spurred the development of an intelligent database machine project at MCC. Since most major computer ven-
dors (except IBM) are members of the database program at MCC, one can expect to see a number of new
machines emerge in the next 5-10 years. One member company has already begun the design of a highly
parallel database machine.

In this paper, we present the design of Gamma, a new relational database machine that exploits
dataflow query processing techniques. Gamma is a fully operational prototype whose design is based on what
we learned from building our earlier multiprocessor database machine prototype (DIRECT) and several years
of subsequent research on the problems raised by the DIRECT prototype. Our evaluation of DIRECT
[BITT83] showed a number of major flaws in its design. First, for certain types of queries, DIRECT’s per-
formance was severely constrained by its limited I/O bandwidth. This problem was exaggerated by the fact

that DIRECT attempted to use parallelism as a substitute for indexing. When one looks at indices from the

! Rumor has it that Teradata has spent almost 40 million dollars developing their machine.



viewpoint of I/O bandwidth and CPU resources, what an index provides is a mechanism to avoid searching a
large piece of the database to answer certain types of queries. With I/O bandwidth a critical resource in any
database machine [BORAS83], the approach used by DIRECT, while conceptually appealing, leads to disas-
trous performance [BITT83]. The other major problem with DIRECT was that the number of control actions
(messages) required to control the execution of the parallel algorithms used for complex relational operations
(e.g. join) was proportional to the product of the sizes of the two input relations. Even with message passing
implemented via shared memory, the time spent passing and handling messages dominated the processing and
1/0 time for this type of query.

We felt that implementing a prototype of Gamma would achieve a number of important objectives.
First, it would demonstrate that parallelism can be made to work in a database machine context. While Tera-
data claims to have already accomplished this, they have not published any performance data and have refused
our repeated requests to benchmark their machine. The only numbers published on the performance of
DELTA [KAKUS85] are those for its parallel sort engine [KAMI85]. These numbers are disappointing as the
sort engine is slower than a commercial sorting package on a super-minicomputer. Finally, while the MBDS
database machine shows promising speedup factors for selection operations [DEMUS86], no results are avail-
able for complex operations.

Our second objective is that, although not as flexible as a model, a prototype would provide much
more reliable information about the performance bottlenecks of our design. Finally, we felt that a prototype
of Gamma would provide a powerful research vehicle for exploring a variety of future research directions
such as parallel algorithms for processing queries involving recursion.

The remainder of this paper is organized as follows. The architecture of Gamma and the rationale
behind this design is presented in Section 2. In Section 3, we describe the process structure of the Gamma
software and discuss how these processes cooperate to execute queries. In particular, we describe our
mechanism for processing complex relational queries in a dataflow manner. The mechanism we have
designed and implemented requires only three control messages per processor for each operator in the query
tree: two to initiate the operator and one for the operator to indicate its completion to the controlling scheduler

process. Except for these synchronization messages, the execution of a query is entirely self-scheduling. In



Section 4 we describe the algorithms and techniques used to implement each of the relational algebra opera-
tions. In Section 5, we present the results of our preliminary performance evaluation of Gamma. Our con-

clusions and future research directions are described in Section 6.
2. Hardware Architecture of GAMMA

2.1. Solutions to the I/O Bottleneck Problem

Soon after conducting our evaluation of the DIRECT prototype, we realized that limited 1/0O
bandwidth was not just a problem with DIRECT. As discussed in [BORA83], changes in processor and mass
storage technology have affected all database machine designs. During the past decade, while the CPU per-
formance of single chip microprocessors has improved by at least two orders of magnitude (e.g. Intel 4040 to
the Motorola 68020), there has been only a factor of three improvement in 1/O bandwidth from commercially
available disk drives (e.g. IBM 3330 to IBM 3380). These changes in technology have rendered a number of
database machine designs useless and have made it much more difficult to exploit massive amounts of paral-
lelism in any database machine design.

In [BORAB83], we suggested two strategies for improving 1/0 bandwidth. One idea was to use a very
large main memory as a disk cache [DEWI184a]. The second was the use of a number of small disk drives in
novel configurations as a replacement for large disk drives and to mimic the characteristics of parallel read-
out disk drives. A number of researchers have already begun to look at these ideas [SALE84, KIMSS5,
BROWSS5, LIVNS85] and Tandem has a product based on this concept [TANDS85].

Although this concept looks interesting, we feel that it suffers from the following drawback. Assume
that the approach can indeed be used to construct a mass storage subsystem with an effective bandwidth of,
for example, 100 megabytes/second. As illustrated by Figure 1, before the data can be processed it must be

routed through an interconnection network (e.g. banyan switch, cross-bar) which must have a bandwidth of

at least? 100 megabytes/second. If one believes the fabled "90-10” rule, most of the data moved is not

needed in the first place.

2 100 megabytes/second are needed to handle the disk traffic. Additional bandwidth would be needed to
handle processor to processor communications.
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Figure 2 illustrates one alternative design. In this design, conventional disk drives are used and
associated with each disk drive is a processor. With enough disk drives (50 drives at 2 megabytes/second
each) the I/O bandwidth of the two alternatives will be equivalent. However, the second design has a number
of what we consider to be significant advantages. First, the design reduces the bandwidth that must be pro-
vided by the interconnection network by 100 megabytes/second. By associating a processor with each disk
drive and employing algorithms that maximize the amount of processing done locally, the resuits in
[DEWI185] demonstrate that one can significantly cut the communications overhead. A second advantage is
that the design permits the 1/0O bandwidth to be expanded incrementally [DEMUS86]. Finally, the design may
simplify exploiting improvements in disk technology.

This alternative, on which Gamma is based, seems to have been pioneered by Goodman [GOODS81]
in his thesis work on the use of the X-tree multiprocessor for database applications. It is also the basis of
several other active database machine projects. In the case of the MBDS database machine [DEMUZ86], the
interconnection network is a 10 megabit/second Ethernet. In the SM3 project [BARU84], the interconnec-
tion network is implemented as a bus with switchable shared memory modules. In the Teradata product
[TERAS83], a tree structured interconnection network termed the Y-net is employed. While each of these
alternatives is attractive, our feeling is that it is too early to say exactly what form the interconnection network
between the processors should take®. The answer may very well depend on the nature of the algorithms
employed to execute complex database operations. One of our future research objectives is to use measure-
ments from Gamma to model and evaluate alternative interconnection networks. Based on the preliminary
results contained in [DEWI85], it is not at all clear that an interconnection network as complicated as the Y-

net [TERA83] is justified.

