AN APPROACH TO INCREMENTAL SEMANTICS

by

Gregory F. Johnson

Computer Sciences Technical Report #547

July 1984

AN

AN APPROACH TO INCREMENTAL SEMANTICS

by

Gregory F. Johnson

A thesis submitted in partial tulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCCNSIN -- MADISCN

1883

(© Copyright by Gregory F. Johnson 1983
All Rights Reserved

AN APPROACH TO INCREMENTAL SEMANTICS

Gragory F. Johnson

Under the supervision of Associate Professor Charles N. Fischer

The purpose of this thesis is to examine the problem of making updates to the
static semantics of a program in response to small, incremental changes. The
primary application of this work is In language-based text editors; after every
editing operation a user performs on his or her program, an internal representation
of the semantics of the program is modified in some minimal way so that any
samantic errors can be reporte& immediately. The method studied here provides a
new approach to the problem of incremental semantic evaluation in that attributes
may flow directty tc where they are needed, rather than being restricted in their
flow to paths in the parse tree of a program. The communication paths take up
space In memory and require time to construct, so their use involves trade-offs.
Attribute evaluation processes somewhat different from those discussed in the
Iiterature are presented which allow for incremental updates and non-iccal

attribute communication.

Acknowledgements

That this thesis has been completed Is a tribute to the support and love |
have received from many people. Most especially | would like to acknowledge and
thank my wife Margaret. The motivaticn and intellectual leadership provided by my
adviscr, Dr. Charles N. Fischer, have been a constant heip. My committee, Drs.
Marvin Solomon, Sam Bent, Raphael Finkel, and Michael Meyer, were generous in
their investment of time and effort to improve the quality of this thesis. Financial
support for this research was provided by the National Science Foundation.
Finally, | would lika to thank the many friends who have come into my life at St.
Paul's University Catholic Center for guidance and support in the many areas of

Ife that fall outside of the reaim of the academic worid.

Table of Contents

Abstract

Acknowiedgements

Table of Contents

1. Introduction

Attribute grammars

Non-iocal attribute grammars

An example of a grammar that contains non-focal produc-

tions

_ Construction and operation of an evaluator

Planning and evaluation for unattributed trees .

incremental update of an attributed tree

Evaluation and update in the presence of non-local produc-

tions -

2. Etficient Unear Incremental Evaluation -

introduction

Calculation of possible dependencies among attributes ...cirecceacenss

Determination of appilcable characteristic graphs at evaluation

time asasesseonranssssunn

initial evaluation

Change of a single attribute of in-degree Zero .. -

iv

11

11

12

22

23

27

Subtree replacement -

Example of the behavior of Algorithm 2.4. vose

3. Priority-based incremental evaluation

Introduction

An algorithm for computing simple priority relations

Priority calculation for join attributes

An algorithm to compute left and right pricrities

Pricrity-based incremental update for a new in-degree zero at-

tribute

A subtree replacement incremental evaluator

4. Non=local productions -

Introduction

Definition of Attribute Grammars Augmented by Non-local Produc-

tions
Characteristic Graphs for Interface Symbols cosnanns
5. Attribute Evaluation for Non-local Attribute Grammars ceaase

Initial evaluation and creation of non-local productions ...ceeecesiecaees

ineremental evaluation in the presence of non-local attributes

Transiation of non-local attribute grammars into local attribute

grammars ecvetresrensmanassssases

8. Conciusion . —vnrane

Directions for fULUre resS@archeicmimicsi e asniamesssenss

32

37

40
40
48
81

53

68

82

87

87

68

74

87z

87

80

g6

104

104

References 108

Appendix 1 = Correction to Section 3.2 109

Chapter 1 - Introduction

The recent computer science literature has contained numerous papers about
a new concept in software development, the Language Based Editor, or
LBE [1,2,3,4,5,6]. An LBE is similar to standard text editors in that it has
capabilities to create files, perform insertions, deletions, and. other standard
editing operations, but it differs from normal editors in that it possesses
knowiedge of the syntax and semantics of a particular programming language.
With this knowledge, the text editor can notify a user immediately if an attempt is
made to create an illegal program. Much attention has been focussed on the
syntactic aspects of program editors, or more specifically on the context-free
aspect of syntax analysis. Comparatively little attention has been directed at the
semantic and context sensitive aspects of LBE's. Demers, Reps, and
Tietelbaum [7] have suggested the use of attribute grammars [8] as an
appropriate basis for the semantics of program editors. Reps (9] continued this
work and presented an attribute evaiuation technique tailored to incremental
changes in an attributed parse tree. Skedzeleski [10] studied time-varying
attributes, in which attributes may be evaluated more than once in the attribute
evaluation process, and non-iocal attributes, which are attributes thatq are
functions of attributes not localized within a single production. Although
Skedzeleski's work was not developed for LBE's, it is similar to the approach

presented here.

[t has been our experience that pure attribute grammars have some
shortcomings in the incremental update environment tound in an LBE. Objects that
are closely related in a semantic sense and which require frequent exchange of
semantic information can be arbitrarity far from each cther in the syntax tree
describing the prograri. In order to alleviate this probilem, we make use of 'non-

iccal productions.” in the classic atsribute evaiuation framework, direct attribute

transmission may only occur across parent-child or chiid-child syntactic relations.
We will extend this model to allow dynamic construction (at evaluation time) and

dynamic use of relations over which attribute flow may take place.

The problem of how best to evaluate the attributes of a semantic tree has
received much attention [11,12,13,14,18]. Previous work in attribute grammars

has assumed the following sequence of operations:

parse;
eval_attributes;

or perhaps [16]

repeat
parse partiaily;
evaluate_as_much_as._.possible;
until done;

We add a third phase to the latter scenario:

repeat
parse partially;
repeat
evaluate_as..much_.as_.possibie;
update__flow._links_if__necessary;
until cone;s
until really_done;

The update_ flow_links phase bears some resemblance to parsing in that we are
modifying the compound dependency graph [8,17] of the program. [t is aiso
intimately related to the attribute evaluation process, since these links may

themselves depend on attributes in a partially evaiuated parse tree.

This work was motivated by the the University of Wisconsin Pascal Oriented
Editor (POE) [18]. The semantic analysis that POE performs makes extensive use
of context sensitive attribute flow. By far the most important application of the
above ideas is to link the defining occurrence of an identifier with its uses. The

example given at the end of Section 2 illustrates the specification of these

linkages. Also of importance is the use of attribute flow links to represent

precedence relations in expressicns.

1.1, Attribute grammars

An “attribute grammar” [8] is an extension of the context free grammar
formalism which captures context sensitive regquirements (we use the term
“context sensitive”’ here in the locse sense to refer to compile-time checks of a
prcgram's correctness which are beyond the scope of a parser) by associating
with each production a set of “attribute evaluation functions.” Each node in a
parse tree may have associated with it a set of values, or "attributes,” which are
the results retumed by execution of such functions. A parse tree that has
attributes associated with its nodes is called a “semantic tree”. Evaluation
sunctions take as their inputs attributes that already exist in the preduction
instance with which they are asscciated. Some evaluation functions require no
inputs, and some depend sclely on informaticns that is pre-initialized in the tree
before the evaluation process begins. For convenience we will lump these two
categories together and say that the attributes output by these evaluation
functions have in-degree zero. This term is suggested by the fact that if we drew
a graph representing the dependencies among attributes in a semantic tree, ‘the
nodes representing these attributes would have no incoming arcs. Each attribute
evaluation function has associated with it an indication of which symbal in its
corresponding production is to receive its result. It is convenient to distinguish
between atiributes that are to be associated with the parent of a production,
which are called “synthesized attributes” in the literature, and attributes that are
given to children in the production, which are called "inherited attributes.” We wiil
also classify attributes as "input” and “output”’ attributeé. The attributes tha{

appear in the input list of some evaluation function in a given producticn will be

called input attributes to the production. Similarly, attributes that are created by
some evaluation function in a production will be called cutput attributes of the

production.

If the input and output sats of every producticn in a non-circular (8] attribute
grammar are disjoint, we will say that the grammar is in “normal form”. In the case
of an attribute grammar that has no context sensitivg relation sets, this definition
is eguivalent to the dJdefinition of normality given in the literature in terms of
synthesized and inherited attributes [13]. In the remainder of the paper we will

restrict our attention to attribute grammars in normai form.

1.2. Non-local attribute grammars

In an attributed parse tree derived from a standard attribute grammar, a given
node may participate in at most two production instances; it may be a child in cne
production instance and a parent in another production instance. The root and
leaves participate in oniy one production. In our new attribute grammar
construction, we will allow a given node to participate in an arbitrary number of
production instances. In addition to being a parent and a child, it may participate
in several instances of "non-iocal productions”. A non-local production is an
association of nodes in a parse tree which may directly communicate attribute
values among one another. As noted in the previous section, attribute evaiuation
rules are associated with productions. We allow parse tree nodes which are nat
adjacent in the parse tree to be grouped together into instances of non-iocal
productions, and we associate attribute evaluation rules with such groupings. For
instance, if the grammar has a non-local production that associates <use id>'s
with their <defnid>'s, the <defnid> will participate in as many non-iocal

productions as there are uses of the identifier for which it is the definition.

The construction of a non-iocal production may depend cn attribute values of
symbols that are far apart in the parse tree of a program. For instance, a non=
local production may be established between two “identifier’” terminals provided
that they have the same vaiue of the “name" attribute. Or, the construction may
require that the symbolé in an instance of a non-iccal production bear some
context-free syntactic relationship to ofle another. For instance, Skedzeleski's
non-local attributes allow communication between a node and any node between
itself and the rcot of the parse tree. A non-local production might be the ordered
set "<defn_id> - block”, an evaluation function might be "put the <defn_.id>'s
name in the symbol table associated with block”, and the grammar might require
that <block> be the occurrence of the <block> non-terminal that is first

encountered moving from the <defrn_.id> toward the root of the tree.

1.2.1. An example‘ of a grammar that contains non-local productions

As an exampie of the above tormalism, we present in Figure 1.1 an attribute
grammar describing a simple language which has two data types and assignment

statements.

S ;= Defs ; Uses

Defs ::= <type> Iddef

Defs ::= epsilon
<typa> ::= CHAR
<type> ::2 INT

Uses.symtab := Defs.symtab;

gef -tyre = <type>.type;
Defs1.symtab 1= Addld(Defsz.symtab,
id. STRING_REP);

Defs.symtab := empty;
<type>.type := character;

<type>.type := integer;

Uses ::= Use ; Uses Usesz.symtab := Usesy .symtab;

Use.symtab := Us«as1 .symtab;

Uses ::= epsilon

Use ::= idusa := iduse i3, error := use1.type # Usez.type;
idq.use := Makelink(Use.symtab,
id1 STRING..REP);
idy.use := Makelink(Use.symtab,
idz.STRlNG_REP)
def - use. use.type := def.type;
Figure 1.1.

If we constructed an LBE for this simple language, a user could change the
defined type of 'a symbal, and the change would flow through the def_id straight
to each use_id. It would not be necessary to re-evaluate every use.lid in the
entire program to see which ones were actually affected by the change. It is not
uncommon, for example, for a programmer to write the statement part of a Pascal
program first and then go back and create variables, types, and constants. This

style of programming implies frequent re-definition of defined types of symbals.

1.3. Construction and operation of an evaluator

We will present a modification of the Kennedy and Warren pilanning
approach [14] which is especially useful in an LBE environment. We wiil first

present.the new approach in the context of attribute grammars without non-focal

productions; the problems of attributing a semantic tree from scratch and of
incrementally updating a fully attributed tree that gets changed will be considered
separately. Finally, the changes necessary when a grammar includes non-local

productions will be discussed.

It turns out that there are several nested “'evaluability classes” of attribute
grammars which allow progressively simpler and more efficient incremental
evaluators. We will present classification methods which can be used to
determiné the best evaluation algorithm for a given attribute grammar. The
situation may be compared to that of context-free grammars: as we progress
from the most general, unrestricted grammars through unambiguous grammars and
the various sorts of LR(k) grammars, we have a sequence of progressively simpler

and more efficient parsing and parser generation techniques.

