ERROR BOUNDS FOR MONOTONE LINEAR COMPLEMENTARITY PROBLEMS

by

O. L. Mangasarian & T.-H. Shiau

Computer Sciences Technical Report #606

July 1985
Error Bounds for Monotone
Linear Complementarity Problems

O. L. Mangasarian
Computer Sciences Department
University of Wisconsin, Madison, Wisconsin 53706

T.-H. Shiau
Department of Computer Science
University of Missouri, Columbia, Missouri 65211

ABSTRACT

We give a bound on the distance between an arbitrary point and the solution set of a monotone linear complementarity problem in terms of a condition constant which depends on the problem data only and a residual function of the violations of the complementarity problem conditions by the point considered. When the point satisfies the linear inequalities of the complementarity problem, the residual consists of the complementarity condition plus its square root. This latter term is essential and without it the error bound cannot hold. We also show that another natural residual that has been employed to bound errors for strictly monotone linear complementarity problems fails to bound errors for the monotone case considered here.

Key Words: Linear complementarity problems, condition number, error bounds, convex programming.

Abbreviated Title: Bounds for monotone LCP’s

Sponsored by the United States Army under contract No. DAAG29-80-C-0041. This material is based on research sponsored by National Science Foundation Grant DCR-8420963 and Air Force Office of Scientific Research Grant AFOSR-ISSA-85-00080.

Revised April 22, 1986.
Error Bounds for Monotone
Linear Complementarity Problems

O. L. Mangasarian & T.-H. Shiau

1. Introduction

Consider the monotone linear complementarity problem \([2]\) of finding an \(x\) in the \(n\)-dimensional real space \(\mathbb{R}^n\) such that

\[
Mx + q \geq 0, \ x \geq 0, \ x(Mx + q) = 0
\]

where \(M\) is an \(n \times n\) positive semidefinite real matrix and \(q\) is in \(\mathbb{R}^n\). Suppose that the problem has a nonempty solution set \(\bar{S}\). The question we wish to address in this work is the following. Given an arbitrary point \(x\) in \(\mathbb{R}^n\) which violates one or all three conditions of (1.1), how close is \(x\) to \(\bar{S}\) in terms of its violations of the conditions (1.1)? More specifically we are interested in a measure of the distance between \(x\) and \(\bar{S}\) in terms of the residual vector

\[
((-Mx - q)_+, \ -x)_+, \ |x(Mx + q)|)
\]

where \((u)_+ = \max \{0, -u\}\), \(i = 1, \ldots, n\). Note that the residual vector vanishes if and only if \(x\) is in the solution set \(\bar{S}\). A principal result, Theorem 2.7 below, shows that for each \(x\) in \(\mathbb{R}^n\) there exists an \(\bar{x} (x)\) in \(\bar{S}\) such that the \(\infty\) -norm distance \(\|x - \bar{x}(x)\|_{\infty}\) is bounded by a condition constant \(\tau_2 (M, q)\) (dependent on \(M\) and \(q\) only) times a positive function of the residual vector (1.2) which vanishes if and only if the residual vector (1.2) is zero. The condition constant \(\tau_2 (M, q)\) plays the same role for the monotone linear complementarity problem (1.1) as does \(\|A^{-1}\|\) in bounding the distance \(\|x - \bar{x}\|\), between an arbitrary point \(x\) in \(\mathbb{R}^n\) and the exact solution \(\bar{x} = A^{-1}b\) to \(A\bar{x} = b\), by the residual vector \(Ax - b\) as follows

\[
\|x - \bar{x}\| \leq \|A^{-1}\| \|Ax - b\|
\]

Theorem 2.7 simplifies considerably to Corollary 2.8 if the point \(x\) in \(\mathbb{R}^n\) is feasible, that is it satisfies the first two inequalities of (1.1), in which case the error \(\|x - \bar{x}(x)\|_{\infty}\) is

Sponsored by the United States Army under contract No. DAAG29-80-C-0041. This material is based on research sponsored by National Science Foundation Grant DCR-8420963 and Air Force Office of Scientific Research Grant AFOSR-ISSA-85-00080.
bounded by \(r_2(M, q) \) times the residual \(x(Mx + q) + x(Mx + q) \)^{1/2}. Example 2.9 shows that the term \((x(Mx + q))^{1/2} \) is an essential part of the residual, without which the error \(\|x - \tilde{x}(x)\|_\infty \) cannot be bounded. Theorem 2.11 and Corollary 2.12 give bounds on the relative error \(\|x - \tilde{x}(x)\|_\infty /\|x(x)\|_\infty \) in terms of the condition number \(r_2(M, q) \cdot \|M\|_\infty \) times a relative residual function.

