SOR AND MGR[v] EXPERIMENTS ON THE
CRYSTAL MULTICOMPUTER
by
David Kamowitz
Computer Sciences Technical Report #623

January 1986

SOR and MGR[v] Experiments on the Crystal Multicomputer

by

David Kamowitz

ABSTRACT

This report describes distributed implementations of the red/black SOR algorithm and of the MGR[v]

multigrid algorithm on the Crystal multicomputer. Rates of convergence and observed efficiencies for both

algorithms are compared.

=
Supported by the Air Force Office of Scientific Research under Contract No. AFOSR-82-0275 and by NSF
grant MCS-8105904.

1. Introduction

Various iterative methods, and multigrid in particular, are often used to solve the large linear systems
that arise from the solution of elliptic partial differential equations. This report describes an experimental
study undertaken 1 investizate the use of the Crystal distributed computing facility [1] t© implement two of
these methods. The two methods chosen for study are the red/black Successive Over-relaxation (SOR)

method and the MGR[v'] multigrid algorithm.

Red/black SOR can be completely distributed to a number of machines and the algorithm itself is very
easy to implement, hence it is a good test algorithm. However p, the rate of convergence (contraction
number) for SOR is

p~1-—ch
where ¢ is some constant independent of h. This rate becomes abysmally slow as h-0. This slow raie sug-

gests the use of much faster, although significantly more complicated, algorithms such as multigrid.

The MGR[v] multigrid algorithm presents an added challenge beyond the details of the SOR algorithm,
On the one hand multigrid algorithms have rates of convergence which are bounded away from one by con-
stants independent of A. In fact, for Poisson’s equation in a square the asymptotic rate of convergence p(v)

of the two grid MGR[v] algorithm satisfies

2
()(\") 1 —712— Tﬁtﬂ%%%qﬁ—ﬂ_ as /’1»0 .

This is clearly superior to the rate of convergence for the SOR algorithm. On the other hand achieving this
rate of convergence reguires that much more work be performed. Indeed, from a distributed computing point

of view there is a stage of the multigrid algorithm which is performed sequentially.

One can reasonably ask: Given the Crystal distributed computing facility can the completely distribut-
able SOR algorithm be made faster than the MGR[v] algorithm? Before answering this question decisions

need to be made about the implementation of both of these algorithms.

This report has the following organization: Section two describes the specific differential equation and
resulting linear system that was actually solved. Section three describes the Crystal multicomputer and the

modifications to the sequential algorithms that are necessary for their implementation. Sections four and five

contain, respectively, details about the implementation and results for the SOR and for the MGR[v] methods.

Finally Section six contains some concluding remarks.

2. The Problem

The following analytic problem was chosen for testing by the two methods of solution.

Find u(x,y) such that

_ 0%y _ %u _ N € (
552 FI%] 0 for (x,y) ¢ Q, 2.1

u(x,y) = 0for (x,y) ¢ ald

and (1 = {(x,_y)GR2 | 0<x,y <1 }
Although the answer to this problem is obvioﬁs, u = 0, when studying iterative methods for the general Pois-
son equation with Dirichlet houndary conditions this homogeneous problem is the only problem which needs
to be considered.
In general terms the method used to solve (2.1) is to discretize the region (! into ¢}, and then to use
either SOR or multigrid to solve the resulting linear system of equations.

The first step is to define {2, the grid used to approximate {2, () is constructed by first choosing N

(N odd), the number of points on a side of €}, and setting /1, the mesh width, equal 10 Nl—T . Then

1

Oy = {(.xi,y,') €O | x=ih,y = jh,1=1,j= N ;.

LN—

For reasons that will become clearer later, (1, is divided into two subsets QR and QP (R corresponds to ‘red’

points and B corresponds to “black’ points). 2R and (1 are defined by

QR = {(x,',yj)éﬂ;, |i+j=1mod 2 }

and
Op = {(x7,3{j)€S);, | i+ j=0 mod 2 }
The linear system that arises from discretizing (2.1) is, for all (x;,y)¢ Oy
}}[{ ~Ui=1,; = U j=1 = Ui j+1 = Uisry F 4U;,;} =0. (2.2)
with

Ui,j = Ofori =0 N+1,j~= 0, N+1.

The notation U, ; corresponds to U(xi,yj), etc. Since the right hand side of equation (2.2) is zero the 7—};

term is neglected. The system of linear equations (2.2) is written in matrix form as AU = 0, where U is the
vector of unknowns corresponding to points in {};. The solution to this system of equations, U, gives an

approximation to u(x,y), the solution of (2.1), which is an O(h?) approximation.

3. Brief overview of Crystal

The Crystal multicomputer is composed of a network of VAX 750 computers, each of which can com-
municate with each other. Communication between machines is accomplished by means of messages. This

report does not describe the technical details of the message transfers; [1] and [2] describe these details.

However, from an algorithm design viewpoint a number of details are important. Each message can
consist of up to 512 words (2048 bytes) of information. Once a machine sends a message it is free to proceed
with new work. On the receiving end, the messages are placed in a buffer until they are read by the receiv-
ing machine. 1f no message has arrived when the receiving machine is ready for one then it must wait for a
message 1o arrive. The ratio of transmission time of messages to computational time (multiplications etc.) is
large, thus it is 10 an algorithm’s advantage to do as many computations as possible between sending a mes-

sage and waiting for a response. Otherwise the machine must busy wait for a message 10 arrive.

Connected to the Crystal multicomputer are a number of VAX 780 computers, referred to as hosts.
The individual machines in the network of VAX 750 computers are referred to as node machines. To run a
particular experiment the experimenter is able 0 communicate with the node machines from the host
machines. For example, in this application the problem size and other parameters are sent to the node
machines which then proceed to solve the problem, either by the red/black SOR algorithm or by the MGR[v]
algorithm. One particular node machine, for this application, is called the master node and the other nodes
are called slave nodes. The master node communicates with the host machines and takes care of various

bookkeeping tasks, such as timing the algorithm.

3.1. Implementation on Crystal

The basic idea used to solve the discrete problem (2.2) on Crystal is to decompose the region {}; into a
number of smaller regions 1/ and to assign each region {4 to a different processor k. The decomposition of
(1), is accomplished by choosing the number of machines to use, M, and then splitting {1}, into horizontal

strips each of height 1/M. Thus, QL =QuQry - U OM where

Qk

fi

{(.xi,y,,-) e, | Egl = jh= } (3.1)

Figure 1.shows, for N = 7and M = 3, 4, corresponding to machine k for k = 1, 2, 3.

o o 0 0o o o0 ©
o 0 0o 0 0o o © machine 1
o o o o 0 0 o
©o 9 © 0o © © © machine 2
o o 0o o 0 o0 ©
o o 6 o o o o | machine3
©o o 0o 0o 0o 0 ©

Figure 1 - 04

Note that the number of points per processor does not have to be the same. In addition in our implementa-

lion an odd number of machines is required 10 insure that inter-machine boundaries do not lie on grid points.

