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Abstract

Trust region methods are analyzed for piecewise-linear approximation algorithms for
linearly-constrained nonlinear optimization. Convergence to the optimal value is demon-
strated for continuously differentiable convex objectives and for certain classes of nondiffer-
entiable convex objectives. Computationally, this approach has the nice property that the
approximation is generally more accurate than a linear approximation yet the subproblems
to be solved at each iteration remain linear programs. The method is also well-suited to
convex network optimization, since it preserves the network structure of the subproblems,
‘t‘h‘e’reby allowing the use of the very fast techniques available for linear network optimiza-
tion. For problem classes such as traffic assignment in which the critical coupling between
variables occurs in the objective function, the separability of the approximation makes
possible a decomposition into independent subproblems that may be solved in parallel in

a multiprocessing environment.

* This research was supported in part by NSF grant DCR8503148 and ARO contract DAAG29-80-C-

0041 .






1. Introduction

We consider trust region methods for linearly-constrained nonlinear optimization

problems of the form

mzin f(z)
(NLP)

sit. Az <b,

where we assume initially that f is a continuosly differentiable convex function on the
feasible set X := {z|Az < b} C R™ and A is an m x n matrix. (The differentiability and
convexity hypotheses will be relaxed in sections 4 and 5).

The algorithms to be considered utilize a separable convex, piecewise-linear approxi-
mation to f (note that f itself is not assumed to be separable). Section 2 develops this
approximation and contrasts it with trust region methods based on linear and quadratic
approximation The algorithm as described in section 3 involves the construction at each
iteration of such an approximation to f in a suitably chosen neighborhood of the current
feasible point. The choice of neighborhood and the acceptance or rejection of a trial point
are determined by the ratio of the improvement in the original objective function over the
improvement in the approximating function. Under weak assumptions it is shown that
the objective value of the iterates converges to the optimal value. The proof extends some
of the techniques of [Zhang, et al 84] , which considered an algorithm based on linear

approximation.
2. Piecewise-linear approximation

We first consider the construction of a separable piecewise-linear approximation “cen-
tered” at a feasible point ZeX . We define a “shifted” function h(d), where d denotes the
difference between Z and its potential successor and h is the difference in their function

values:

h(d) == 7(d +3) - f(2).
Note that d = 0 thus corresponds to Z, with h(0) = 0, and h(d) < 0 if d + Z has a lower
objective function value than Z . We now define a separable approximation of h by first
considering the single-variable functions obtained by fixing (at 0) all variables but one (in

this definition, ¢/ is the j* unit vector):

sj(d;) == h(dje’) (1=1,...,n).



Note that s, thus corresponds to the restriction of h to the d;-axis, and the convexity of
f implies the convexity of d;. A separable approximation of h is then given by summing

these single-variable functions:

For computational purposes, we carry out one final approximation step by first defining
§i(d;) (j = 1,...,n) to be the convex piecewise-linear function obtained by linearly
interpolating between the values of s; at a set of points (to be defined below) on the

d;-axis, and then letting

n
h(d) = 5;(d;).
j=1

Note that k is a separable, convex, piecewise-linear function with iz(O) = 0, and that
h may be thought of as an approximation of the separable function s.

This type of approximation may be contrasted with the linear approximation trust re-
gion algorithm of |Zhang, et al 85] and the quadratic approximation techniques of [Fletcher
81] and [Yuan 85|. In terms of accuracy and complexity of the approximation, it lies in
between these two approaches. Its main disadvantage, as with the linearization approach
of [Zhang, et al 85] is that it is separable and therefore does not contain any “cross terms”
that take into account linkage between variables in the objective. The principal advantage
is that it is generally more accurate (particularly on the translated axes, where it even
enjoys an accuracy advantage over quadratic approximations) than linear approximation,
and yet still yields subproblems that may be solved by linear programming. It should also
be noted that the step-bound constraints of trust region algorithms may easily be incorpo-
rated into the piecewise-linear approach via bounds on the size and number of segments of
the approximation, whereas these bounds lead to additional computational overhead with
respect to the other approximations. Computational experience cited in [Feijoo 85| and
|Feijoo and Meyer, 84,85] indicates that algorithms utilizing piecewise-linear approximation
converge in many fewer iterations than those based on linear approximation.

