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ABSTRACT

Prolog is beginning to receive a great deal of attention as a vehicle for creating intelligent database
management systems. This paper proposes concurrency control and recovery mechanisms which are particu-
larly well-suited to a Prolog environment. The proposed concurrency control mechanism. query-fact locking,
is based on a database concurrency control algorithm known as precision locking. The proposed recovery
mechanism is based on a differential tile scheme known as hypothetical databases. The combined effect of
the proposed algorithms for concurrency control and recovery is a mechanism for correctly and reliably exe-
cuting sequential Prolog programs and Concurrent Prolog programs in a multi-user environment with a

shared knowledge base.






1. Introduction

During the past two years, researchers have begun to address the task of adding deductive capa-
bilities to database management systems [Dahl82. DBE83, Pars83, Jark82]. Prolog [Cloc81] is frequently
mentioned as a suitable implementation language for such systems. First. however, Prolog must be extended
in a number of ways before it can used to process large databases in a multiuser environment. One extension
is to augment Prolog to include some notion of file input and output. Second. concurrency control and
recovery mechanisms need to be added. In this paper, we propose concurrency control and recovery
mechanisms which are well-suited for a Prolog environment.

There are several forms of concurrency that must be controlled in a Prolog-based intelligent data-
base management system. as Prolog semantics allow queries that update the facts and/or rules in the
knowledge base (via the assert and rerracr operators). The first form of concurrency occurs in a Concurrent
Prolog environment when a user initiates a querv whose subqueries can be executed concurrently [Shap83].
This form of concurrency can occur only with subqueries whose variables are either alreadv instantiated or
will be instantiated by the subquery itselt. For example. the subqueries of the rule:

parent(X.Y) :- father(X.Y): mother(X.,Y).
can be executed concurrently. On the other hand. the subqueries of the rule:
grandfather(X.Z) :- father(X.Y). parent(Y.Z)
cannot be run concurrently. as father(X.Y) must instantiate Y before parent(Y.Z) can be executed. While
one might control this form of concurrency with a formal mechanism, for the present time we have decided to
resolve conflicts among concurrently executing subqueries by adopting before-image semantics and a
differential-file based recovery mechanism. These will be addressed in more detail below.

The second form of concurrency that must be controlled in a Prolog-based intelligent database
management system is the concurrent execution of queries initiated by different users. The queries them-
selves may or may not display the type of concurrency discussed above. The following example illustrates the
need for a concurrency control mechanism in a multiuser Prolog environment. Assume that the database

consists of facts of the form child(x,y) indicating that x is a child of y:
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child(sue.larry)
child(carol.larry)
child(fred.larrv)
child(joe.larry)

the rule:

grandchild(X.Y) :- child(Z.Y), child (X,Z).

and the two queries:

@Q,: grandchild(X larry) Q,: assert(child(john.sue). assert(child(alice.joe)

If @, is run after @, finishes, @, will find that larry has no grandchildren. If Q- is run before Q| starts.
@, will produce the result set {john. alice}. The objective of all database concurrency control algorithms is
permit the concurrent execution of operations from different queries while insuring that the final state of the
database corresponds to some serial schedule of the transactions [Eswa76]. Thus either of the above results is
correct.

Execution of @, consists of a number of subqueries. First. Prolog will instantiate Z with the
value "sue” and attempt to prove the subgoal child(X.sue). Following the outcome of this goal. Z will be
instantiated with “carol”. Execution proceeds until all of larry’s children are tested. Assume rather than Q,
being executed completely before or after Q. that it is instead executed after execution of the subgoal
child(X.sue) and before instantiating Z with carol. The outcome of Q; in this case is that alice is the only
grandchild of larry. Since this result it not equivalent to any serial schedule ot @, and @5, it is not correct.

In addition to illustrating the need for a concurrency control mechanism in a multiuser Prolog-
based database system. this example illustrates a classical concurrency control problem known as phantoms
[Eswa76]. When Q; began executing larry had no grandchildren. It Q, had added grandchildren for any-
body other than larry. running Q, in the middle of @, would not have caused any problems. It is interesting
to note that concurrency control in Prolog is different than concurrency control in conventional database
management systems as Prolog provides no vehicle for modifying facts aiready in the database. Thus. while

conventional concurrency control mechanisms deal primarily with controlling access to the partial updates by



a query and pay little or no attention to the problems of phantoms. a concurrency control mechanism for Pro-
log must deal exclusively with the problem of phantom facts. In Section 2 we present a concurrency control
mechanism that solves the problem of phantom facts.