Pang has given error bounds for nonlinear complementarity problems [8] and linearly constrained variational inequalities [9]. When applied to the linear complementarity problem (1.1), Pang's result requires in effect [8, Lemma 2] that the matrix \(M \) be positive definite, whereas our results merely require that \(M \) be positive semidefinite. Although Pang's natural residual [8, Lemma 2]

\[
(\sum_{i=1}^{n} \left(\min \{x_i, M_i x + q_i\}\right)^2)^{1/2}
\]

is simpler than ours, we show by means of Example 2.10 that this residual cannot be used as an error measure for the positive semidefinite case under consideration in this paper.

A brief word about notation and some basic concepts employed. For a vector \(x \) in the \(n \)-dimensional real space \(R^n \), \(|x| \) and \(x_+ \) will denote the vectors in \(R^n \) with components \(|x_i| := |x_i| \) and \((x_+)_i := \max \{x_i, 0\} \), \(i = 1, \ldots, n \), respectively. For a norm \(\|x\|_\beta \) on \(R^n \), \(\|x\|_\beta^* \) will denote the dual norm [3,7] on \(R^n \), that is \(\|x\|_\beta^* := \max_{\|y\|_\beta = 1} xy \), where \(xy \) denotes the scalar product \(n \sum_{i=1}^{n} x_i y_i \). The generalized Cauchy-Schwarz inequality \(|xy| \leq \|x\|_\beta \cdot \|y\|_{\beta^*} \), for \(x \) and \(y \) in \(R^n \), follows immediately from this definition of the dual norm. For \(1 \leq p, q \leq \infty \), and \(\frac{1}{p} + \frac{1}{q} = 1 \), the \(p \)-norm \(\left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \) and the \(q \)-norm are dual norms on \(R^n \) [7]. If \(\| \cdot \|_\beta \) is a norm on \(R^n \), we shall, with a slight abuse of notation, let \(\| \cdot \|_\beta \) also denote the corresponding norm on \(R^m \) for \(m \neq n \). For an \(m \times n \) real matrix \(A \) signified by \(A \in R^{m \times n} \), \(A_i \) denotes the \(i \)th row, \(A_{\cdot j} \) denotes the \(j \)th column, \(A_{I} := A_{i \in I} \), and \(A_{I,J} := A_{i \in I, j \in J} \), where \(I \subset \{1, \ldots, m\} \) and \(J \subset \{1, \ldots, n\} \). \(\|A\|_\beta \) denotes the matrix norm [7] subordinate to the vector norm \(\| \cdot \|_\beta \), that is \(\|A\|_\beta = \max_{\|x\|_\beta = 1} \|Ax\|_\beta \). The consistency condition \(\|Ax\|_\beta \leq \|A\|_\beta \|x\|_\beta \) follows immediately from this definition of a matrix norm.

A monotonic norm on \(R^n \) is any norm \(\| \cdot \| \) on \(R^n \) such that for \(a, b \) in \(R^n \), \(|a| \leq |b| \) whenever \(|a| \| a \| \leq |b| \| b \| \) or equivalently if \(\|a\| = \|a\| \| a \| \) [3, p. 47]. The \(p \)-norm for \(p \geq 1 \) is monotonic [7]. A vector of ones in any real space will be denoted by \(e \). The identity
matrix of any order will be denoted by I. The nonnegative orthant in \mathbb{R}^n will be denoted by \mathbb{R}^n_+.
2. Principal Results

Throughout this paper M will denote an $n \times n$ real matrix, q a point in R^n, (M, q) will denote the linear complementarity problem (1.1), and

\[\hat{M} := \frac{1}{2}(M + M^T) \]
\[S = S(M, q) := \{ x | Mx + q \geq 0, x \geq 0 \} \]
\[\bar{S} = \bar{S}(M, q) := \{ x | Mx + q \geq 0, x \geq 0, x(Mx + q) = 0 \} \]

It is well known [2] that the solution set \bar{S} is nonempty if and only if the feasible set S is nonempty, provided that M is positive semidefinite. We begin with some preliminary results.