1.3.1. Planning and evaluation for unattributed trees

We first consider the probiem of evaluating all the attributes of an
unattribu‘ted parse tree. Following the general approach of [14], we first
construct a set of evaluation plans. This step is analogous to the use of a parser
generator - an attribute grammar is given as input to the planner, and the planner
creates a set of tables that will be used to perform evaluations of semantic trees.
For each production in the grammar, the pianner constructs a set containing all
attribute instances in that production. For every collection of attributes which
can become available together in a production in the course of evaluation, we
construct a list of evaluation functions which can be invoked given that that
collection of attributes is available. Thus, if in a semantic tree we happen upon a
production instance with a set of available attributes, we know which new

attributes to evaluate.

As a parse tree is being buiit, we do not do any attribute evaluation. We do,
however, include in an “evaluate this production’ set any production instance that
the parser builds which has attributes with in-degree zero. When the parse tree
has been completely built, we start the evaluation process. During evaluation, we
maintain with avery production instance a flag indicating which attributes are
available in it. The evaluation process consists of an iteration of the following

operations:
(1) select a production instance and evaluate attributes in it.
(2) Update flags of production instances to reflect newly evaluated attributes.

The above approach is useful only in a situation in which a representation of
the entire program is available before the evaluation process begins. An LBE is, of
course, such an environment. As will be seen below, the above approach lends
itself to the problem of incremental parsing and to the case of attribute grammars
that contain non-iccal productions. It also has the attractive property that no
absclute non-circularity restrictions exist. Absoclute non-circularity is basically a
restriction on how divergent the attribute dependencies of a given node may be
for the various subtrees that may be created below it. In the approaches taken
by [14] and Cohen and Harry [11], the problem of absociute non-circularity must

be addressed either at evaluator generation time or at evaluation time.

1.3.2. Incremental update of an attributed tree

in an LBE, as contrasted with a compiler, a user can make small, incremental
changes to the semantics of a program. From an attribute grammar viewpoint, we
have a fully attributed tree that is changed, perhaps slightly, and we want to
avoid re-evaluating the entire tree. We wouid like to re-compute only the
attributes that become invalid because of the change. This is the problem

addressed by [7] and [9] We wiil consider only operations invoiving the

substitution of one subtree for anather. As pointed out in [7], insertions,
deletions, and replacements can all be thought of as subtree replacements. We
have the following situation: two fully attributed trees are to be merged. A node
of the first tree which has the same grammar labei as the root of the replacement
tree is stripped of its subtree, and the replacement tree is attached in its place.

The resuiting tree must then be examined and perhaps partially re-evaluated.

The approach to be presented requires a minimum of information to be kept at
each node in the attributed tree: A flag, which could be encoded as an integer, is
all that is required. We follow the general principie that work is best done once at
generation time, rather than being done repeatedly at evaluation tirpe. Rather than
manipulating graphs or other complex data structures at evaluation time, we

perform lock-ups in tables.

1.3.3. Evaluation and update in the presencs of non=local productions

We now consider the changes that must be made to the above procedures
when we are interested in attributing a parse tree or incrementally updating an .
attributed tree when the language describing the language contain; non-iocal
productions. The scheme can be summarized in the following way: when a subtree
is replaced by another subtree, we first sever ail connections between it and the
parse tree. We then "wire in"" the new subtree to the parse tree, connecting it
through its rcot and also through a series of non-iocal productions. Finally, we
incrementally update the attribute vaiues in the new semantic tree. In POE a new
subtree is connected through its root and aiso through every occurrence of an
identifier. The first time a new subtree is put in place, the "wiring in'' operation will
involve an amount of work that is roughly equivalent to a m_:rmal evaluation of the
subtree. After the subtree is in place, however, changes in other parts of the

program which affect the new subtree can take place mucn faster, since the

10

leaves of the subtree are now "near’ to other parts of the tree which originate

semantic informaticn that they need.

11

Chapter 2 - Efficient Linear Incremental Evaluation

2.1. Introduction

We present in this chapter a plan-oriented approach to incremental update in
the setting of conventional attribute grammars. We will follow the definitions and
statement of the problem as discussed in Demers, Teitelbaum, and Reps [7], and
Reps [9]. The approach presented in this chapter is an alternative to that
presented to the same praoblem in the two above-mentioned papers. Qur approach
will follow the Kennedy-Warren [14] philosophy of performing fairly extensive
analysis of attribute dependencies- at generation time in order to reduce the
complexity of the evaluation task. In effect, we "compile” the attribute grammar

into a set of plans, and the plans then drive a small, efficient avaiuator.

The remainder of this chapter will be organized as follows: first an extension
Knuth's 10 graph construction will be mentioned that was first suggested by
Katayama [19]. An algorithm will be presented for computing "upper’ 10 graphs, or
as Katayama calls them, Ol graphs. Several sets of assumptions and definitions

that depend on the "0l graph"” concept will follow.

Next, a simple initial attribute evaluation algorithm will be presented and
proved to be correct. [nitial evaluation is a crucial first step in anticipation of
incremental evaluation; before we can perform a series of editing operations which
require incremental evaiuation, we must begin with a fully attributed parse tree.
Moreover, a large parse tree fragment may have to be constructed in response to
the input of a single token by the user, and such a fragment must be initially
evaluated before it can be patched into the rest of the parse tree using
incremental evaluation methods. Use of plans will be sketched in conjunction with

\

the initial evaluation algorithm.

12

After the discussicn of initial evaluation, a generai algorithm for incremental
re-evaluaticn will be presented for the case of a change in a single “glcbal input”
attribute whose evaluation function takes no inputs. An example of such an
attribute might be the actual numeric value associated with an "integer” terminal
node. The aigerithm we preéent will be quite generai: it will be valid for any non-
circular attribute grammar. Next, a medification of the aigorithm will be presented
which allows incremental re-evaluation after a subtree has been deleted and
yeplaced by another subtree. This resuit will be found to be as powerfui as that of

‘Reps, but will not require evaluation-time manipulation of graphs. The algorithm

presented here is plan-oriented, depending on fast table look-ups.

2.2. Calculation of possible dependencies among attributes

The particuiar parse tree in which a given non-terminal is imbedded createé a
partial order among the attributes of that non-terminal. The partial order
represents the set of functional dependencies among the attributes of the non-
terminal. The graph representing the part of the order generated by the subtree
below the non-terminal is called the |0 graph by Kennedy-Warren [14] and
Katayama [19], and the characteristic graph or inferior characteristic graph by
Cohen and Harry [11] and Reps [9]. It seems that the former term is becoming
slightly more standard, and so we will adopt it. Similarly, the part of the partial
order generated by the rest of the parse tree (that which would remain if the
non-terminai's subtree were removed) is called the Ol graph or superior
characteristic graph. Again, we adopt the former terminology. Nevertheless, when
referring to the set of ail 10 and Ol graphs considered together, we will call them

characteristic graphs.

An example of an attributed parse tree is showa in Figure 2.1, and Figures

2.2 and 2.3 show the !0 and Ol graphs generated at ncde 8 by the attnbute

dependencies of the tree.

T,
/7 N

A o e

t /\

| /N
B !o o‘ Hc

! | |

S A
C) o\
C

Figurs 2.1.

A parse tree and asscciated attribute dependencies.

B : ’ °\/°

Figure 2.2.
The |0 graph of the attributes of B induced by the
parse tree in Figure 2.1.

By e——>o

13

14

A~ N

B) -} 8 e

Figure 2.3.
The QI graph of the attributes of B induced by the
parse tree in Figure 2.1.

In Knuth's criginal papers [8,17] on attribute grammars he presented an
algorithm to compute the finite set of possible IO graphs for every symbol in a
. given attribute grammar. We present below an extension of his algorithm which

calculates-both 10 graphs and Ol graphs for all symbols of a given grammar.

The proof that the algorithm produces the desired output is analogous to the
proct found in Knuth; before presenting the algorithm and its proof we start with a

few definitions.

Since we will be discussing 10 graphs and the symmetric concept of Ol graphs
together, it will be heipful to extend the concepts of terminal symbols and exterior
nodes to incorporate a corresponding symmetry. We refer to a grammar symbol as
an "extremum” if it appears only in right-hand sides or only in left-hand sides of
productions in a given grammar. For a reduced grammar which follows the
convention that the start symboi appears in no right-hand side, the extrema are
the terminals and the start symbol. In the sequei we will only consider grammars
which have been given an extra production S' ::= S, if necessary, to insure that
the start symbol is an extremum. We will analogously extend the concept of

exterior node” of a tree to "boundary node,” by which we mean the root or a leaf

node of the tree.

18

The "dependency graph” of a production has as its nodes the attributes of
that production instance. There is an arc from attribute aipha to attribute beta if
the value of alpha is an input to the evaluation function that computes beta.

Evaluation functions and the dependency graph for the production "B ::= C in

Figure 2.1 are presented below.

B::=C B.atr1 <= 47;
C.atr2 <- B.atr2;
C.atr3 <- B.atr3;
B.atr4 <- C.atrd;

3
!
‘c

Figure 2.4,
A production and asscciated dependency graph.

The "compound dependency graph' of a parse tree fragment (some of whose
boundary nodes may be non-extrema) has as its nodes the attributes of the
various nodes in the parse tree fragment. The arcs of the compound dependency
graph are determined by functicnal dependend’es among the attributes of the
parse tree. Intuitively speaking, there is an arc from attribute alpha to attribute
beta in the compound dependency graph if alpha is an argument to the procedure
which computes beta. More farmaily, if beta is a synthesized attribute of the
parse tree node X, we lock at the set of evaluation functions associated with the
production which corresponds to node X and its children; if beta is an inherited
attribute of X we look at the evaiuation functions of the production corresponding
to the parent of X and ils children. In either case, alpha and beta are associated

with identifiaple ncdes of the production, and we can examine the evaluation

functions of the nroduction to see if alpha is an input to the evaluation function

16

that computes beta.

Following Reps [9], we will define characteristic graphs in terms of two
ancillary concepts: projections and what we choose to cail near-complete parse

trees.

The "projection” of a compound dependency graph on a particular parse tree
node is the graph whose nodes are the attributes "of the tree node; there is an arc
from attribute alpha to attribute beta if there is a path from alpha to beta in the
compound dependency graph of the parse tree which does not include any
attributes of the node being projected upon. In the case of ncr;'nal attribute
grammars, a projection is just the subgraph of the transitive closure of the
cempound dependency graph which has as its nodes the attributes of the parse

tree node being projected upon.

Wae define a "near-complete” parse tree to be a parse tree fragment in which
exactly one of its boundary nodes is not an extremum. A near-complete parse
tree may be either a fragment all of whose leaves are terminals but whose root is
not a left-hand extremum, or a tree whose root is a left-hand extremum which has
a non-terminal as one of its leaves. Near-complete parse trees are an extension

of the concept of "derivation trees of type p" which is defined in Knuth [8].

The “characteristic graph’ generated by a given near-complete parse tree at
its non-extreme boundary node is defined to be the projection of the near-
complete parse tree's compound dependency graph onto the non-extreme
boundary node. Characteristic graphs are extremely 'useful for a varety of
attribute grammar analyses. As mentioned above, they are the key concest in
Knuth's original paper for non-circularity testing. Beyond that, they have been
used for varous sorts of evaluator plan creation and atiribute grammar

classificaticn schemes.

17

Algorithm 2.1 computes all possible characteristic graphs for symbols in an

attribute grammar.

Algorithm 2.1.
input: an attribute grammar .
Output: the set of 10 and Ol graphs for each symbol in the grammar

finitialization; see Note 1.]
for those productions P which have only one rion-extremum, do begin

(say the non-extremum is at peosition """ of the production)
G := the projection of P's dépendency graph on symbal "i";
ifi=0Q
then add G to the |0 graph set of symbal "i"
eise add G to the Ol graph set of symbal "i";
end for;
{main loop; see Note 2.}
while there remains an unexamined 3-tupie
(production P,

pasitien "1" in P,
jcharacteristic graphs C, for symbols of P

other than the symbal at position "I}
)
do begin

let D be the dependency graph for P augmented by the selected
characteristic graphs;

G := the projection of D on position “i";
iti=Q

then add G to the |Q graph set of symbal "i"
eise add G to the Ol graph set of symbai "i";

end while;

Note 1: Unless we are considering a trivial grammar which describes the empty
language, there must be at least cne production in the grammar whose right-hand
side either consists entirely of terminal symbols or is epsilon. All such productions
will be examined during the imitialization step. Further, productions that have

extrema as their left-hand symbois will be examined in the initialization step if at

18

most one of their right-hand symbols are non-terminals.