The job of the database system recovery mechanism of recovery mechanisms is twofold. First, it
must insure that all updates made by queries which commit (terminate normally) are durable. By durable
one means that the changes made by the query will persist in spite ot subsequent hardware and/or software
failures. The second task of the recovery mechanism is to undo any changes to the database made by queries
which partially execute before being terminated by the system (as the result of deadlock, for example) or
aborting themselves (due to erroneous input data or the user hitting the delete key).

As discussed earlier. subgoals of Prolog queries may assert or retract database facts. When such
a subgoal fails two options exist. The first is to undo its effects by removing the set of facts asserted by the
query and replacing the set of facts retracted by it. The second option is to simply ignore the problem. This
is the approach used by most Prolog implementations. We feel that this approach is unacceptable if Prolog is
to be used to implement intelligent database systems. In Section 3. we present a recovery mechanism tor
Prolog based on the ideas of differential files [Seve76] and hypothetical relations [Ston80. Ston81, Wood83.
Agra83b]. In addition to providing a mechanism for undoing the effects of subqueries that fail. this mechan-
ism facilitates implementation of before-image semantics for parallel subqueries and insures that the updates
made by a query are durable.

We have made the following assumptions in developing our proposed concurrency control and

recovery mechanisms:

(1) undo semantics for subqueries that fail - The effects of a subquery that fails will be undone. Since a
subquery that fails may use the assert and/or retract operators to cause a side effect, we will also present
a mechanism which permits delaying undoing the effects of such subqueries until the query terminates.

(2)  before-image semantics for parallel subqueries - Facts asserted and retracted by subqueries executed con-
currently are not visible to one another.

(3) ‘all’ semantics for goals connected with conjuncts - These are the standard Prolog semantics. Our
approach assumes that updates made by the subqueries are applied in the sequence corresponding to the
left to right ordering of the goals in the rule.

(4)  cany’ semaniics for goals connected with disjuncts - While sequential Prolog specifies that disjuncts are to
be evaluated in a left to right order. we have assumed that a goal is satisfied by the first successtul
subquery in a concurrent Prolog environment. Furthermore. once one subquery succeeds the remain-
ing active subqueries are terminated.



(5)  fixed rule base - For the present time we have assumed that queries do not assert new rules or retract
existing ones. At the end of the paper we briefly outline the changes that would be required to handle
subqueries that update the rule base.

2. Concurrency Control

In this section we propose a concurrency control mechanism for Prolog. We begin with a discus-
sion of the concurrency control problems posed by Prolog, and then we describe the proposed concurrency
control mechanism. After examining our proposal in detail, we reflect on why we prefer our mechanism
over several alternatives which were also considered. We conclude this section with a summary of the salient

features of our concurrency control proposal.

2.1. The Problem

As described in Section |. Prolog transactions are user queries which access facts (or unit
clauses) and rules. possibly also asseriing or retracting facts during their execution. The job of the con-
currency control mechanism is to prevent transactions submitted by multiple users from interfering with one
another. In particular. it should make transactions serializable [Eswa76] — the effect of the concurrent exe-
cution of a set of transactions should be equivalent to some serial execution of the transactions. There are
several ways in which Prolog transactions can conflict and produce behavior which is non-serializable:

Fact— Fact Conflicts. This problem arises when two concurrent transactions attempt to perform

updates involving the same fact(s). For instance. consider the following pair of transactions:

T, :- assert(foo(a.b)). retract(foo(a,c)).

T, :- assert(foo(a,c)), retract(foo(a,b)).

The outcome of serially executing T, and then T, is that foo(a,b) is false and foo(a.c) is true. The outcome
of executing the transactions serially in the opposite order is that foo(a.b) is true and foo(a.c) is false. How-
ever, if the two transactions are interleaved. executing their assert steps and then their retract steps, the out-
come is non-serializable — both foo(a.c) and foo(a.b) are false.

