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ABSTRACT

This paper presents an overview of the hardware and software components of the Crystal multicomputer
project. The goal of the Crystal project is to design and implement a vehicle that serves a variety of research
projects involving distributed computation. Crystal can be used simultaneously by multiple research projects
by partitioning the available processors according to the requirements of each project. Users can employ the
Crystal multicomputer in several ways. Projects such as operating systems and database machines that need
direct control of processor resources (clock. memory management. communication devices) can be imple-
mented using a reliable communication service (the "“nugget " that resides on each node processor. Projects
that prefer a higher-level interface can be implemented using the Charlotte distributed operating system.
Finally, users interested in Crystal principally as a cycle server can run UNIX jobs on node machines using
the ‘‘remote  unix service. Development. debugging. and execution of projects can take place remotely
under the control of any of several UNIX hosts. Acquiring a partition of machines. resetting each machine.
and then loading an application onto each machine is performed by invoking a UNIX-resident program (the
“‘nuggetmaster’’ ). Communication with node machines in a partition is facilitated by a virtual terminal and

window mechanism. Crystal is fully operational and has been used to support a variety of research projects.






1. Introduction

The Crystal multicomputer project began in the fall of 1981 with funding from the National Science
Foundation’s Coordinated Experimental Research Program. The goal of the project was to design and imple-
ment an environment to support research in distributed computation. At that time. research in progress
included programming language design for writing distributed systems. tools for debugging and evaluating
the performance of distributed systems. distributed operating systems. multiprocessor database machines. and
parallel algorithms for image analysis. The variety of ongoing projects requiring this type of test-bed and our
experience with two earlier multicomputers led to the concept of a "software partitionable multicomputer.”
Crystal would support multiple parallel experiments. each running in a dedicated partition of the multicom-

puter, with establishment and termination of partitions controlled by software.

When the Crystal project was conceived. our research in distributed systems was (inadequately) sup-
ported by two earlier multiprocessors. The first consisted of five LSI-11/03 processors completely intercon-
nected by point-to-point word-parallel interfaces. The second consisted of eight LSI-11/23 processors linked
together with a | megabit/second local area network and a multiport memory locally designed and imple-
mented. While these two multiprocessors provided an experimental test-bed for some of our research activi-
ties, both systems had several serious limitations that made expansion undesirable. While the addressing
structure and limited performance of the 11/03 and 11/23 processors certainly limited the usefulness of these
two systems, reliability and "ease-of-use” were much more significant limitations. The point-to-point con-
nections were the source of numerous failures in the first system. Knowing exactly what boards to wiggle
became an important part of getting research done. In the second system (which was designed to avoid the
problems that plague point-to-point connections). we were constantly plagued by hardware problems with the
processors. In the two years the system was operational there was only a period of about two months when

all eight processors were working.

Despite all the hardware problems (which perhaps never disappear in a multiprocessor), the most seri-
ous impediment to conducting research was that neither system was easy to use. Consider. in contrast, a typ-

ical time-sharing system. In this environment. we write, debug, and execute programs with a minimum of



effort and without ever leaving our desks. On the other hand. in both our early multiprocessor etforts. run-
- ning an experiment required going to the machine room to physically reset the machines, typing magic
~numbers to start the boot process. and then watching the consoles of each processor to gather debugging
information and the output of the experiment. The entire procedure was complicated and discouraged use of

the facility except by a dedicated few.

A final problem we encountered with our earlier efforts was sharing. Neither system could be used by
two research projects simultaneously even if each project only required a few processors. Consequently.

development of software proceeded at a rate slower than if a resource-sharing mechanism had existed.

Crystal was designed in an attempt to build a relatively large multiprocessor that would alleviate the lim-
itations and problems of our earlier systems. The first issue to be resolved was whether to use shared
memory as the basis for the design of the system. While there is no question that certain classes of parallel
algorithms benefit from the availability of shared memory to communicate intermediate results. we saw
several drawbacks to such a system. First, a shared-memory system would have required constructing a great
deal of custom hardware: at a minimum, a memory subsystem and some sort of interconnection device for
connecting processors to the memory. While we felt we had the necessary expertise, we were wary about
putting all our energy into constructing the hardware only to "run out of gas” before finishing the software
necessary to make the system usable. The second problem we saw with shared memory organizations was
scalability. While we never anticipated constructing a system with thousands of processors. we wanted to

insure that if the system were successful, it could be expanded with a minimal amount of effort.

Given the problems we saw with shared memory, we decided that Crystal should be implemented using
off-the-shelf processors (“node machines”) interconnected using very high speed local-network interfaces
(100 megabits/second). Processes cooperating on a task would use messages to communicate with one
another. While we understood that messages can be expensive, the work of Spector [SPEC81] and LeBlanc

[LEBLS82] made a high-performance system based on the message paradigm seem plausible.

To facilitate sharing the Crystal node machines, the notion of sofiware partitioning was included as a

fundamental component of the Crystal design. Software partitioning involves the capability of dividing the



available processors into disjoint subsets of varying size. Partitioning is controlled by software. For exam-
ple, at a given time there might be three active partitions: one with 3 machines, one with 20 machines, and
one with 5 machines. In addition to providing resources commensurate with the current needs of an experi-
ment, software partitioning provides a mapping mechanism from virtual machine addresses (1, 2, 3, ... ) 1
physical machine addresses (22, 19. 1, ... ). Thus, algorithms can be developed independently of the physi-
cal machines actually allocated. As discussed in Section 2, we had hoped to acquire network interfaces that
would enforce the established partitions. Since these interfaces never became available. this mapping is per-

formed in software.

Two factors make the Crystal multicomputer easy to use. First. we have designed and implemented
software and hardware that permits a user to load programs onto the node machines in a partition with a sin-
gle command on a host machine (any of several VAXes running Berkeley Unix"). Furthermore, through the

use of windowing software, debugging and output information is delivered to the terminal in the user’s office.

The Crystal multicomputer is a tool and nor an end in iself. In many aspects it is similar to a particle
accelerator. In both cases a significant research and development effort is required to build the tool before
the truly interesting research can begin. At this stage. we have finished constructing the tool. We have

begun to use Crystal as the basis for our research efforts.

While Crystal and Locus [POPE81] may appear similar they are quite different. The principal objec-
tive of the Locus project was to produce a distributed operating system that hides the multimachine nature of
the underlying hardware as much as possible. The goal of Crystal. on the other hand, is to make the paral-
lelism visible but as easy to use as possible. Running an operating system such as Locus in a Crystal parti-

tion would be a natural application of the Crystal multicomputer.

In Section 2 we introduce the hardware components of the Crystal multicomputer. Section 3 provides a
detailed description of the key software components. In Section 4, we describe several applications we have

constructed using the Crystal facility. Our conclusions and plans for the future are presented in Section 3.

1 Unix is a trademark of Bell Laboratories



2. Crystal Hardware

Our proposal for the Crystal multicomputer was funded in June 1981 by a grant from NSF's Coordi-
nated Experimental Computer Science Research Program. The first phase of the project involved evaluating
hardware alternatives, designing system software. and implementing a prototype using the existing LSI-
11/23-based multicomputer. We had expected the task of selecting a node processor and an interconnection
technology to be completed in about 6 months. In fact. it took almost 18 months. In this section we discuss
our selection of hardware components. The software components of the Crystal multicomputer are described

in the following section.