2.2. Gamma Hardware
The architecture of the current prototype of the Gamma database machine is shown in Figure 3.
Presently, Gamma consists of 20 VAX 11/750 processors, each with two megabytes of memory. An 80

megabit/second token ring developed for the Crystal project [DEWI84b] by Proteon Associates [PROT85] is

3 Perhaps it should be shared memory.
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used to connect the processors to each other and to another VAX running Berkeley UNIX. This processor
acts as the host machine for Gamma. Attached to eight of the processors are 160 megabyte Fujitsu disk
drives (8”) which are used for database storage. The configuration will be expanded and upgraded to 32

VAX 8200 processors in the near future.

2.3. Discussion

While MBDS and Gamma are architecturally very similar, we feel that their designs complement
each other and that the significant differences in their software designs will provide insight into the effective-
ness of the different techniques used. For example, while Gamma directly implemenfs the relational data
model, MBDS employs an attribute-based data model [DEMUS6] as the basis of its conceptual schema and

provides relational, network, and hierarchical user interfaces. As another example, MBDS runs on top of



Berkeley UNIX while Gamma employs a custom operating system designed specifically for supporting data-
base system applications. Finally, as described in Section 3, the two systems use different strategies for map-
ping database records onto the multiple storage units supported by both architectures and different algorithms
for processing complex relational database queries.

One may wonder how Gamma (or MBDS) is different from a distributed database system running on
a local area network. As will become obvious in the next section, Gamma has no notion of site autonomy,
has a centralized schema, and a single point for initiating the execution of all queries. Furthermore, the
operating system used by Gamma has no capability to dynamically load new programs, has lightweight

processes with shared memory, and does not provide demand paging.

3. Design of the Gamma System Software

In this section, we present an overview of the software structure of Gamma and the techniques used
for executing queries in a dataflow fashion. We begin by describing the alternative storage structures used in
Gamma. Next the system architecture is described from the top down. After describing the overall process
structure, we illustrate the operation of the system by describing the interaction of the processes during the
execution of several different queries. A detailed presentation of the techniques used to control the execution
of complex queries is presented in Section 3.4. Finally, we briefly describe WiSS, the storage system used

to provide low level database services, and NOSE, the operating system used.

3.1. Software Overview
All relations in Gamma are horizontally partitioned [RIES78] across all disk drives in the system.

The Gamma query language (gdl - a extension of QUEL [STON76]) provides the user with four alternative

ways of distributing the tuples of a relation:

round robin
hashed

range partitioned with user-specified placement by key value

range partitioned with uniform distribution



As implied by its name, in the first strategy when tuples are loaded into a relation, they are distributed in a
round-robin fashion among all disk drives. This is the strategy employed in MBDS [DEMUS86] and is the
default strategy in Gamma for relations created as the result of a query. If the hashed strategy is selected, a
randomizing function is applied to the key attribute of each tuple (as specified in the partition command of
gdl) to select a storage unit. This technique is used by the Terradata database machine [TERA83]. In the
third strategy the user specifies a range of key values for each site. For example, with a 4 disk system, the
command partition employee on emp id (100, 300, 1000) would result in the following distribution of

tuples:

Distribution Condition  Processor #

emp id = 100 1
100 < emp id = 300 2
300 < emp id = 1000 3
emp id > 1000 4

At first glance, this distribution is similar to the partitioning mechanism supported by VSAM
[WAGN73] and the TANDEM file system [ENSC85]. There is, however, a significant difference. In
VSAM and in the Tandem file system, if a file is partitioned on a key, then at each site the file must be kept
in sorted order on that key. This is not the case in Gamma. In Gamma, there is no relationship between the
partitioning attribute of a file and the order of the tuples at a site. To understand the motivation for this capa-
bility consider the following banking example. Each tuple contains three attributes: account #, balance, and
branch #. 90% of the queries fetch a single tuple using account #. The other 10% of the queries find the
current balance for each branch. To maximize throughput, the file would be partitioned on account #. How-
ever, rather than building a clustered index on account # as would be required with VSAM and the Tandem
file system, in Gamma, a clustered index would be built on branch # and a non-clustered index would be
built on account #. This physical design will provide the same response time for the single tuple queries and
a much lower response time for the other queries.

If a user does not have enough information about his data file to select key ranges, he may elect the
final distribution strategy. In this strategy, if the relation is not already loaded, it is initially loaded in a

round robin fashion. Next, the relation is sorted (using a parallel merge sort) on the partitioning attribute



and the sorted relation is redistributed in a fashion that attempts to equalize the number of tuples at each site.
Finally, the maximum key value at each site is returned to the host processor.

Once a relation has been partitioned, Gamma provides the normal mechanisms for creating
clustered (primary) and non-clustered (secondary) indices on each fragment of the relation. However, a spe-
cial multiprocessor index is constructed when a relation is horizontally partitioned using either of the two
range techniques. As shown in Figure 4, the disks, and their associated processors, can be viewed as nodes
in a primary, clustered index.* The root page of the index is maintained as part of the schema information
associated with the index on the host machine. As will be described below, this root page is used by the

query optimizer to direct selection queries on the key attribute to the appropriate sites for execution.
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4 A multiprocessor index may consist of only 1 level if indices have not been created at the disks.
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3.2. Gamma Process Structure

In Figure 5, the structure of the various processes that form the software of Gamma is specified.
Along with indicating the relationships among the processes, Figure 5 specifies one possible mapping of
processes to processors. In discussing the role each process plays in Gamma, we will indicate other alterna-

tive ways of mapping Gamma processes to machines. The role of each process is described briefly below.
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Their interaction is described in more detail in the following section.

Catalog Manager
The function of the Catalog Manager is to act as a central repository of all conceptual and internal
schema information for each database. The schema information is permanently stored in a set of
UNIX files on the host and is loaded into memory when a database is first opened. Since multiple
users may have the same database open at once and since each user may reside on a machine other
than the one on which the Catalog Manager is executing, the Catalog Manager is responsible for
insuring consistency among the copies cached by each user.

Query Manager
One query manager process is associated with each active Gamma user. The query manager is
responsible for caching schema information locally, providing an interface for ad-hoc queries using
gdl (our variant of Quel [STON76]), query parsing, optimization, and compilation.