Query— Fact Conflicts. This problem arises when one transaction asserts or retracts a fact used

by another concurrent transaction. For example. suppose that the queries Q; and @, from Section 1 are run
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concurrently without concurrency control. We saw that it is possible for Q, to see one. but not both. of Q5’s
updates to the Prolog knowledge base. leading to non-serializable behavior. In this example. the problem is
due to the concurrent execution of a read-only query (@) and a query that asserts new facts (Q,). but a simi-
lar problem would arise if ¢, were to retract facts used by Q.

Query— Rule Conflicts. This problem arises when one transaction asserts or retracts a rule used
by another concurrent transaction. Since we do not address queries which assert or retract rules in this
paper. we need not concern ourselves with this type of conflict for now. We will return to this issue when we
discuss future work at the end of the paper.

The problem at hand. then. is to prevent fact-fact conflicts and query-fact conflicts through the
use of an appropriate concurrency control mechanism. Readers familiar with the concurrency control litera-
ture will recognize that these conflicts are similar to the write-write and read-write conflicts of database con-
currency control. However. there are some differences as well. The main salient features of the Prolog con-
currency control problem have to do with phantoms and parallel subqueries.

We tocus first on the issue of phantoms. All updates to the knowledge base in Prolog occur
through the built-in assert and rerract predicates. Thus, in database terms. Prolog programs can insert and
delete facts. but they cannot modify existing f’acts.:i: As a result. all conflicts in Prolog are instances of the
problem known as the phamiom twple problem (illustrated in the example in Section 1). As described in
[Eswa76] and [Jord81]. this problem arises when one transaction calls for a fact. or a tuple in database termi-
nology, which does not (does) exist at the time of the request, but which is later created (deleted) due to the
action of another transaction.

We next consider the second difference between database concurrency control and Prolog con-

currency control, the issue of parallel subqueries. Consider the following Prolog rule:
sibling(X.Y) :- brother(X.Y): sister(X.Y).

This rule says that X is the sibling of Y it X is the brother or sister of Y. Suppose we now present the system

with the query sibling(john,martha) in order to find out if john is a sibling of martha's. In a Concurrent

# I - . S . .y »
To modify a fact. a Prolog program must retract the old version of the tact and then assert an appropriately moditied version



Prolog implementation. the two sub-queries in the disjunction. brother(john.martha) and sister(john.martha).
can be executed concurrently. The same is true for similar conjunctive queries. As we shall see, the possi-

bility of concurrent subqueries will complicate the concurrency control problem somewhat.

2.2. A Solution: Query-Fact Locking

The Prolog concurrency control problem can be dealt with by an algorithm that we call
query— fact locking. This algorithm is a Prolog-oriented variant of a database concurrency control algorithm
known as precision locking [Jord81]. Precision locking is based on the popular notion of two-phase locking
[Eswa76. Gray79], where transactions set read locks and write locks on the data items that thev read and
write (respectively) and hold locks until end of transaction. Most database systems apply locks to phvsical
objects such as files. pages. or records. Precision locking, on the other hand. sets read locks on groups of
logical objects. which are specified by predicates. and it applies write locks to physical objects (tuples or
records). The algorithm is related to the predicate locking scheme proposed by Eswaren et al {Eswa76]. but
it is much more efficient (and thus practical) because it avoids the problem of having to decide whether or not
a pair of predicates are jointly satisfiable. We will describe the reasoning that led to our selection of preci-
sion locking later on. but the basic reason is that the mechanism effectively and efficiently handles the con-
currency control problems of interest, including phantoms. Physical locking algorithms do not correctly deal

with phantoms [Jord8§1].

2.2.1. The Basic Algorithm

In query-fact locking, each transaction 7; maintains two sets: a set of queries Qy, and a set of
facts F;. The set Q; is the set of queries | Q;; ¢ that the transaction has executed. specifying the readset of the
transaction. Read locks will be set on each query in this set. as we will see shortly. The set F; is the set of
facts {f,-j | that the query has asserted or retracted. specifying the writeset of the transaction. Write locks will
be set on each fact in this set. In addition. the concurrency control algorithm will maintain two global sets,
Qp and Fy. Q is the global set of queries for which read locks have been granted and not yet released, and
Fy, is the set of facts for which write locks have been granted and not yet released. Entries in Qp, are of the
form (Q

Q;;.T;). where Q;; is the locked query and T; is the locking transaction. Similarly, entries in Fy, are



of the form (/'",/-.T,j). where /”,-, is the locked fact. These sets are equivalent to the sets of predicates and
tuples in the precision locking algorithm {Jord81]. and the union of the global sets Qp and Fy is the
equivalent of a lock table.