3.2. Data Flow

One can apply the concept of data flow, see [3] for example, to study our particular implementation of
each iteration of the red/black SOR algorithm on Crystal. The data flow concept involves examining what

unknowns are actually being determined and what is the flow of data through the processors.

For our problem it is important to realize that the only true unknowns are those points lying on
machine boundaries. Once these points are fixed then the points in the interior of QO f, for each iteration, are
determined by the iteration process itself. In the eventual solution of (2.2) these interior points are deter-
mined by the uniqueness of the solution, which is implied by the maximum principle. Therefore the object
of our parallel algorithm is to determine the values for these points. From this point of view the role of the

points lying inside each ()4 is solely 1 update these boundary values.

The task of each machine is thus to input boundary data and then to output updated values. Each
machine proceeds independently and can be viewed as a single instruction—update boundary values. These
computational processes are triggered solely by the flow of data through the network. There is Do global syn-

chronization or control over the algorithm with the exception of starting and stopping.

An important advantage in looking at the algorithm in this light is that the particular algorithm is
independent of the architecture it is programmed in. For example the only change necessary in moving from
the distributed Crystal network to a shared memory machine is that rather than physically transferring boun-

dary values one would only have to mark the boundary rows as being free for the next machine to update.

Of course, for each machine the interior points serve as an initial guess for the next iteration. This has

the practical implication that afier the first iteration the machines are no longer interchangeable over (.

4. The SOR Method

The successive over-relaxation, SOR, method has been studied by many authors, see [4,5,6]. The
red/black SOR method is characterized by its use of the decomposition of {1 into QR and OF. Although
red/black line SOR (SLOR) also conveniently lends itself 1o the Crystal architecture, red/black point SOR is
used instead since the decomposition of (3, into ()R and into P is also necessary for the MGR[v] algorithm
described in section five. This allows us to compare two methods for the solution of (2.2) based on the same

hasic iterative scheme. In [7] the red/black splitting is applied to vector processors.

The iterative scheme for our problem, for a given value of » and initial guess U9, is:
Repeat for each k, k =1,2,3, -~ until convergence;
First update points in Q£:

For all (x;,y;) € QF, set

U,J"f}] O {U,k—l’,, - U,k,,-_l -+ Ulk,j*il + Uk, }'/ 4+ (1-w)Ut,.
Then update points in £

For all (x;,y;) € QF, set

Ulk,"Ll DE) {U,k—ld + U,k’jal -+ U,j"yj.;,l + U,k+1'j }/4 -+ (l*“u))U,k,y,’n
Note that while updating points in QR, Uk-1,;, Ufj-1, Uk;41 and Uk 1,; are all in QF; similarly
the reverse is true while updating points in QOp.

The algorithm is completely described by the above description except for the choice of w. For

0 < w < 2 the SOR algorithm converges [4]. In addition, for our problem the optimal w is given by

W gprimal ~= _;IT%:P{{ T

where [t is the largest eigenvalue of the Jacobi iteration matrix. For general problems the value of i is not
known and an iterative procedure must be used to determine o gprmal - However, in this case it is known that

o= cosmh.

In addition, for @ = wgprimal, the rate of convergence of the red/black SOR method is

1 = 1—‘ Sil’}’ﬁh
T ¥ sinmh °

g = Woptimal ~

4.1. Implementation on Crystal

We have already seen that the basic idea used to exploit the Crystal architecture is the concept of
domain decomposition. What is the interaction between machines in terms of the SOR iteration? What is the

best reorganization of the algorithm to minimize the effects of the decomposition?

Each point U;; that is updated using the SOR algorithm depends only upon its four nearest neighbors.
For points interior to a given region Q these four neighbors lie completely within Q. However for boun-
dary points of 1/ (either the top or the botiom row) one of the neighbors lies in either QOF~1 (points along
the top of 1) or in (1f*1 (points along the bottom). Before each iteration machine k must therefore receive
these boundary values from machines & —1 and k-+1. Similarly machine k must send its boundary values to
its two neighboring machines. Machines 1 and M have only one neighboring machine each, therefore there

is only one boundary transfer for these two machines.

In order to “‘hide’’ the message transfers rather then sending boundary data and then waiting idly for
the boundaries to arrive from neighboring machines, the interior points are first updated. Then, the points
along the boundary of (/ are updated afier receiving the boundary points from machines k-1 and k+1. In
this way we hope that the time required to update the interior points will be larger than the time required for

the boundaries to arrive; otherwise we must busy wait for them.

This procedure requires that rows in the original domain {};; that are boundaries of partitions £/ be
represented twice. For example, the top row of £}f is updated by machine & and is also the bottom row, and

hence used as boundary data, in machine k—1.

The decomposition of {};, into ‘red’ points and ‘black’ points allows machine k o work simultaneously
with the other machines. Since the ‘red’ points depend upon values fixed in the ‘black’ points, we have
already seen that all the ‘red’” points can be updated simultaneously. The only sharing of information is the
values of ‘black’ points along machine poundaries. Similarly, to update the ‘black’ points, the ‘red’ points

are held fixed, and again only the points along machine boundaries need to be exchanged.

In the case of lexicographical SOR, to update a given point, say U; j, points Uj-1,; and Uj, j-1 must
be updated first. In particular, if the point U; ; is in machine k, all of the points in machine k—1 must be
first updated before updating U ;- Similarly the points in machines k—2, k—3, etc. must be updated before
points in machine k—1. This loses the effect of distributing the computational work among a number of
machines. Hence, a global decomposition of 0y, for example the red/black decomposition, is necessary for
the Crystal implementation 10 succeed. In addition, since only points along machine boundaries are shared,

one complete red/black cycle requires only two message transfers.

On Crystal the red/black SOR iteration for machine [, with Nj rows of unknowns, is:
Given w and UY:
Repeat for k = 1,2, 3, - until convergence:
1. Send boundary data to neighbors.
2. Compute new Uk* 1 at inferior points, rows 2, ~++ N— 1.
3 Receive boundaries from machines /—1 and /+ 1.
4. Compute new Uk+1 at boundary points of 4.

5. If a complete red/black cycle has been performed, compute residual.

It is important to realize that the iterates computed by this distributed form of the red/black SOR algo-
rithm are exactly the same as the iterates compuied by the serial version of the red/black SOR algorithm.

This allows us to easily compare the savings made by using the multicomputer.

A number of specific details about the programming of the algorithm are of interest. To control the
various processors corresponding to each region {}/# an additional processor is used. This additional proces-
sor collects the norms of the residuals from each machine k. The total norm over €} is computed and sent
to the host machine. In addition this machine provides each machine & with the necessary starting informa-

tion (number of points, value of w) and signals convergence to each machine k.

In order to keep the messages straight between machines, each message includes a synchronization
number from its sender. In addition, when the messages arrive at their destinations the originator of each

message is known. For example, machine k working on iteration / waits for messages sent from machines

10

k—1 and k+1 each labeled with synchronization number /. In the implementation of the red/black SOR
algorithm this synchronization number corresponds to the iteration count of each machine. In case messages

arrive too soon, for example from iteration /+1, then the messages are buffered until needed.