Lemma 2.1 (Adler & Gale [1]; Polyhedrality of the solution set of (M, q)). Let M be positive semidefinite and let $\bar{x} \in \bar{S}$. Then

\[\bar{S} = \{ x | Mx + q \geq 0, x \geq 0, x(2\hat{M}\bar{x} + q) + q\bar{x} \leq 0, \hat{M}(x - \bar{x}) = 0 \} \]

Proof \((x - \bar{x})(Mx + q - (M\bar{x} + q)) = (x - \bar{x})M(x - \bar{x})\).

Hence

\[x(Mx + q) = \bar{x}(Mx + q) + x(M\bar{x} + q) + (x - \bar{x})M(x - \bar{x}) \]

Since for $x \in S$, each quantity on the right hand side of the last equation is nonnegative it follows that

\[\bar{S} = \{ x \in S | x(Mx + q) = 0 \} \]
\[= \{ x | Mx + q \geq 0, x \geq 0, \bar{x}(Mx + q) + x(M\bar{x} + q) \leq 0, (x - \bar{x})M(x - \bar{x}) = 0 \} \]
\[= \{ x | Mx + q \geq 0, x \geq 0, x(2\hat{M}\bar{x} + q) + q\bar{x} \leq 0, \hat{M}(x - \bar{x}) = 0 \} \]

The last equality follows from the equivalence of $zMz = 0$ and $\hat{M}z = 0$ for a positive semidefinite matrix, since $2\hat{M}z$, the gradient of zMz, must vanish when $zMz = 0$. \[\blacksquare\]

Lemma 2.2 Let $M \in R^{n \times n}$ be symmetric positive semidefinite. Then $\hat{M}x = 0 \iff \hat{M}^{1/2}x = 0$.

Proof $\hat{M}^{1/2}x = 0 \Rightarrow \hat{M}x = 0 \Rightarrow \hat{M}^{1/2}\hat{M}^{1/2}x = 0 \Rightarrow x\hat{M}^{1/2}\hat{M}^{1/2}x = 0 \Rightarrow \|\hat{M}^{1/2}x\|^2 = 0 \Rightarrow \hat{M}^{1/2}x = 0$. \[\blacksquare\]
Lemmas 2.1 and 2.2 combined give the following.

Lemma 2.3 Let M be positive semidefinite and let $\bar{x} \in \bar{S}$. Then

$$\bar{S} = \{ x | Mx + q \geq 0, \ x \geq 0, \ x(2\hat{M}\bar{x} + q) + q\bar{x} \leq 0, \ \hat{M}^{1/2}(x - \bar{x}) = 0 \} \tag{2.4}$$

By using the polyhedral characterization (2.4) and the condition number result for linear inequalities and equalities of either [4] or [6] we are able to obtain a preliminary bound on the distance between any point in R^n and the solution set \bar{S} of (M, q).

Proposition 2.4 Let M be positive semidefinite and let $\bar{x} \in \bar{S}$. For each x in R^n there exists an $\bar{x}(x)$ in \bar{S} which is independent of the choice of \bar{x} such that

$$\| x - \bar{x}(x) \|_\infty \leq \tau_\beta (M, q) \| (-Mx - q, -x, x(2\hat{M}\bar{x} + q) + q\bar{x})_+ \|_{\beta}, \ \hat{M}^{1/2}(x - \bar{x})\|_\beta$$

where $\| \cdot \|_\beta$ is some norm on R^{3n+1}, $\| \cdot \|_{\beta^*}$ is its dual norm and

$$\tau_\beta (M, q) := \sup_{(u, v, z, \xi) \in R^{3n+1}} \| uM + v + z\hat{M}^{1/2} - \xi(2\hat{M}\bar{x} + q) \|_1 = 1,$$

$$\text{Rows of } \begin{pmatrix} M \\ I \\ \hat{M}^{1/2} \end{pmatrix} \text{ corresponding to nonzero elements of } (u, v, z, \xi) \text{ are lin. indep.}$$

Proof Follows by the application of Theorem 2.2 ′ [6] (or the essentially equivalent Theorem 1 of [4]) to \bar{S} as defined by (2.4), and by noting from Lemma 2.1 that $\hat{M}\bar{x}$ is constant for all \bar{x} in \bar{S}.

Note that in view of Lemma 2.2 we have that $\hat{M}^{1/2}\bar{x}$ is constant for all \bar{x} in \bar{S}. In addition, since for \bar{x} and \hat{x} in \bar{S}, $q(\hat{x} - \bar{x}) = \hat{x}(\hat{M}(\bar{x} - \hat{x}) = 0$, it follows that $q\bar{x}$ is also constant for all \bar{x} in \bar{S}. Thus the bound on $\| x - \bar{x}(x) \|_\infty$ of Proposition 2.4 is independent of the choice of \bar{x} in \bar{S}.