2.1. Design Alternatives

The first task was to choose a general design for the multicomputer. Given a fixed equipment budget
we identified three alternative designs. The first was to purchase a large number (100 to [0.000) of very
simple processors (e.g. Intel 8088s). ZMOB [RIEG81] and Non-Von [SHAWS2] are two examples of this
approach. The obvious advantage of the "army of ants” approach is the amount of parallelism available.
Despite this advantage, we saw several disadvantages with this approach. First, our experience with the mul-
ticomputer built using the LSI-11/23 indicated that a 16-bit address space complicates software development
and limits potential application programs. A 24-bit address space was deemed to be the minimum acceptable.
A second problem with this class of machines is the limited (or non-existent) support for floating-point opera-
tions. Third, research by LeBlanc [LEBLS82] indicated that the time required to transmit a message between
two processors connected via a local network is much more sensitive to CPU performance than to the
bandwidth of the communications medium. While this result might not apply to tightly-coupled, message-
passing architectures such as ZMOB or Non-Von, our desire to use "off the shelf” hardware dictated that the

Crystal node processors would be relatively loosely coupled.

The second alternative considered was a small number of very powerful processors. Acquiring
machines in the VAX-11/780 class would have eliminated the address space and performance problems asso-
ciated with the smaller processors. However, since we would have been able to only purchase a limited

number of machines (about 8), the limited amount of available parallelism would have reduced the usefulness



of the system.

2.2. Selection of Node Processors

During this phase of the project. the first of the "small” 32 bit machines (e.g. Motorola 68000 family)
were becoming available. These machines solved the addressing and performance problems of the previous
generation of small machines at a price that permitted acquisition of between 40 and 50 processors. Since

this number of machines was in our desired range. we elected to pursue this approach.

The hardware we needed. however. was "just around the corner.” By January of 1982, we had identi-
fied four likely candidates for node processors: the VAX 11/730, the HP 9000. and two packages based on
Motorola 63000 processors: one from Sun Microsystems (the SUN-1) and one from IBM Instruments Divi-
sion (the IBM CS/9000). At that time neither the VAX 11/730 nor the HP 9000 had been announced. By
June 1982 we had benchmarked each of these systems. even though the HP 9000 still was unannounced.
None of the systems was without its problems. The Vax 11/730 was slow. memory management was not yet
available for the 68000. the reliability of the SUN and IBM Instruments hardware were unknown. and the
announcement date for the HP 9000 kept slipping. Despite its production problems. the HP 9000 became
our first choice, and we waited for its announcement (September 1982) to start the formal acquisition pro-
cess. However. between our internal decision to use HP 9000's and the end of the bidding process. we
began to have doubts regarding the 9000’s architecture and sottware development environment. In addition.
DEC offered us a substantial discount on VAX 11/750 CPU’s (no disks and no consoles). This level of
discount would permit the acquisition of 40 node machines during the course of the project. Except for the
amount of floor space consumed by each CPU. the 750 satisfied our architectural requirements and provided
an acceptable level of performance. Furthermore, the 750 was known to be a reliable machine - a prime
consideration. Hence, we selected the 750 for node machines. As of July 1984, 20 machines, each with 2

megabytes of memory, have been installed. Four machines have disk drives attached (Fujistu Eagles).



2.3. Interconnection Technology

The original Crystal proposal suggested that node machines would be interconnected using frequency-
agile, broadband interfaces. In many ways this technology is similar to that used in the cable-television
industry. Standard coaxial cable can carry signals spread over a 300-megahertz frequency range. By divid-
ing this spectrum into fifty channels of 6 megahertz each, a single piece of coax can effectively support fifty
2-megabit/second connections between pairs of processors. Our idea was to use the different channels to
emulate alternative interconnection topologies among the processors and to help isolate processors in different

partitions from one another.

In parallel with our efforts to select a node machine we tracked the development of the frequency-agile.
broadband technology. In particular. soon after the start of our project. Sytek announced a product named
System 40. System 40 was to support five channels of 2 megabits/second each. Unfortunately. shipment of
this product was delayed. and it was recently discontinued. While many factors may have contributed to can-

cellation of the product, it appears that frequency agile modems are difficult to build.

Once we saw that it would probably not be teasible to use broadband technology. we began exploring
alternatives. At that time our production VAXes were interconnected using a 10 megabit/second token ring
from Proteon Associates [PROT83]. The ring is implemented with two cards per machine: a ring card and a
host-specific board. The ring card is responsible for implementing the token ring (packet transmission and
reception and token regeneration). Incoming and outgoing packets are buffered in the host-specific board,
which implements both input and output DMA engines. The token ring card is impiemented in standard TTL
logic. To obtain the same total bandwidth and partitioning capability of broadband technology, we contracted
with Proteon Associates to provide a version of the token ring card impiemented in ECL. Using ECL tech-
nology increased the raw bandwidth of the ring to 100 megabits/second. The available bandwidth is reduced
to 80 megabits/second through the use of an 8-out-of-10 encoding scheme. This encoding scheme permits

the detection of double-bit errors and correction of single-bit errors on a per-byte basis.

In addition to improved performance and error correction capabilities. the new ring interface card also

provides a queue for incoming packets and implements a group-addressing scheme. This addressing scheme



permits partitioning of nodes into 16 groups of 16 processors, 32 groups of 8 processors, and so on. We are
examining two alternative ways of using this group-addressing capability. One is to use the group addresses
to aid in isolating software partitions from one another. An alternative use of the group addressing capability
is to assign each processor to two addresses: 2i and 2i+1 [BARA83]. When the application program (called
the client) on a node has posted a receive, the device listens on address 2i+ 1. Otherwise, the device listens
on address 2i. A message intended for the resident software (called the nugget). not the client, is sent to the
group of both addresses. A message intended for the client is only sent to address 2i+1. Therefore. the
nugget will always get messages bound for it. and messages tor the client are only accepted (by the hardware)
if the client is ready. Rejected messages can be detected by the sender. Therefore. software acknowledge-

ments should be not be necessary for either client or nugget messages.

As discussed in Section 1. a principal goal of the project was to make it easy to use Crystal. Being able
to reset and boot machines remotely is a critical component of this goal. To enable us to reset a machine
remotely, we built a device known as the "break box”. The break box is attached to one of our production
UNIX machines via a parallel interface and by optically-isolated wires to the reset buttons of the node
machines. When the address of a node machine is deposited in the output register of the parallel interface.
the addressed machine is reset. We developed a boot ROM that will reboot the Crystal software (that is, the
nugget) via the communications hardware whenever the machine is reset. This ROM when combined with

the break box makes "hands-off” control of the Crystal multicomputer straightforward.

3. Crystal Software

3.1. Introduction

The Crystal multicomputer was designed to facilitate research in distributed systems. To achieve this
objective, the software had to fulfill a number of requirements. First, it had to be flexible so that projects
ranging in complexity from a parallel sorting algorithm to a distributed operating system could be accommo-
dated. Second, it had to make the hardware as easy to use as a conventional timesharing system. Finally, the

software had to permit the simultaneous use of the hardware by multiple experiments (ie. software partition-



ing): Two components, the nugget and the nuggetmaster. are the keys to achieving these objectives. Their

location and relationship to the other software components of Crystal are illustrated in Figure |.

To support software partitioning. two functions must be implemented, First, a user must be able to
acquire a partition of idle node machines. Second. an experiment running in one partition must be prevented
from sending messages to an experiment running in another partition. To obtain a partition of machines. a
user (such as User | in Figure 1) invokes the nuggetmaster on a host machine and requests the desired
number of machines. If available. these machines are assigned to the user. If the requested number of

machines are not available. the user can place a reservation for a future time.

Once a user has obtained a partition of machines. the nuggetmaster is then instructed to load the
software that comprises the experiment onto each node machine. This software generally consists of two
components. Those pieces that run as processes under 4.2 Unix on a host machine are termed application
programs. The software which is loaded onto a node machine is termed a client. Generally. the application

program is used to provide input data to the clients and to gather the results from an experiment.

The remaining functionality necessary for software partitioning is implemented by the nugget. The
nugget is a simple communications kernel that resides permanently on each node machine. The nugget pro-
vides message-passing primitives to the client and insures that a client does not send messages to nodes out-

side the user’s partition.