A final consideration concerning the implementation is worth noting. Although FORTRAN is available
on Crystal, the language Wisconsin Modula is used instead. This choice is made to facilitate the buffering of
the messages and because of Modula’s superior choice of data structures. Since we are mainly interested in
speedup and efficiency for this model implementation the consideration of which language to use, while

important, does not change the conclusions based on the experimental results.

4.2. Experimental Results

The algorithm of the previous section was programmed and tested on the Crystal multicomputer. In
order to compare the distributed version of the algorithm to the serial (single machine) version of the algo-

rithm a number of definitions are required.

Let T, be the time required to run the algorithm using p machines. Then the speedup, Sp, is

_ I
The efficiency, Ep, is
S
E, = £,
Pp

For this particular distribution of the work per iteration among the p machines in use, the minimum time

. . . T
required to run the algorithm is *p—l , SO

Hence, E, satisfies

S T
E,= 22 = = = .
PTp pTp

One hopes for E, to be as close to one as possible, however as we will see this is not always possible.

To measure the time required by the algorithm, the additional node which collected the norms from

each piece timed the algorithm. By using a Crystal node machine to collect the times no allowances had to be

11

made for other users on the system. As an additional measure 0 insure accuracy three runs were made for
-every choice of N displayed in the tables. The deviation in time between runs was very small which supports
the result that all of the measured time was due to the computations and not due to network traffic or other

extraneous factors.

Runs were made with N equal to 15, 31, 63 and 127. This corresponds to 225, 961, 3969 and 16129
unknowns respectively. This may appear 1o be an unreasonable number of variables, however when using a
larger or more complicated domain €} these are realistic sized problems. 1In addition to varying N, the

number of processors p equaled one, three, five, seven, nine and eleven.

Tables 1 through IV contain the results for N = 15, 31, 63 and 127 respectively. The column labeled
maximum number of rows shows the number of rows in the largest division of £};,. Recall that the number
of rows per machine is not required to be the same. The machine with the largest number of rows dominates

the computation so it is imporiant to compare the results for this machine.

12

Number Maximum
of number of Average Speedup Efficiency
Machines Rows Time
1 15 9.55 1.00 1.00
3 5 7.28 1.31 0.44
5 3 6.80 40 0.28
7 3 6.73 42 0.20
9 2 6.28 1.52 0.17
11 2 6.16 1.55 0.14
Table1-N = 15
Number Maximum
of number of Average Speedup Efficiency
Machines Rows Time
1 31 57.41 1.00 1.00
3 11 26.51 2.17 0.72
5 7 19.49 2.95 0.59
7 5 16.07 3.57 0.51
9 4 14.33 4.01 0.45
11 3 12.68 4.53 0.41
Table I1 - N = 31

Number Maximum
of number of Average Speedup Efficiency
Machines Rows Time
1 63 441.99 1.00 1.00
3 2] 160.84 2.75 0.92
5 13 105.07 4.21 0.84
7 9 77.20 5.73 0.82
9 7 63.19 6.99 0.78
11 6 56.34 7.85 0.71
Table III - N = 63
Number Maximum
of number of Average Speedup Efficiency
Machines Rows Time
1 127 3675.56 1.00 1.00
3 43 1281.80 2.87 0.96
5 26 790.26 4.65 0.93
7 19 587.58 6.26 0.89
9 15 471.73 7.79 0.87
11 12 385.25 9.54 0.87

Table IV -N = 127

Figure 2 contains a plot of the speedup versus number of machines, while Figure 3 displays the effi-

ciency versus number of machines. As can readilv be seen, for large problems the results are very encourag-

ing. Indeed for N = 127 the algorithm remains over 85% efficient. This indicates that the message transfer

time is successfully dominated by the time required for computations. However, for small problems the effi-

ciency rapidly drops off, which indicates that this form of distributing the algorithm is not worthwhile for

small problems.

13

r Speedup Sp

11.007 "" ‘deal

10,00 Aermrmmmermsmmmm e
127x127

T I L f o flonnne

P Ry A S e
' 63%63

TQQ Ao g R A <

.00 o--eeeeme e el

500 oo g
g 31x31

4.00 R et

3.00 4 T T e

2.00 1+, 4/%/1 --
'] " 15x15

| 00 FT T e

0.00
1 3 5 7 9 11 13

N umber of Machines

Figure 2

14

0.10

0.00

Efficiency E,

127x127
___ 63x63
__ 31x31
15x15
1 3 5 7 9 11 13

Number of Machines

Figure 3

15

5. The Multigrid Method

~The multigrid algorithm for the solution of (2.1) has been studied by many authors, see [§8,9, 10, 11].
Multigrid is a term used to describe an iterative technique which uses auxiliary grids which usually have sig-
nificantly fewer points than the original grid. We will not attempt {0 describe all multigrid algorithms here,

but rather will describe the one algorithm implemented on the Crystal multicomputer.

The algorithm chosen for implementation is known as the MGR[v] algorithm. This algorithm was first
described by Braess [12] (algorithm 2.1 in his paper) who analyzed the two grid version of what became
known as MGR[0] for the Poisson equation in a general polygonal domain. Ries, Trottenberg and Winter
[13] later analyzed the algorithm for the Poisson equation in a square for arbitrary v. Their resulis agree
with the result of Braess for the case v = 0. Kamowitz and Parter [14] extended the previous results for two
grids for the MGR[0] case to the variable coefficient diffusion equation in a general polygonal domain. And
finally Parter [15] extended the results of Ries Trottenberg and Winter and of Braess. He proved that the

three grid rate of convergence in a general polygonal domain for MGR[0] for the variable coefficient diffu-

sion equation is the same as the rate, p = JZ-+O(/1), for the two grid algorithm.

5.1. The MGR|v} Algorithm

In order to completely describe the MGR[v] algorithm a number of spaces, operators and parameters
need to be defined. In brief, each multigrid iteration consists of a small number of smoothing iterations, the
transfer of the residual to a coarser grid, the solution of a related system of equations to compute the ““coarse
grid correction” and the updating of the smoothed values in the original, fine, grid by interpolating the
coarse grid correction to the fine space. 1t should be noted that the multigrid algorithm itself can be used
recursively to compute the coarse grid correction; this leads to a true multigrid algorithm. Also, additional

smoothing steps can be done to the coarse grid correction while interpolating to finer grids.

First the general MGR[v] multigrid algorithm will be presented, then the details concerning each stage
of the algorithm will be described. In terms of the implementation on Crystal only a rudimentary understand-

ing of the algorithm is necessary. However the details are important in terms of the actual performance on

16

Crystal.

The MGR{[v] algorithm uses 7. nested grids, where 1 is selected in advance-of running the algorithm.

The nested sequence of grids is labeled Q1 D 2 D ... £}; where ()1 corresponds to €1 of section 2. Associ-

ated with each grid 1 is a positive definite, symmetric operator

Ly Qp - .