We are now almost ready for the details of the query-fact locking algorithm. First. though. we

need one definition: We will say that one Prolog query Q

), covers another Prolog query 0, if (1) they have

identical predicate names. and (2) every constant or instantiated variable in the it

argument position of Q,
has the same value as the corresponding argument of Q, if Q,’s i"" argument is a constant or an instantiated
variable. For instance. child(X.larry) covers child(bob.larry) and child(Y . larry). but it does not cover
child(bob.X). Said another way, Q/, covers Q. if Q, could arise as a subquery of Q/) through variable

instantiation during the execution of Q,. Note that a special case of this definition is a query covering a fact.

We are now ready to proceed with the specification of the query-fact locking algorithm.

2.2.1.1. Fact Assertion or Retraction

Betore a transaction 7; can assert or retract a fact /;;. it must do the following:

(1) Add the fact f,-j to its fact set F;.

(2)  Check to see if there exists a fact [y, in the set of locked facts Fy, such that /;; = [, . orif [;; satisfies
any query @, in the set of locked queries Qy, where i # k. If so. 77 must block until £, or @, is

unlocked.
(3) Add f,»j to Fy, and proceed.

Step (1) serves to provide 7; with a list of the facts that it has locked so that they can be unlocked

casily at end of transaction. Step (2) checks for fact-fact and query-fact conflicts. with 7, being blocked if

either type of conflict is found. Step (3) records 7;’s newly granted lock in the global list of locked facts.

Steps (2) and (3) must be executed together as an atomic action (i.e., in a critical section).



2.2.1.2. Subquery Execution

Before a transaction 7, can execute a subquery Q

; Q;; . it must do the following:

(1) Check to see if there exists a query Q,,, in its query set Q; such that Q

Q,,, covers Q,»jw [t so. 7; can skip

im

the remaining steps and simply execute Q,,

(2)  Add the query @;; to its query set Q;.

(3)  Check to see if there exists any fact [;, in the list of locked facts Fy, such that Q;, covers [, and

&

i # k. If so. 7, must block until all such tacts /,, are unlocked.
(4 Add @;; to Q, and proceed.

Step (1) checks to see if 7, already has a lock which covers the facts to be dealt with by subquery

Q- If so. there is no need to lock a subset of these facts. This is an important performance optimization. as
a query can lead to potentially many subqueries through variable instantiation. It each such subquery led to
an entry in the set of locked queries. query-fact conflict testing could become overlv expensive. Step (2) adds
Q;; to the list of locked queries for 7; for use at end of transaction. Step (3) checks for query-fact conflicts.
blocking 7; if such a conflict is found. Step (4) records Q;; in the global set of locked queries. Steps (3) and

{

(4) must be executed together as an atomic action.

2.2.1.3. End of Transaction
When a transaction 7; terminates. it applies its knowledge base updates (as will be described in
Section 3 of the paper), and then releases its locks as follows using the information in F; and Q;:

() Fp=F, =T,

P F
2y QpL=0Qy— {T;

.»
ij i
oS
2.2.2. Blocking and Deadlocks
As described above, conflicts are handled by blocking transactions until the contlicts disappear.

Thus. in addition to the global query and fact lock sets Qp and Fy. the concurrency control mechanism will

have to manage queues of waiting transactions, as does the lock manager in a typical database system



[Gray79]. Also. as with most dvnamic two-phase locking algorithms. query-fact locking may lead to occa-
sional deadlocks. For example, it is possible for two transactions each to set query locks which cover a set of
common facts, and then for each to try to assert or retract a fact included in their joint coverage. Deadlocks
can be handled by maintaining a waits-for graph and checking for cycles in the usual way [Grav79.

Agra83a].