Note‘Z: As the algerithm progresses, it builds up sets of 10 graphs and Ol graphs
for each grammar symbol. At the start of the "while” loop, we look for a production
P and 5 particular collection of characteristic graphs for symbals of P that have
not yet been examined together. Eor instance, if atter the initialization step of
the algorithm there is a production with non-terminals in its right-hand side all of
which recsived |0 graphs during initialization, then we can select that production,
position zero within the production, and an element from the 1Q-graph set of each
of the right-hand non-terminals of the production. Indeed, that production and the

sets of |0 graphs generated for its right-hand non-terminals by the initialization

n

step could be used for the first H Cl iterations of the "while'’ loop, where Ci is
i=1

the number of characteristic graphs created by the initialization step for the i

right=hand non-terminal of the production.

Wa now present and prove the desired theorem about Algorithm 2.1.

Theorem 2.1. A graph is generated by Algorithm 2.1 if and only if it is the
characteristic graph of some near-complete parse tree derivable from the
grammar.

Proof. We first prove that every graph produced by the algorithm is the
characteristic graph of some near-complete parse tree. Certainly the assertion is
true after initialization; the initialization step considers only those productions
which are by themselves near-complete parse trees. We now show that the claim
is an invariant for the main loop of the algorithm. Assume that the claim is true
before an iteration of the loop. At the start of that iteration, a production instance
“P*, a position “i" in that production, and a set of charactenstic graphs for

symbois other than the one at position " are selected. By assumption, sach of

18

the characteristic graphs seiected has a corresponding. near-complete parse tree.
During the iteration, we create a nNew characteristic graph C for the symbol at
position "I". A near-compiete parse tree which corresponds to C can be created
by taking an instance of production "“P" and substituting for each characteristic
graph used in C's creation a near-complete parse tree that corresponds to it. At

the end of the loop, therefore, the claim still holds.

Conversely, if P is a characteristic graph generated by some near-complete
parse tree at a symbol N, then the algorithm will have generatéd P. To see this,
assume the contrary, that there is a near-complete parse tree whose
characteristic graph is not among thosa produced by the algorithm. We know that
the near-complete parse tree is not a single production, since its characteristic
graph wouldkhave been generated by the algorithm during initialization. Thus, there
must be at least two productions in our near-complete parse tree. In fact, one of
the productions bordering the production containing N must aisc have a symbol
with a characteristic graph not generated by the algorithm, since that is the only
way the algorithm could have missed one of the characteristic graphs of N. We
can, then, trim off the production containing N, consider the second production
instead, and repeat the whaole analysis, proving that it also must be in a near-
complete parse tree with at least two production instances. This process ciearty
requires that there be an infinite number of production instances, contradicting the
fact that every parse tree (including the one assumed to exist at the outset of

this discussion) is finite.

a

We see, then, that the algorithm presented at the beginning of this section
can be used to analyze any attribute grammar and determine all passible sets of

dependencies among attributes of each symbal in the grammar.

20

An example of the execution of Algorithm 2.1 will now be presented and

discussed in some detail.

(1) S:u=E E.symtab := (("pi”, 3.142)
("e", 2.718))
S.value := E.value;

(2) E:=T T.Symtab := E.Symtab;
E.vaiue := T.value;

(83) En=E+T Ez.Symtab := E;.Symtab;
T.Symtab := E1.Symtab;
Eq.value := Ez.value + T.value;

(4) T:u=id T.value := LookUp(T.Symtab);

(5) T ::=number T.value := StringToFloat;

This grammar describes sums of floating point numbers; for the sake of illustration
we allow the symbois "pi” and "e" to appear also. The "SymTab" attribute created
in productien (1) is a list of (name, value) crdered pairs. In this example, it a
sentence has an identifier other than "pi” or ""e", that is an error. The extrema of

the grammar are the symbols »S”, "+, "id", and "number."”

In discussing the example, various graphs will be presented. As an illustration

of the notation to be used,
a->b U ->d e

signifies a graph with five nodes labeled "a”, “b"”, "Ul", "d", and "e", with arcs from
"3" to “b" and from "UI" to "d"”, and with no arcs trom or to node “e.” It will be
convenient to include with characteristic graphs an indication of which attributes
are inputs and which are outputs, so a dummy node "Ul" (for "universal input’’) will
be used as a predecessor of output attributes which have no inputs. (An input
attribute is a synthesized attribute in an 10 graph or an inherited attribute in an Ol
graph. An output attribute is.an innerited attribute of an |Q graph or a synthesized

attribute of an Ol graph.) Nodes which hWave no incoming or outgoing arcs can be

21

understood to represent input attributes which are not used in the computation of

any other attributes.

During the initialization step of Algorithm 2.1, productions (1), (4), and (8) will
be used to create characteristic graphs, since they are the only productions in the
grammar which have no more than one non-extreme symbol. Production (1) is used

to create the Ol graph
E.value Ul <> E.symtab

tor grammar symbol “E,” and productions (4) and (S) are used to create the 10

graphs

T.symtab -> T.value
and

T.symtab Ul -> T.value
respectively for the symbol 'T.”

After initialization, the "while” loop of Algorithm 2.1 can chocse fram among h
five alternatives. One aiternative is to select production (2), position one, and the
Ol graph created for symbol “E."” Production (2), position zero, and either of the 10
graphs for symbol T account for two more alternatives. Finally, prqduction (3),
position one, the Ol graph for symbal “E” and either of the 10 graphs for symboi T
account for the final two alternatives. Say production (2), position zero, and o -

graph
T.symtab Ul -> T.value
are selected. We take the dependency graph of production (2), the graph

E.symtab -> T.symtab T.value -> E.value,

and append to it at position one the selected 10 graph. The resulting graph is

22

Ul «> T.value E.symtab -> T.symtab T.value => E.value.

Taking the transitive closure of this graph and then trimming out nodes and arcs
other than those involving position zero (the symbal "E"), Projecting this graph on

node "E" gives us the |0 graph

E.symtab Ul => E.vaiue.

New that an |0 graph is availabie for symbol "E,” producticn (3) can be used
either at position zero to try to find other 10 graphs for "E,” or at position 3 to
compute an Ol graph for symbal “T." After the ancdfhm has made its selection at
this juncture, has gone through an iteration of the loop, and has continued the
process until no more choices remain, 10 and Ol graphs will have been found for all

symbols in the grammar. These 10 and Ol graphs are enumerated in the following

table.

symbal 10 graphs Ol graphs

S Ut => S.value

E E.symtab -> E.value Ut -> E.symtab; E.value
E.symtab; Ul -> E.value

T T.symtab -> T.value " Ul => T.symtab; T.value

T.symtab; Ul -> T.value

2.3. Determination of applicable characteristic graphs at evaluation time

Several papers ([11,9,18], for instance) address the problem of determining
during evaluation which of perhaps several possible characteristic graphs actually
describes the attribute dependencies at each node of a given parse tree. We will
adopt here the procedure suggested by Katayama [12], which will neatly reduce
the general evaluation problem to consideration of “uniformiy simpie’ attribute
grammars, i.e. attnbute grammars for which every symboi has exactly one [O graph

and one Ol graph. We form for every symbol X in the grammar a corresponaing set

23

of augmented symbois xij>' where i and | are respectively indices of the possible

|0 and Ol graphs of X. Then, for any particular parse tree we simply re-label each

node X with the appropriate xij)‘

In fact, we can extend the concept of Katayama and consider the indices i
and j to be attributes. The algorithm given at the beginning of this section to
compute characteristic graphs can be modified to provide the evaluation rules for i
and j: each characteristic graph created by the initialization step is viewed as an
attribute with in-degree zero whose value depends only on which production of
the grammar was used to create the characteristic graph. Each characteristic
graph created by the "while” loop has added to the evaluation function of its
corresponding attribute an indication that when characteristic graph attributes at
positions other than “n” have values corresponding to those selected in the
“while" loop, the node at "n” is to be given a characteristic graph attribute whose

value is the index of the characteristic graph created for n.

It can be shown (the machinery to do so will be develcped in a later chapter)
that an attribute grammar created by the above method has a particularly simple
structure, and can be initially or incrementally evaluated using any of the methods
to be described in this chapter. So, when an editing operation is performed which
changes the parse tree, we evaluate the characteristic graph indei attributes
first, and then for further attribute analysis we view the parse tree as having

been generated from a uniformty simple.attribute grammar.

2.4, Initial evaiuation

In this section we present and demonstrate correctness of an initial
evaluation algorithm. It is in essence the one used to perform initial evaluation in

Poe. First, however, some necessary terms:

24

in the following discussicn, we will use the terms “successor’ and
"pradecessor’ to indicate attributes that immediately depend on and are
immeﬁiate ancestors of a given attribute. The terms "descendant” and “ancestor”’
will be used to refer to the »sransitive closures” of the successor and
predecessor reiétions; in a given attributed tree an attribute is an ancestor of
another attribute iff there is a directed path from the first attribute to the second
in the compound dependency graph. Also, when we say that attribute aleha

depends on attribute beta, we mean that alpha is an descendant of beta.

The “universal input" attribute is an imaginary attribute that is the sole
immediate predecessor of all attributes whosa evaluation functions take no
arguments. Use of this artificial construct tums out to simplify and consclicate
notation. Formally, we have the following definition: the "upiversal input

attribute’” has the following properties:

(1) it is always available (i.e., any attribute that depends only on the universal
input is immediately evaluable);

(2) any attribute that has the universal input as an immediate predecessor has
no other predecessors;

definition: a "back path’is a function " from the positive integers to the nodes
of a directed graph such that for all i > 1, there is a directed arc from node (i) to

nade f(i=1); if for some i f(i) has no incoming arcs, then f(j), j > i is undefined.

We can now make the following definition about evaluable attributed trees in terms
of the universal input attribute:
definition: an attributed tree is “"evaluabie’ if every back path contains the

universal input attribute.

definition : an attribute grammar is "well-formed" if every atiributed tree that may

be constructed from it is evaluable.

25

We note that well-formedness implies non-circularity: if an attribute grammar
is circular, then there is an attributed tree with attribute dependencies that form a
directed cycle, and a back path can be formed whose range consists entirely of

the elements of the directed cycle.

Algorithm (presented below) is the promised initial evaluation algorithm.

Algorithm 2.2,
Input: a well-formed attributed tree
Output: the same tree, with all of its attributes evaluated

tor each production instance P in the parse tree that
has output attributes with in-degree zero, put P in Evaiuable; (see Note 1.)

while Evaluable is not empty do begin
select and remove an element E from Evaluable;

evaluate attributes in plan(E) (see Note 2.);

for each production P that has a node N in common with E, do begin
P.available := P.available + | newly available attributes of E at N{;
if pian(P) is non-empty, put P in Evaluable;

end for;
end while;

‘Note 1: We associate with each production instance a.set called “available"” -
which indicates which attributes of that production have been computed so far.
At the outset, each production instanca has in its available set cnly the universal
input attribute. Attributes with in-degree zero are those which depend only on the
universal input attribute, and hence they are immediately evaluable. This
initialization step can actually performed as the parser is constmqting the parse

tree.

Note 2: The "plan” for a production instance with a given available set is simply
the set of unavailable output attributes of that production ail of whose inputs are

available.

26

Algorithm 2.2 terminates, since there are a finite number of attributes in T, we
evaluate each one at most once, and we evaluate at least one attribute during

each iteration of the "while” loop.

To show that algerithm 2.2 csrrectly evaluates all the attributes of T, we first

prove two lemmas.

Lemma 2.1. A production instance. is in "Evaluable” if and only if it has evaluable
output attributes.

Proof. The lemma is certainly true after initialization: all direct descendants of
the Ul are by definition evaluable, and production instances for which they are
cutputs are in "Evaluabie.” Conversely, in an evaluable attributéd tree the graphis
dominated by the Ul, and hence by the set of its direct descendants. Since no

direct descendant of the Ul has been evaluated, no non-direct descendant is

evaluable.

Now, we estabiish that the property mentioned in the lemma is an invariant of
the “while” loop: a production instance can change in only two ways inside the
loop: it can be removed from thg “Evaluable” set and have its evaluable attributes
evaluated, or it can have a neighbor evaluate an attribute of a node shared by the
production instance and its neighbor. in the first case (by normality), after
evaluable attributes are evaluated, that production instance has no more
evaluable attributes, and hence does not belong in Evaluable (by normality, the
evaiuation step cannot change any inputs to the production being evaluate&, anq
nence cannot make formerly unevaluable outputs evaluable.) The inner "for’ loop
examines every production instance that shares a node with the production being
evaluated, and so no production instance that may experience a change in
evaluability will go unexamined. After a neighbor has been examned, it will be in

Evaluable if

27

(1) it was in Evaluable before being examined or
(2) it has newly evaluabie attributes.

in the latter case we are done; in the former case we are done also, since no
output attribute of a production instance can be rendered unevaluable by the

process of making previously unavailable input attributes available.