Scheduler Processes
While executing, each "complex” (i.e. multisite) query is controlled by a scheduler process. This
process is responsible for activating the Operator Processes used to execute the nodes of a compiled
query tree. Since a message between two query processors is twice as fast as a message between a
query processor and the host machine (due to the cost of getting a packet through the UNIX operat-
ing system), we elected to run the scheduler processes in the database machine instead of the host.
At the present time, all are run on a single processor. Distributing the scheduler processes on multi-
ple machines would be relatively straightforward as the only information shared among them is a
summary of available memory for each query processor. This information is centralized to facilitate
load balancing. If the schedulers were distributed, access would be accomplished via remote pro-
cedure calls.

Operator Process
For each operator in a query tree, at least one Operator Process is employed at each processor parti-
cipating in the execution of the operator. The structure of an operator process and the mapping of
relational operators to operator processes is discussed in more detail below.

Deadlock Detection Process
Rather than use a distributed deadlock detection mechanism, Gamma employs a centralized deadlock
detection process. This process is responsible for collecting fragments of the "wait-for” graph from
each lock manager, for locating cycles, and selecting a victim to abort.

Log Manager
The Log Manager process is responsible for collecting log fragments from the query processors and
writing them on the log. The algorithms described in [AGRAS85] are used for coordinating transac-
tion commit, abort, and rollback.

3.3. An Overview of Query Execution

System Initialization and Gamma Invocation
At system initialization time, a UNIX daemon process for the Catalog Manager (CM) is initiated

along with a set of Scheduler Processes, a set of Operator Processes, the Deadlock Detection Process and the
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Recovery Process. The IPC socket associated with the CM process is at an established Internet address.
Thus, Gamma can be run from any machine connected to the ARPA Internet. To invoke Gamma, a user
executes the command "gdl” from the UNIX shell. Executing this command starts a Query Manager (QM)
process which immediately connects itself to the CM process through the UNIX IPC mechanism and then

presents a command interpreter interface to the user.

Execution of Database Utility Commands

After parsing a create database or destroy database command, the QM passes it to the CM for
execution. A create database command causes the CM to create and initialize the proper schema entries
and create the necessary files to hold information on the relations when the database is closed. Although the
catalog manager uses UNIX files instead of relations to hold schema information, the catalog structure it
employs is that of a typical relational database system. When a destroy database command is executed, its
actual execution is delayed until all current users of the database have exited. The first step in executing an
open database command is for the QM to request the schema from the CM. If no other user currently has
the requested database open, the CM first reads the schema into memory from disk and then returns a copy
of the schema to the requesting QM. The QM caches its copy of the schema locally until the database is
closed.

When a user attempts to execute any command that changes the schema of a database (e.g
create/destroy relation, build/drop index, partition, etc), the QM first asks the CM for permission. If per-
mission is granted, the QM executes the command, and then informs the CM of the outcome. If the com-
mand was executed successfully, the CM records the changes in its copy of the schema and then propagates
them to all query managers with the same database open [HEYT85a, HEYT85b]. A lock manager within the

CM ensures catalog consistency.

Query Execution
Gamma uses traditional relational techniques for query parsing, optimization [SELI79, JARKS4],
and code generation. The optimization process is somewhat simplified as Gamma only employs hash-based

algorithms for joins and other complex operations [DEWI85]. Queries are compiled into a tree of operators.
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At execution time, each operator is executed by one or more operator processes at each participating site.

In the process of optimizing a query, the query optimizer recognizes that certain queries can be exe-
cuted at a single site. For example, consider a query containing only a selection operation on the relation
shown in Figure 4 (assume that g is the name of the attribute on which the relation has been partitioned). If,
for example, the selection condition is "q = A and q = C” then the optimizer can use the root page of the
multiprocessor index on q to determine that the query only has to be sent to Processor #1.

In the case of a single site query, the query is sent directly by the QM to the appropriate processor
for execution. In the case of a multiple site query, the optimizer establishes a connection to an idle scheduler
process through a dispatcher process. The dispatcher process, by controlling the number of active
schedulers, implements a simple load control mechanism based on information about the degree of CPU and
memory utilization at each processor. Once it has established a connection with a scheduler process, the QM
sends the compiled query to the scheduler process and waits for the query to complete execution. The
scheduler process, in turn, activates operator processes at each query processor selected to execute the opera-
tor. Finally, the QM reads the results of the query and returns them through the ad-hoc query interface to
the user or through the embedded query interface to the program from which the query was initiated.

In the case of a multisite query, the task of assigning operators to processors is performed in part by
the optimizer and in part by the scheduler assigned to control the execution of the query. For example, the
operators at the leaves of a query tree reference only permanent relations. Using the query and schema
information, the optimizer is able to determine the best way of assigning these operators to processors. The
root node of a query tree is either a store operator in the case of a "retrieve into” query or a spool operator
in the case of a retrieve query (ie. results are returned to the host). In the case of a Store operator, the
optimizer will assign a copy of the query tree node to a process at each processor with a disk. Using the tech-
niques described below, the store operator at each site receives result tuples from the processes executing the
node which is its child in the query tree and stores them in its fragment of the result relation (recall that all

permanent relations are horizontally partitioned). In the case of a spool node at the root of a query tree, the
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optimizer assigns it to a single process; generally, on a diskless® processor.

There are several ways of assigning processors to the interior nodes of the query tree. At the present
time, static policies are used. Each interior node operator is assigned either to every processor in the system
or only to those processors without disks. In the future, we intend to explore alternative static and dynamic

policies.

3.4. Operator and Process Structure

In Gamma, the algorithms for all operators are written as if they were to be run on a single proces-
sor. As shown in Figure 6, the input to an Operator Process is a stream of tuples and the output is a stream
of tuples that is demultiplexed through a structure we term a split table. After being initiated, a query pro-
cess waits for a control message to arrive on a global, well-known control port. Upon receiving an operator
control packet, the process replies with a message that identifies itself to the scheduler. Once the process
begins execution, it continuously reads tuples from its input stream, operates on each tuple, and uses a split
table to route the resulting tuple to the process indicated in the split table. When the process detects the end

of its input stream, it first closes the output streams and then sends a control message to its scheduler
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5 The communications software provides a back-pressure mechanism so that the host can slow the rate at
which tuples are being produced if it cannot keep up.
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indicating that it has completed execution. Closing the output streams has the side effect of sending "end of
stream” messages to each of the destination processes. With the exception of these three control messages,
execution of an operator is completely self-scheduling. Data flows among the processes executing a query
tree in a dataflow fashion.