2.2.3. Query-Fact Locking in Action: An Example
Let us now see how the query-fact locking algorithm solves the problem illustrated by the example

in Section 1. As a refresher. the example involved the foillowing collection of facts:

child(sue,larry)
child(carol.larry)
child(fred.larry)
child(joe.larry)

The set of rules for the example consisted of a single rule:
grandchild(X.Y) - child(Z.Y). child(X.2).
Finally, the two conflicting queries were as follows:

@, grandchild(X. larry).
0, assert(child(john.sue)), assert(child(alice.joe)).

When query @, is executed. the following subqueries and associated query locks will be set

(assuming only the facts given above are in the knowledge base):

Subquery Query Locked
l.  child(X.larry) child(X.larry)
2. child (sue.larry)
3. child(X.sue) child(X.sue)
4.  child(carol.larry)
5.  child(X,carol) child(X .carol)
6.  child(fred,larry)
7. child(X,fred) child(X.fred)
8.  child(joe,larry)
9. child(X.joe) child(X,joe)

Steps 2, 4, 6. and 8 illustrate the benefit of the optimization included in the query locking algo-

rithm: If a new query lock is set every time a subquery begins to execute, regardless of whether or not the
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transaction already holds a covering tock. locks would have been set at each of these steps as well. The result
would have been that nearly twice as many locks would have been set as are really needed to achieve the
desired concurrency control effect in this example.

When query Q, is executed. the following subqueries and associated fact locks will be set:

Subquery Fact Locked

1. assert(child(john.sue))  child(john.sue)
2. assert(child(alice.joe))  child(alice.joe)

Now let us examine what would happen if the two queries are run concurrently. Suppose that
steps 1-3 of @, have completed and now Q, begins running. When Q, attempts to execute its first step. it
will first try to lock the tact child(john.sue). Since @, has already locked child(X.sue), which covers
child(john.sue). Q> will be blocked until Q, completes and releases its locks. What if Q- had begun first
instead? @, will lock the fact child(john.sue) in its first step, causing @, to block at its step 3 because
child(X.sue) covers child(john.sue). Thus. in this case. @, will wait until @, completes and releases its
locks. Regardless of the arempted execution order. the query-fact locking algorithm prevents non-serializable

behavior by blocking one of the two conflicting queries uatil the other has finished.

2.2.4. Concurrent Subqueries: A Complication

The execution of a Concurrent Prolog program forms an and-or tree of concurrent conjunctive
and disjunctive subqueries. This permits us to optimize our locking protocol a bit, releasing some locks ear-
lier than end of transaction without compromising serializability. Consider the following set of disjunctive

subqueries:
(X.Y.2) - t1(X.Y.2); 2(X.Y.2); £3(X.Y.Z).

Under the Concurrent Prolog semantics discussed in Section |, f(X.Y.Z) will be evaluated in a way such that
if either of the subqueries are true. the entire query will be true. Beyond this, however, no guarantees are
provided. In particular, each subquery sees the knowledge base state prior to the execution of all concurrent
subqueries, and only the results of one of the successful (true) subqueries are guaranteed to be applied to the

knowledge base. Given these conditions. then. we can allow failed subqueries in a set of disjunctive
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subqueries to release their locks. In addition. we can discard the results of all but one of the successful
subqueries, and each of the discarded subqueries can also release its locks. We refer to the selected success-
ful subquery as the selected disjunct. and the other queries in the disjunction are referved to as insignificant
disjuncts. All queries which are not insignificant disjuncts (i.e.. either conjuncts or selected disjuncts) are
referred to as significant queries .

These observations lead to the following algorithmic changes: Each subquery @ in a set of con-
current subqueries inherits a copy of the lock sets F; and Q; from its parent query at the time of the
subquery’s initiation. It then proceeds to apply the query-fact locking algorithm as described in the previous
section. When the subquery completes, if it turns out to be an insignificant disjunct. the recovery manager
can discard its results. and all of the locks added to F; and Q; by this subquery may be released. Otherwise,
the parent querv’s lock sets F; and Q; must be augmented with any new locks set by the subquery. as these
locks must remain set until end of transaction (i.e.. the parent query inherits locks from its significant child
queries). Readers familiar with the concurrency control literature may notice that our mechanism has a fla-
vor somewhat similar to that of nested transactions {Reed78. Moss81]. A difference is that our subqueries
are not required to be serializable with respect to one another. with before-image semantics for concurrent

subqueries being provided by the recovery mechanism (see Section 3).