We need two more lemmas before stating our principal results.

Lemma 2.5 Let $\bar{x} \in \bar{S}$. Then for each $x \in R^n$

$$\| \hat{M}^{1/2}(x - \bar{x}) \|_2^2 \leq x(Mx + q) + \| (-Mx - q, -x)_+ \|_{\beta}, \ x, \ M\bar{x} + q \|_{\beta^*}$$

5
where $\| \cdot \|_\beta$ is some norm on R^{2n} and $\| \cdot \|_{\beta^*}$ is its dual norm.

Proof

\[
\|\hat{M}^{1/2}(x - \bar{x})\|_2^2 = (x - \bar{x})\hat{M}(x - \bar{x}) = x(Mx + q) + \bar{x}(-Mx - q) + (-x)(M\bar{x} + q)
\leq x(Mx + q) + \bar{x}(-Mx - q) + (-x)(M\bar{x} + q)
\leq x(Mx + q) + \|(-Mx - q, -x)\|_{\beta} \cdot \|\bar{x}, M\bar{x} + q\|_{\beta^*}.
\]

Lemma 2.6 Let $\bar{x} \in \bar{S}$ and let M be positive semidefinite. Then for any $x \in R^n$

\[
(\bar{x}(Mx + q) + x(M\bar{x} + q))_{+} \leq (x(Mx + q))_{+}
\]

Proof

\[
(\bar{x}(Mx + q) + x(M\bar{x} + q))_{+} = (x(Mx + q) - (x - \bar{x})\hat{M}(x - \bar{x}))_{+}
\leq (x(Mx + q))_{+}.
\]

We are now ready for our principal results.

Theorem 2.7 (Absolute error bound for approximate solutions of monotone linear complementarity problems) Let M be positive semidefinite and let $S \neq \phi$. For each x in R^n there exists an $\bar{x}(x)$ in \bar{S} such that

\[
\|x - \bar{x}(x)\|_\infty \leq \tau_2(M, q) \|[x(Mx + q), -Mx - q, -x]_{+}\|_2
+ \|(x(Mx + q) + \sigma_\beta \|(-Mx - q, -x)_{+}\|_{\beta})^{1/2}\|_2 \quad (2.6)
\]

where $\tau_2(M, q)$ is defined by (2.5), $\| \cdot \|_\beta$ is some norm on R^{2n} and σ_β is defined by

\[
\sigma_\beta = \sigma_\beta(M, q) := \min_{\bar{x} \in \bar{S}} \|\bar{x}, M\bar{x} + q\|_{\beta^*} \quad (2.7)
\]

Proof By [2] $\bar{S} \neq \phi$ since $S \neq \phi$. Let $\bar{x} \in \bar{S}$. Then by Proposition 2.4 above, for each x in R^n there exists an $\bar{x}(x)$ in \bar{S} which is independent of the choice of \bar{x} such that

\[
\|x - \bar{x}(x)\|_\infty \leq \tau_2(M, q) \|[x(Mx + q), -Mx - q, -x(x(Mx + q) + \bar{x}(Mx + q))_{+}, \hat{M}^{1/2}(x - \bar{x})]_{+}\|_2
\leq \tau_2(M, q) \|[x(Mx + q), -x, x(Mx + q))_{+}\|_2
+ \|(x(Mx + q) + \|(-Mx - q, -x)_{+}\|_\beta \cdot \|\bar{x}, M\bar{x} + q\|_{\beta^*})^{1/2}\|_2
\]

(By Lemmas 2.6, 2.5 and
monotonicity of the 2-norm [3].)
Hence taking the infimum of the right side over all \(x \) in \(\bar{S} \) we get
\[
\|x - \bar{x}(x)\|_\infty \leq \tau_2(M, q) \left[\|(x(Mx + q), -Mx - q, -x)_+\|_2 + (x(Mx + q) + \sigma \rho \|(Mx - q, -x)_+\|_\rho)^{1/2} \right].
\]

When \(x \) is in \(S \), Theorem 2.7 simplifies to the following.

Corollary 2.8 (Absolute error bounds for feasible approximate solutions of monotone complementarity problems) Let \(M \) be positive semidefinite and let \(S \neq \phi \). For each \(x \) in \(S \) there exists an \(\bar{x}(x) \) in \(\bar{S} \) such that
\[
\|x - \bar{x}(x)\|_\infty \leq \tau_2(M, q) \left[(x(Mx + q)) + (x(Mx + q))^{1/2} \right]
\]
(2.8)
where \(\tau_2(M, q) \) is defined by (2.5).