At each iteration of the algorithm to be defined below, we solve a piecewise-linear

approzimating problem of the form:

min  h(d)
PI/(.’E,CK) d _
st. Ad<b, |d|| <Le,



where « is the so-called trust region parameter (o generally changes at each iteration),
b := b — AZ, and ||d|| represents the £ norm. Observe that Ad < b is equivalent to
A(Z + d) < b, so that a feasible solution of PL(Z,a) will also be feasible for the original
problem (NLP). The problem PL(Z, o) may be converted into an equivalent linear program
by the standard substitutions associated with separable programming. In this regard, the
augmentation of the original constraints by the norm constraint ||d|| < « actually serves
to reduce computational effort by restricting the number of segments employed in the
piecewise-linear approximation of the objective function. This norm constraint in fact need
not be explicitly considered, since the use of the é-formulation of separable programming
decomposes each variable d; into a set of of bounded variables (each of which corresponds
to a segment of the piecewise-linear approximation §;), and the bounds on these variables
may be chosen so as to guarantee satisfaction of the norm constraint. See section 6 for an
explicit construction of the corresponding linear program.

The grid points defining the piecewise-linear functions §; will include the point 0
as well as additional grid points spaced not more than a apart (see Figure 1). A key
property that will be used in the validity proof of the algorithm is that for Z non-optimal
for (NLP), the choice of an o sufficiently small will ensure that an optimal solution of
PL(z,a) will have a value for [ smaller than f(z) . (Since d = 0 is feasible for PL(Z, ),
it follows that the optimal value of PL(Z,a), denoted by h*(a), satisfies h*(a) < 0,
with B*(a) = 0 if and only if d = 0 is optimal for that problem. We will show that
an improvement in the value of the approximation h translates into a improvement in the
“true” objective f for sufficiently small a). More precisely, for an optimal solution d* (o) of
PL(z, ) such that h(d*(a)) < 0, we will be concerned with the ratio of the improvement
of the “true” objective function h to the improvement in the approximating function h,
i.e., for h*(a) < 0, we define h*(a) := h(d*(@)) and h*(@) := h(d*(a)) and consider
r*(a) := h*(a)/h*(a) (the notation here conceals the fact that the value of h*(e) may
vary among alternative optima for PL(Z, a) , but this factor will be accounted for since
the bounds to be derived are independent of the particular optimal solution considered).
In order to develop conditions that will ensure that the improvement ratio r*(a) is at least

po (a positive parameter to be specified in the algorithm), we will now consider optimality
conditions for (NLP) .



Figure 1: Grid points in two-dimensional case



First-order optimality conditions for (NLP) may be developed in terms of the problem

obtained by linearizing the objective at Z :

min Vf(z)d
I/(f, a) d _
st. Ad<b, |d]|<a.

By convexity, Z is an optimal solution of (NLP) if and only if d = 0 is an optimal
solution of L(Z,a) for every @ > 0 . An optimal solution of L(Z,a) will be denoted as
d; (@) . For notational convenience we define hr(d) := V f(Z)d and the optimal value of
L(z, ) as h} ().

Lemma 1: Let the grid size for h(d) be no greater than « and let ||d|| < o« . Then
the following error bounds hold (and are independent of the choice of ZeX in any fixed
bounded set):

Pf: (a
(b

Follows from differentiability of f.

Follows from Vs(0) = Vh(0).

(c) This is a property of piecewise-linear approximations of separable functions; see,
e.g., [Feijoo 85].

(d) Follows from (b) and (c).

(e) Follows from (a) and (d).

(f) By part (d) and the definitions of the terms,

B (o) < h(d; (@) = hi(d} (@) + ofa) = ki () + o(a).

However, since hy(d) < h(d), it follows that h}(a) < h*(a), and the combined in-
equalities h} () < h* (@) < k% () + ofa) yield (f). B
The following lemma establishes some useful convexity properties of the optimal value

functions.



Lemma 2: For \e[0,1],

hp(dp(Aa)) < hp(Adp(e)) < Ahr(dy ()
and h(d*(Ae)) < h(Ad* (@) < Mh(d™(@)).

Pf: The left inequality for h follows from the feasibility of Ad*(e) for the trust region
corresponding to Aa. The right inequality follows from d*(0) = 0 and the convexity

of h. The arguments for hy are analogous. K

We now show that an improved value for the approximation h may be obtained by

solving PL(Z, c).

Lemma 3: If Z is not an optimal solution of (NLP), then for all a sufficiently small,
h*(a) < 0.

P{: Suppose there exists a positive sequence ¢«; — 0 such that E*(ai) = 0 for all 7. Since
h () = h;(a) + o(a) by Lemma 1, setting o = «;, dividing through by «,, and
taking limits, yields h} (a;)/o; — 0. However, since Z is non-optimal, for any fixed
o > max;o; we have hj(a) < 0 and, by Lemma 2, h} (% - a) < %A} (o). Dividing
this inequality by e, yields h}(ei)/o; < hj(a)/a, contradicting the convergence of
the left-hand-side terms to 0. K

By using convexity properties and error bounds, improvement in the approximating

function h may be related to improvement in the true objective h.