To solve L1U; = f1, where L is the linear operator defined in equation (2.2) and f1 is 0 for our par-

ticular problem the following algorithm is used.

M

2)

(3)

4

6))

Set k := 1, U := initial guess.
Algorithm MG(Ly, Ur, fr, k);
(Ly, given positive definite symmetric operator,
Uy given initial guess, returns value at next iteration,

71 right hand side,
k grid layer)

Smooth: Perform v iterations of odd/even Gauss-Seidel relaxation on the problem L; Uy = fi followed
by one odd sweep. Store the results of this step in Uy.

Compute the Residual ry:

Set i := fr — Li Uk

Note that at the odd points r, = 0.
Restrict the residual 7 to g4 1:

Set fx+1:= IEH 1

Consider computing the Coarse grid correction:

Find Uy+1 such that Ly +1Ur+1 = fr+1.

If k+1 = 1 solve directly (i.e. return Uy = L, 1f;).

Otherwise, set Ux+1 := 0 and return MG(Lg+1, Uk 1, e+ 1,k+ 1)
Interpolate and update Uy:

Set Uy := Uy + Ife1Uk+1-

17

(6) Return Uy, exit algorithm.

In the above description of algorithm MG(Ly Uy, fi,k) the details of the operators Ly, IF*1 and IF)
were deliberately left out. Indeed, with the exception of); which corresponds to), the spaces €}y,

k= 2,3, -+ 1t have not yet been defined.

For clarity only the particulars for the two grid algorithm will be described fully. The details for the

full ¢ grid algorithm extend readily from the two grid description.
5.1.1. Additional Details of the MGR[v] Algorithm

Coarse Grid Spaces
Given Nj, recall the definition of {);

0 =0, = {(.x‘,,y,) €Q | x, =ih,y, = jh,1=i,j= Nl}.

Then the coarse grid spaces €}y, [= 3,5, -+ - correspond to setting
1-1
Nuew 1= 277 (N1+1)-1
and computing €;, with A now equal 10]\T‘l‘-‘ﬂ' The coarse grid spaces £}y, [= 2,4, -+ - correspond to
new

the ““black’’ points of ;- 1.

Communication between Spaces

The interpolation operator Iy 1 is constructed as follows:

[I"k‘“ : U]z‘,

and for (x;,y;) € Qp \ Q41 we require

;= Uj,; if the point (x;,y,)€£)y

= 0. (5.1

1,]

[Lk (#:10)

Note that (5.1) results in an explicit equation for each point (x,,y;) € Qx \ Qg 1.

For the restriction operator If+1 we set

=4 [fkm)f. (5.2)

18

In step 3 of Algorithm MG applying the operator £+ 1 to the residual reduces to dividing the residual by 2 on

points of Qxflr+

Coarse Grid Operators

As is well known [11] the “‘ideal’” choice for Li+1 is

Lgs1:= I Leltey,
With this choice of Ly 1 for the coarse grid operator the two grid MGR([v] algorithm converges in one step!

However, L;+1 is a nine point operator as a straightforward calculation shows. In order to continue doing

odd/even relaxation on each of the coarser grid layers we require L4~ to be a five point operator.

More specifically, the stencil for Ly+1 (k odd) is of the form

For the MGR[v] algorithm we take Li+1 to be the “‘nearest’’ five points in the stencil for Li+1. E.g., the

stencil for Ly+1 (k odd) is

— —
] O
N /
. O
If<+1._ S
O O
j)\f

For k even, Ly+1 corresponds to Ly , where # = 22 h. It should be noted that this choice of L+ 1 for even

numbered grid layers results in the rotated grids characteristic of the MGR[v] algorithm.

19

5.2. Implementing the MGR[v] Algorithm on Crystal

The MGR[v] algorithm of Section 5.1 was implemented on the Crystal multicomputer. Each grid
Qp, k= 1,2, ,1is partitioned among p processors, just as for the red/black SOR algorithm of section 3.
Steps 1-3 and 5 of algorithm MG are local steps, while step 4 is a global step. By a local step we mean a step
of the algorithm where updating any particular point requires only the values of the four nearest neighboring
points. The coarse solve on (1, in step 4, is a global step since the values of the unknowns throughout all of
(), are required before the coarse grid correction can be computed. The purpose of this experimental study
on the Crystal multicomputer is to determine whether there is any combination of number of grid layers and

number of smoothing iterations (v) for which the distributed portions of the algorithm effectively mask the

deleterious effect of the global solution step.

As the number of grid layers increases, one hopes that the effect of the global solution step on the effi-
ciency of the distributed algorithm should decrease. However, as we shall see, as the number of grid layers
increases, the amount of work per grid layer decreases across all machines, and eventually there is a drop off
in the efficiency of disiributing the local steps across all the machines. For example, if the coarsest grid, {1,
has only one point on it, then the global solution step can be accomplished in one arithmetic operation.
Unfortunately, the local operations on {}; are divided among the p processors in use, which means in this

case that p— 1 processors are idle. The tables and graphs following this section illustrate this effect.

The details of the implementation of the local steps (smoothing, computing the residual, restricting to
coarser grids and interpolating to finer grids) are similar to the implementation of the red/black SOR algo-
rithm. That is, send boundary data, update interior sections, receive boundaries from neighbors and then
update the boundary values. These local steps are repeated for each of the 1 grid layers in use. Unfor-
tunately as the number of grid layers increases, the number of points per grid layer decreases, and eventually
the communication time for each step of the algorithm on these coarser grids dominates the computational

time.

In addition to the local steps of the algorithm the coarse grid correction of step 4, on the coarsest grid,

requires knowledge of the remaining unknowns in all of ;. These unknowns are distributed among all p

20

processors in use. For this step each machine sends its unknowns to an additional, dedicated, node. This
master noae collects the unknowns from each of the slave nodes. These slave nodes correspond to the nodes
used by the red/black SOR algorithm and perform the local operations. Once each slave node has sent its
unknowns to this dedicated machine the coarse grid correction is computed using Gaussian elimination. The
results of the coarse grid correction computed by the master node are then redistributed to each slave machine

and the algorithm continues.

Of coarse a more easily parallelizable algorithm, such as red/black SOR could have been used to solve
the coarse grid problem. This would have increased the observed efficiency of the experimental study. How-
ever, the cost would have been a slower running algorithm since for small sized problems (such as the coarse
grid correction when using a fair number of grids) gaussian elimination is faster. The question of what tech-

nique to use to solve the coarse grid equation requires further study.

The coarse grid correction step results in the most serious bottleneck of the distributed version of the
algorithm. During this step each node must remain idle while the coarse grid correction is computed. If the
number of points in (), is large (e.g. if 1 = 2 or 3 for example), then this step dominaies the computational
time of the algoritim. However, for the special case when the coarsest grid contains only one point, this
transfer of unknowns to the master node is eliminated. For this special case the one node containing the

coarse grid (with only one point in if) computes the coarse grid correction itself.