The split table defines a mapping of values to a set of destination processes. Gamma uses three dif-
ferent types of split tai)les depending on the type of operation being performed. For example, consider the
use of a split table shown in Figure 7 in conjunction with the execution of a join operation using 4 proces-
sors. Each process producing tuples source tuples for the join will apply a hash function to the join attribute
of each output tuple to produce a value between 0 and 3. This value is then used as an index into the split

table to obtain the address of the destination process that should receive the tuple.

Value Destination Process

0 (Processor #3, Port #5)
1 (Processor #2, Port #13)
2 (Processor #7, Port #6)
3 (Processor #9, Port #15)

An Example Split Table
Figure 7

The second type of split table used by Gamma produces tuple streams that are partitioned on discrete
ranges of non-hashed attribute values. In this case, the upper bound of each partition range serves as a key
value for each entry in the split table. These range partitioned split tables are used when permanent relations
are fragmented using either of the range partitioning strategies described in Section 3.1. These split tables
are also applicable when the split attribute targeted by an operation at the leaf of a query tree is the horizontal
partitioning attribute (HPA) for a relation. In this case, the split table is initialized with the boundary values
defined for the source relation’s HPA with the effect that each fragment of the source relation is processed
locally. For join operations, if the outer relation is horizontally partitioned on the join attribute, then the
relation will generally not be transmitted across the network. In this case, the inner relation of the join
would be partitioned and distributed according to the HPA ranges of the fragments of the outer relation at

each site.
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Gamma uses a third form of split tables when tuples are distributed in a round robin fashion among
destination processes. For this distribution strategy, tuples are routed to destination processes represented in
the split table, independently of the table’s key values. As described in Section 3.1, round robin distribution
is the default strategy that is used when relations are initially loaded.

To enhance the performance of certain operations, an array of bit vector filters [BABB79, VALD84]
is inserted into the split table as shown in Figure 8. In the case of a join operation, each join process builds
a bit vector filter by hashing the join attribute values while building its hash table using the outer relation
[BRAT84, DEWI85, DEWI84a, VALDS84]. When the hash table for the outer relation has been completed,
the process sends its filter to its scheduler. After the scheduler has received all the filters, it sends them to
the processes responsible for producing the inner relation of the join. Each of these processes uses the set of

filters to eliminate those tuples that will not produce any tuples in the join operation.
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3.5. Operating and Storage System

Gamma is built on top of an operating system developed specifically for supporting database manage-
ment systems. NOSE provides multiple, lightweight processes with shared memory. A non-preemptive
scheduling policy is used to help prevent convoys [BLAS79] from occurring. NOSE provides reliable com-
munications between NOSE processes on Gamma processors and to UNIX processes on the host machine.
The reliable communications mechanism is a timer-based, one bit stop-and-wait, positive acknowledgement
protocol [TANES1]. A delta-T mechanism is used to re-establish sequence numbers [WATS81]. File ser-
vices in NOSE are based on the Wisconsin Storage System (WiSS) [CHOUS85]. Critical sections of WiSS
are protected using the semaphore mechanism provided by NOSE.

The file services provided by WiSS include structured sequential files, byte-stream files as in UNIX,

B* indices, long data items, a sort utility, and a scan mechanism. A sequential file is a sequence of records.
Records may vary in length (up to one page in length), and may be inserted and deleted at arbitrary locations
within a sequential file. Optionally, each sequential file may have one or more associated indices. The index
maps key values to the records of the sequential file that contain a matching value. Furthermore, one indexed
attribute may be used as a clustering attribute for the file. The scan mechanism is similar to that provided by
System R’s RSS [ASTR76]. When a scan is opened, a boolean expression is specified in disjunctive normal
form. The scan returns only those tuples that satisfy the boolean expression.

To enhance performance, the page format used by WiSS includes the message format required for
interprocessor communications by NOSE. Thus, a page can be read from disk and sent to another processor

without requiring that tuples be copied from the page in the buffer pool into an outgoing message template.
4. Query Processing Algorithms

4.1. Selection Operator

The performance of the selection operator is a critical element of the overall performance of any
query plan. If a selection operator provides insufficient throughput, then the amount of parallelism that can
be effectively applied by subsequent operators is limited. Gamma’s use of horizontally partitioned relations

and closely coupled processor/disk pairs addresses the 1/0 bottleneck from a macro-system perspective.
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However, the efficiency of individual selection operator processes on distinct processors is still important.
For a given set of resources, a well-tuned selection operator should provide the necessary throughput to
ensure that the rest of the system is effectively ufilized.

As noted earlier, parallelism cannot be used as a complete substitute for indices. Therefore, Gamma
uses indices for selection operations whenever possible. Indices are not, however, ever created as part of a
query plan. The Gamma version of WiSS has also optimized the application of restriction predicates through
the use of threaded code [BELL73, DEWA75, STONS3].

Selection operator processes must interact with two devices, a disk and the interconnection network.
Any time spent waiting on service from these devices is wasted time. A number of solutions are possible:
nonblocking 1/0, large block sizes, read-ahead, and multiprogramming. The severity of the problem of wait-
ing for devices is compounded when only small page sizes are supported by a device. The interconnection
network used by Gamma currently supports packets with a maximum size of two kilobytes. Since we wanted
to avoid copying data, large block sizes were not a viable solution. Since the operating system used for
Gamma does not support either nonblocking I/O or read-ahead, we were left with multiprogramming as the
only viable solution. Once a scheduler initiates a selection operator at a local site, the operator process forks
a secondary process that provides limited read-ahead on the source file. Thus, while one selection process is
blocked on a network or disk operation, the other can be proceeding with useful work. Semaphores and a
non-preemptive process scheduling policy prevent harmful interactions between the cooperating selection

processes.

4.2. Join

The multiprocessor hash-join algorithm used by Gamma is based on a partitioning of source relations
into disjoint subsets called buckets [GOODSI1, KITS83a,b, BRAT84, DEWI84a, VALD84, DEWIS5].
(The term bucket should not be confused with the overflow buckets of a hash table.) The partitioned buckets
represent disjoint subsets of the original relations. These partitions have the important characteristic that all
tuples with the same join attribute value share the same bucket. The potential power of this partitioning lies

in the fact that a join of two large relations can be reduced to the separate joins of many smaller relation
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buckets [KITS83a,b].