O

Lemma 2.2. |If there is an unevaluated attribute then there is an evaiuable
attribute.

Proof. It the_ set of unevaluated attributes is non-empty, then there is a "least”
unevaiuated attribute (since by assumption we can create a topological sort of
the attributes), and by the well-formedness assumpticn this least unevaiuated

attribute is evaiuable.

a

We can now prove the desired theorem about the evaluation algorithm.

Theorem 2.2. All attributes will have been carrectly evaluated upon termination of
algorithm 2.2.

Proof. By Lemma 2.1, aigorithm termination (emptiness of the Evaluable set)
implies that there are no evaluable attributes. But this implies (by the

contrapositive of Lemma 2.1) that the set of unevaluated attributes is empty.

O

2.5. Change of a single attribute of in-degree Zero

We now consider a mild form of incrementa’ re-evaiuation. A parse tree that

has been initially evaluated is given, and a single "global input” attribpute (one

23

whosa evaluation function takes no attributes as inputs) is then given a new

value.

Algorithm 2.3.

Input: a fuily attributed tree from a well-formed attribute
grammar and a new value for an attribute aipha of
in-degree zero

Output: a consistent, fully attributed tree containing the new vaiue
for the attribute alpha

for all productions P containing alpha, do begin
put (production := P,
active := {alphal,
passive := {ail attributes of P that don't depend on alpha{)
in Interior (see Note 1.);
if alpha is an input to P, then put P in Evaiuabie;
end;

while Evaluable is not empty do begin
select and remove an element E from Evailuable;
for each element beta of plan(E) (see Note 2.), do begin

if beta depends on E.active,
then new_.beta := evaluate beta
eise new.__beta := cld_beta.

it new_beta = old__beta
then E.passive := E.passive + { new_beta |
eise E.active := E.active + { new_beta }s

end;

make passively available in € any attributes coming from Exterior
neighbors that do not depend on E.active or E.unavailable (see Note 3.)
Put E in Evailuabie if it has a non-empty plan.

for every adjoining production instance A, do begin
it A is in Interior, then update A.active and A.passive, and
put A in Evaluable if it has a non-empty plan.
else begin
it A is receiving an active attribute then begin
put { production := A,
active := {active attributes from E{,
passive := {attributes that don't depend on
E.active or E.unavailabie{)

in Interior;

put A in Evaiuable if it has a non-empty plan;
end;
endg;
end:
end.

29

30

Note 1: The set "Interior’ contains those production instances that have active
input attributes. Production instances that have no active inputs need not be
examined by the algorithm, since it is known that none of their outputs will chanée
value. We associate with each Interior production instance a set ‘ndicating which
of its attributes are active and which are passive. Thus when a production
instance gets placed in the Interior set its passive and active attribute sets must
be initialized.

Note 2: The "plan” for a production instance that has.a set of available attributes
is the set of output attributes for that production which are nct available and
depend only on availabie attributes. The plan for a production may be empty (if,

for instancs, it has no unavailable attributes).

Note 3: As will be seen in the proof of the algorithm, attributes which are outputs
of Exterior neighbors and do not depend on active or unavailable attributes of the
production being examined do not need to be evaluated; they aiready have their

correct values.

To prove that the algorithm is correct, we start with the following lemma.

Lemma 2.3. At the top of the main “while" loop, every attribute in Interior is either
available, evaluable, or dependent on an unavailable attribute in Interior.

Proof. The claim is true after initialization, since if an attribute beta is unavailable
then it must depend on aipha, and all successors of alpha are in Interior. Either
beta depends on successors of alpha or it does not. In the former case, the
assertion is seen to be true, since ail successors of alpha are unavailable and in

interior: in the latter case the assertion is also true, since beta is then evaluabie.

Now, we will show that the ciaim of the lemma is an invariant of the main loop.
|f the main lcop selects a producticn instance with no Extenor neignbors, the ctam

will still e true after the locp: some evaluable attnbutes will becaome available,

31

and some unevaluable attributes will have the status of prédecessors change. |f
all of the attributes in Interior that are an attribute's predecessors get evaluated,
then it becomes evaluable, since (as we will show) it cannot depend on non-
Interior attributes. To depend on a non-interior attribute, beta would have to be
an output of an Exterior production instance, and so beta could not have a

predecessor in E.

Now, say E has an Exterior neighbor. We evaluate the attributes of plan(E).
By the above discussion, attributes of Interior neighbors of E will satisfy the
conditions of the lemma. So, we consider the attributes of the extericr neighbor.
| ¥ an attribute beta of N depends on an unavailable interior attribute, then the
lemma is not violated. If all of the Interior attributes that are ancestors of beta
get evaluated, either it is a successor of an Exterior attribute or it is not. If it's
not, then it becomes evaluable. If it is, then it's an output of an Exterior
production. |If the attribute's dependence on Interior is only via passive
attributes, then it becomes available. It not, it must depend on an active interior
attribute. In that case, its production will be made Interior by the algorithm. This

latter case will be covered below in the discussion of new Interior productions.

We now consider attributes of a new Interior production Ni: all attributes of
Nl that do not depend on aipha become available since non-aipha Interior
attributes are passive. Of those that remain, some depend only on available
attributes of Nl and are thus evaluable. Scme depend on alpha and also on non=NI
attributes. These attributes must depend on unavailabie Interior attributes: they
are outputs of Exterior productions, and hence cannot have predecessors in E.
They must depend cn (as yet unavailable) attributes in NI which in turn depend on

attributes in E.

a

32

Now, at the top of the lcop, say we have some unavailable attribute in
Interior. By the well-formedness of the attribute grammar we can topaicgically
sort all the attributes in the whole tree, and the unavailable attributes in Interior
thus i'lave an ordering. Specifically, at least one of them does not depend on any

of the others. By the lemma, it must be evaiuable.

2.6. Subtree repiacement

We now consider the culmingtion of the results obtained so far, the process
of incrementaily re-evaluating the necessary attributes after a subtree
replacement operation takes place. The key difference between the situation we
consider here and the one discussed in the last section is that somé attributes will
have different evaluation functions after the replacement. We refer to the node
whose subtree is changed as the intersection node and the two productions that
contain the intersection node ;s the intersection productions. Attributes of the
inmtersection noade may have new evaluation functions. Thus, even if all inputs to a
given attribute retain their old values, care must be taken to insure that that
attribute ends up with the correct new value, and that attributes which depend con

it are re-evaluated if necessary. Alsq, the initialization procedure must be

somewhat different. Explanatory nctes will appear after the algorithm.

Algorithm 2.4,
Input: an attributed parse tree with a designated node
and an attributed subtree

Output: an attributed parse tree with the input subtree spliced
to the designated node of the parse tree

put productions containing the intersection node in Interior
(see Note 1 of aigorithm 2.8); ‘

Make independent attributes not at the intersection passive (see Note 1.)

for each independent intersection attribute beta, do begin
if donor.beta <> recipient.beta (see Note 2.)
then put beta in active sets of the intersection production instances
eise put beta in passive sets of the intersection production instances;
end;

put each intersection production with a non-empty plan
in Evaluable;

while Evaluable is not empty do begin
select and remove an element E from Evaluable;
for each element beta of the pian for production instance E, do begin

if beta is not an intersection attribute then begin
if beta depends on E.active,
then new_.beta := evaluate beta
eise new._.beta := old_beta.
beta.active := new_beta <> cld_.beta;
end

eise begin
if beta depends on E.active
then new_beta := evaluate beta
eisa new__beta := donor._beta;

beta. active := new_beta <> recipient_beta;
end;

if beta.active
then E.active := E.active + { new_beta |
eilse E.passive := E.passive + | new_beta B

end;
make passively available in € any attributes coming from Exterior

neighbors that do not depend on £.active or E.unavailaple.
Put E in Evaluable if it has a non-empty plan.

33

34

for every adjoining procduction instance A, do begin
if A is in Interior, then update A.active and A.passive, and
put A in Evaluable if it has a non-empty plan.
else begin
it A is receiving an active attribute then begin

put (A,
factive attributes from El,
jattributes that don‘t depend on E.active or E.unavailable]

P
in Interior;
put A in Evaluable if it has a non-empty plan;
end;
end;
end;
end.

Note 1: At first, the oniy production instances in Interior are those that contain .
the intersection node. The "independent” attributes of a given production and
position within that production are those attributes which do not depend on any
input attributes of that position. Independent attributes are computed by Poegen
by appending to the dependency graph of the production the characteristic
graphs of the non-terminals of the production and then determining the attributes
that are unreachable from the input attributes of the position in question.
independent attributes of the intersection productions are known to have their
correct values, and need not be computed, since by definition they do not depend

on the part of the tree that gets changed.

Note 2: At the intersection node, we have two different versions of each
attribute, ocne from the production above the intersection, and one from the
production beiow the intersection. For an intersection attribute beta, we call that
version of beta the "donor”’ which comes trom the production for which beta is an
output attribute, and we cail the version of beta the “recipient’’ which comes from
the production for which beta is‘ an input. In terms of synthesized and inherited

attributes, the donor attributes are

35

(1) the inherited attributes of the production for which the intersection attribute

is a right-hand symboli, and

(2) the synthesized attributes of the production for which the intersection node

is the left-hand symbol.
Similarty, the recipient attributes are

(1) the synthesized attributes of the production for which the intersection node

is a right-hand symbal, and

(2) the inherited attributes of the production for which the intersection node is

the left-hand symbal.

We now show that after initialization Lemma 2.3 of the previous section will

still hold. For reference, we repeat the statement of the lemma here:

Lemma .2.3. At the top of the main "while" loop, every attribute in Interior is
either available, evaluable, or dependent on an unavailable attribute in interior.

Proof. First, note‘that all independent attributes are known to be available. Now, a
given dependent attribute may either depend cn other dependent attributes or not
depend on anY dependent attributes. In the former case, the depencent at‘cribute
satisfies the third clause of the lemma. In the latter case, the dependent
attribute depends only on independent attributes, since inputs to an attribute may
only be other attributes of that production, and by definition all attributes of the
production are either dependent or independent. Independent attribuies are ail
available, and so in the latter case the dependent attribute is seen 10 be

evaluable.

O

The loop invariant of Algorithm 2.3 is seen to hold after initialization, and the

situaticns of algorithms 2.3 and 2.4 are identical with the soie exception that

36

recipient attributes of the intersection node may have different evaluation
functions after the subtree replacement. Except for this one difference, the main
result of the previous section will immediately follow. Wa now detail the reasoning
pehind the method used by Algorithm 2.4 to handle this one special case that is

different from Algorithm 2.3.

At the intersection node, we must take new_beta to be donor_beta in the
case that all of beta's ancestors are passive, since the evaluation function used
to compute beta is associated with the donor production. Since none of beta's
inputs have cﬁanged, we know that if we did evaluate beta we would get the

value of beta possessed by the donor production;

On the other hand, even if all of beta's inputs are passive, beta itself may be
active. This is because the evaluation function used to compute the beta
possessed by the recipient production may be different from the evaluation
function used to compute the version of beta possessed by the donor production.
Attributes which depend on beta were computed using the value of beta
pessessed by the recipient production, and this is why the active/passive

classification must be made using the recipient version of beta.

We see, then, that algorithm 2.4 will define the Interior region based on which
productions have active input attributes (with the sole exception of the
intersection productions), and will never evaluate an attribute unless all its inputs
are known t0 have their final values. Moreover, a production instance is visited by
the evaluator only if it has evaluable attributes, so this evaluation scheme is
optimal in the Cohen-Harry [11] sense in addition to being optimal in the Reps [3]

sense.

37

2.7. Example of the behavior of Algorithm 2.4.

In the following figure, we have a fragment of an attribute grammar that
describes "if” statements and expressions. In the process of initial evaluation,
first the “symtab" attribute flows down trom the part of the parse tree above the
“Stmt” node to the leaves of the expression. Then the leaves determine their
types by looking in the symbol table. Type information is passed back up the tree
until it reaches the "if"” statement production, at which time it is verified that the
type of the expression is boolean. A boclean "error’ attribute is sent back down
to the leaves of the tree which indicates whether the expression has the correct
type. A screen manvager might take leaves with an “error’’ attribute that has the
value ""true” and display them in a stand-cut mode to draw the usér‘s attention to

the error.