In addition to the bottleneck resulting from the coarse grid correction, there is another load balancing
problem inherent in implementing the MGR[v] algorithm on Crystal. As the grids get coarser eventually
there are more machines in use than there are rows in the coarser grids. This results in the situation where
some of the machines have no work to do and hence must sit idle for some portion of the algorithm. From a
practical programming point of view this results in the added complication of keeping the machines synchron-

ized throughout the iteration.

5.3. Experimental Results

The MGR[v] algorithm as previously described was implemented and tested on the Crystal multicom-

puter. Tests were made with N = 15, 31, 63 and 127 and with v equal to 0, 1 and 2. The number of

21

processors p used to perform steps 1-3 and 5 of algorithm MG was equal to 1, 3, 5, 7, 9 and 11. With the
exception of the case p=1 and the case where {}; has one point in it one additional processor was used to
compute the coarse grid correction. Thus, the total number of processors used when (), had more than one
point in it equaled 1, 4, 6, 8, 10 and 12. When), had only one point, the number of processors used
equaled 1, 3, 5, 7, 9 and 11. Unfortunately due to physical constraints on the amount of memory in the
node machines some combinations of the above parameters could not be tested and these cases are noted in
the tables found in the appendix. Also, the single machine tests with N=127 were run on a lightly loaded
VAX 750 (the same type of VAX as a node machine) running UNIX. By way of comparison a few runs
were made with N=63 on both the VAX running UNIX and on a node machine. The times from both

machines agreed to within a few seconds.

The purpose of our experimental study on the Crystal architecture is to determine what the optimal
choice, if indeed there is one, of p and v are for a particular size problem. To gain insight into this question
it is worthwhile to look at both the observed rate of convergence and the distribution of computational work

between the easily distributed steps of the algorithm and the coarse solve step.

The appendix contains the full set of observed CPU times and efficiencies for all the test problems. For
expository simplicity only the case N = 63 will be disct ssed in this section. This case contains the full range

of the parameters v and number of grids and is represer :ative of the other sized problems.

Figure 1 displays the observed rate of convergence for N = 63 and for v = 0, 1 and 2. Note that for 2

and 3 grids the observed rate of convergence is indeed t.sunded above by the predicted rate of

[T

P PIRE
2 1211-«1 \EREE
However, for v = 1 and 2 there is very little change in the rate of convergence as the number of grids

increases. This is in some ways counter-intuitive and requires further theoretical investigation.

After observing the rate of convergence for each test case a crude count of the computational work of
the algorithm was made. Since only a rough estimate of the work is of interest, 1 “‘work unit’” was assigned
to each unknown at each step of the algorithm. For example, with n points on a grid, n ““work units’” were

counted during the smoothing step rather than 5n floating point operations which is formally more correct for

22

one iteration of Gauss-Seidel smoothing. The computational work required for convergence for each sized

problem is proportional to the size of the problem.

Figure 2 displays a graph of the total computational work for N = 63 and figure 3 displays a graph of
the ratio of work for the coarse solve step to the total computational work. Notice that the amount of work

being done in the coarse solve step falls off rapidly.

Figures 4-6 display graphs of the observed efficiency for v = 0, 1 and 2. Each line corresponds to a
different number of grid layers. The bottom line, representing the least efficient case displays the observed
efficiency for 2 grids, while the bold line displays the observed efficiency for the special case where £}, con-
tains only one point. Recall that in this case the master node does no work, so the number of processors used

is simply the number used for steps 1-3 and 5 of the algorithm.

As the number of grids used increases, the efficiency coalesces. This is not surprising since beyond
using a small number of grid layers there is not much difference in the amount of work being performed with

respect to the number of grids used (see figure 2).

Unfortunately from a distributed algorithm point of view as the number of machines increases the effi-
ciency drops off steadily. This particular implementation of the MGR([v] algorithm is caught in the bind of
either having too much work to do solving the coarse grid equations, or having too little work to do on the
coarser grids while smoothing, computing the residual, etc. In addition, having to wait idly for the coarse
grid equations to be computed is another limiting factor in terms of increasing the efficiency of the algorithm.
In the special case where £); has one point, this problem is somewhat alleviated, as can be seen in figures 3-
5. Yet, as the number of machines increases, even in this case the amount of work remaining to be distri-

buted among the processors is too small to effectively use them all efficiently.

23

Observed rate of convergence, N = 63
100 mprommremrmemmmm e e

0L o resseesrmemms e oo
O sz
T
R g s
0.50 e e
.40 oo
.30 e o
(.20 ofFreeees e

T

y=lo—— ¢ ————6—— G —— O —— O —— 6 —~— 8 ——0
v=2

i i ¥ T I ¥ T i 1 ¥ 1

1 2 3 4 5 6 7 8 9 10 11
Number of grids

O — B B — B = — B — G — -~ —

Figure 1

24

- Total Work x 100,000 - N = 63
0T R LR Rk R

———e MGR[1]

o~---oMGRJ[2]

S

T i t I T ¥ 1 i ¥ J i

1 2 3 4 5 6 7 8 9 10 11
Number of Grids

Figure 2

25

Percent Of Work Done In Coarse Solve - N = 63

LU0 - eeem e
\ o— —o MGR[0]

R P\ s
\.\\ o——s MGR[1]

80 - \\\\ --
\ o——oMGR[2]

1 2 3 4 5 6 7 8 9 10 11
Number of Grids

Figure 3

26

Efficiency, N = 63, v=0

1.00
0.90 A
0.80 -
0.70 1
0.60
0.50 A
doemmx3gnds NN s]
040 &——h 4 grids X\ \\ \\\A\\
\\\ \\\"
0l FoTY Segnids N o
03017 "a 6 grids N>
\ >~
&-—8 7 ori \ T e
0.20"';:"_"(‘) """ 2’”35\“\\\ """""" = TTRL T
8 grids Tl e
——9 i T
0.10 4" 9gIIdS ... TITT e
&---810 grids
o—o 11 grids - O, has one point.
1 2 3 4 5 6 7 8 9 10 11 12

Number of Machines

Figure 4

27

Efficiency, N = 63, v=1

1.00 A

0.90

0.80 A

0.70 1

0.60 -

0.50 A

0.20 gy Ty R
~a-

lomme grids e
010775070 10 grids °

e—e 11 grids - ©, has one point.

T T i i 1 i 1 1 L] T T |

1 2 3 4 5 6 7 8 9 10 11 12
Number of Machines

Figure 5

28

1.007

0.90 -
0.80 -
0.70 -
0.60 A
0.50
3 grids
4 b St AR Aonoons \'”'"'-'"""""“""""‘“‘\“\' """""""""""
040717777 4 grids %\ ~a
NG NN
v—-v 5 orids SO\ S,
O- P . :....,._.“..,.”..\ ...
015 6 grids \;K\
g —-B 7 orj AR
0.20 T ol s ?;_r_ggs """""""""" % R PXerg e
8 grids T \\%\\‘§*
e——e 9 orj T
01045770 Ogrids e I e
&---810 grids
o—e |1 grids - ©2, has one point.