Gamma’s Hash Join Algorithm

In Gamma, the tuple streams that are consumed by a hash-join operation are produced by operators
using hash-based split tables. These tuple streams partition the tuples based on their join attribute values. As
identical split tables are applied to both source relations of a join, a join of two large relations is reduced to
the separate joins of many smaller relation buckets. In Gamma, these separate, independent joins provide a
natural basis for parallelism. The following discussion considers the details of how this parallelism is
achieved and exploited.

Hash-join operators are activated in a manner that is uniform with all other operators. There is an
additional control interaction, however, that is unique to the hash-join operator. This control message is
required because there are two distinct phases to the hash-partitioned join algorithm. In the first phase,
termed the building phase, the join operator accepts tuples from the first source relation and uses the tuples
to build in-memory hash tables and bit vector filters. At the end of this building phase, a hash-join operator
sends a message to the scheduler indicating that the building phase has been completed. Once the scheduler
determines that all hash-join operators have finished the building phase, the scheduler sends a message to
each join operator directing the operators to begin the second phase of the operation, the probing phase. In
this phase, individual join operator processes accept tuples from the second source relation. These tuples are
used to probe the previously built hash-tables for tuples with matching join attribute values. At the end of the
probing phase, each of the join operators sends a message to the scheduler indicating that the join operation
has been completed.

An important characteristic of this algorithm is the simplicity of the interactions between the
scheduler and participating operator processes. The net cost of activating and controlling a hash-join operator
is five messages per site. (In effect, the building and probing phases of a join operation are considered
separate operators for purposes of control.) All other data transfers can proceed without further control
intervention by the scheduler.

In addition to controlling individual join operators, the scheduler must also synchronize the join with
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the operators of adjacent nodes in the query tree. In particular, the scheduler must initiate the operators
which will be producing the input tuple streams for the join. The production of these tuple streams must
coincide with the activation of the building and probing phases of the hash-join operator.

Bit vector filtering is applied during the probing phase of the hash-join algorithm. This filtering pro-
vides an inexpensive approximation of one of the benefits of an index join. That is, nonqualifying tuples can
be discarded at a relatively early stage of processing. In a multiprocessor environment, bit vectors have the
additional advantage that such nonqualifying tuples can be discarded at the site where they are produced.
Filtering at that point reduces the volume of tuples that must be transmitted to the processor that effects the

actual join.

A Hash-Partitioned Join Example
As an example of the control and synchronization involved with a multiprocessor hash-join operator,
consider the system shown in Figure 9. Assume the existence of two relations, A and B that are horizontally

partitioned across the two disks. A single join involving the two relations would proceed as follows:

(1) The scheduler initiates a join operator on all three nodes in the system. Upon activation, each join
operator initializes a single, local bit vector to the value zero and allocates an empty hash table.
Then each individual join operator reads from its single input stream and add tuples to the hash
table that it is constructing. For each tuple, a bit representing a join attribute value is set in the lo-
cal bit vector.

(2) Having initiated the join operator, the scheduler activates the selection represented by the left child
of the join in the query tree. The split table of the selection operator is initialized to produce three
output streams partitioned on hashed join attribute values.

(3) The scheduler waits for completion notices from all the selection operators. The join operators
detect the fact that the selection of A has finished by counting "end of stream” markers.

(4) When a join operator collects all the "end of stream” markers from the selection of A, it sends a
message to the scheduler that the building phase of the local join operation has been completed.
As a part of this message, the join operator returns the bit vector filter that it constructed during
the building phase. This message also includes information concerning the disposition of any
hash-table overflow conditions.

(5) Once the scheduler receives notices from all join operators that the building phase has completed,
a message is sent from the scheduler to all join operators that initiates the probing phase of the
hash-join algorithm. This message includes the split table that controls the output stream produc-
tion of the join operation.
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(6) After activating the probing phase, the scheduler activates the selection on B. As a part of the ac-
tivation process, a packet containing the collected set of bit vector filters is sent to each selection
process by the scheduler. One distinct bit vector is included for each of the three partitioned
streams that will be produced. (While one larger bit vector filter could have been produced for the
entire relation, it has been demonstrated that more numerous, smaller bit vectors are more effec-
tive [BABB79].)

(7) As the join operators receive tuples from the selection of B, the hash table is probed for matching
tuples from the A relation. Matching tuples are joined and output.

(8) The scheduler is notified as selection operations on B and the join operators complete.

Hash Table Overflow
During the building phase of the multiprocessor hash-join algorithm, if buckets grow unacceptably

large, the in-memory hash tables may overflow. The choice of an appropriate hash function will tend to ran-
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domize the distribution of tuples across buckets and, as such, will minimize the occurrence of hash table
overflow. Additionally, in order to decrease the likelihood of hash table overflow, the optimizer attempts to
build query trees that minimize the size of the relations that are accessed during the building phase of the
hash-join algorithm. For joins in the interior of a query tree, this is a difficult task.

When hash-table overflow occurs, a local join operator narrows the dimensions of the tuple partition
that is used for the construction of the hash table, in effect creating two subpartitions. One subpartition is
used for hash table construction and the other is dumped to an overflow file on disk (possibly remote).
Tuples that have already been added to the hash table, but now belong to the overflow subpartition, are
removed from the table. As subsequent tuples are read from the input stream, they are either added to the
hash table or appended to the overflow file.

When the local join operator notifies the scheduler of the completion of the building phase, it identi-
fies the repartitioning scheme that was used for the handling of any overflow condition. With this knowledge
the scheduler can alter the split tables of the second, probing source relation in such a manner that the over-
flow subpartitions are directly spooled to disk, bypassing the join operators. After the initial non-overflow
subpartitions have been joined, the scheduler recursively applies the join operation to the spooled, overflow
subpartitions. This method will fail in the case that the combined sizes of tuples having identical join attri-
bute values exceeds the size of available memory. In such a case, a hash-based variation of the nested loops
join algorithm is applied [BRAT84, DEWIB5]. The sort-merge algorithm also has been shown to have an
area of applicability when the aggregate size of overflow subpartitions greatly exceeds the amount of available
memory [DEWIS5]. In any of these cases, the scheduler assumes the responsibility of determining the
nature and extent of the overflow condition. These decisions are enabled by statistics that are collected by
join operators during the resolution of hash table overflow. Such statistics are returned to the scheduler at

the end of the building phase.