(0) ..::=Stmt

338

Stmt.symtab := (symbol table built in
declaration secticn)

(1) Stmt::=if E then Stmt <eilse clause>

(2) En=E <op> T

(3) Exn=T

(4) T:u=id

(8) <op> =<

(8) <op> = <=

(7) <cp> u=+

E.symtab := Stmt.symtab
E.error := E.type <> Bool_.type

Ez.symtab s E1 .symtab
T.symtab :3 E1 .symtab
Eq.type := TypeCaic(Eo.type,

<op>.optype,
T.type)
Ez.ermf = E.l .error

Lop>.error := E1 .error
T.error := E1 .error

T.symtab := E.symtab
E.type := T.type
T.error := E.error

T.type := LookUp(T.symtab)
id.aerror := T.error

<op>.optype := less_.op
gt error ;= <Op>.error

Lop>.optype := less_.or_.equal_.op
"3, errar 2 <Op >.error

<op>.optype := plus_.cp
s error := <add op >.error

Let us say that the user starts by typing in the statement

ifi < jthen ..

The evaiuator follows the ruies of the attribute grammar and attributes the tree.

Now say the user changes the "<" node to a "<=" node. The <op> ncode is the

intersection node, and the optype attribute is the only independent attribute of

that node. Since the optype attribute‘ is different for subtrees '<op> ::= < and

"gop> 1= <=, the optype attribute is made active, and the production instance

“E 12z € <op> T" is made a member of the Interior set. The 'symtab’” attributes of

the new production instance do not depend on attributes of <op>, so they are

38

inferred to be available. Similarly, the “"type" attributes of the nodes E2 and T are

made available. So, the attribute which is unavailable and depends oniy on

available attributes is E1.type. That attribute is evaluated, and is seen to retain

its old value (the type of the expression remains boolean after a change of the

<op> from "< to "<="). So, E1.type is a passive attribute. We therefore do not
inciude the production

Stmt ::= if E then Stmt <eise clause>

in the Interior set. On the other hand, we must make passively available attributes
coming from that (Exterior) production which do not depend on active or

unavailable attributes, and E1.error is suech an attribute. The other “error

atiributes are then made passively available, again not causing any new
productions to be included in Interior, and finally the "error” attribute of the node

"g=" is set to be faise.

If on the other hand the user changes "< to "'+", then the “type' attribute of

the node E‘l changes, and the "if" production must be included in Interior. The “if"

production sets "error”’ to be true, s‘ince the type of the expr»essicn is no longer
boolean, and as the new (active) "error’ attribute works its way back down the
tree it causes inclusion of all of the "E ::= T" and 'T == id"” productions in Interior.
Eventually all the leaves receive the new efror attribute, and the whole

expression becomes highlighted on the screen.

49

Chapter 3 - Priority-based incremental evaluation

a.9. Introduction

We now direct attention to the problem of eliminating unnecessary
evaluations of attributes. We include in the wark of evaluating an attribute the
task of manipulating the state of production instances in which the attribute
appears; thus, elimination of unnecessary evaluation implies eliminating

manipulation of the states of productions containing the attribute.

The analyses presented in this section will result in a degree of increased
efficiency in the case of normal (context-free) incremental update, and will be
seen to be Emcial for cbtaining reasonable time bounds on incremental evaluation

algorithms in the presence of non-local productions.

Although the Reps algorithm and the equivalent plan-ariented algorithm
presented in the previous chapter are in one sense cptimal (they both have O(n)
space and time bounds, where "n” is the number of attributes that receive new
vaiues), attribute grammars can be constructed for which an arbitrarily large
number of unnecessary visits to production instances will be performed in the
incremental evaiuation process. We deem a visit to a production instance to be
unnecessary if it can be shown that any evaluation which may take place during
that visit will resuit in an attribute value which is the same as that possessed by
the attribute before the evaluation took place. This chapter will be devoted to
derivation of various classes of algorithms which do not exhibit this undesirable
behavior. For the sake of motivation, a class of attribute grammars will be
presented such that for arbitrarily large N an attribute grammar can be
constructed for which the new class of algonthms will perform N times faster than

algorithms based on techniques aliuded to in the previous paragraphs.

41

In order to lay the groundwork for determining which of several classes a
given attribute grammar falls into, we will examine the problem of computing
possible dependencies among the attributes of a given grammar. If a given
attribute grammar has two productions m and n, and the productions possess
attributes alpha and beta respectively, we will provide a method for determining
the answer to the gquestion, "ls there any conceivable parse tree derivable from
this grammar such that an instance of aipha is an ancestor of an instance of
beta?” We will then refine the question a bit, and ask, "Can we construct a parse
tree with alpha an.ancestor of beta such that the node containing alpha precedes
the nede containing beta in a pre—order traversal of the parse tree?” Answers to
the gbove questions can be used to form a classification scherﬁe for attribute
grammars. It will be found that many attribute grammars exhibit a regularity
property which permits the use of a particularly simple re-evaluation scheme with
the desired strong optimality property that no unnecessary production visits take

place.

A more general class of attribute grammars will then be identified which .
requires the imposition of a (finite) ordering on production states. By the "state"
of a given production instance, we roughly mean the number of attributes which
have been evaluated in that production at some point midway through 1‘:he

evaluation process.

Typically, the cardinality of the ordering will be small. A gramrhar w.ill "almost”
have the reguiarity property mentioned above, but there will be a few attributes
whose inter-dependence structure reguires that they be given different
evaluation priorities. By way of analogy, many context-free grammars are
“almost” SLR, but have a few states which require recourse to a more powerful

parser generation method such as LALR.

42

Another yet more general class of attribute grammars requires that
productions within certain evaluation priority classes be retrieved in the order in
which they would be visited in a pre-order traversal of the parsa tree. Exceptin
some special cases, this leads to O(niog n) algorithms, since sorting operations are
required. Nevertheless, the cross-over point Between a fast C(niog n) aigorithm
and a slower linéar algorithm may be large enough that the O(nlog n) aigorithm is
deemed preferable. Moreover, in many cases of practical importance, the “n" in

the O(nlog n) aigorithm will be far smaller than the "n" in the linear algorithm.

Wae begin by presenting an exampie to illustrate the sorts of situations that
will be the focus of our attention. Figure 3.1 contains an attribute grammar for a
small exa}nple language. The notation “A.atr1 := B.atr2"” means that the attribute
named "atr1” that is associated with symbol A in the production should be given
the value possessed by the attribute named "atr2” that is associated with symbol
B in the production. If a symbol appears more than once in a production, then the

occurrencas will be distinguished by numerical subscripts.

Su=A A.down :2 Aup mod 2
Ax=aA -’ ' A1 up = Az.up
A2.down = A1.down
A:x=bB A.join := A.down + B.seed
Alup := B.seed
Bu=c B.seed := 2
B:n=d B.seed := 10
B:u=a B.seed := 47
Figure 3.1.

The BNF of this attribute grammar describes the language fa* b (cldle) {. We
will consider a string "a*n b ¢’ (n occurrences of “a’, where n is assumed to be

large, followed by the symbols b’ and “¢”) and change it to “a*n b d." After the

43

change has been made, it will be necessary to perform an incremental evaiuation in
order to restore the values of attributes in the attributed tree representing the
' string. Using techniques of the previous sections, the re-evaluatian will require
approximately 2n visits to production instances. In our grammar, the parse tree of
the string "a*n b ¢” will contain n+3 productions; n+2 of those productions contain
nodes labeled A, and each occurrence of A's attribute "up" receives a new vaiue.
The evaluator thus visits n+2 productions going up the tree giving new values to
the various instances of the gttribute "up.” In the productionv "S = AV, we
evaluate the attribute "down'; note that although its inputs change, "down’ itseif
retains its former value. In the parlance of the previous chapter, it is a passive
attribute. The "join." attribute has an active input (the attribute "seed”), and thus
requires re-evaluation, but "join' also depends on the attributes "down.” The
evaluatars of the previous chapter will re-visit each of the production instances
“A ;= a A", update their states to indicate that their copies of 'down'’ are up-to-
date, and finally reach the production “A ::= b B”, update its state to indicate

availability of “A.down", and finaily re-evaluate “Ajoin,”

We can reduce re-evaluation time by a factor of two by immediately
classifying “join” to be “provisionally evaluable’ after evaiuating "seed”, and
arranging that any attributes which may have to be evaluated before “join’ is
evajuated will be selected by the evaluator befare it attempts to evaluate “join.”
in the new evaluation scheme we visit a production instance only if it has an
unavailable output attribute that has at least one active input attribute. Thus, the
n visits to productions to update their states indicating that the "down’ attributes

are available are not performed.

Natice that in the example “join" could have been evaluated immediately

after evaluation of 'seed,’ since it tums out that its other input retains its old

44

value. On the other hand, if we had"changed the string from “a*n b ¢” to "a*nb e,
we would not be able to evaluate "join" immediately, since its other input would
eventually receive a new value. We account for both possibilities by classifying
"join" as evaluable immediately after 'seed” has been evaluated, but by giving it a
lower “"evaluation priority”’ than any instance of an "up” or "down’ attribute: if
_instances of both “join" and "up" or "down' attributes are evaluable, then we
require that an "up” or "down" attribute gets selected for evaluation. In general,
an evaiuator has at any given time a set of production instances with evaluabie
attributes, and it non-deterministically selects an element of that set for
evaluation. We will partition the evaluabiiity set into an ordered finite collection of
subsets. |f one production instance is in a subset that is lower in the ordering
than another production instance, we will say that the first production instance
has higher evaluation priority than the second production instance. The evailuator
will be required to chcose a production instance from the non-empty subset that
has highest pricrity. [n the preceding example, when the high-priority evaluation
set becomes empty, that constitutes a proof that all inputs to "join” have their

correct, final vaiues, and that "join” may safely be evaluated.

In the example given at the beginning of this section, we reduced re-
evailuation time by a factor of two by overcoming the need to update the status of
production instances to reflect availability of passive attributes. We could
extend the example so that passive attributes wind up and down the tree an
arbitrary number of times before reaching the "join" attribute, and thus increase
the speed-up factor obtained by ignaoring passive attributes. For instance, Figure
3.2 shows an attribute grammar fcr which propagation of passive attnbutes

constitutas three fourths of the work of the re-evajuation pracess.

Su=A A.down1 := Aupl mod 2
A.down2 := Aup2

AnzaA A1 upl = A2.up1
Az.dowm = A1.dcwn1
A1 up2 2 Az.upz
Az.downz 1= A1 .down2

A:u=bB A.join := A.down2 + B.seed
A.up2 := A.down1
A.up1 := B.seed

Bu=c B.seed := 2
B:=d B.seed := 10
Figure 3.2.

The strategy outlined above depends on the ability to create a partial order
among producticn instances in various evaluability states. In the next section we
will present and prove the correctness of an algorithm which will serve that
purpcse. It will take as input an attribute grammar and produce the necessary
partial order an its attributes. As noted in the introductory section of this chapter,
it is possible to construct an attribute grammar for which creation of such a partial
order is not possible; the algorithm will hait with an error indication if it is given an
attribute grammar for which the desired partial crder does not exist. The example
presented at the beginning of this section presents the key situation which must
be allowed for: a particular production instance in a parse tree has an attribute
(in this case, the attribute "seed") which is an ancestor of another attribute in the
production instance ("join") via more than one path. Attributes such as “join’ will
be referred to as rendezvous attributes. Every attribute along each path from the
source attribute to the rendezvous attribute must be given higher priority than the
rendezvous attribute. These higher-prionity attributes will be called rencezvous
ancestors of the rendeIvous attribute to distinguish them from the soqrce

attribute and its ancestors, which need not be given higher evaluation prionty than

486

the rendezvous attribute.

3.2. An algerithm for computing simple priority relations

We now state formally the the “simple priority” condition which the partial
order constructed by the algorithm must satisfy: For attributes aipha(P) and
beta(Q) (where P and Q are productions of the grammar with which alpha and beta
are respectively associated), the algorithm will give alpha(P) a higher priority than
beta(Q) if and only if there is some parse tree derivable from the attribute
grammar under consideration such that beta(Q) is a rendezvous attribute and

alpha(P) is one of beta(Q)'s rendezvous predecessors.
A classification which satisfies the above condition will be called a simpie
prority order,

The algorithm is skeletal, and annotations will be presented after the

statement of the algorithm.