Four features help make Crystal easy to use. First, the nugget virtualizes node numbers. Thus an
experiment that uses five node machines can use numbers | to 5 as the addresses of the various machines
regardless of which physical machines are allocated by the nuggetmaster. The nugget also simplifies imple-
menting an experiment by providing high-performance communication services between clients on node
machines and between a client on a node machine and an application program on a host machine. Third. a
virtual terminal package aids in debugging experiments. Consider. for example, User 2 in Figure 1. This
user has an experiment running on node machines #1 and #2. Rather than observing the experiment’s output
on the consoles of the two machines. the user has the virtual terminal package redirect the console output

from each node to a window on his terminal. Finally, a file server. which provides data storage for users of



the Crystal multicomputer. runs as a "permanent” client on one node machine.

The level of functionality provided by the nugget is the key to making Crystal a flexible research facil-
ity. From the viewpoint of someone wishing to implement an operating system. the services provided by the
nugget do not overlap with those traditionally provided by an operating system (processes. virtual memory
management, a file system). Thus. the nugget does not get in the way. In fact. to an operating system. the
nugget can be viewed as an intelligent device driver for the communications interface. On the other hand.
the reliable communication services provided by the nugget make it simple to directly implement a parallel

algorithm as a client program.

Virtual Virtual
User 2 Terminal Terminal
User | Node #1 Node #2
‘ )
; Virtual Terminal
= Host #1 Package Host #2
Nuggetmaster| [Vax Running Vax Running
4.2 Unix Application 4.2 Unix
Program

Token

Crystal Client
File
Server Virtual Terminal
Library
Nugget R Client
) Nugget
Node #20 e Virtual Terminal
Library Node #1
Nugget
Node #2

Figure 1
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3.2. Nugget

One set of choices that faced the project at the outset was the set of features that the nugget should pro-
vide and how it should provide them. Since we did not want to preclude developing multiple operating sys-
tems for Crystal. we decided that the nugget should not provide processes, virtual memory management. or a
file system. In deciding the "best” way of providing services, we were torn between a "virtual-device”
approach, in which all nugget facilities are presented as virtual device registers. and a "package ot subrou-
tines” approach. in which services are presented through subroutine calls. Our design has tended to the
former, although once registers are set up. events are initiated by subroutine call. Completion of events is
very device-like. with asvnchronous interrupts. since clients may be multi-programmed operating systems that
can schedule useful work while waiting for a communications operation to complete. This design imposes the
cost of a subroutine call and an interrupt for every send or receive; a pure approach of either variety might

have been more efficient, although not as appropriate for many applications.
The nugget provides the following services to the client running on its node:

Virtual node numbers
Virtual node numbers run from one to the size of the partition. Node zero always refers to whatever
Unix host machine the user employed to load the experiment. Since all communications are directed
through the nugget to virtual node addresses. it is impossible for an experiment to interfere with the
correct functioning of work in progress in any other partition. Experiments can be easily coded to
make use of arbitrary numbers of nodes, since each client can discover the size of the partition and its
own virtual node number.

Communication

The nugget abstracts the underlying Proteon token ring into a device that can gather up to three regions
of data, queue them for sending in a single packet to any (virtual) destination, and interrupt when the
send is finished. Up to 2K bytes of data may be sent in a packet. Similarly, there is a device that
accepts packets (from any source) and scatters them into up to three regions of store, identifies the
sender, and interrupts when the packet is received. Messages may be sent reliably, if the client desires.
An alternating-bit positive-acknowledgement protocol (with piggybacked acknowledgements) is used for
reliable packets. The delta-T mechanism [WATS81] is used to re-establish sequence numbers after
crashes. Datagram service is also available; datagrams are not acknowledged and are discarded if they
arrive at a machine whose "receive” communication device has not been enabled.

Clock
Since, the nugget uses the clock for its own purposes (ie. message timeouts). it provides a virtual clock
for the client. This clock can be set to interrupt after any number of ticks. (A tick occurs every 10
ms.)
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The nugget is implemented in- Modula using a locally developed Modula compiler. The nugget has
been designed three times.- The initial design was demonstrated on the network of PDP-11 machines. the
revised design is in use on the VAX network. and a third revision is under development. We have measured
the speed of the nugget using the 10 megabit/second Proteon ring by sending 10,000 messages between a
dedicated sender and a dedicated receiver. The results are shown in Table |. We estimate that the raw rate
for datagram messages is 4.0 Mbps: the overhead for sending a datagram message (exclusive of DMA time)

is on the order of 2.0 milliseconds.

Message Length Transmission Time
In Bytes Reliable  Datagram
200 5.7 ms. 2.2 ms.

500 6.6 ms. 2.8 ms.

800 7.7 ms. 3.5 ms.

1100 8.8 ms. 4 1 ms

1400 9.7 ms. 4.7 ms.

2000 11.8 ms. 6.0 ms.

Table |

3.3. Nuggetmaster

The nuggetmaster is a program employed by users for allocating and deallocating partitions, controlling
the computation within a partition. and controlling network accesses from a host. The nuggetmaster defines a
user’s interactions with the Crystal multicomputer. As shown in Figure 2, the nuggetmaster is composed of

two logical parts, a resource monitor and a user interface.

On each host, a nuggetmaster daemon process functions as a local resource monitor. One local
resource monitor is designated to also function as the global resource monitor for Crystal resources. Current
allocation tables are stored in this resource monitor. These tables indicate the status of each node machine
and the partitions that are currently in force. Specific characteristics of node machines (such as the amount

of main store and the presence of a disk) are also recorded there.

The user interface consists of a library package and a command interpreter program. The library package

is available on each host for linking with other Unix programs. It communicates with the local resource
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monitor and the global resource monitor through inter-process communication facilities of Berkeley Unix
4.2. The library package provides routines for acquiring and releasing partitions. linking the nugget with
object files, downloading programs into a partition. and debugging running programs with operations like

halt, run, peek, and poke.

The interactive command interpreter uses the library package and may be run on any host machine. [t
provides a convenient interface to manipulate Crystal resources. It also maintains a log file for the various
hardware and software components of Crystal. automatically sending mail o maintenance personnel when

complaints are registered.

Host #l Host #2
VAX running 4.2 Unix VAX running 4.2 Unix

Nuggetmaster
Command

! |
Application | f
| Interpreter |
|
i i

f 1
) 1
| Program

1 !

( t |
| Nuggetmaster | | Nuggetmaster
| | |
| | |

|
1
Library ;

Library
R 1 --------- +
R T e +
| | I l
| Global Nuggetmaster | | Local Nuggetmaster |
| Resource Monitor R I > | Resource Monitor |
} [ Unix IPC [ |
e e e + T T I +
1 1
e eeaaa + e e +

Figure 2
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3.4. Communications Protocol

Communications among node machines and between a node machine and a host machine is done using
a -token ring from Proteon Associates. An alternating-bit positive-acknowledgement protocol (with pig-
gybacked acknowledgements) is used for reliable messages. A delta-T mechanism [WATS81] is used to re-
establish sequence numbers after crashes. This protocol is implemented in the nugget and as a device driver

in the Unix kernel,

P . . kd
On a Unix host. access to the device is through sockets™ A socket can be opened by only one process
at a time, but a subprocess may inherit an open socket. Each socket can handle at most one read or write
request at a time. If more than one process tries to use the socket simultaneously, the first request is initiated

and the others are queued.

A read or write request on the host uses a packet supplied by the application program. In the case of a
write request. the packet header supplies the driver with addressing information (node number and socket
number). On a read request. the packet header is filled with the same information by the driver, so the user

can determine which node machine sent the packet.