4.3. Update Operators
For the most part, the update operators (replace, delete, and append) are implemented using standard

techniques. The only exception is a replace operation that modifies the partitioning attribute. In this case,
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rather than writing the modified tuple back into the local fragment of the relation, the modified tuple is passed
through a split table to determine where the modified tuple should reside.

The update operations use standard concurrency control and recovery techniques. Concurrency con-
trol is implemented with page-level locking and a centralized mechanism for detecting deadlocks. Recovery is

being implemented with logging using the techniques described in [AGRAS85].

4.4. Other Operators

In Gamma, hash-based algorithms are used for other computationally expensive operators besides the
join operation. Random, hash partitioning is directly applicable to the process of eliminating duplicate tuples.
In this case, tuples are partitioned by hashed values that are based on the composite attributes of the entire
tuple. Having separated the source relations into discrete partitions, memory resident hash tables are used to
filter duplicates from a stream of tuples. Hash-partitioning also provides the clustering necessary for execut-
ing aggregate function operations [JOHNS82]. In this algorithm, tuples are partitioned based upon the hashed

value of the composite of the operator’s grouping attributes.

5. Performance Evaluation

In this section, we present the results of our preliminary performance evaluation of Gamma. This
evaluation is neither extensive nor exhaustive. For example, we have not yet conducted any multiuser tests.
Rather, these tests only serve to demonstrate the feasibility of the hardware architecture and software design
of Gamma. Concerns of correctness rather than absolute speed have necessarily dominated the current phase
of development.

All our tests were run with the host in single user mode. Elapsed time at the host was the principal
performance metric. This value was measured as the time between the points at which the query was entered

by the user and the point at which it completed execution.

5.1. Test Database Design and Results
The database used for these tests is based on the synthetic relations described in [BITT83]. Each

relation consists of ten thousand tuples of 208 bytes. Each tuple contains thirteen, four byte integer attributes
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followed by three, 52 byte character string attributes. As discussed in [BITT83], these relations enable one
to generate a wide range of retrieval and update queries while precisely controlling the selectivity and the
number of result tuples.

All permanent relations used in the following tests have been horizontally partitioned on attribute
Uniquel which is a candidate key with values in the range 0 through 9,999. Range partitioning was used to
equally distribute tuples among all sites. For example, in a configuration with four disks, all tuples with
Uniquel values less than 2500*i reside on disk i. All result relations are distributed among all sites using
round-robin partitioning. The presented response times represent an average for a set of queries designed to

ensure that each query i leaves nothing in a buffer pool of use to query i+1.

5.2. Selection Queries

In evaluating the performance of selection queries in a database machine that supports the concept of
horizontal partitioning and multiprocessor indices, one must consider a number of factors: the selectivity fac-
tor of the query, the number of participating sites, whether or not the qualified attribute is also the horizontal
partitioning attribute, which partitioning strategy has been utilized, whether or not an appropriate index
exists, and the type of the index (clustered or non-clustered). If the qualified attribute is the horizontal parti-
tioning attribute (HPA) and the relation has been partitioned using one of the range partitioning commands,
then the partitioning information can be used to direct selection queries on the HPA to the appropriate sites.
If the hashed partitioning strategy has been chosen, then exact match queries (e.g. HPA = value) can be
selectively routed to the proper machine. Finally, if the round-robin partitioning strategy has been selected,
the query must be sent to all sites. 1f the qualified attribute is not the HPA, then the query must also go to all
sites.

To reduce the number of cases considered in this preliminary evaluation, we restricted our attention

to the following four classes of selection queries:
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selection clause on clustered index on
S1 Uniquel (HPA) no index
S2 Uniquel (HPA) Uniquel
S3 | Unique?2 (non-HPA) no index
S4 | Unique2 (non-HPA) Unique2

We restricted classes S1 and S2 further by designing the test queries such that the operation is always exe-
cuted on a single site. This was accomplished by having the horizontal partitioning ranges cover the gualifi-
cations of the selection queries. Since queries in both classes S3 and S4 reference a non-HPA attribute, they
must be sent to every site for execution. Each of the selection tests retrieved 1,000 tuples out of 10,000 (10%
selectivity). The result relation of each query was partitioned in a round-robin fashion across all sites
(regardless of how many sites participated in the actual execution of the query). Thus, each selection benefits
equally from the fact that increasing the number of disks decreases the time required for storing the result

relation. The queries tested were of the form:

S1,82: retrieve into temp (tenKtup.all) where tenKtup.Uniquel > m and tenKtup.Uniquel < n
S53,54: retrieve into temp (tenKtup.all) where tenKtup. Unique2 > m and tenKtup.Unique2 < n

(m and n are constants between 0 through 9999 and n-m = 1001.)

The results from these selection tests are displayed in Figure 10. For each class of queries, the aver-
age response time is plotted as a function of the number of processors (with disks) used to execute the query.
Figure 10 contains a number of interesting results. First, as the number of processors is increased, the exe-
cution time of S1 and S3 queries drops. This decrease is due to the fact that as the number of processors is
increased, each processor scans proportionally less data. Since the entire relation is always scanned in the S3
case, the results for S3 indicate that parallel, non-indexed access can provide acceptable performance for
large multiprocessor configurations when there is sufficient /O bandwidth available.

It is important to understand the difference between the S1 and S3 queries in Figure 10. While both
have approximately the same response time, S1 would have a higher throughput rate in a multiuser test since
only a single processor is involved in executing the query (assuming, of course, that the queries were uni-
formly distributed across all processors).

At first, we were puzzled by the fact that S3 was slightly faster than S1. In fact, one might have
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expected exactly the opposite result due to the overhead (in S3) of initiating the query at multiple sites. In
both cases, each processor scans the same number of source tuples. In addition, since the result relation
(which has the same size in both cases) is partitioned across all sites, the cost of storing the result relation is
the same. The difference seems to be the number of processors used to distribute the tuples in the result
relation. In case S1, one processor produces all the result tuples which must be distributed to the other
sites. In case S3, all processors produce approximately the same number of result tuples (since Unique2
attribute values are randomly ordered when the file is horizontally partitioned on Uniquel). Thus, the cost of
distributing the result tuples is spread among all the processors. This explains why the gap between the S1
and S3 curves widens slightly as the number of processors is increased. The anomaly in the curves that
occurs when 7 or 8 processors are used is discussed in Section 5.4.