2.2.5. Concurrent Rules
As discussed earlier. concurrent queries that satisfy the same goal can be regarded as a disjunct

with an order imposed. Consider. for example. the following predicate specification:

PX) -5, (X).
p(X) :- SH(X)”
p(X) :- Si(X)"

pX) :-s. (X).
p(X) ;—ls:(]X).

To evaluate p(X), all sk(X) are evaluated concurrently. If one of them returns with a success. say Sis then
the subqueries S; 41 tos, are treated as insignificant disjuncts, whether or not they have already produced a

result. but the subqueries sy to s, | must be continued. If the result of 5; is a failure. then this subquery is

treated as an insignificant disjunct. In terms of subquery completion, this means that the first rule is always
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completely evaluated and the other ones are evaluated only if all preceeding ones failed or a preceeding one

took longer to execute.

2.2.6. Backtracking
During backtracking the effects of backtracked subqueries must be undone. However. locks are
not released during backtracking. The reason for not releasing locks is that the database conditions that

caused the query to backtrack must still hold at end-of-transaction to ensure serializability.

2.3. Other Solutions Considered

In the process of designing the Prolog concurrency control mechanism just described. we con-
sidered and ruled out a number of other alternatives. In this section we briefly consider each such alternative
in turn. explaining what led us to eliminate it. The alternatives considered include locking facts. locking
predicate names. or using a non-locking-based algorithm such as optimistic concurrency control [Kung31].

Our first inclination was to set locks on individual facts. However, we quickly realized that this
would not work. as this would not solve the phantom fact problem. In particular. having transactions lock
facts read and written would not prevent the transactions in the example from Section | from interleaving in a
non-serializable way — @, can lock the facts that it reads. but it cannot possibly set read locks on facts before
they are asserted.

Qur second inclination was to set locks on predicate names. such as child in the example. This
will work. but it has terrible performance implications: This solution is equivalent to locking entire relations
in a relational database system, which is an unacceptably coarse granularity for locking. As an illustration.
suppose that the set of child facts included information about 10,000 children. yet the only child facts relevant
to queries @ and Q- are the six facts which they deal with. Since transactions hold locks until end of tran-
saction (with a few possible exceptions as outlined in the previous section), other transactions would have to
block for potentially long periods of time. In the example. 7o other transactions would be able to access any
of the child facts while @ or @, execute.

Having considered these two possibilities. we came to the realization that some form of predicate-

like locking would be necessary. A desire for a practical mechanism led us to select precision locking



13

[Jord81] rather than true predicate locking [Eswa76] as a starting point.

We also considered other forms of concurrency control. such as optimistic algorithms [Kung§1]
or timestamp-based algorithms [Bern81]. Using either tvpe of algorithm on physical objects. such as facts or
predicate names, leads to the same sorts of problems as the rejected locking algorithms that we considered.
However, it would be possible to use such algorithms in conjunction with queries and facts, as is done in
query-fact locking. For example, if one wished to use the serial validation algorithm for optimistic con-
currency control {Kung81], one could use Q; as the readset for a transaction 7. use F; as its writeset. and
validate 7; at commit time by checking that no recently committed transaction 7, had a writeset of facts F;
which is covered by any query in Q;. If 7, passed this validation test. it would be committed. its updates
would be applied to the knowledge base. and F; would be saved for use in validating future completing tran-
sactions. If not, it would be restarted. Thus. an optimistic algorithm would work equally well, at least in a
logical sense. However, we chose locking over alternative mechanisms for performance reasons: A recent

study has indicated that it is better to use locking algorithms instead of restart-oriented algorithms if contlicts

are fairly likely, and that it does not mater what sort of mechanism is employed if conflicts are rare [Care84]

2.4. Summary

We have outlined a concurrency control mechanism which seems to nicely fit the concurrency
control needs of Prolog. The mechanism. query-fact locking. is a form of two-phase locking in which tran-
sactions set read locks on queries and set write locks on facts. We expect that this mechanism can be imple-
mented efficiently, as it is based on a notion of covering which is efficiently testable. The mechanism seems
likely to perform at least as well as a physical locking mechanism would, as argued in the original precision
locking paper [Jord81], and physical locking would not handle phantoms correctly. Since all conflicts in Pro-
log are instances of the phantom problem. and since query-fact locking correctly deals with this problem. we

believe that our proposal is a promising one.
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3. Recovery

In this section we propose a recoverv mechanism for Prolog. The section begins with a discussion
of the recovery problems posed by Prolog. Next we-describe the operation of our proposed recovery mechan-
ism. Finally, we discuss why we feel that it is the most appropriate recovery mechanism for the Prolog

environment.