1 2 3 4 5 6 7 8 9 10 11 12
Number of Machines

Figure 6

29

6. Concluding remarks

Two approaches were presented for solving problem (2.2). The first approach, red/black SOR, was
easy to implement on the Crystal architecture and the experimental results in terms of the observed efficiency

for this algorithm were very encouraging.

The second approach, the MGR[v] algorithm, was much more difficult to implement on the Crystal
architecture. Alas, this particular implementation did not succeed in terms of high efficiency. Indeed this

lack of high efficiency appears to be inherent in the algorithm itself.

There is one important saving grace in the MGR[v] algorithm. While it might not lend itself to a distri-
buted implementation, even the serial version is much faster than the red/black SOR algorithm. Withv = 1,
and the appropriate number of grids (depending upon N), the MGR[v] algorithm was up to seventeen times
faster than the serial version of the red/black SOR algorithm. In practical terms, this means that for a 100%

efficient parallel implementation of the red/black SOR algorithm to be competitive with the MGR[v] algorithm

at least seventeen machines must be used for every one machine used for the MGR[v] algorithm.

6.1. Suggestions for further work.

A number of questions for further research have been opened by this study. The first question is what
happens i° asynchronous smoothing is used? How much degradation in the rate of convergence of the
red/black SOR and the MGR[v] algorithms, if any, will there be? What kind of theoretical convergence
results car. be expected? This approach has been looked at by a number of people, see [16, 17]; however no

clear answer has emerged.

Ano:her question that would perhaps improve the efficiency of the MGR[v] algorithm is: Is there some
way to work on more than one grid layer at a time? For instance, perhaps by staggering the iterations among
the grid levels each machine could work on a different grid layer, or perhaps even on more than one level.
This idea has been investigated by Greenbaum [18]. Alternatively, is there some way for some of the idle

machines to perform useful work while waiting for the solution of the coarse grid equations?

30

Finally, is it worthwhile to use a parallel technique for the solution on the coarsest grid? As stated ear-
lier, this would increase the efficiency of the algorithm while perhaps resulting in some overall slowdown in

the time required to converge, at least for the serial version.

31

Appendix

Tables 1-4 display the observed rate of convergence and the number of iterations required for each test
problem. In tables 5-9, a-c can be found the observed CPU time for each test problem. 5a corresponds to N
= 15, v = 0, 5b corresponds to N = 15, v =1, etc. The efficiency for each test case is displayed in tables

9-12, a-c. Finally, table 13 contains the observed efficiency for the special case where {); contains one point.

Observed rate of convergence / Number of iterations

Number
of v=0 v=1 v=2
grids
2 4628 1 10 06154 /3 .03228 /3
3 4639 /10 .06221 /3 .03277 /3
4 5964 /13 .06396 / 4 .033571/3
5 5984 /12 06133 /4 103402/ 3
6 L6633/ 15 .06133/ 4 .03409/3
7 .6474 /13 .06086 / 4 .03412 /3
Table 1 -N = 15
Observed rate of convergence / Number of iterations
Number
of v=0 V=1 v=2
grids
2 4585/ 9 0658273 .03546/ 3
3 45911719 .06583 /3 .03564 /3
4 .5909 /12 06667/ 3 .03641 /3
5 5931/ 12 .06585 /3 .03645 /3
6 .6950/ 15 .06513 /3 .03653 /3
7 L6971/ 15 .06483 /3 .036857/ 3
8 74571 18 .06483 /3 .03685/ 3
9 .7308 / 16 .06493 /3 .03688 /3

Table 2 - N = 31

32

Observed rate of convergence / Number of iterations

Number
of v=0 v=1 v=2
grids
2 .4583/9 06711 /3 .03656 /3
3 .4586 /9 .06708 / 3 .03660/ 3
4 5879/ 11 06791/ 3 03741/ 3
5 5889/ 11 06757 /3 .03743 /3
6 L6912/ 14 .06661 /3 .03750/ 3
7 .6920/ 14 .06649 / 3 03757173
8 .7619 / 17 .06647 /1 3 .03762 /3
9 .7590/ 16 .06648 / 3 .03769 /3
10 .7980 7/ 19 .06648 / 3 .03769 / 3
i1 L7798 / 17 06651 /3 .03770/ 3
Table 3-N = 63
Observed rate of convergence / Number of iterations
Number
of v=0 v=1 v=2
grids
2 na na na
3 na na na
4 5879/ 11 .06844 / 3 .03781/3
5 .5884 /11 06828 / 3 .03782 /3
6 .6887 /13 06723/ 3 03790/ 3
7 .6890 /13 06718/ 3 .03793 /3
8 .7590/ 16 06712/ 3 .03799 /3
9 L7587/ 16 06713/ > .03801/3
10 .8049 /18 06716/ - .03803/ 3
11 .7993 /17 067171/ 3 .03805/3
12 .8301 /17 06717/ 3 .03805/ 3
13 .8123/ 18 06718/ > .03805/ 3

'na means that this particular run could not be performed; usually due to size constraints.

Table 4 - N = 127

33

Observed solution time - N = 15

v=_0
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 6.37 5.08 4.63 4.75 4.78 4.82
3 7.09 5.99 4.55 4,52 4.65 4.32
4 9.41 7.26 6.57 6.54 6.48 6.30
5 9.15 7.79 6.59 6.61 6.42 6.22
6 11.64 10.76 9.58 9.55 9.26 9.14
7 10.29 9.88 8.85 8.78 8.51 8.47
Table 5a
Observed solution time - N = 15
p=1
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 2.69 2.10 1.97 2.03 2.07 2.10
3 2.89 2.07 1.88 1.87 1.89 1.79
4 3.85 3.19 2.89 2.87 2.87 2.81
5 4.05 3.75 2.90 3.24 3.20 3.25
6 4,13 4,26 3.85 3.80 3.79 3.72
7 4.21 4.60 4,19 4.14 4.11 4.10
Table 5b
Observed solution time - N = 15
=2
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 3.00 2.26 2.16 2.19 2.21 2.24
3 3.43 2.55 2.31 2.27 2.26 2.20
4 3.54 3.15 2.81 2.76 2.76 2.71
5 3.74 3.66 2.81 3.20 3.19 3.15
6 3.82 4.19 3.84 3.79 3.78 3.72
7 3.89 4.59 4.22 4.22 4.16 4.14
Table 5¢