Unix calls are provided to manipulate permissions that individual sockets have to communicate with
individual node machines. A library of protocol routines provides simplified access to the device. This
library includes routines for setting access permissions, calculating cyclic redundancy check values, printing

the current permissions map, and opening a particular socket (or finding an available socket to open).

A library of programs that uses these protocol routines is available for debugging the network. These
programs can print statistics of network behavior, send files between host machines along the network, and

generate particular patterns of traffic on the network.

Typically, an application program on a host machine will open a new socket to use for communicating
with clients in the nodes of a given partition. The program will then send and receive messages through that

socket. The first message it sends will contain its socket number, so the client program will be able to direct

2 > 4 n Y . 4 N Ty ) M .
= The standard cevice names are *‘/dev/dy 1’ for socket one, “/dev/dy/2 tor socket two, and so forth. Socket zero is reserved
for any super-user process.
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responses back to the program.

3.5. Virtual terminal

Although some of the node machines have terminals, a typical experiment does not require that the user
be present in the machine room. Instead. output can be redirected to a process on the Unix host machine
and displayed there. Likewise. the Unix terminal can be used for data entry. This feature is known as the

virtual terminal interface.

The virtual terminal interface is composed of two parts. One is a library of routines linked with the
client program that resides on node machines. The other is a Unix program that communicates with those

routines.

The Unix program makes use of the nuggetmaster library package to establish communication with the
node machines. It also uses a library of output routines [TORES83] to create one window on the screen for
each node in the partition. We currently use character-only CRT devices (of several brands), so the windows

are somewhat constrained. Each window is labelled with its node number and window name.

Only one window may be opened for input at a time. Qutput from nodes is put in the appropriate win-
dow whether or not the window is currently open, but only the current window's display is kept up to date on
the screen. Optionally, update can be restricted to times when a key is typed. to prevent programs that pro-

duce voluminous output from locking the server in "refresh mode”.

The virtual terminal can be switched between input and command mode. In command mode, windows
can be manipulated, and terminal characteristics (such as echoing) can be adjusted. The virtual-terminal
program may be suspended and resumed. When it is stopped. nodes that try to output to the virtual terminal
will wait for the host program to resume. When the virtual terminal terminates. nodes direct their output to

the real console terminal.

The virtual-terminal library provides the client program with raw, blocking input. No buffering is
done; each character typed at the host terminal is sent in its own packet to the node. Output from a node to

its virtual terminal is collected in buffers, whose size (limited to 2000 bytes maximum) is at the discretion of



the client, . A buffer is flushed (sent to the host). when it fills or is explicitly flushed.

The client may switch back and forth between the physical and virtual terminal. When the virtual ter-
minal is in use, calls to character input and output routines are transformed into messages to the host pro-
gram. Although these messages are directed through the nugget. the client never sees completion interrupts
from the nugget caused when such a message is sent by the virtual terminal, since the nugget is given an
interrupt address inside the virtual terminal package for these messages. On the other hand, messages arriv-
ing for the virtual terminal do generate interrupts that the client must handle. These packets (and the inter-
rupts arising from them) can be distinguished from other packets since they arrive on a pre-defined socket
reserved for the virtual terminal. The virtual terminal library includes a routine that the client should call

when such interrupts occur.

3.6. Simple Applications

Crystal users who want the support of a general-purpose multiprogrammed operating system will use
the Charlotte operating system (described below). However, applications that need only one process per Cry-
stal node machine may not wish to suffer the additional overhead due to Charlotte. For such applications. we
have created the simple-application package, which is a set of subroutines that allow applications program-
mers to use the nugget for communication without having to write interrupt-handling code (see Figure 3).
Versions of the simple-application package are available for clients written in Fortran, Modula, Pascal, and

C.

The simple-application package supports buffered communication using two queues. one for input and
the other for output. As soon as initialization is complete. incoming messages are accepted and queued in the
input buffer queue. Each message is identified by the sending node’s virtual node number, and a flag that
indicates that the buffer is full; the client program may busy-wait on these flags. The client calls another
routine to release an input buffer. To send a message, the client busy-waits until a send buffer is available,
fills it with data, indicates its destination, and then invokes a non-blocking "send"” library routine. The client

can discover when the message has been safely sent by inspecting the busy flag of the buffer.
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- Communication with the UNIX host is like communications with any .other node. Its node number is
0. A simple-application library is also available for application programs running on a host computer.
This library includes a blocking receive call. since a non-blocking receive is not available from our delta-t
device driver. The host library uses the nuggetmaster library package to acquire a socket from the delta-t
driver and to communicate through it. The first message sent by the application program on the host to a
client on a node informs the simple-application package on the node of the proper socket to which to send all

traffic destined for the host
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3.7. File Server

To provide long-term storage of data on Crystal, we have implemented a file server based on the

Wisconsin Storage System (WiSS) [CHOUS83]. The services provided by the file server include structured

sequential files, byte-stream files as in Unix, B¥ indices. stretch data items, a sort utility, and a scan
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mechanism. A sequential file is a -sequence of records. Records may vary in length (up to one page in
length), and may be inserted and deleted at arbitrary locations within a sequential file. Optionally, each
sequential file may have one or more associated indices. The index maps key values to the records of the
sequential file that contain a matching value. The indexing mechanism is also used to construct Unix-style
byte-stream files (the pages of the index correspond to the inode components of a Unix file). A stretch item is
a sequence of bytes, very similar to a file under Unix. However, insertion and deletion at arbitrary locations
is supported. Associated with each stretch item (and each record) is a unique identitier (RID). By including

the RID of a stretch item in a record. one can construct records of arbitrary length.

The file server runs as a "permanent” client on one node machine. Access to the file server by a client
in a partition is accomplished through a set of message-based utility routines linked to the client. The file
server supports simultaneous access by multiple clients from multiple partitions. In addition to being able to
execute "normal” file operations remotely (such as create. destroy. open. close, seek. read. write). a client
can also scan a sequential file for records with fields that satisfy a given Boolean predicate (whether or not a

suitable index is available).

3.8. Overview of Software Use

In this section we outline the steps that an average user might take to prepare and run an experiment
under Crystal. For this example. we assume that the experiment is to evaluate the running speed of a distri-
buted algorithm for solving some numerical problem. The algorithm has two kinds of processes, one super-
visor (that will run on a Unix host machine) and any number of workers. Each worker corresponds to a
client and will be assigned to its own node machine. The more workers are available, the faster the solution

should be. Since workers run very similar code. only one worker program is to be written.

The first step is to develop the algorithm. Distributed and serial algorithms have both similarities and
differences. At this stage, little general advice can be given the designer of parallel algorithms. The fact that
the problem has been decomposed into supervisor and worker roles implies that the designer has already put

some thought into the proper division of work and flow of data.
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The next step is to. encode the algorithm. Since the experimenter of our example has programmed
serial solutions to this problem in Fortran and feels comfortable with that language. it is also chosen here.
The program for the worker will need to know which worker it is and how many workers exist. This infor-
mation can be obtained directly from the nugget, but the experimenter is unwilling to deal with the nugget
directly, so Fortran-based simple-application package is chosen instead. This package can be used by the
worker to obtain relevant parameters of an experiment. In addition, it provides a simple way to direct mes-
sages to other workers and to the supervisor. Data values should be transmitted as soon as they are ready.
and incoming data values should be ignored until they are needed, in order to overlap computation with com-

munication to the fullest extent.

For this experiment. the supervisor will run on a Unix host. This program will interactively ask for the
partition number and will then use the Fortran simple-application library to find out how many workers there
are and to communicate with them. In addition. the supervisor can read Unix files to get the initial data for
the problem and to store the resuits of the numerical computation. These initial data can be sent as needed to

the workers. Unix provides a clock, which allows the supervisor to time the entire experiment.