3.1. The Problem

A recovery mechanism for Prolog must provide three fundamental services. First it must make
the effects of Prolog queries that update the database durable. By durable we mean that once a query com-
mits its changes to the database will not be affected by subsequent hardware and/or software failures. The
second service is to undo any changes to the database that are made by aborted queries. While both these
services are found in conventional database sysiems. the recovery manager for Prolog must additionally pro-
vide a mechanism for undoing the effects of subqueries that fail in the process of answering a query. In the

tollowing section we will propose a mechanism that provides these three services.

3.2. Recovery using Differential Files

With the differential file scheme proposed in [Seve76]. each logical file consists of two physical
files: a read-only base file and a read-write differential file containing all changes to the file. The base file
remains unchanged until reorganization. All updates are confined to the differential file. In [Ston80.
Ston81. Wood83]. Stonebraker extended the differential file idea to introduce the notion of hvpothetical rela-
tions. Each relation R in the database consists of three parts: B. a read-only base portion of R. A, a file con-
taining all additions to R, and D, a file containing all tuples deleted from R. From the point of view of a
query, R is equal to (B U A) - D. Recovery from software and/or hardware failures is simplified as A and D

are both append-only files. A and D are merged with R only during database reorganization.

3.3. A Recovery Mechanism for Prolog
We propose to use the notion of hypothetical relations as a basis for a recovery mechanism for

Prolog. For the duration of a query (or a group of queries designated as a transaction), the knowledge base.



KB, is treated as a read-only file. Whereas the A and D files in Stonebraker’s hypothetical relation mechan-

ism are permanently associated with a relation R. we propose to instead associate A and D files' with each
query and to merge A and D with KB when the query commits. The A file is used to hold facts (and rules)
asserted by the query and the D file is used to hold facts (and rules) which the query proposes to retract from
the knowledge base.

Execution of a query may actually cause a number of A and D files to be created. Empty A and
D files are created when a query first begins execution. In addition. whenever a subgoal is executed which
asserts or retracts one or more facts, an additional pair of A and D files are created. This is illustrated by the

following example:

Q4 Qs A5 D

n
14

In this example. queries Q. Q». and Q4 assert or retract one or more facts that are stored in the A and D
files local to the corresponding goal. From the viewpoint of goal Q,. the knowledge base corresponds to
((((KBUA )~ D )UAL)—D5). For Qs itis ((KBUA)—D)UA)— D). A5 and D5 are empty until the
goal asserts or retracts a fact. This approach quite obviously generalizes to queries at arbitrary depths.

When a subgoal succeeds. its associated A and D files. if any, are appended to those of its parent.
If the parent does not have A and D files associated with it, it inherits those of the first child to succeed.

When a subgoal fails. two alternative courses of action are possible. The first is to delete its
associated A and D files. This strategy preserves the undo semantics for subqueries that fail as assumed in
Section 1. If this is not acceptable. the following alternative is feasible. First, a second set of files. Undo-A
and Undo-D. is created whenever a set of A and D files is created. Whenever a goal fails, the union of the A

file is formed with the A and Undo-A files of its parent. The D file is processed in the same manner. In

1A and D are probably more properly reterred to as storage siructures since they generally will reside in main memory
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addition. the Undo-A and Undo-D files of the goal are combined with the Undo-A and Undo-D files of its
parent. In this way, all assertions and retractions are visible for the duration of the query. However. before
committing the effects of the query we form A = A - Undo-A and D = D - Undo-D in order to undo the
effects of those subqueries which failed during the execution of the query.

When a query backtracks. the effects of its subqueries are undone by truncating those portions of
its A and D files that were appended when its subqueries terminated.