The following example shows that the residual term \((x(Mx+q))^{1/2}\) in (2.8) is essential and cannot be dispensed with.

Example 2.9

\[
M = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad q = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \bar{S} = \{0\}
\]

\(S = \{x \in \mathbb{R}^2 | x_2 \geq 0 \quad x_2 \leq x_1\} \).

Let \(x(\varepsilon) := \begin{bmatrix} \varepsilon \\ \varepsilon^2 \end{bmatrix} \in S \) for \(0 \leq \varepsilon \leq 1 \). Then
\[
\frac{\|x(\varepsilon) - 0\|_\infty}{x(\varepsilon)(Mx(\varepsilon) + q)} = \frac{\varepsilon}{2\varepsilon^2 + \varepsilon^4} \to \infty \text{ as } \varepsilon \to 0.
\]

However
\[
\frac{\|x(\varepsilon) - 0\|_\infty}{x(\varepsilon)(Mx(\varepsilon) + q) + (x(\varepsilon)(Mx(\varepsilon) + q))^{1/2}} = \frac{\varepsilon}{2\varepsilon^2 + \varepsilon^4 + (2\varepsilon^2 + \varepsilon^4)^{1/2}} \to \frac{\sqrt{2}}{2} \text{ as } \varepsilon \to 0.
\]

In [8, Lemma 2] Pang uses the natural residual (1.3) as an error measure for the positive definite linear complementarity problem. It is easy to show, by considering for each component \(i \) the two cases of \(x_i \geq M_i x + q_i \) and \(x_i < M_i x + q_i \), that the residual (1.3) is equivalent to \(\|x - (x - (Mx + q))_+\|_2 \). The following example shows that (1.3) cannot
be used as a measure of error for the positive semidefinite case under consideration in this work.

Example 2.10

\[M = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, \quad q = \begin{pmatrix} 1 \\ -2 \end{pmatrix}. \]

The unique solution of this problem is \(\bar{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \). Letting \(x(t) := \begin{pmatrix} t \\ 1 \end{pmatrix} \), we get that for \(t \geq 2 \)

\[x(t) - \left(x(t) - (Mx(t) + q) \right)_+ = \begin{pmatrix} 0 \\ 1 - (2 - t)_+ \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

\[x(t) - \bar{x} = \begin{pmatrix} t - 1 \\ 0 \end{pmatrix} \]

Hence

\[\frac{\|x(t) - \bar{x}\|_2}{\|x(t) - \left(x(t) - (Mx(t) + q) \right)_+\|_2} = t - 1 \rightarrow \infty \text{ as } t \rightarrow \infty. \]

Consequently the residual (1.3) cannot be used as an error bound for the positive semidefinite case.

By noting that for \(\bar{x}(x) \in \bar{S} \)

\[(-q)_+ \leq (M\bar{x}(x))_+ \leq |M\bar{x}(x)| \]

\[\|(-q)_+\|_\infty \leq \|M\bar{x}(x)\|_\infty \leq \|M\|_\infty \|\bar{x}(x)\|_\infty, \]

the following theorem and corollary follow directly from Theorem 2.7 and Corollary 2.8 respectively thus giving rise to a bound on the relative error \(\frac{\|x - \bar{x}(x)\|_\infty}{\|\bar{x}(x)\|_\infty} \) in \(x \) in terms of the condition number \(\tau_2(M, q)\|M\|_\infty \) and the corresponding relative residual.

Theorem 2.11 (Relative error bound for approximate solutions of monotone linear complementarity problems) Let \(M \) be positive semidefinite, let \(q \geq 0 \) and let \(S \neq \phi \). For each \(x \) in \(\mathbb{R}^n \) there exists an \(\bar{x}(x) \) in \(\bar{S} \) such that

\[\frac{\|x - \bar{x}(x)\|_\infty}{\|\bar{x}(x)\|_\infty} \leq \tau_2(M, q)\|M\|_\infty \left[\|x(Mx + q), -Mx - q, -x\|_2 + (x(Mx + q) + \sigma_\beta \|(-Mx - q, -x)_+\|_\beta)^{1/2} \right] /\|(-q)_+\|_\infty \]

where \(\tau_2(M, q) \) is defined by (2.5) and \(\sigma_\beta \) by (2.7).
Corollary 2.12 (Relative error bound for approximate feasible solutions of monotone linear complementarity problems) Let \(M \) be positive semidefinite, let \(q \geq 0 \), and let \(S \neq \phi \). For each \(x \) in \(S \) there exists an \(\bar{x}(x) \) in \(\bar{S} \) such that
\[
\frac{\|x - \bar{x}(x)\|_{\infty}}{\|\bar{x}(x)\|_{\infty}} \leq r_2(M, q)\|M\|_{\infty} \left[x(Mx + q) + (x(Mx + q))^{1/2} \right] / \|(-q)_{+}\|_{\infty} \tag{2.10}
\]