Once the supervisor and workers have been programmed, they are compiled on the host and linked with
the appropriate interfaces. The recipe for compilation and linking can be preserved in a file and executed

automatically under Unix.

The next step is debugging the program. To get a partition. nci (the nuggetmaster command inter-
preter) is invoked interactively on Unix. The experimenter wants to debug the algorithm on a partition of one
node. The "new 1" command to nci acquires a node and reports the partition number. Nci is then told to
link the worker program with the nugget and to load it onto that partition. Leaving nci in the background.
the experimenter then starts the supervisor program, telling it the partition number interactively. The super-
visor starts sending data to the worker, and the program is running. If all goes well. the supervisor will
receive the answers it is expecting and display them. If not, the worker will encounter some error and will be
unable to continue, or a logical error in the communication interface between supervisor and worker will

cause them both to enter a state where they are waiting for messages from the other.
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Debugging is hard enough on a serial program: it is much harder in a distributed one. Although tools
are in preparation to assist the Charlotte user in debugging distributed programs, these tools will not help our
experimenter, who will most likely place output statements in both supervisor and worker programs to indi-
cate the current state after major events. The output from the worker can be directed to the host machine to
be displayed on a virtual terminal, which the experimenter can start up at the same time as the supervisor

program.

Once a single-worker version of the program works. a multiple-worker version can be tried. The nci
program is told to build a larger partition. but otherwise the scenario is the same. New bugs are likely to

surface as the inter-worker communication is tested for the first time.

When the program has been thoroughly tested for accuracy. timing tests can be made by the supervi-
sor, which records the time both at the start and at the end of the computation. The test can be repeated
several times with different partition sizes. Each worker can also collect its own timing statistics, distinguish-

ing time spent computing and communication.

The scenario given above can include more sophisticated use of current facilities. Instead of using the
nci program. the supervisor could use the nuggetmaster library to acquire the desired partition. It could then
avoid interactive use. and could run extended experiments over a long period of time (several days) repeatedly

acquiring different-sized partitions and running many problems on each partition.

The file server could also be used to advantage. Instead of sending initial data between the host and the
nodes, data (including intermediate information) could be saved on the file server and recalled when needed.

Exclusive access to this file service can be guaranteed while measurements are being taken.

If the experimenter contemplates many processes, a number of which are often idle at any time, Char-
lotte would be a better vehicle for the experiment. Many more processes can be formed than there are node
machines, and process migration will be available to balance the number of active processes on each

machine.



4. Four Example Applications of the Crystal Multicomputer

In this section we describe four of the projects that have been implemented using the Crystal multicom-

puter facility. First, we present two examples of the use of Crystal for research on parallel algorithms. Next.

we discuss a facility known as "remote unix” that permits users to place computationally intensive Unix jobs
p 3 ]

on node machines. Finally. we describe the Charlotte distributed operating system.

4.1.

Recursive backtrack

Many time-consuming applications have the general form of recursive search of a tree. One can list

applications of this style in order of increasing complexity:

(h

2)

3

Q)

Recursive backtrack, which finds all solutions to some problem by visiting the entire tree and counting
or listing all the leaves. The eight-queens problem is a good example: Find all the ways eight queens

can be placed on a chess board so that no two attack each other.

Branch and bound. which finds the least-cost path in a tree by visiting all paths. but pruning a path
before reaching a leaf if the path is already more expensive than a previous path. The traveling sales-
man problem is a good example: Find the cheapest order to visit n cities. given the cost of traveling

from any city to any other.

Tree evaluation. which derives some recursively-defined value for a tree by combining the values of all
the children according to some set function. Negamax evaluation of a checkers lookahead tree is a
good example: The value of the current board position is the negative of the maximum of the values of

the possible successors to that board position.

Tree evaluation with cutoffs. which performs a tree evaluation but uses locally-derived information to
prune parts of the tree that are certain not to effect the value of the whole tree. Alpha-beta search is a
good example: A window of acceptable values is inherited by each node in the tree. and if any child

returns a value outside the range, no other children need to be examined.

Parallel algorithms to perform recursive search have been investigated for some time [BAUD78. FINKS3,

AKLEO0].



Recently we have developed -a general-purpose recursive.search package [MANBS84] that is easy to
interface to any application of the first two types of search: recursive backtrack and branch-and-bound. Exten-

.sions to the third and fourth types are underway.

The application program needs only to specify what the root of the tree looks like, how to generate a
first child or a sibling node, and what constitutes an answer. The package. written in Modula. uses inter-
machine communication (based on the simple-application package) to distribute work to all the machines in

the partition.

The algorithm used for distribution is both simple and effective: When a machine has finished all its
work, it asks a neighbor for work, On receiving this request. the neighbor gives away half its remaining
work. If the neighbor is itself waiting tor work. it forwards the request. The machines are arranged logically

in a ring. If a machine hears its own request. it drops out of the computation.
o

For problems of the first type. a machine reports each answer as it is found to the host machine. If
only a count is desired. the count is sent only when an entire batch of work has been finished and the
machine is idle. For problems of the second type, new bounds can be generated by the application: if they
surpass the current bound, the package will send the new bound to the successor machine. For problems of
the third type. answers must be directed back to the machine that originated the node that has been evaluated.

For problems of the fourth type, updated bounds must be given to machines that are already engaged in work.

Our initial experience with this package has been very promising. Applications such as eight queens.
knights tour, generating permutations. and traveling salesman have been coded quite easily. It takes less than
an hour to encode and debug simple applications. Recursive backtrack problems achieve almost linear
speedup with the number of machines. As an example, the ten-queens problem was run with partitions of
size 1 to 7. Both work time and idle time were measured to the nearest millisecond. Idle time includes time
waiting for more work and assisting a neighbor by giving it work. but does not include reporting results to the
host. The results of this example are shown in Table 2. There were 724 answers; only counts were reported
to the host. The amount of idle time is very small (and depends on the network size, not the problem size).

All machines finish at almost identical times. The overall speedup is close to perfect.
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Partition Average Work Average Idle Speedup
Size Time in Seconds  Time in Seconds
1 156.98 0.03 1.00
2 78.95 0.62 1.99
3 52.90 1.14 2.96
4 39.78 1.39 3.94
5 32.06 3.63 4.89
6 26.89 2.56 5.83
7 23.02 2.41 6.81
Table 2

4.2. Jacobi Methods

There are a number of serial algorithms for solution of partial differential equations. As pointed out in
[FISHS1]. many of these algorithms are locally defined and iterative: A rectangular array of numbers A is
given: A’, A"" and so forth are determined by a locally defined rule. That is. the value of an element is some

function of the values of its immediate neighbors in the previous array.

Locally defined, iterative algorithms lend themselves to parallel computation in a straightforward way.
The array is partitioned into a number of large, contiguous regions. Each region is assigned to a dedicated
machine for computation. The internal values for a given iteration can be computed directly. To compute

new boundary values we require the values of the boundaries of adjacent regions.

We have implemented the Jacobi method on four machines as a simple example of such an algorithm.
This test was coded in Fortran and made use of the simple-application package. The algorithm executed by

each node machine is as follows:

1 Discover which quadrant I am to deal with.

2 Accept initial data for that quadrant from machine O (the host).
3 loop

4 Estimate global error.

5 if global error small enough then exit.

6 Send boundary values to neighbors.

7 Calculate new internal values.

8 Accept boundary values from neighbors.

9 Calculate new boundary values.

10 end.

The most time-consuming step is in line 7. Communication is therefore overlapped with computation, since



- line 6 starts sending data to neighbors, but the data need not arrive until the neighbor reaches line 8.
Estimating the global error (line 4) requires estimating the local error, sending it to all nodes, and accepting
- their local errors. Since every node therefore receives the same values, each can independently reach the

same value for global error.

Our experience in programming this application has shown us that the simple-application package is

appropriate for most of the algorithm, but that two features would have made the coding easier.