Cases S2 and S4 illustrate different effects of horizontal partitioning and physical database design on
response time. In the case of single site, indexed selections on the partitioning attribute (such as S2),
increasing the number of disks (and, hence, decreasing the size of the relation fragment at each site) only
decreases the cost of the index traversal (by reducing the number of levels in the index) and not the number
of leaf (data) pages retrieved from disk. While this effect might be noticeable for single tuple retrievals, the
number of levels in the index does not change across the range of sites evaluated. Instead, we attribute the
drop in response time as the number of processors is increased from 1 to 2 as a consequence of increasing
the number of disks used to store the result relation. Thus, scanning the source relation on site 1 can be par-
tially overlapped with storing half the result relation on site 2. As the number of processors is increased from
2 to 3 one sees a very slight improvement. After three processors, little or no improvement is noticed as the
single processor producing the result relation becomes the bottleneck.

In the case of S4 (an indexed selection on a non-partitioning attribute), the query is executed at
every site. Since Unique2 attribute values are randomly distributed across all sites, each processor produces
approximately the same number of result tuples. Thus, as the number of sites is increased, the response time
decreases. The performance of case S4 relative to S3 illustrates how parallelism and indices can be used to
complement each other.

An observant reader might have noticed that while the speedup factors for S1 and S3 are fairly close
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to linear, there is very little improvement in response time for S4 when the number of processors is doubled
from 4 to 8. Given the way queries in class S4 are executed, it would be reasonable to expect a linear
speedup in performance as the number of processors is increased. The reason this does not occur, while a
little difficult to describe, is quite interesting. First, it is not a problem of communications bandwidth. Con-
sider a 4 processor system. Each site produces produces approximately 1/4 of the result relation. Of these

250 tuples, each site will send 63 to each of the other three sites as result tuples are always distributed in a

round-robin fashion.® Thus, a total of 750 tuples will be sent across the network. At 208 bytes/tuple, this is
a total of 1.2 million bits. At 80 million bits/second, approximately 2/100s of a second is required to redistri-
bute the result relation.

The problem, it seems, is one of congestion at the network interfaces. Currently, the round-robin
distribution policy is implemented by distributing tuples among the output buffers on a tuple-by-tuple basis.
At each site in an 8 processor system, 8 qualifying tuples can change the state of the 8 output buffers from
non-empty to full. Since the selection is through a clustered index, these 8 tuples may very well come from a
single disk page or at most two pages. Thus, with 8 processors, 64 output buffers will become full at almost
exactly the same time. Since the network interface being used at the current time has buffer space for only
two incoming packets, five packets to each site have to be retransmitted (the communications software short-
circuits a transmission by a processor to itself). The situation is complicated further by the fact that the ack-
nowledgments for the 2 messages that do make it through, have to compete with retransmitted packets to their
originating site (remember, everybody is sending to everybody). Since it is likely that some of the ack-
nowledgements will fail to be received before the transmission timer goes off, the original packets may be
retransmitted even though they arrived safely.

One way of at least alleviating this problem is to use a page-by-page round-robin policy. By page-
by-page, we mean that the first output buffer is filled before any tuples are added to the second buffer. This
strategy, combined with a policy of randomizing to whom a processor sends its first output page, should

improve performance significantly as the production of output pages will be more uniformly distributed across

6 A round-robin strategy is used to insure that the result relation is distributed uniformiy, no matter
how many tuples each site produces. In this particular test, we could have achieved the same result without
any network traffic by storing the result tuples on the sites at which they are produced.
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the execution of the operation. A side benefit of this new strategy will be to reduce the number of partially
filled pages that are sent at the end of query (see [DEWI79b] for another look at the same problem). A draw-
back is that the distribution of result tuples may not be as uniform as before.

Rather than fixing the problem and rerunning the tests, we choose to leave this rather negative result
in the paper for a couple of reasons. First, it illustrates how critical communication’s issues can be. One of
the main objectives in constructing the Gamma prototype is to enable us to study and measure interprocessor
communications so that we can develop a better understanding of the problems involved in scaling the design
to larger configurations. By sweeping the problem under the rug, Gamma would have looked better but an
important result would have been lost (except to us). Second, the problem illustrates the importance of single
user benchmarks. The same problem might not have showed up in a multiuser benchmark as the individual
processors would be much less likely to be so tightly synchronized.

As a point of reference, the IDM500 database machine (10 MHz CPU with a database accelerator
and an equivalent disk) takes 22.3 seconds for S1 selections. The IDMS500 time for S2 selections is 5.2
seconds. Finally, the time in Gamma to retrieve a single tuple using a multiprocessor index such as that used

for S2 is 0.14 seconds.

5.3. Join Queries

As with selection queries, there are a variety of factors to consider in evaluating the performance of
join operations in Gamma. For the purposes of this preliminary evaluation, we were particularly interested
in the relative performance of executing joins on processors with and without disks. We used the following

query as the basis for our tests:

retrieve into temp (tenKtupA.all, tenKtupB.all)
where (tenKtupA.Unique2A = tenKtupB.Unique2B) and (tenKtupB.Unique2B < 1000)

Each relation was horizontally partitioned on its Uniquel attribute. Execution of this query proceeds in two
steps. First, the building phase of the join (see Section 4.2) is initiated. This phase constructs a hash table
using the tenKtupA relation on each processor participating in the execution of the join operator. Ordinarily,

the optimizer chooses the smallest source relation (measured in bytes) for processing during the building
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phase. In this query, the source relations can be predicted to be of equal size as the qualification on the
tenKtupB relation can be propagated to the tenKtupA relation.

Once the hash tables have been constructed and the bit vector filters have been collected and distri-
buted by the scheduler, the second phase begins. During this phase, the selection on tenKtupB is executed
concurrently with the probing phase of the join operation.

Since Unique2 is not the HPA for either source relation, all sites participate in the execution of the
selection operations.’ The relations resulting from the selection and join operations contain 1,000 tuples.