34

Observed solution time - N = 31

v=0
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 34.3 25.8 24.0 23.1 22.8 22.5
3 30.9 18.1 14.4 14.2 13.6 13.2
4 36.5 18.1 14.0 12.4 11.6 10.7
5 37.4 18.7 14.2 12.5 11.5 10.4
6 46.9 24.4 18.7 16.4 15.2 13.8
7 47.5 25.4 19.5 17.1 15.7 14.4
8 57.2 31.9 25.0 22.2 20.3 19.0
9 51.1 29.0 22.8 20.2 18.6 17.4
Table 6a
Observed solution time - N = 31
p=1
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 17.8 13.9 18.2 12.9 12.7 12.7
3 14.8 8.6 7.6 7.1 6.9 6.8
4 12.4 6.1 4.7 4.2 3.9 3.6
5 12.6 6.6 4.8 4.4 4.1 3.7
6 12.6 6.9 5.0 4.8 4.5 4.1
7 12.8 7.4 5.4 5.1 4.7 4.4
8 12.8 7.6 6.1 5.5 5.1 4.8
9 12.9 7.9 6.4 5.7 5.3 5.1
Table 6b
Observed solution time - N = 31
v=2
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 19.1 14.3 13.4 13.1 12.9 12.9
3 17.0 9.4 8.2 7.6 7.3 7.3
4 15.0 7.6 5.8 5.1 4.7 4.4
5 15.4 8.1 5.8 5.6 5.1 4.8
6 15.5 8.7 6.4 6.1 5.6 5.3
7 15.7 9.2 6.9 6.6 6.1 5.7
8 15.8 9.9 7.9 7.2 6.7 6.3
9 15.9 10.2 8.4 7.5 7.1 6.7
Table 6¢

35

Observed solution time - N = 63

v=0
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 259.3 na 211.9 208.2 206.3 207.8
3 182.8 122.2 111.9 106.5 103.8 103.4
4 147.3 66.5 51.6 442 40.3 38.7
5 144.1 56.2 42.0 34.2 30.1 28.2
6 178.6 69.7 48.0 37.6 32.1 29.2
7 179.7 70.3 48.0 37.8 32.3 29.4
8 218.1 86.5 59.5 46.8 40.1 36.3
9 206.0 82.7 57.1 44.7 38.2 35.2
10 244.6 99.5 69.3 54.8 47.0 43.0
11 219.3 89.9 62.7 49.7 42.8 39.2
Table 7a
Observed solution time - N = 63
=1
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 162.5 na 141.0 139.7 139.0 140.9
3 102.6 74.0 69.9 67.8 66.8 67.4
4 56.9 25.1 20.6 18.3 17.1 16.8
5 53.8 20.8 15.0 12.7 11.3 10.8
6 51.5 20.3 15.0 11.1 9.5 8.7
7 51.7 20.7 14.0 11.3 9.7 8.9
8 51.7 21.1 14.4 11.7 10.1 9.2
9 51.8 21.4 14.7 12.0 10.4 9.5
10 51.9 21.8 15.3 12.5 10.8 5.9
11 52.0 22.2 15.6 12.6 11.0 10.3
Table 7b

36

Observed solution time - N = 63

=2
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 167.7 na 142.0 140.5 140.0 141.4
3 111.5 76.3 71.4 69.0 67.9 68.3
4 67.1 27.7 22.4 19.8 18.4 17.9
5 68.0 25.4 17.9 14.3 12.8 12.2
6 63.0 25.3 17.8 13.9 11.9 10.9
7 63.4 25.9 17.6 14.3 12.4 11.3
8 63.5 26.4 18.0 14.9 12.9 11.9
9 63.7 27.0 18.5 15.3 13.2 12.3
10 63.8 27.5 19.3 15.8 13.8 12.8
11 63.9 27.9 19.9 16.3 14.2 13.5
Table 7¢
Observed solution time - N = 127
v=0
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 na na na na na na
3 na na na na na na
4 781.0 na 324.4 296.8 281.9 271.3
5 697.3 na 214.7 185.3 169.2 158.2
6 732.1 na 164.5 129.4 109.3 95.8
7 730.4 na 156.7 119.7 98.7 84.3
8 890.8 na 188.7 143.5 117.1 99.2
9 890.2 na 188.8 143.8 117.4 99.1
10 1004.3 na na na 132.9 112.6
11 953.2 na na na 126.1 106.8
12 1059.3 na na na na 121.2
13 1007.9 na na na na 115.5
Table 8a

37

Observed solution time - N = 127

v=1
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 na na na na na na
3 na na na na na na
4 338.8 na 168.4 160.0 155.3 152.3
5 269.2 na 97.0 88.1 83.1 79.8
6 221.5 na 49.5 38.8 33.6 30.3
7 218.2 na 48.6 37.2 30.6 26.1
8 215.0 na 48.0 36.6 30.0 25.5
9 215.5 na 48.3 37.2 30.2 25.7
10 215.4 na na na 30.5 26.1
11 215.6 na na na 30.8 25.8
12 218.2 na na na na 26.8
13 221.0 na na na na 27.0
Table 8b
Observed solution time - N = 127
=2
Number 1 3 5 7 9 11
of machine machines machines machines machines machines
Grids
2 na na na na na na
3 na na na na na na
4 380.2 na 174.7 165.2 159.2 155.7
5 318.1 na 104.2 93.5 87.4 83.4
6 270.2 na 60.4 46.7 38.6 34.0
7 268.3 na 59.9 45.7 37.5 32.3
8 266.1 na 59.6 45.2 37.2 31.9
9 267.1 na 60.1 45.8 37.9 32.2
10 267.6 na na na 38.1 32.7
11 268.2 na na na 38.6 33.2
12 270.0 na na na na 33.1
13 270.3 na na na na 34.1
Table 8c

38

E, -N =15
=0
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 .32 .23 17 .14 1
3 1.0 .29 .26 .19 .15 .14
4 1.0 .32 .24 .18 .14 .13
5 1.0 .29 .23 .18 .14 .12
6 1.0 .27 .20 .15 .13 11
Table 9a
E, -N =15
v=1
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 .32 .23 17 .13 1
3 1.0 .35 .26 .19.15 .14
4 1.0 .30 .23 17 .14 11
5 1.0 27 .23 .16 .13 .10
6 1.0 .24 .18 .14 1 .09
Table 9b
E. -N =15
p=2
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 .33 .23 .18 .14 11
3 1.0 .34 .25 .19 .15 13
4 1.0 .28 21 .16 13 11
5 1.0 .26 .23 .15 212 .10
6 1.0 .23 17 12 .10 .08
Table 9¢

39

E, -N = 31

v=0
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 .33 .24 .18 .15 .13
3 1.0 .43 .36 27 .23 .19
4 1.0 .50 .43 .37 .32 .28
5 1.0 .50 .44 .38 .37 .30
6 1.0 .48 42 .36 .31 .28
7 1.0 .47 .41 .35 231 .28
8 1.0 .45 .38 .32 .28 .25
Table 10a
E, -N = 3]
p=1
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 .32 17 .18 .14 12
3 1.0 .43 .33 .26 .22 .18
4 1.0 .51 .43 .37 .32 .28
5 1.0 .48 .44 .36 .31 .28
6 1.0 .46 .42 .33 .28 .26
7 1.0 .44 .39 .32 .27 .24
8 1.0 .42 .35 .29 .25 22
Table 10b
E, -N = 31
v=2
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 .34 .24 18 .14 12
3 1.0 .45 .34 .28 .23 .19
4 1.0 .50 .43 .37 .32 .28
5 1.0 .47 .44 .34 31 .27
6 1.0 .44 .40 .32 .28 .25
7 1.0 .43 .38 .30 .26 23
8 1.0 .40 .33 .27 .23 .21
Table 10c