(1) In line 8. we expect boundary values. In line 4. we expect local error estimates. However. other
nodes may not be synchronized with us. so we may, at either time. receive the other kind of message.
Such unwanted messages must be saved so that later. when the data is needed, it is still available.
Charlotte provides exactly the sort of receive semantics we need. Under Charlotte. different links would

be used for data and for ervor estimates, and selective receive would easily distinguish these messages.

(2)  Distribution of error estimates would logically require broadcast. Although the Proteon interface allows
broadcast. we have omitted this feature from the nugget. since reliable broadcast requires acknowledg-
ments from each destination, and separate transmission is not much more expensive. Since the nugget
does not provide broadcast, the simple-application package does not, either. For larger versions of the
Jacobi method, using many more machines, a hierarchical error-estimate collection scheme would be

preferable to an effective broadcast.

Other approaches to the same problem are also amenable to similar decomposition; we chose the Jacobi
method for its simplicity. The Gauss-Seidel method with red-black coloring is easily fit into a similar mold.
In addition, we are investigating multi-grid techniques. These techniques form coarse approximations to the
desired problem and solve them exactly, producing an iterative improvement toward the solution of the origi-
nal problem. The exact solution to the coarse problems can be done recursively or can use Gaussian elimi-
nation. Distributed Gaussian elimination is not as easy as the Jacobi method, since information transfer is
not localized within the matrix. However, we have found a different organization for Gaussian elimination

(following a paradigm that looks something like pipelining) that appears promising.



4.3. Remote Unix

As Crystal became operational, the use of Crystal to provide additional cycles for compute-bound tasks
such as simulations emerged as an obvious application. Constructing a parallel simulation facility on the Cry-
stal node machines is a research activity we intend to pursue. Since simulation projects generally involve
repeated execution of the model while varying the input parameters. an alternative way to utilize the available
parallelism is to execute each simulation run on a separate machine. As we developed this idea further a

more general facility that we call "r nix"” emerged.
g I facility that all “remote unix” emerged

The "remote unix” facility extends the Unix notion of forking a background process to permit the invo-
cation and execution of a Unix process on a Crystal node machine. Qur design was based on two principal
objectives. First, since the Crystal node machines and our production Unix machines have the same instruc-
tion set, it seemed feasible to design the facility in such a way that recompilation would be unnecessary.
Second, since many programs use the system calls provided by Unix these routines should be also be avail-

able in addition to standard input and output capabilities.

The organization of our remote-unix software is shown in Figure 4. Unix system calls issued by the
program running on the node machine are trapped and translated into remote procedure calls to the host

machine,

The remote unix facility is invoked by “ru X" where X is the name of the program to be executed and
3 prog

its parameters. Ru first acquires acquire a Crystal partition containing one node machine. Next, the "remote

Process X
Surrogate for Remote Unix
Process X Services
Unix Kernel Nugget
J
Host Machine Node Machine

Figure 4
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unix services” -module is loaded onto-the node machine. It; in. turn. requests that X be sent for loading.
Finally, ru becomes a surrogate process for X on the host Unix machine. Since it is being run on behalf of

X, it has the same access rights (to files, for example) and runs in the same environment as X would have.

Once everything has been initiated. execution of X begins. Whenever X executes a Unix system call
(like open, read. write). the call is trapped by the remote unix services module. This module packages a code
specifying the call type and the parameter values into a message sent to X's surrogate running on the host
machine. The surrogate process unpackages each incoming message. decodes the call tvpe. and executes the
appropriate system call. The result of the call is then packaged as a message and sent to the calling program
via the remote unix services package. At the present time. ru supports 48 of the 85 system calls provided by

4.2 Unix.

Timing information of some simple tests in shown in Table 3 below. The first column describes the
test conducted. The second column specifies the elapsed time to execute the program using the remote unix
facility. The third column indicates the elapsed time to run the program on an unloaded Vax 11/750 running
Berkeley 4.2 Unix. Finally. in the fourth column we have included the time to run the program on a remote
11/750 running Berkeley 4.2 Unix via the rsh command (the data accessed was already at the remote site).
These results indicate to us that although the startup cost of the remote unix facility is relatively high. the sys-

tem is quite useful for cpu-intensive programs.

At the present time. the ru facility has several limitations. First, the process must fit in the physical
memory available after the nugget and remote unix are loaded. The nugget and the remote unix module
together occupy approximately 100K bytes of physical memory. Second. the process cannot spawn additional
processes. Considering the intended application, we do not view this as a serious limitation of the system.
Finally, pipes are inefficient. The command, "ru A | ru B” buffers the output from process A through the
invoking machine instead of being piped directly from A’s machine to B’s machine. We are currently con-

sidering extending the ru facility to allow "ru 'A | B”.



Test Remote Unix 4.2 Unix 4.2 Unix using rsh
open file 14.2 seconds .29 seconds 4.0 seconds
open file and read 14.2 seconds .31 seconds 4.2 seconds
1000 bytes
open file and read 21.9 seconds  1.12 seconds 4.92 seconds

100,000 bytes in 1000
byte chunks

open file and read 18.9 seconds  1.08 seconds 4.92 seconds
100.000 bytes in | chunk

nroff a file of 30,000 49 1 seconds  36.2 seconds 40.1 seconds
characters

Table 3

4.4. Charlotte

Charlotte [ARTS84] is an ongoing research project supported by the Defense Advanced Research Pro-
jects Agency (DARPA). Its goal is to develop algorithms and support software for distributed computation.
A major focus of this project is designing and implementing an operating system that supports closely
interacting processes cooperating to solve a computationally intensive problem. The Charlotte operating sys-
tem is intended to fill a middle ground between local area networks. which allow autonomous computer sys-
tems to communicate and share resources, and multiprocessor systems, in which multiple processing units
communicate through a common memory space. Charlotte software is responsible for allocating processors
to processes and insulating the processes from the details of inter-processor communication. The design and
construction of Charlotte is intended to fulfill two goals: to explore operating-system design for multiprocess
applications, maximizing functionality while minimizing overhead; and to serve as a test-bed for research in
distributed algorithms. We look forward to a symbiotic relationship between Charlotte and application pro-
grams written for it. On one hand. the ease with which such applications can be written tests the quality of
the operating-system primitives provided. and system overhead in running applications tests the efficiency of

the implementation. On the other hand, Charlotte provides a convenient environment to test and measure



multiprocess algorithms.

The current version of Charlotte has several antecedents. The first was the Arachne (originally called
Roscoe) operating system, constructed in 1978 for the network of five PDP 11/03 computers [SOLQ79], and
substantially rewritten for the network of PDP 11/23 computers connected by the Megalink. In Arachne, an
identical kernel residing on each processor supports creation and destruction of processes and communication
between them. Other "operating system” services are provided by wiility processes. including a file server. a
terminal driver, and a resource manager. Inter-process communication in Arachne is based directly on the
Demos operating system for the Crayv-I [BASK77]. Processes address each other using capabilities to simplex
logical communications paths called /inks. The Send primitive specifies the recipient of a message indirecily.
by referring to a link: there is no way a process can name another directly. The sending end of a link can be
transferved from one process to another bv including it in a message. The message supplied by the Send call
is copied from the sender’s address space into a kernel buffer and the sender is allowed to continue. The
kernels on the component processors cooperate in delivering the message to the processor of the destination
process. A process receives a message by executing the Receive primitive. which specifies a buffer and set of

incoming links and blocks the receiver until a message has arrived.