Remark 2.13 When the solution set \(\bar{S} \) of (1.1) is bounded, \(\sigma_{\infty} \) of Theorems 2.7 and 2.11 can be bounded above by a single linear program as follows. \(\bar{S} \) is bounded if and only if there exists an \(\hat{x} > 0 \) such that \(\hat{w} := M\hat{x} + q > 0 \) [5]. Hence [5] for any \(\bar{x} \in \bar{S} \) and \(\bar{w} := M\bar{x} + q \) it follows that
\[
\hat{x}\bar{w} - \bar{x}\hat{w} - \hat{x}\bar{w} = (\hat{x} - \bar{x})(\hat{w} - \bar{w}) = (\hat{x} - \bar{x})M(\hat{x} - \bar{x}) \geq 0
\]

Consequently
\[
\|\bar{x}, \bar{w}\|_1 \cdot \min_{1 \leq i \leq n} \{\hat{w}_i, \hat{x}_i\} \leq \bar{x}\hat{w} + \hat{x}\bar{w} \leq \hat{x}\hat{w}
\]
and from the definition (2.7) of \(\sigma_\beta \) we have that
\[
\sigma_{\infty} = \min_{\bar{x} \in \bar{S}} \|\bar{x}, \bar{w}\|_1 \leq \hat{x}\hat{w} / \min_{1 \leq i \leq n} \{\hat{w}_i, \hat{x}_i\} \tag{2.11}
\]
Hence given a monotone linear complementarity problem (1.1), one can first solve the linear program
\[
\max_{(z, \varepsilon) \in \mathbb{R}^{n+1}} \{\varepsilon | Mz + q \geq \varepsilon z, z \geq \varepsilon z, 1 \geq \varepsilon \geq 0 \} \tag{2.12}
\]

The maximum \(\hat{\varepsilon} \), achieved at \((\hat{x}, \hat{\varepsilon})\), is positive if and only if \(\bar{S} \) is nonempty and bounded, in which case \(\sigma_{\infty} \) is bounded above by \(\hat{x}\hat{w} / \hat{\varepsilon} \) where \(\hat{w} = M\hat{x} + q \).

We conclude by giving an interesting application of Corollary 2.8 to the dual quadratic programs
\[
\min_z \frac{1}{2} zQz + cz \quad \text{subject to} \quad Az \geq b, z \geq 0 \tag{2.13}
\]
\[
\max_{z, u} - \frac{1}{2} zQz + bu \quad \text{subject to} \quad -Qz + ATu \leq c, u \geq 0 \tag{2.14}
\]
where \(Q \in \mathbb{R}^{n \times n} \) is symmetric positive semidefinite, \(A \in \mathbb{R}^{m \times n} \), \(c \in \mathbb{R}^n \) and \(b \in \mathbb{R}^m \). If the point \((z, u) \in \mathbb{R}^{n+m}\) is feasible for both (2.13) and (2.14) then there exists a solution \((\bar{z}(z, u), \bar{u}(z, u))\) to the dual pair (2.13)-(2.14) such that
\[
\|z - (\bar{z}(z, u), \bar{u}(z, u))\|_{\infty} \leq r_2(M, q) \left[(zQz + cz - bu) + (zQz + cz - bu)^{1/2} \right] \tag{2.15}
\]
where \(r_2(M, q) \) is defined by (2.5) and

\[
M := \begin{bmatrix} Q & -A^T \\ A & 0 \end{bmatrix}, \quad q := \begin{bmatrix} c \\ -b \end{bmatrix}, \quad x := \begin{bmatrix} z \\ u \end{bmatrix} \in \mathbb{R}^{n+m}
\]

Note that the linear programming case is included as the special case of \(Q = 0 \). A stronger result not involving the square root term for the linear programming case has been given in [4, Theorem 4].

Acknowledgement

We are grateful to the referees for their constructive suggestions and especially to an observation that simplified the definition (2.5).
References