47

Algerithm 3.1.

input: a simple, well-formed attribute grammar.

Qutput: a simple priority order relation among the attributes
or an indicaticn that no such order exists.

compute 1O and Ol graphs for the grammar;

tor each production P in the grammar,
(a) append to its dependency graph the characteristic graphs of its
non=terminals;

(b) determine whether any pair of attributes (alpha, beta) in
the augmented production has more than cne path from alpha to beta.
I not, loock at the next production in the "fcr'’ locp.

(¢) For every attribute gamma on every path from alpha to beta
(not including alpha or beta), put (gamma, beta) in the relation.

Each characteristic graph used in (a) has a sub-graph whose nodes
are rendezvous ancestors of beta. Put each (characteristic graph,
rendezvous ancestor sub~-graph) pair for which the sub-graph is
non-empty into a set "'to be examined.”

while the "to be examined"” set is non-empty,
pick a (characteristic graph, sub-graph) pair C.

for each "prod”/"pesition” creatar of C (see Note 1), do
(®) append to the dependency graeh of “prod"” characteristic
graphs at all non-terminals except '‘position” (see Note 2.)

(*=) for each attribute alpha' in “prod” such that thereis
an arc i=>] in the sub-graph with the property that
j=>% aipha' =>* j is in the appended dependency graph,
insert (alpha‘, beta) in the overall relation.

for each characteristic graph used in (*) that has
not appeared in the "to be examined' set, if the
rendezvous ancestor subgraph (see Note 3) is non-empty
put the characteristic graph and the sub-graph
in "to be examined.”
end { "to be examined" non-empty |
end | for each production P ... |

Comments on the algorithm are presented in the following paragraphs:

Note 1: A “creator’ of a given characterisvtic graph C is a production, position, and
collection of characteristic graphs selected at the top of the main lcop of

Algorithm 3.1 which results in creation by that algorithm of characteristic grapn C.

43

A given characteristic graph may be created several times in the algorithm
using different productions and sets of augmenting characteristic graphs. For
example, in the attribute grammar of Figure 3.3, the Ol graph for symbol B,

Ul => foo; bar => glareh,

can be computed either using production (1) and no characteristic graphs or using

production (2) and the 10 graph of symbol A (Ut => foo).

(1) S::=8B B.foo := 29
B.glarch := B.bar

(2) S::=AB B.foo := A.foo
B.glarch := B.bar

(3) A::=a Afoo :3 47

(4) B::=b . B.bar := B.foo

Figure 3.3.

Note 2: we are performing here an operation identical to the one used in the
characteristic graph computation. The purpcse here is different, however; we
intend to find all possible attributes which can be rendezvous ancestors of beta.
In a sense, this aigorithm is a reve_rse execution of the characteristic graph
computation algorithm; in that algorithm we go from the creators of a
characteristic graph to the characteristic graph, whereas in the present algorithm

we go from a characteristic graph to its creators.

Note 3: by"'rendezvous ancestor sub-graph”’ we mean the sub-graph of a
characteristic graph all of whose nodes are known to be rendezvous ancestors of
peta. As will be seen in the proct, these are precisely the attributes alpha'

identified in the part on the algorithm marked (==).

We now prove the desired resuit about Algorithm 3.1:

Theorem 3.1. The attribute pair (alpha(P), beta(Q)) {(where P and Q are the

43

productions with which alpha and beta are respectively associated) will be
inserted in the relation by Algorithm 3.1 if and only if there exists a parse tree
derivable from the attribute grammar such that beta(Q) is a rendezvous attribute
and alpha(P) is a rendezveus ancestor of beta(Q).

Proof. We firat show (by induction) that if the aigorithm inserts a pair (alpha(P),
beta(Q)) of attributes in the relation, then there exists a parse tree with the
desired relationship ameng the attributes. First, there is indeed a parse tree for
which beta(Q) is a rendezvous attribute. This follows from 'the fact that by
Theorem 2.5 there corresponds to each characteristic graph of a grammar a near-
complete parse tree from the grammar. If an attribute beta is recognized in step
(b) as being a rendezvous attribute, a parse tree can be‘ constructed by
appending to an instance of production Q the parse-tree fragments that
carrespond to the characteristic graphs used in step (a). Attributes alpha(Q)
asserted to be randezvous ancestors of beta(Q) in step (¢) of the algorithm will
indeed be rendezvous ancestors in the same parse tree constructed to show that

beta(Q) is a rendezvous attribute.

Now, we establish the invariant for the "while"” loop that every pair (alpha(P),
beta(Q)) inserted in the relation has a parse tree satistying the rendezvous
relationship, and that for every (characteristic graph, sub-graph) pair in the "to be
examined” set the nodes of each sub-graph consist entirely of rendezvous
ancestors. The first action of an iteration of the lcop is to select a creator for a
(characteristic graph, rendezvous sub-graph) pair. By assumption, the attributes
in the sub-graph are rendezvous ancestors. We can construct a parse tree
corresponding to the selected characteristic graph by creating an instance of the
initial production Q and appending to it an instance of each production that is
examined by the algorithm between production Q and the creator production of the

characteristic grapn selected by the iteration being examined. Now we know that

So

attributes "i"" and "j" are rendezvous ancestors by assumption; by definition of the
term, this means that alpha(Q) »*i(and j) =* beta(Q); another attribute alpha’
which satisfies i =* alpha’ =*j will then also satisty
alpha(Q) -* alpha' -=* beta(Q), and will hence be a rendezvous ancestor. So,
(alpha’, beta(Q)) is seen to satisfy the rendezvous relationship. Further, since
sub-graphs of additions to the "to be examined” set in the current iteration of the
“while’ loop consist entirely of rendezvous ancestors, the second clause of the

lcop invariant still holds after the current iteration completes.

Now, assume that a parse tree exists for which attributes alpha and beta are
in the rendezvous relationship to each other. Since for every set of dependencies
among attributes induced at a node by a parse tree there exists a corresponding
characteristic graph, the producticn containing beta will be noticed dun’hg
execution of st.ep (b) in the algorithm. So, beta will be included as a rendezvous

attribute.

Now we show that alpha will be included as a rendezvous ancestor of beta.
There is a path in the parse tree from the node that contains beta to the one that
contains alpha. The algerithm will follow creator productions that match this path
since at each step we examine all creators of a given characteristic graph.
Eventually, the production containing alpha will be visited by the algorithm, and

included in the globai relation.

C

The following sub-aigorithm assigns evaluation priorities to attributes based

an the relation computed by Algorithm 3.1:

&1

Algorithm 3.2.

If the relation constructed is anti-symmetric (for no X, y is it true

that x Ry and y R x), then make priority classes based on the relation:
(otherwise, the grammar is not SP.)

i:=0;
while the relation is not empty, do
1) for all prod/pos pairs x such that there exists no y such
that y R X, put x in priority class i
2) remove all elements x R z from the relation, where x satisfies
condition 1);
3) increment i.
end.

3.3. Priority calculation for join attributes

A less general priority scheme than that presented in the »revicus section
which allows quite general re-evaluation schemes (re-evaluation after editing
operations more complex than single subtree l;eplacements) is presented in this
section. Attribute grammars for which this algorithm will produce a priority ordering
constitute a strict subset of those for which the algorithm of the previous section
will produce an ordering. The aigorithm which follows will establish an ordering
between attributes alpha and beta if in any parse tree derived from the grammar)

alpha is an ancestor of beta.

§2

Algorithm 3.3.

Input: a simple, non-circular, well-formed attribute grammar.

Output: a classification of attributes into evaluation priority classes
or an indication that the grammar has no join pricrity order

compute |0 and Ol graphs for the grammar;

for each production P in the grammar,
for every attribute that has more than one input, creates
entries in the reiation:

append to its dependency graph the characteristic graphs of its
non=-terminals;

for every attribute alpha in the augmented dependency graph that
is an ancestor of beta, put (alpha, beta) in the join relation.

Each characteristic graph has a set of nodes whose correspending
attributes are ancestors of beta. Put each (characteristic

graph, ancestor set) pair for which the ancestor set is non-empty
into a set ""to be axamined.”

while the “to be examined" set is non-empty,
pick a (characteristic graph, ancestor sat) pair C.

tor each "prod' /“position” creator of C (see Note 1), do
(®) append to the dependency graph of ""prog" characteristic
graphs at all non-terminais except "position” (see Note 2.)

(*=) for each attribute alpha in "prod’” which is an ancestor
of an attribute in the ancestor set, insert (alpha, beta)
in the join relation.

for each characteristic graph used in (*) that has not
appeared in the "to be examined’” set, if the ancestor
set of that characteristic graph is non-empty put the
characteristic graph and the ancestor set in "to be
examined.”

end | "to be examined” non-empty }
end | for each production P ... |

Notes 1 and 2 are the same as those for algorithm 3.1 above.

We now state and prove the desired resuit about the algorithm.

Theorem 3.2. Given an attribute grammar AG and an attributed parse tree denved
from it, every atinbute in the tree that has more than cne input has strictly lower

priority than any of its ancestors.

S3

Proof, The proof of this algorithm is almost identical to the proof of Algorithm 3.1.
The differences are in fact simplifications. Instead of identifying rendezvous
attributes, we must simply identify attributes whose evaluation functions také
meore than one argument. Similarly, instead of identifying rericezvous ancestors we
must simply lcok for ancestors. Therefore we will not repeat the details of the

proof here.

3.4, An algorithm to compute left and right priorities

it turns out that the simpie pricrity condition is fairly restrictive. Some
common language constructs do not permit simple priority relations. Therefore, we
now examine a more general class of priority relations, the "c.;:riented priority
relations.” An oriented priority relation is one in which production instances in
certain priority groups must be visited In some pre-determined tree order, such as
depth-first left-to-right or right-to-left. After presenting an attribute grammar
that has an oriented priority relation but no simple priority reiation, we will define

and present an algorithm for computing ariented pricrity relations.

lm Figure 3.4 below we present an attribute grammar fragment for

expressions for which there exists no simple priority relation.

(Q) ..::=E E.symtab := (symbol table built in
declaration section)

(1) Ex=E+T Ez.symtab := E,.symtab
T.symtab := E1 .symtab
51 .type := TypecCaic(Ez.type, T.type)

(2) Eu=T ' T.symtab := E.symtab

E.type := T.type
(3) T:=u=id T.type := LooklUp(T.symtab)
Figure 3.4,

An attribute grammar for which there exists no simple
priority rejation.

S4

In the production "E ::=E + T", the a*tribute E1.type is a rendezvous attribute,
since it depends on E.,.symtab via two paths. However, one of its rendezvous
ancestors turns out to be E1.type, gsince another instance of "E ::=E + T can be

used to expand'“ihe “E" in the right-hand side. So, the relation is not anti-
symmetric, and cansequently it is not a simple pricrity relation. On the other hand,
if we require that instances of E.type be evaiuated in depth-first search order at
low priority, then the difficulty is resolved. To see this, assume that a parse free
has been built and fully attributed, and that the user then makes a change to the
declaration section, which changes the 'symtab" attribute. Since E.value
attributes of instances of production (1) have low priority, all attributes in an
ex}aressicn will be evaluated until the only remaining unevaluated attributes are
instances of E.value. At that point, the lower-leftmost instance of E.value will be
evaluated, then the next lowest, and so on until the uppermost E.value finally gets
evaluated. [t is illustrative to consider what cculd have happened if the low-
priority evaluation class is not ordered. At the point when only instances of
E.vaiue are left to be evaluated, the evaluator is free to make a non-deterministic
choice. If it picks any instance of E.value other than the lower-teftmost one, then
at some later time it must evaluate the lower-left instance of E.value, and re-
evaluate all of its descendants, including the one it had previously selected and
evaluated. In worst case this can lead to gquadratic evaluation behavior in the

expression.

In order to handle situations like the one illustrated in the previous exampie,
the priority computation algorithm keeps track not only of which attributes may
depend on which other attributes, as in the previous section, but also on whether
a particular ancestor atiribute must be associated with a node'of the parse tree

to the left (or right) of the node containing the rendezvous attribute of interest.

85

ln general, we may construct relations “Bre” and "Post” among the symbois of a
reduced BNF, where "X Pre y' implies that there exists a parse tree derived from
the BNF for which a node labeied "X" is visited before another node labeled "y

The refation may be stated as follows:

“x Pre y'" iff either x ==>+y or there exist grammar symbois B and C
such that there is a production A ::= .. B .. C .. in the grammar with
B==>*xand C ==>"y.