40

E, -N = 63

v=0
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 na .20 .16 .13 .10
3 1.0 .38 .28 .22 .18 .15
4 1.0 .56 .48 .42 .37 .32
5 1.0 .64 .58 .53 .48 42
6 1.0 .64 .62 .60 .56 51
7 1.0 .64 .63 .60 .56 .51
8 1.0 .64 .61 .59 .54 .50
9 1.0 .62 .60 .58 .54 .49
10 1.0 .62 .59 .56 .52 .48
Table 11a
E, -N = 63
v=1
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 na .19 .15 .12 .09
3 1.0 .35 .24 .19 .15 .13
4 1.0 .57 .46 .39 .33 .28
5 1.0 .65 .60 .53 .48 .41
6 1.0 .64 .58 .58 .54 .50
7 1.0 .62 .62 .57 .53 .49
8 1.0 .62 .60 .55 51 .47
9 1.0 .61 .58 .54 .50 .46
10 1.0 .59 .57 .52 .48 .44
Table 11b

41

E, -N = 63

=2
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 1.0 na .20 .15 12 .10
3 1.0 .37 .26 .20 .16 .14
4 1.0 .61 .50 .42 .37 .31
5 1.0 .67 .63 .60 .53 .49
6 1.0 .62 .59 .57 .53 .49
7 1.0 .62 .60 .55 .51 .47
8 1.0 .60 .59 .53 .50 .45
9 1.0 .59 .58 .52 .49 .43
10 1.0 .58 .55 .51 .46 .41
Table 11c
E, -N = 127
v=0
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 na na na na na na
3 na na na na na na
4 1.0 na .40 .33 .28 .24
5 1.0 na .54 .47 41 .37
6 1.0 na .74 71 .67 .63
7 1.0 na .78 .76 .74 .72
8 1.0 na .78 .78 77 .75
9 1.0 na .78 77 .76 .75
10 1.0 na na na .76 .74
11 1.0 na na na .76 .74
12 1.0 na na na na .74
Table 12a

42

E, -N = 127
v=1
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 na na na na na na
3 na na na na na na
4 1.0 na .33 .26 .22 .18
5 1.0 na .47 .39 .32 .28
6 1.0 na .74 .71 .66 .61
7 1.0 na .75 .74 71 .70
8 1.0 na .75 .74 .72 .71
9 1.0 na .74 .73 .71 .70
10 1.0 na na na .70 .69
11 1.0 na na na .70 .70
12 1.0 na na na na .68
Table 12b
E, -N = 127
v=2
Number 1 4 6 8 10 12
of machine machines machines machines machines machines
Grids
2 na na na na na na
3 na na na na na na
4 1.0 na .37 .29 .24 .20
5 1.0 na .51 .43 .36 .32
6 1.0 na .74 .73 .70 .66
7 1.0 na .75 .74 .71 .70
8 1.0 na 74 .74 71 .70
9 1.0 na .74 .73 .70 .69
10 1.0 na na na .70 .68
11 1.0 na na na .69 .67
12 1.0 na na na na .67
Table 12¢

43

Case {); has one point.

1 3 5 7 9 11

v machine machines machines machines machines machines -
N = 15, 7 grids.

0 1.0 .35 .23 .17 .13 11

1 1.0 .31 .20 .15 1 .09

2 1.0 .28 .18 .13 .10 .09
N = 31, 9 grids.

0 1.0 .59 .45 .36 31 .27

1 1.0 .54 .40 .32 .27 .23

2 1.0 .52 .38 .30 .25 .22
N = 63, 11 grids.

0 1.0 .81 .70 .63 .57 .51

1 1.0 .78 .67 .59 .53 .46

2 1.0 .76 .64 .56 .50 .43
N = 127, 13 grids.

0 1.0 na na na na .79

1 1.0 na na na na .74

2 1.0 na na na na p

Table 13

44

References

10.

11.

R. Finkel, M. Solomon, D. DeWitt, and L. Landweber, ‘‘The Charlotte Distributed Operating System:
Part IV of the first report on the Crystal project,”’ Technical Report 502, University of

Wisconsin-Madison Computer Sciences (July 1983).

D. DeWitt, R. Finkel, and M. Solomon, ‘“The CRYSTAL Multicomputer: Design and Implementation
Experience,”” Technical Report 553, University of Wisconsin-Madison Computer Sciences (September

1984).

D. P. O’Leary and G. W. Stewart, “‘Data-Flow Algorithms for Parallel Matrix Computtions,”” Com-

munications of the ACM 28(8) pp. 840-853 (August 1985).

D. Young, lterative Solution of Large Linear Sysiems, Academic Press, New York (1971).

L. A. Hageman and D. Young, Applied lterative Methods, Academic Press, New York (1981).
R. S. Varga, Mairix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1962).

B. L. Buzbee, D. Boley, and S. V. Parter, ‘‘Applications of Block Relaxation,”” Proceedings of the
Fifth Symposium on Reservoir Simulation, Society of Petroleum Engineers of AIME, Denver,

Colorado (Feb 1-2, 1979).

A. Brandt, ‘‘Multilevel Adaptive Solutions to Boundary-value Problems,”” Math. Comp. 31 pp. 333-

390 (1977).
1. E. Dendy, Jr., ‘“‘Black Box Multigrid,”” J. Comput. Phys. 48 pp. 366-386 (1982).

W. Hackbusch, ““‘Convergence of Multi-grid Iterations Applied to Difference Equations,’’ Math. Comp.

34 pp. 425-440 (1980).

S. McCormick and J. Ruge, ‘‘“Multigrid Methods for Variational Problems,’’ SIAM Journal of Numeri-

cal Analysis 19 pp. 924-929 (1982).

D. Braess, ‘““The Contraction Number of a Multigrid Method for Solving the Poisson Equation,’’

Numer. Math. 37 pp. 387-404 (1981).

45

13.

14.

15.

17.

18.

M. Ries, U. Trottenberg, and G. Winter, ““A Note on MGR Methods,”’ Linear Algebra Appl. 49 pp.

1-26 (1983).

D. Kamowitz and S. V. Parter, ““On MGR[v] Multigrid Methods,”” Technical Report 575, University

of Wisconsin-Madison Computer Sciences (January 1985).

S. V. Parter, ““On an Estimate for the Three-Grid MGR Multigrid Method,”’ Technical Report 610,

University of Wisconsin-Madison Computer Sciences (August 1985).
D. Chazan and W. Miranker, ““Chaotic Relaxation,”” Linear Algebra Appl. 2 pp. 199-222 (1969).

W. Miranker, ““Parallel Methods for Solving Equations,’’ Mathematics and Computers in Simulaiion

XX pp. 93-101 (1978).

A. Greenbaum, ‘A Multigrid Method for Muliiprocessors,’” Technical Report UCRL 92211,

Lawrence Livermore National Laboratory (February 12, 1985).

46