Charlotte is designed with several modifications to Arachne communications primitives to remedy what
we perceived to be defects in the Arachne design. These included replacing simplex links with full-duplex
links, using synchronized message transter instead of kernel buffering, and introducing a more symmetrical
arrangement in which neither send nor receive is blocking. We also proposed a richer set of utility processes,
for example replacing the resource manager with a set of processes for managing various resources. A pilot
implementation of the new operating system was written for the network of PDP 11/23 computers in Modula
[WIRT77]. With the arrival of the Crystal hardware. Charlotte was extensively rewritten to run on the VAX
computers using the nugget for inter-processor communication. We took this opportunity to reorganize the
kernel and modify the semantics of many of the kernel primitives. The remainder of this section discusses

this latest version of Charlotte.



Charlotte consists of a set of identical kernels. one on each processor. and a set of uftility processes.
Each kernel runs as.the client program-on one node of Crystal. . The kernels provide mechanism for short-
term process scheduling and inter-process communication. The utility processes cooperate to control
medium to long-term scheduling, allocate resources. and provide higher-level functions such as file and
directory services. Processes invoke kernel primitives by submitting kernel calls. which appear much like

subroutine calls.

4.4.1. Inter-process communication

Processes communicate by exchanging messages over links. A /ink is a logical, full-duplex connection
between two processes, each of which has a capability to one end of the link. A process never refers to
another process directly. but only by naming a link identifier. which is an index into a table maintained by the
kernel. (When we speak of "the kernel”. we include the case in which the two ends are on separate
machines. each governed by its own kernel.) Information about the name of and route to the process at the
other end of the link is stored by the kernel at each end. A process may use a link to send a message. or it
may include an end of a link in a message. thereby transferring ownership of the link from the sender to the
receiver. Links are created by the makeLink kernel call, which constructs a new link with the caller hold-
ing both ends. If a process wishes to introduce two colleagues A and B together, it can form a new link and

give one end to 4 and the other to B.

Process-tevel communication is non-blocking (a process can generally continue executing while the ker-
nel is transmitting a message on its behalf), unbuffered (a message is not transmitted until the receiver has
provided a place to put it), and synchronous (processes are not generally interrupted by the arrival of mes-

sages).

The send kernel call specifies a buffer (a contiguous region in the caller’s memory) containing a mes-
sage, a link over which to send it, and an optional link to include with the message. The send call specifies
that the data is to be sent when the process at the other end of the link has expressed a willingness to receive
them. The sending process is allowed to proceed immediately, although it should not modify the contents of

the buffer or attempt another send over the same link until the data actually is sent.



The receive-kernel call also specifies a link (or the-special.value afl/Links) and a buffer and allows the
caller to continue. When a matching send and receive -have been posted. the kernel (or pair or kernels)
transfers the data (possibly breaking the message into multiple packets and using acknowledgements to assure

reliability) and then posts completion events to indicate that the transfer is completed.

A process can wait for a completion event by executing the wait kernel call. which specifies a link (or
allLinks) and direction (send, receive, or either) and blocks the process until a matching operation completes.
The wait call returns the link number and direction associated with and event together with an indication of
success or failure, the number of bytes transferred. and. for receive completions. an indication of any
enclosed link. The wait call returns immediately with an error indication if there are no events to wait for.
either completed or in progress. The getResult call is similar to wait but returns immediately if no comple-

tion events are currently posted. [t can be used for polling.

The cancel call takes a link number and a direction (send or receive) and requests that the indicated
operation be cancelled. This call blocks the process until the kernel is able to report whether the operation

was successfully cancelled or it has progressed too far to cancel.

The destroy call destroys a link. This call is legal even if a send or receive is pending on that link.
Further send and receive operations on this link are not allowed: that is, they cause an immediate posting of
a completion event indicating that the indicated link does not exist. As a side-effect of destroying a link, the
kernel causes a message to be sent on that link to the remote end, indicating that the link has been destroyed.
This message causes any send or receive pending on the remote end to terminate with completion code /ink-

Destroyed.

4.4.2. Process Control

The Charlotte kernel maintains a dynamically varying set of processes. Each process is associated with
two regions in physical memory: an image, consisting of code, initialized data, and global memory. and a
stack. The kernel blocks processes in response to wait. cancel and other blocking kernel calls, unblocks
them when operations complete, and alternates among ready processes using a simple round-robin time-

slicing policy. Most process management is controlled by utility processes; the kernel only provides very
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low-level -calls to give these processes access to the basic .mechanism for process control. Process-control
primitives include calls to create a new process context, start-the process running. halt it or allow it to resume
running, examine-or alter the contents of its memory. or terminate it. These process-control kernel calls may
only be used by the Kernob, a special utility process replicated exactly once on each processor. The princi-
pal function of the KernJob is to invoke process-control kernel calls on behalf of other processes. In that
way, a process can be managed by a utility process running on a different processor. These privileged calls
refer to a process by a process identifier rather than a link, and thus violate the principle that processes may

not refer to each other directly.

The makeProcess kernel call creates a new process. but does not start it running. It takes as argu-
ments two blocks of physical memory to use for the image and the stack and returns a process identifier to
use as an argument for other kernel calls described in this paragraph. Another argument is a link to connect
the new process to its parent (the caller of makeProcess). peek and poke can be used to access the private
memory of a process. They are used for initial loading of a new process as well as debugging. Once a pro-
cess has been created by makeProcess and loaded using poke, it can be made active with the inspire kernel
call. A running process can be halted with the suspend kernel call, resumed with resume. and forcibly ter-
minated with expire. (The kernel also provides the unprivileged terminate call. with which any process may
terminate itself: suspend(-1) may be used by a process to suspend itself.) The physical-memory resource of
the processor is not managed by the kernel: instead the kernel provides the getMemoryMap call whereby a
untility process can inquire about the initial state of free memory at initialization time, and accepts explicit
allocations of memory for new processes. Finally, the kernel provides two calls for use in initialization and
error recovery: getProcessDesc can be used to get a list of active processes, and kernLink returns a link to

the KernJob on a specified processor.

4.4.3. Implementation

The kernel is structured into three primary modules. each of which executes a Modula process. (To
avoid confusion with Charlotte processes supported by the kernel, we refer to these Modula processes as

tasks.) The envelope task chooses a job to run and switches to user mode until a kernel call or an interrupt, at
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which point it dispatches requests to other kernel tasks if necessary. ‘The envelope is only permitted to run
when . all other tasks are blocked. - The awomaron task encodes a-finite-state automaton for each link. This
task implements an acknowledgement protocol for flow control and error recovery, and supports the inter-
process communications facilities mentioned above. The communicarion task delivers packets from the auto-
maton task to the nugget and receives incoming packets from the nugget. These three tasks communicate
with each other by means of queues of unfinished work. which they manipulate using the atomic INSQUE

and REMQUE instructions of the VAX.

4.4.4. Utilities

One of the design goals for the Charlotte operating system is to keep the kernel efficient, concise. and
easily implemented. As a result. only those services essential to the entire system. such as inter-process com-
munication and process control. are included in the kernel. All other services are implemented through util-
ity processes. which wait for requests coming from client links. For reasons of efficiency and reliability. a
given service may be provided by a squad of processes distributed throughout the network. Members of a
squad all run the same code. but divide responsibilities among themselves. coordinating their activities by

exchanging messages.

The KernJob

Sometimes a process needs to communicate with a particular kernel other than the kernel of the
machine on which it resides. It cannot use messages, since kernels cannot send or receive messages. Nei-
ther can it use kernel calls, since a kernel call is always interpreted by the local copy of the kernel. There-
fore, Charlotte provides a squad of KernJob processes, with exactly one member on each node. For example,
a Starter process (described below) is responsible for assigning a new process to a node. Once it has selected
a node, it uses messages to the KernJob on that node to accomplish the actual process creation. As another
example, any process may be given the ability to control another by giving it a control link. A kill message
sent over a control link has the effect of terminating the controlled process. A control link is implemented as

a link to a KernJob, which translates the kill message into an expire kernel call.
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The Starter

The Starter squad manages the creation of the new child processes. Each member of the squad is
responsible for a set of nodes. If a process requires another process to be created. it sends a message to a

Starter naming a file containing the executable code for the child.