The relation "x Post y” is almost identical:

- "x Post y" iff either y ==>+ X or there exist grammar symbois B and C
such that there is a production A ::= .. B .. C .. in the grammar with
B ==>*x and C s=>*y.

The algorithm computes the "x Pre y" orf “x Post y" relation, but with the added
requirement that an attribute of X" be a rendezvous ancestor of an attribute of
e,

Ditferent attribute grammars may require different styles of traversal. Pre-
order and post-order traversal are the two which seem to be the most common.
Presumably attribute grammars can be constructed which require other methods of
traversal, and there are doubtless attribute grammars for which no pre-determined
traversal order can be used to form an oriented pricrity reiation, although | am not
aware of one. The algorithm will be written so that thcse parts which are
dependent on the particular traversal scheme are contained in procedures. The
procedures which correspond to pre-order traversal will be provided after the

algorithm. The algorithm which computes ariented priority relations follows:

6

Algorithm 3.4.

Input: a simple, non-circular, welil-formed attribute grammar.

Output: an ariented pricrity order relation among the attributes
or an indication that no such order exists.

compute 10 and Ol graphs for all symbals;

for each producticn P,
append to its dependency graph the characteristic graphs of its
non-terminals;

determine whether any pair of attributes (alpha, beta) in
the augmented production has more than one path from aipha to beta.
If not, look at the next production in the "for” lcop.

For every attribute gamma on every path from alpha to beta
(mot including alpha or beta), put (gamma, beta) in a relation:

{ "pos(a)" is the position in a production, starting with zero
for the left-hand side, with which "a" is associated }
Initinsert(alpha, beta, pos(alpha), pos(beta));

For each characteristic graph C used in (a) which has a non-empty
pendezvous ancestcr sub-graph, put into a set “to be examined”
the following record. See Note 1 for an explanation of the fields.

(<,

rendezvous ancestor sub-graph,

BetaNode (a boolean variable) := pos(C) = pos{beta),

Direction := InitDirection(pos(C), pos(beta)));

while the "'to be examined” set is non-empty,
pick a (characteristic grarh, sub-graph, Direction, BetaNode) record C.

it not C.BetaNode (see Note 2)
then mark C.characteristic_graph “examined.”

for each "prod"” /" pcsition” creator of C, do
(*) append to the dependency graph of “"prod” characteristic
graphs at all non-terminals except 'position’”’

(»=) for each attribute alpha' in "prod” such that there is
an arc i=>j in the sub-graph with the property that
i=>* alpha' ->* j is in the appended dependency graph,
insert (alpha', beta) in a relation:

Looplinsert(alpha’, beta, pos(alpha'’), position,
C.Direction, C.BetaNode);

$or each characteristic graph D used in (*) that is not
marked ‘examined,’ if the rendeZvous ancestor subgraph
is non-empty put the following record in 'to be examined:’
(0,

§7

rendezvous ancestor sub-graph of D,
BetaNode := faise;
Direction := LoopDirection(C.Direction,
pos(char. graph C),
pos(char. graph D));
end { "to be examined” non-empty]
end § for each production P..}

Nota 1: Elements of the “to be examined” set are records with four fields. The
first field is a characteristic graph, and the second field is a sub-graph of the
characteristic graph all of whose nodes are rendezvous ancestors of beta, the
rendezvous attribute whose ancestors we are trying to find. The third field is a
boclean variable indicating whether peta is associated with the node of its
production which is in the same direction as the one we imtend to explore. To

ilustrate the problem, consider the grammar

w >m
W wma
> WO

Say we start from node “g" of the production "B::=C.” We next examine
production "A ::= B, and we want to avoid the mistake of trying to conclude that
B ==>+ B. The problem is that the 8's of ti':e two productions actually refer o0 the
same parse tree node. The "BetaNode" field contains the value “ttue * if this

situation must be checked ¢ar, and the value “"false' otherwisa.

Finally, the "Direction” field gives a summary of Algorithm 3.4's execution
history. |f we start at a particular node of a production and trace down from it,
then we will always be in the "X ==>+ y" clause of the "Pre” or "Post” relation,
and we indicate that in the Direction field. |f we start from a node, travel up from
it, and then start traveling down a left (or right) sibling -of one of the nodes
reached during the upward movement, then all nodes subsegquently reached will

come before (respectively after) the original node, and again we indicate whether

S8

we are going down to the left or down to the right using the Direction field.

Note 2: We do not consider attributes of a node to be left or right ancestors of
other attributes of the same node. On the other hand, the characteristic graph of
C may be applicabie at some other node of the tree if the symbol of the node can
derive itseif, and for that reason we might want attributes of the node to be left
or right ancestors. In order to be able to re-use the characteristic graph if

necessary, we do not mark it as having been examined.

The proof of Algorithm 3.4 is similar to the proof of Algorithm 3.1; the oniy
difference is in maintenance of the "Pre” or "Post’ ordering relation among

grammar symbois. It will not be detailed.

Wae present in the following figures definitions of the procedures InitDirection,
Initinsert, LoopDirection, and Loopinsert, which define a pre-order traversal of the

parse tree.

procedure Initinsert(alpha, beta, pos(aipha), pos(beta));

it pos(alpha) < pos(beta), put (alpha, beta) in LeftRel;
if pos(alpha) > pos(beta), put (aipha, beta) in RightRel;

{ if pos{alpha) = pos(beta), then the attributes are associated
with the same parse tree node and belong in neither relation. |

function InitDirection(pos(C), pos(beta)) retumns a direction;
it pos(C) = O then Direction := GoingUp
else
if pos(C) < pos(beta) then Direction := GoingDownLeft;
if pos{C) >= pos(beta) then Direction := GoingDownRight;

§9

procedure Loopinsert(alpha’, beta, pos(alpha'),
position, Direction, BetaNode);
if Direction = GoingDownlLeft,
put (aipha’, beta) in LeftRel;

it Direction = GoingDownRight,
it (not BetaNade) or position <> pos(alpha’)
then put (alpha‘, beta) in RightRel;

it Direction = GoingUp,
it (not BetaNode) or position <> pos(alpha')
then
it pos(alpha') <= position,
put (alpha', beta) in LeftRel; B
it pos(alpha') > position,
put (alpha’, beta) in RightRel;

function LoopDirection(Direction, oldpos, newpos) returns a direction;
if Direction in [GeingDownLeft, GoingDownRight]
then return(Direction)
eise
if oldpos = O then return(GoingUp)
eise it newpos < acldpos then return(GoingDownLeft)
else if newpos > cldpos then returmn(GoingDownRight);

3.5. Pricrity-based incremental update for a new in-degree 2ero attribute

The algerithm which uses the priorities created by the algorithms of the last
few sections to perform incremental evaluation when a single in-degree zero

attribute alpha is changed follows:

Input: attributed tree and a new value for an in-degree zero attribute
alpha of the tree
Qutput: a consistent attributed tree that has the new value for aipha

put ail successors of alpha in their evaluation priority classes.

while the evaluation set is not empty, do
select and remove a prod/attribute from the highest non-empty
priority class;

evaluate the attribute. If it has a vaiue that is different
from its previous vaiue, place all of its successors in
evaluation classes.

end jwhile;

60

In order to demonstrate the validity of the above algorithm, we formulate the
following invariant for the “while" loop: for every attribute in the highest non-
empty pricrity class, each of its input attributes has its final value. We begin by

demonstrating that the invariant is true after initialization:

Lemma: |f gamma is dependent on peta, where gamma and beta are directly
- dependent ¢n alpha, the new in-degree zero attribute given to algorithm X.y, then
after 1) in fhe algorithm gamma is not in the highest non-empty priority class.

' Proof. The production containing alpha as an input and beta and gamma as
outputs will satisfy the initial condition of the poegen test, and hence beta R

gamma, implying that beta is in a higher priority class.

D.

Now, we infer from .the lemma by way of contraposition that if gamma is in the
highest pri_ority class then it depends dn no direct dependents of alpha. Now by
assumption all attributes not dependent on alpha have their final vaiues, and alpha
has its final value, so all predecessors of gamma are thus seen to have their final

values.

We now demonstrate that after execution of the loop the reputed invariant
still remains true. In the loop, an attribute has been selected and evaluated; we
consider two cases: the attribute assumed a new vaiue, and it retained its old

value.

Assume first that the attribute retained its old vaiue. !In this case it may
have been the last attribute in its evaluation class or it may not have been. If it
was not the only element in its evaluation class, then the invariant holds. since by
assumption everything in the highest class was evaluable, and removing and
evaluating one of those attributes will neither make an evaluable arttribute

unevaluable nor add new attributes to the evaluation set.

61

So, assume that the passive attribute was the last element in ité evaluation
class. When it is removed, an evaluation class which previously had not been
highest is now highest (of course, if there had been no non-empty evaluation
classes, the algorithm wouid have terminated). We claim that ail inputs fer each
attribute in the new highest evaluation class are known to be available. First,
since these attributes are not maximum priority, they are join attributes. They
have at least one active input (since they are in the evaluation set); some inputs_
depend on alpha, and some do not; the ones that do not depend on aipha are
available by assumption. Those that do are also known to be available; all paths
from alpha to gamma will be made up of attributes which have higher priarity than
gamma, and the cnly way all elements of each of those paphs could be absent from

the evaluation set is if at some point they went passive.

Assume now that the evaluated attribute was active. Then each of its
immediate desc;.endants will be put in the appropriate evaluation class (if the
a'ttribute nas no descendants, then the net impact of evaluating it will be the
same as if it had been passive). After evaiuating and removing gamma, if it should
turn out that all of gamma's successors have lower priority than the highest non-
empty priority class, then by the passivity argument above the invariant is
maintained. So assume that one of gamma's successors is in the new highest
priority set. The same argument as above applies: if it is a non-join, then its
single input, gamma, is known to be available; if it is a join, then its alpha paths are

of higher priority, and must have gone passive.

O

62

3.6. A subtree repiacement ineremental evaluator

" In this section we present the algorithm that will use the priorities created by
algerithms of previous sections to perform incremental re-avaluation after 3 tree
replacement. The key difference petween this algorithm and the cone which re-
evaluates after change of an in-degree zero attribute is that some descendants
. of the dependent intersection attributes must be "locked.” Use of priorities allows
us to "leap over' chains of passive attributes. In the case of subtree
replacement, however, we cannot leap over the intersection node. Even if the
inputs to an intersection attribute are all passive, the attribute itself may become
active, because the attribute may have a new and different evaluation function

after the subtree replacement.

In the previous chapter we needed to maintain the sets "active attributes”
and '‘passive attributes” for each production. Here we must keep track of "active
attributes” and “"unavailable” attributes. An unavailable attribute will be one which
is a descendant of an as-yet unexamined dependent intersection attribute whose
versions in the two intersection nodes differ. An attribute which depends on an
unavailable attribute will be considered not to be evaluable by the algorithm. The
algorithm will start with the independent attributes of the intersection node, and
avaluate all attributes in the tree that depend on them and not on any of the
gnavailable attributes. When the collection of evaluable sets becomes empty (we
nave done as much work as possible without touching the unavailable attributes),
the algorithm selects a set S of unavailable intersection attributes which have no
other unavailable intersection attributes as ancestors, and declares them to be
available. It then goes through the parse tree making available for evaluation any
attributes which had ony been prevented from being evaluabie by elements of S.

After this second process has been completed, the algorithm starts warking on the

Evaluable set again. The actual statement of the algorithm appears below.

63

64

Algorithm 3.5.
Input: an attributed tree and a new subtree to be spliced in
Output: a consistent attributed tree that has the new subtree

tar each independent attribute of the intersection node,
‘elassify it active or passive. Classify as unavailable every
attribute in the two productions that depends on a dependent
imersection attribute for which the values possessed by the
two productions differ. Put in evaluation sets of appropriate
priority classes all non-intersection attributes that depend on
active attributes and not on unavailable attributes.

while not done do begin

while there is a non-empty evaluation set do begin
select and remove a production instance and attribute from
the highest non-empty priority class;

evaiuate the attribute. Ifithas a value that is different
from its previous value, place all of its successors that
do nct depend of unavailabie attributes in evaluation
classas.

If a production has attributes included in evaluation
classes for the first time, initialize its unavailable set
to contain ail of its attributes that are descendants of
unavailable attributes of the production instance from
which it receives an active input attribute.

end;

end;

(®) if there are no unavailable input attributes,
then done := true

eise begin
Make ail unavailable intersection attributes that depend on no
other unavailable intersection attributes “availabie.” Put
producticns with newly available attributes in "became available.”

while the "became available” set is not empty, do begin

Select a production from the "became availabie” set.
Remove from the production's »unavailable set any attributes
none of whose predecesscrs are unavailable.