To reduce the number of cases considered, joins were either performed solely on processors with
disks attached or solely at processors without disks. For convenience, we refer to these joins, respectively, as

local joins and remote joins. We performed four sets of joins with the following characteristics:

clustered indices on | join performed at processors
J1 no index without disks (remote)
J2 no index with disks (local)
J3 Unique2B without disks (remote)
J4 Unique2B with disks (local)

The results of these join tests are displayed in Figure 11. For each class of queries the average
response time is plotted as a function of the number of processors with disks that are used. For the remote
joins, an equal number of processors without disks are also used. Figure 11 demonstrates that there is not a
performance penalty for joining tuples on sites remote from the source of the data. In fact, joins on proces-
sors without disks are actually slightly faster than those performed on processors with disks. The following
discussion addresses this somewhat counterintuitive, but intriguing result.

Two factors contribute to making remote joins slightly faster than local joins (with respect, at least, to
a response time metric). First, when joins are performed locally, the join and select operators compete with
each other for CPU cycles from the same processor. Second, since Gamma can transfer sequential streams
of tuples between processes on two different processors at almost the same rate as between processes on the

same machine, there is only a very minor response time penalty for executing operations remotely. Addi-

7 Unique2 was purposely chosen to maximize the rate at which tuples were produced in order to insure
that the selection was not a bottleneck.
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tional CPU cycles are, however, consumed while executing the communications protocol. Thus, there is
likely to be a loss in throughput in a multiuser environment. We intend to explore the significance of this
loss in future benchmark tests.

Since twice as many processors are used by the remote join design, one might wonder why the
response times for remote joins were not half those of the corresponding local joins. Since the building and
probing phases of the join operator are not overlapped, the response time of the join is bounded by the sum of
the elapsed times for the two phases. For the cases tested, it turns out that the execution time for the building
and probing phases is dominated by the selections on the source relations. There is, however, another bene-
fit that accrues from offloading the join operator that is not reflected in a response time metric. When the
join operation is offloaded, the processors with disks can effectively support a larger number of concurrent
selection and store operations.

While remote joins only marginally outperform local joins, we consider the implications significant.
Having demonstrated that a complex operation such as a join can be successfully offloaded from processors
with disks provides a basis for expanding the design spectrum for multiprocessor database machines.

As a point of reference for the join times of Figure 11, the IDM500 took 84.3 seconds for J2 joins

and 14.3 seconds for joins of type J4.

5.4. Speedup of Join Elapsed Times

In Figure 12, response-time speedup curves are presented for the join tests described in the previous
section. These results confirm our hopes that multiprocessor, partitioned hash-join algorithms can effectively
provide a basis for a highly parallel database machine. The anomalous shape of the speedup curves for sys-
tems with 7 or 8 disks can be attributed to two factors. First, the seventh and eighth disks that were added to
the system have only 82%3 the performance of each of the other six disks. With evenly partitioned source
relations, these slower disks increased the time required for scanning each of the source relations. All of this

additional time is directly reflected in increased response times for join operations because the building and

8 This value was determined by measuring the elapsed time of scanning a 10,000 tuple relation on the
two sets of disk drives. While all the drives are 160 megabyte Fujitsu drives, six are newer 8" drives while
the other two are older 14" drives.
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probing phases of the join operation are not overlapped.

A second factor also contributes to the shape of the speedup curve for systems with large numbers of
processors. The ratio of control messages to data messages per processor increases as processors are added
to the system. This factor only becomes significant once the volume of tuples processed by each processor
becomes small. In the join tests presented, this effect may become noticeable when as few as eight disks are
used because the Gamma query optimizer recognizes that the qualification on the first source relation (tenK-
tupB) can be propagated to tenKtupA. Therefore, only 1000 tuples are produced by the selections on each
source relation. When join operators are active on eight processors, this means that each join operator will
process approximately fourteen data pages from each relation and five control messages.

The reduced (and less impressive) speedup factors for joins J3 and J4 appear to be a consequence of
the reduced speedup obtained for selection S4 which is executed as part of join queries J3 and J4 (see Section
5.2). As discussed above, for the join tests conducted, the execution time for the building and probing
phases of the join is dominated by the selections on the source relations.

As Gamma enters a more mature stage of development, further speedup results will be obtained from
queries that generate more massive amounts of data. For the current time, we present the speedup data for

purposes of illustrating the potential that the system promises.

6. Conclusions and Future Research Directions

In this paper we have presented the design of a new relational database machine, Gamma. Gamma’s
hardware design is quite simple. Associated with each disk drive is a processor and the processors are inter-
connected via an interconnection network. The initial prototype consists of 20 VAX 11/750 processors inter-
connected with an 80 megabit/second token ring. Eight of the processors have a 160 megabyte disk drive.
This design, while quite simple, provides high disk bandwidth without requiring the use of unconventional
mass storage systems such as parallel read-out disk drives. A second advantage is that the design permits the
I/0 bandwidth to be expanded incrementally. To utilize the I/O bandwidth available in such a design, all
relations in Gamma are horizontally partitioned across all disk drives.

In order to minimize the overhead associated with controlling intraquery parallelism, Gamma
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exploits dataflow query processing techniques. Each operator in a relational query tree is executed by one or
more processes. These processes are placed by the scheduler on a combination of processors with and
without disk drives. Except for 3 control messages, 2 at the beginning of the operator and 1 when the opera-
tor terminates execution, data flows between between the processes executing the query without any central-
ized control.

The preliminary performance evaluation of Gamma is very encouraging. The design provides almost
linear speedup for both selection and join operations as the number of processors used to execute an opera-
tion is increased. Furthermore, the results obtained for a single processor configuration were demonstrated
to be very competitive with a commercially available database machine. While we have not yet evaluated our
update operations, we have no reason not to expect similar results. Once we have completed the prototype
(we have not yet implemented aggregate operations or aggregate functions), we plan on conducting a
thorough evaluation of the single and multiuser performance of the system. This evaluation will include both
more complex queries and non-uniform distributions of attribute values.

Using the prototype as a research vehicle we intend to explore a number of issues. Some of these
issues include the use of adjustable join parallelism as a technique for load balancing and low priority
queries, the effectiveness of alternative techniques for implementing bit filtering, index balancing algorithms
and the effect of duplicating the root node at multiple sites, evaluation of alternative techniques for handling

bucket overflows, and different strategies for processing complex queries.
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