Committing the effects of a transaction (query) requires updating the knowledge base by forming
KB = (KB U A) - D in such a manner that either all of the changes made by the query are reflected in KB

or none are. The following algorithm can be used:

()  Write A and D to stable storage [Gray79. Lamp79]

(2) Write a pre-commit record to stable storage. This record should contain the id of the querv and
pointers to the A and D files.

(3)  Update the copy of KB on disk using the copies of A and D still in primary memory.

(4) Write a commit record to stable storage. This record contains the id of the querv.

Once step 2 has been completed. the recovery software insures that the updates made by the query will even-
tually be applied to the knowledge base. If the system crashes during step 3. then the fact that the commit
record for the query does not appear in stable storage will be noted during system restart and step 3 will be
repeate(i2

Finally, if a transaction is aborted by the user or the system. undoing its effects can be accom-

plished by simply deleting all its A and D files.

3.4. Discussion

Our proposed mechanism appears to provide a robust yet efficient recovery mechanism for Pro-
log. By structuring the A and D files in the same way as the KB, existing software can be used. Further-
more, KBU A and (KBUA)— D do not ever have to actually be materialized.

Generally, the proposed recovery mechanism preserves the semantics for use in a sequential Pro-

log system. while providing a reasonable set of semantics for a Concurrent Prolog environment. In

2 . . . . .
= See [Gray79] for a discussion on how idempotence can be achieved.
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particular, by utilizing before-image semantics for parallel sub-queries. we can eliminate concurrency prob-
lems having to do with parallel sub-queries. (It is important to note that we do nor demand or provide serial-
izability for these sub-queries. as our before-image semantics prohibit it.)

If queries instead used in-place updates and logging [Gray79] as the recovery mechanism.
updates by parallel subqueries would be visible to one another. leading to nonderministic results. Further-
more, since subqueries frequently fail. the cost of undoing updates made by these subqueries by reading the

log trom stable storage would be prohibitively high.

4. Conclusions

This paper has proposed concurrency control and recoverv mechanisms which are designed
specifically for use in a Prolog environment. The proposed concurrency control mechanism. query-fact lock-
ing, handles fact-fact and query-tact conflicts that can arise when concurrently executed Prolog transactions
share a knowledge base. The mechanism requires transactions to set read locks on queries and write locks
on facts to guarantee serializable behavior. In addition, a lock inheritance mechanism was outlined for deal-
ing with concurrent subqueries in Concurrent Prolog programs. We expect that our algorithm will be rea-
sonably efficient, as it is based on an easily-testable notion of queries covering other queries and facts.

The proposed recovery mechanism is based on a differential file scheme known as hypothetical
databases. The scheme can handle normal sequential Prolog programs, sequential Prolog programs where
the results of failed subqueries are to be backed out. and Concurrent Prolog programs where before-image
semantics are desired for concurrent subqueries. The proposed scheme uses multiple levels of hypothetical
relations to handle subqueries in Prolog programs. though a single set of hypothetical relations would be suf-
ficient to handle the case of normal sequential Prolog programs.

One way in which this work can be extended is to handle rule updates as well as fact updates on a
dynamic basis. This appears to be a simple extension: Rule assertions and retractions lead to two new types
of conflicts, rule — rule conflicts and guery— rule conflicts. Prolog transactions can be augmented with sets
of updated rules. R;, analogous to their sets of updated facts. The global concurrency control information

can be augmented with a set of locked rules. Ry, analogous to the set of locked facts. These sets can then be
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used to check for conflicts when subqueries are executed and when rules are asserted or retracted. The
contlict-checking algorithm will be similar to the algorithms for checking for fact-fact and query-fact con-
flicts. except that the covering tests can be replaced by a simple test for matching predicate names in this
case. As for recovery, rule updates can be recorded in the same files as the fact updates in the current
scheme.

In summary. this paper has presented a fairly detailed proposal for adding concurrency control
and recovery facilities to Prolog. These additions are necessary if Prolog is to someday be truly useful as a
vehicle for the creation of practical, commercial. intelligent database management systems. The combined
etfect of our proposed algorithms for concurrency control and recovery is a mechanism for correctly and reli-
ably executing either sequential Prolog programs or Concurrent Prolog programs in a multi-user environ-

ment with a shared knowledge base.
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