Lemma 4: If for some &, h*(&) < 0, then for any p < 1, the inequality 7*(A&) > p holds
for all sufficiently small A > 0.

Pf:

=14 o(A&)/h*(\&)
> 14 o(A&)/AR*(&).

The result follows by noting that the last ratio tends to 0 as A — 0. §

In order to guarantee that the improvement ratio behaves properly in the neighbor-

hood of Z, we now prove that A* is continuous.
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Lemma 5: h* is a continuous function of z and « for zeX and « > 0.

Pf: Suppose (v*, @*) — (Z, @) where y*eX and o > 0, and let h: denote the optimal value
of the problem corresponding to (y*,a!). By considering an appropriate convergent
subsequence of optimal solutions it follows that liminf 2} > h*(a). To establish the
other required inequality, limsup iz: < ;L*(OL), we construct a sequence of feasible
solutions for the sequence of problems PL(y*,o*) as follows: let z := = + d*(a),
where d*(a) is any optimal solution of PL(Z, ), (we assume d*(a) # 0, since the
result is trivial if 2*(a) = 0) and define ); and d* such that y* + d° = 2 and such
that A; is the largest scalar in [0,1] such that ||A;d‘|] < of. Since d* — d*(a) and
a' — w, it follows that A; — 1. Since zeX, the convexity of the feasible sets of the
problems PL(y*, ') implies that the A;d* form a sequence of feasible solutions for

those problems. Therefore,

limsup h} < limh}(A\;d") = h(d* () = h*(a). E

The key factor in the validity proof of the algorithm is the guarantee of a minimum
improvement ratio in a neighborhood of non-optimal points. In the following, po is a

parameter in (0,1),z%X, and r; denotes the improvement ratio corresponding to z,

Lemma 6: If z* — Z, where Z is non-optimal for (NLP), then there exists an & > 0 such

that r}(a) > po for all ae(0, &) and all z* sufficiently close to Z.

Pf: By using the uniformity of the approximation error and the continuity of h*, the proof

used for Lemma 4 may be extended as needed for this result. &

3. A piecewise-linear trust region algorithm

The algorithm to be described below determines for each distinct non-optimal z* a
value of the trust region parameter that provides at least a value of pg for the improvement
ratio. This is accomplished by starting with a value for « that is at least a threshhold
value, and decreasing this value as needed to achieve the required improvement ratio. This
algorithm is modelled after the trust region algorithm based on linear approximation in
[Zhang, et al 84]. Two versions of the algorithm are presented. The second version is
slightly more complex , but in practice eliminates the need to compute the optimal value
of the LP L(z*, a;) (this quantity is denoted by hF(«;) ).
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Algorithm PLTR
(0) Let z'eX be given. Choose positive scalars m > 1, &’ < ay, and po < p1 < p2 < 1.
Set 1 = 1.
(1) Solve PL(z*, ), obtaining an optimal solution d.
(2) If hs(d;)/RE (e) < po, or if ha(d})/hi(d}) < po,
then set £'*! = 1*, a;11 = a;/m, 1 < ¢+ 1, and return to step (1).
(3) Otherwise, let r¥ = hi(d})/hi(d}), z**! = 2 + d} and

max {a;/m,a'} ifr; <py;
;i1 = ¢ max {ma;, o'} if 77 > po;
max {a;,a'} otherwise.

Set 7 « ¢ + 1 and return to (1).
Note that the initial value of the trust region parameter for each distinct z* is at least
o', since the value of z* changes only in step (3), where the new value of « is set to at least

o'. The validity of the algorithm now follows in a straightforward manner.

Theorem: If Z is an accumulation point of a sequence generated by Algorithm PLTR,

then Z is an optimal solution of (NLP).

Pf: Assume that the result is false, and let K be a subsequence such that z* K, z. Using
the preceding lemma and its analog for ii/hL , we consider those 1e K sufficiently
large such that the ratio conditions in step (2) of the algorithm are satisfied for all
oe(0, @). Moreover, since the initial value of o for each distinct z' is at least o, it is
the case that for arbitrarily large 7¢K that o; > a* := min{a/m, o'} (since the trust
region parameter is not reduced below this quantity to order to achieve the required
ratios) and r; > po, so that h;(d?) < po - hi(d}) < pZ - h;(a*)/2, where the latter
inequality follows from h¥(a;) < h}(e*)/2 for ieK sufficiently large. However, for
£ sufficiently close to Z , the relations h;(d}) = f(z'*!) — f(z') < p& - h}(a®)/2
contradict f(z*) — f(z). B
For computational efficiency, the algorithm PLTR may be modified by bypassing the