The Starter maintains information about all the nodes it serves, including current memory allocation
and current processes states. Based on this information. the Starter can choose a node and memory location
for the new process. The Starter communicates with a FileServer utility process (described below) to obtain
the child’s code and data and with the KernJob on the appropriate machine to cause the child to start and to
have the proper contents. Each Starter also has a link to one or more other members of the Starter squad.
The Starters periodically exchange information about load situations so that requests to start a new process
can be redirected to the most appropriate Starter. We plan to use this information to govern process migra-

tion as well.

The Switchboard

Often. a process needs a link to a process providing a particular generic service. For example, a pro-
cess wishing to open a file will need a link to a FileServer process. Each new process is born with a link to a
member of the Swiichboard squad. A Switchboard allows a server process to register a link under a given
character string name, and a client process to /ocafe it by supplying a pattern that matches that name. Several

Switchboards may be active at a time, in which case they cooperate to satisfy client requests.

The FileServer

A process accesses a file by sending an open request to a member of the FileServer squad. giving the
character-string name of the file and an indication of whether the file is to be read, written, or both. Each
member of the squad is responsible for a subset of the existing files. The open request is relayed within the
squad to the appropriate member, which responds with a new file link representing the open file. From the
client’s point of view, the file link appears to address a new process responsible for operations on the file. If

the file was opened for. writing, the client may send dara messages containing data to be written. If the file
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~was opened for reading, the FileServer immediately begins to read data from the file and send it to the client.
.Thus the client can read sequentially through the file by simply receiving messages: no explicit read requests
are necessary. A client can send a seek message over the file link to alter the position of the next read or

write operation.

The current version of the FileServer is a simple prototype. using the Unix file system. A file server
relays requests for operations to a daemon process running on a Unix host. which translates them into Unix

operating system calls. A "native” file server is under development.

The Connector

The Connector is a tool to establish initial links in a group of processes. It is implemented as a free-
standing utility process registered with the switchboard. A program that wishes to institute such a group
(usually a command interpreter, but in general any top-level entity in a group of processes) sends a request
naming a file that describes the group’s component processes and their interconnections. Each component
process is described by naming a file containing code for a new process or supplying a pattern naming an
existing process (to be found by consulting the Switchboard). It is also possible to specify that a process is to
be searched for in the Switchboard and created it not found. Connections are specified by listing the process
and link identifier of each end. (For example. the description file may state that a link is to connect link 3 of
one process to link 5 of another.) The code for members of the group must start with a call to the LinkUp
library procedure. The connector creates the required processes and carries on conversations with the
LinkUp code in each. When the LinkUp procedure returns in each child, the required connections are esta-

blished.

4.4.5. Initialization and Recovery

The code loaded on a new Charlotte node includes the kernel and two utility processes, the KernJob and
the Primordial Connector, with kernel tables initialized to indicate a link between them. The Primordial Con-
nector contains just those parts of the Connector. Starter, and the FileServer necessary for establishing a

minimal initial configuration. It reads a configuration file (like a Connector description file) to see which
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-utility processes are to be placed on its node -and how they are interconnected with each other and with

processes on other nodes. When initialization is complete, the Primordial Connector terminates.

If a machine fails, any -kernel dealing with it will discover its demise within a few seconds (as a conse-
quence of the communications protocol), and deliver /inkDestroyed messages to local processes holding links
to processes on the failed node. Most clients that discover that their servers have disappeared will just ter-
minate. More robust ones might attempt to get replacements from a Switchboard. Servers that have lost
clients can usually recover and re-register with their switchboard. If a KernJob loses its controlling Starter,
it searches for another KernJob that has a working Starter and introduces itself. informing the new Starter
about the state of the node. which it can access through the getProcessDesc kernel call. A similar mechan-

ism is used for a machine that has just been repaired and is trying to re-establish contact with the world.

Together. these facilities allow Charlotte to survive partial hardware and software failures, maintaining

continuing computations and bringing nodes back into the fold when they are repaired.

5. Conclusions and Future Directions

In this paper we have presented an overview of the hardware and software components of the Crystal
multicomputer project. Presently (July 1984) 20 VAX 11/750 node processors are installed and in produc-
tion use. While awaiting delivery of an 80 megabit/second token ring, the nodes communicate among them-
selves and with our Unix machines using a 10 megabit/second ring. The basic Crystal software has been
completed and is in production use. The simultaneous use of Crystal by multiple research projects is accom-
plished by partitioning the available nodes according to the demands of the different research projects. Users
can use the Crystal multicomputer in many different ways. Those projects (e.g. operating systems, database
machines) that need direct control of processor resources (clock. memory management, communication dev-
ices) can be implemented directly on top of the nugget, possibly using the simple-application package. Pro-
jects that prefer a higher level interface can be implemented using the Charlotte distributed operating system.
Finally, those users who are interested in Crystal principally as a cycle server can run their Unix jobs on
node machine using the "remote unix" service. Development, debugging, and execution of projects can take

place remotely through any host. Acquiring a partition of machines. resetting each machine, and then
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loading an application onto-each machine is -performed by the Unix-resident nuggetmaster. Communication

-with node machines in a partition is facilitated by a virtual terminal and window mechanism.

With the basic services of Crystal now operational. we have begun to develop enhancements. One such
enhancement is a debugging tool for distributed algorithms. Although the nugget currently provides pause.
peek. poke, and resume capabilities. there is no debugger that understands algorithms running on multiple
node machines. In addition to helping get a parallel algorithm running, we envision that such a tool would
provide performance information about the run-time characteristics of the algorithm. We also plan to
enhance our library packages for developing programs that use parallelism. The recursive backtracking
package developed by Manber and Finkel is one such example. Adding a “parallel-for” capability to the For-

tran package is also planned.

We are also examining how to integrate Crystal more tightly into our Unix environment. One approach
being considered is an implementation of Wilkes™ "processor bank” concept [WILKS83] as an alternative to
the workstation-per-user model of computing. Two features make workstations an attractive alternative to
conventional time sharing systems such as a Vax running Unix. First is the guaranteed response time that
only a single user machine can provide. The second is that most workstations provide a bit mapped display
with windowing software and a mouse. The limitation of workstations is not being able to "borrow” process-
ing resources from idle machines. The idea of a processor bank is to decouple the bit mapped display
mechanism from the processor and to extend the notion of a window per process to a window per processor.
By having a pool of processors and intelligent, high resolution displays, a user can acquire the amount of
processing capability appropriate for the task at hand by forking processes onto multiple, standalone

machines.

As the first step in implementing this capability we intend to extend our current remote unix capability
to support arbitrary processes. We are currently examining whether to do this by removing features (e.g.
TCP/IP) from 4.2 Unix or by writing our own Unix kernel using the nugget as a basis. We anticipate that
files will continue to reside on a user’s "home"” machine or on the Crystal file server and that paging will be

done remotely to the Crystal file server. We are currently evaluating several alternative terminals including
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the 5620 from Teletype (the BLIT?) and the Superscreen trom Scion.

To enhance message passing performance in Crystal. we have begun to examine the possibility of a
separate protocol-processor hoard. Two factors appear to limit current message passing performance: the
overhead of the protocol processing and by the bandwidth of the Unibus on the Vax 11/750. By implement-
ing a separate protocol processor board that plugs into the CMI bus of the 11/750. we hope to be able to
increase the raw DMA bandwidth from approximately 4 megabits/second to approximately 40
megabits/second*l‘ Furthermore, by offloading protocol processing to a separate processor that shares

memory with the 11/750 CPU, we expect to significantly reduce the overhead of message processing.
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