initial ratio condition in step (2) whenever h;(d?) < —7, where 7 is a positive tolerance. (It

is easily seen that a slight revision in the proof establishes convergence for this modifica-
tion.) In this revised algorithm, the solution of a piecewise-linear problem is thus accepted
if (hi(d;) < —7 or hy(d})/hE(es) > po) and hi(d;)/hi(d]) > po. By choosing 7 sufficiently
small, fat(d;) < —7 will be satisfied whenever h; is non-zero relative to machine precision,

and it thus will not be necessary to solve L(z*, a;).



4. Non-differentiable, convex objective functions

The results of the previous section may be extended to allow non-differentiable convex
objective function terms of the form g(z) := max{c(z),0}, where ¢ is convex and differen-
tiable on X. The key to this extension is the observation that the results of Lemma 1 may

be generalized to approximations of the form
§(2) := max{e(z) + a(s),0},

where a(z) is a linear, separable, or piecewise-linear separable approximation of [¢(z) —
¢(Z)]. For example, letting d := = — Z as before, if the approximation satisfies ¢(z) —[c(Z) +
a(z)] = o(d), then it follows from the relation max{c(z) — o(d),0} = max{c(z),0} — o(d)
that g(z) — §(z) = o(d). Analogous results hold for objective function terms of the form
max{¢y(z),...,em(z)}, provided that each ¢; is differentiable and convex. Note that first-
order optimality conditions that are sufficient for optimality may be obtained in a manner

analogous to the conditions involving L(Z, &) by considering in place of L(Z, &) the problem

mdin max{c(z) + Ve(z)d,0}
st. Ad<b, |d] < e

In the case that the original objective function is a convex separable non-differentiable
function, the convergence of local piecewise-linear approximation methods was established
in [Meyer 79|. For such problems, the separable approximation dominates the true objective
function, so that the improvement ratio is at least 1 whenever an improvement is obtained

in the approximating problem, regardless of the size of the trust region.
5. Objective functions with absolute value terms

For objective function terms of the form |t(z)|, where t is differentiable on X, the
preceding error bounds may be extended to approximations of the form i(z) := [¢(Z)+k(z)],
where k is a linear, separable, or piecewise-linear separable approximation of t(z) — ¢(Z).
However, even if ¢ is convex, |t| will generally be non-convez, and two modifications in
the preceding results are required. First, when the “inner” approximation k is other than
linear, the resulting approximation { will generally be non-convez, and therefore difficult to
utilize computationally (one could employ integer programming to deal with non-convex
piecewise-linear objectives, but the resulting problem is still very difficult computationally).
Second, because of the non-convexity, the first-order optimality conditions (associated

with the problem analogous to L(Z,a) ) are necessary but not sufficient for optimality.
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Therefore, to obtain linear programming subproblems, it is necessary to let k(z) be a
linear approximation (in this case, since the linear term k(z) appears within an absolute
value term, the corresponding objective function term is piecewise-linear and convex),
and from a theoretical viewpoint, we can only establish that the accumulation points of
the corresponding algorithm will be stationary points that satisfy first-order necessary

conditions. This is the result described in [Zhang, et al, 84].

6. Computational Aspects

The piecewise-linear trust region algorithm has a number of nice computational prop-
erties. Although the approximation that it generates is generally more accurate than a
linear approximation (and is significantly more accurate for points near the translated
axes), the subproblems remain linear programs. Moreover, since the approximation is also
separable, it is easily seen that in the differentiable case, the additional constraints needed
to model the piecewise-linear function are simply bounds on some additional variables.
For example, in a two-segment approximation, the original vector variable z is replaced
by substituting £ = 2+ z7 — 2~ with 0 < z7 < ut and 0 < z7 < w™ , yielding the

approximating problem

st. Azt —z7)<b, 0<zt<utand0<z™ <u™,

where ¢t and ¢~ are vectors of slopes, and u™ and u™ are used to enforce the trust region

constraints.

Preservation of constraint structure is particularly important in problem classes such
as nonlinear networks, where it is crucial for efficiency to maintain the original network
constraints . The separability of the approximation also makes possible a decomposition
of the subproblem into independent subproblems in the case of those problem classes (such
as traffic assignment problems, see, e.g., [Feijoo and Meyer 84, 85] ) in which the critical
coupling between variables takes place in the objective function. Such decompositions

permit the use of parallel computing for the solution of the subproblems.
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