For each attribute that becomes available, include the
production for which it is an input in the "became available”
set.

Place in the appropriate evaiuation set any attribute which
has active inputs and no unavailabie inputs.

65

end;
end;

end;

The proof of the algorithm of the previous section holds for the subftree
replacement aigorithm, with the exception of the pehavior of unavailable
attributes. The key lemma which allows the proof of the aigorithm of this section
to follow from the proof of that of the previous section is stated and proved

below.

Lemma. When the Evaluable set becomes empty (at the point marked () in the
algorithm), those eiements of the set U of unavailable intersection attributes with
no predecessors in U can be inferred to have their correct values. The values
possessed by the donor productions are the coerect values,

Proof. Let us refer to the set of newiy available elements of U as NA. Sinceitisa
dependent attribute, an element of NA is a descendant of other intersection
attributes. The set of intersection attributes which it depends on, call it A, have
their correct values by assumption. All attributes which depend on elements of A
and no unavailable intersection attributes have been given their correct, final
values. This is due to the fact that the algorithm performs exactly like the
algorithm of the previous section in propagating the affects of changes in the set
A to the rest of the tree. That there are no elements in the Evaluable set implies
that all chains of attribute dependencies starting from elements of A terminated in
passive attributes or attributes with unavailable predecessors. Since Dby
assumption elements of U do not depend on other unavailable intersection
attributes, all paths from elements of A to elements of NA must have terminated
with passive attributes. Sq, the inputs to elements of NA may be inferred to be

passive.

O

66

After the aigorithm infers the availability of elements of NA, it propagates
that information to all productions which have descendants which are eiements of
NA, and puts in an Evaluabie set attributes which have active inputs but which
were kept from being evaluable by a descendant of NA. Because the set U can be
topologically sorted, each iteration of the algorithm will reduce it by at least one
element, and so the algorithm will eventually terminate, after having looked at all

attributes in the tree with active predecessaors.

67

Chapter 4 = Non=-local productions

4.1. Introduction

In Knuth's original formulation of attribute grammars, he stipulated that
attributes may directly depend cnly on other attributes that appear in the same
production instance. This assumption has tumed out to be quite powerful;
because of it a wide variety of analyses on attribute grammars can be neatly
broken down and performed one producticn at a time. From an applied standpoint'—
however, the requirement of locality of dependencies can be burdensome. In this
chapte? the concept of nan-local productions will be introduced. Use of non-local
productions in the specification of languages will allow us to maintain some of the
theoretical power of being able to conduct analyses on a production-by=-

production basis, while at the same time permitting mecre freedom in selecting the

attributes upan which another attribute may depend.

After this introductory section, a definition of attribute grammars that contain
non-local productions will be presented together with a few examples. Then an
extension of the concept of characteristic graphs to non-iocal praductions will be
discussed. This extension will involve generalization of the concepts of 10 and Ol
graphs, and of synthesized and inherited attributes. An algorithm for determining
characteristic graphs for a certain class of non-iccal productions will be
presented. Two particularty significant classes of non-iocal productions, those
invoiving definitions and uses of identifiers, and those describing the abstract
syntax of expressions, will be described in some detail, and extensions of the
resuits of the previous chapters involving incremental attribute update will be
presented. Finaily, results involving “strongly opti.mal“ attribute update in the

presence of attribute grammars nvelving non-tocal procuctions will be presented.

63

4.2. Definition of Attribute Grammars Augmented by Non=iocal Productions

The standard definition of a context-free grammar is as a 4-tuple (N, T, P, S),
where N is a finite_set of "non-terminals,” T is a finita set of “terminais,” none of

which are in N, P is a set of “productions” of the form
A ::= aipha,

where A is an element of N and alpha is in (N union T)*, and S is an element of N
known as the “start symbol.” For an extensive and clear discussion of context-
free grammars, see Chapter 4 of [20]. We Will add to the 4-tuple two more sets:
a finite set of "interface symbols’ A none of which are in N or T, and a finite set of
non-iocal productions C. Also, we will modify the definition of P slightly. The

elements of C are in A+, and will be written

alpha - beta - ... - deita.

Symbcls in local and non-local productions may be subscripted Dy collections of
interface symbois. (We call elements of the set P "local productions” where it is
necessary to distinguish them from non-local productions.) If a symbol in a
production is subscripted by an interface symboal, then the corresponding node in a
parse tree must participate in an instance of a non-local production. For instance,

it a grammar has a-production

"<CONST ID> i:= IDdefn

and a non-local production
"defn - use’”,

a parse tree may have an instance of the first production, and the "1D" node may
participate in an instance of the non-local production. The “ID” node will

correspond to the "defn” interface symbol in the non-local praduction.

68

Interface symbal subscripts may optionally be labeled with gither "'+ ar """,
indicating corresponding parse tree nodes may participate in one (respectively
4 zero) or more instances of appropriate non-local productions. This capability is
necessary, for instance, if one wishes a definition occurrence ot an identifier to
participate in a separate '‘defn- use” non-local production with each use

accurrence of the same identifier.

We require that for each production instance in which a node in a parse tree
participa;tes, if the corresponding syml;o’l of the production is subscripted by an
interface symbol alpha, then the node must participate in an instance of a non=
local production that has alpha as one of its elements. The node is associated

with a position of the non-iocal production which has alpha as its element.

The purpcse of introducing non-local productions is to have a vehicle to
support non-local flow of attributes. We therefore permit specification of
attribute evaluation rules in conjunction with non-local productions. Just as in the
conventional attribute-grammar setting symbols have characteristic graphs for

each way they can participate in productions, we will associate characteristic

graphs with interface symbois.

Construction of non-iocal productions (a process somewhat analogous to
parsing) will be automated through use of attribute grammars. The evaluation rules
describing a language will be broken up into two parts: rules for describing
construction of non-iocal productions, and rules for actual flow of information. A

complete non-iccal attribute grammar is presented in the following figure.

70

S ::= Defs ; Uses Uses.symtab := Defs.symtab;

Defs ::= INT iddef Defs def .type := integer;
Defs1.symtab = Addld(Defsz.symtab,
id. STRING__REP);

Defs ::= CHAR iddef Defs .type :2 character;

def
Defsvsymtab := Addld(Dets,.symtab,
id.STRING_REP);
Defs ::= epsilon Defs.symtab := empty;
Uses ::= ‘dusa Uses use.ermr = Use type # integer;

Usesz.symtab := Usesy .symtab;
id.use := Makelink(Uses, .symtab,
id.STRING_REP);

Uses ::= epsilon

detf - use use.type := def.type;
‘ daf.error := Use.efror;

Figurs 4.1.

A parse tree based on this grammar (before creation of non-ioccal productions
or attribute evaluation has taken placs) will consist of a right-recursive. tree o)‘
definition identifiers followed by a right-recursive tree of use identifiers. The
“symtab” (symbol table) attribute starts empty from the lower right-most
definition, and moves up the list of definition identifiers; at each step information
necessary for creation of a non-iocal production involving the current definition
identifier is concatenated 10 the symbol table attribute. In a Pascal
implementation, the nodes might be heap objects, and the symbol tabie might
consist of pointers to the definition identifier nodes together with some sort of
hash-table encoding of the character string representations of the identifiers.
When “symtab’ has reached the top of the definitions list, itis passéd to the uses
list, where it works its way trom the upper left-most down to the lower right-most
use production. In each “Uses'' production, the symbol table attribute is combined

with the character representation of the use icentifier to form an instance of the

71

"def - use'' non-local production. At any point in the evaluation process, an
evaluation function may give an error indication. The "Addld" and “Makelink”
routines could check for undeclared use identifiers, muitiple definitions of the
same identifier, and any other error or waming indications deemed appropriate.
After creation of a non-iocal production, production instances that are linked
together can be examined to determine which attributes of the newly linked nodes
are available. If appropriate, the newly created production instance can be

scheduied to have atiributes avaluated.

The approach af unifying construction of non-local productions and flow of
information will be seen to have several advantages. One can start with a
conventional attribute grammar for a language, run. performance tests on software
based on it, and incrementally mecdify the grammar where it becomes evident that
direct transmission of semantic information via non-iocal productions will resuit in
time or space savings. Another advantage 1o the unified approach to non-local
production building and information flow is that for some purposes it is helpful to
be able to view a language description containing non-iocal producticns as a
conventional attribute grammar. We can always fail back }:o the view that
information being conveyed via non-iocal productions was actually transmitted
along the attribute flow paths used to build the non-local production. It is possible
to use this technigue, for instance, to create a non-circularity testing algorithm of
non-local atiribute grammars. One simply takes a non-local attribute grammar,
assumes that information is flowing via production-building paths rather than via
the non-local productions that could be built using those paths, and uses the
standard non-circularity test of Knuth. Furthermore, in incremental evaluation
there are some cases in which it is appropriate to ignore the preseﬁce of non-=local
productions in a parse tree and perform semantic update using the contex:-free

re-ovaluation tecaniques discussed in previous chapters.

72

Interface symbols can be thought of as a generalization of the concept of
non-terminal symbcls. An occurrence of a non-terminal in a production can be
viewed as a specification of an interface petween that production and a set of
other productions in the grammar. Parse trees exist in which instances of
productions P and Q can communicate attributes back and forth directly if the
left=-nhand non-terminal of one production appears in the right-hand side of the
other. Similarly, instances of productions P and Q can communicate directly with
one another if a symbol of one production is subscripted with an interface symbol
and the same interface symbol appears as one of the elements of the other
production. Necessarily, the latter production must be non-local, since non-iocal
productions have interface symbols as their elements, whereas normal (context-
fres) productions have grammar symbols as their elements. As noted above, we
allow elements of an non-!oqal production to be subscripted by interface symbois,
but these subscripts will not be called elements of the "the non-iccal production.
The distinc'tion between (unsubscripted) elements of a non-local production and
subscripts of that production is roughly anaicgous to the distinction between

left-hand side and right-hand side elements of a normal production.

Intuitively, we may think of each element of the interface symbol set as
defining a unique plug and socket. if a symbol is subscripted by interface symbol
alpha, then it can be thought of as having a socket of type alpha. If the interface
symbol alpha appears as an element in a non-local production, then that non-iocal
production can be thought of as having a plug which will fit into symbols with

sockets of type aipha.

We illustrate the above with a few examples.

Exampie 1.
(1) S:u=A ch
(2) S:=A Cﬁ
(8) Axz=aA
(6) A:::= 07
(?) Acs Eo-
(8) a=-v
(8) 8 -6
Busb; Cu=c;Du=d; En=e
Figure 4.2,

73

The strings in the language of Figure 4.2 are {a*db] and {a*ec |. Their

derivation trees are shown in the figure below.

7N
/NN

a b d

A

— -
——

O —O—>
N

Figure 4,3,
Normal productions are shown with solid lines

G/A

Non-iocal productions are shown with dotted lines

/
/ N\

\

® — M —>

\/C

/
/
/

e —
— —

\

C

74

It we tried to apply the production “A ::= E” to the right-most “A” in the left
tree, then neither of the non-local productions would be applicable, and we would
have nodes with subscripted grammar symbol: that do not participate in non-local
productions. That is why neither the string { a* b e | ner the string fa*cd|isin
the language. A context-free grammar for the language of the example is easily
derivable; on the other hand attribute evaluation rules could be associated with
the non-iccal productions, and that would permit direct exchange of semantic
information between nodes B and D (or C and E) without having to resort o

possibly extensive collections of copy rules.

Exampie 2: We can describe the language { a*n b*n c*n jn>=0]
as follows:
23 ABC

ool
1 aa

L 4
i3 b
133 85
22 C
7

N

OO0 ow P rom

x-8-7

Figure 4.4,
For a particular string { a*l b*m c*n {, we will have min(l, m, n) instances of the
non-iocal production, and if |, m, and n are not ail equai then we will have a node
with a subscripted grammar symbol that does not participate in a non-ioccal

production, implying that the string is not in the language specified in the figure.

4.3. Chardcteristic Graphs for Interface Symbols

It is possible to use non-iocai productions to drastically change the attribute
flow characteristics of a parse tree. For instance, one cauld form non-~iocal

productions which involve definitions and uses of identifiers. Then one could have

78

type information flcw directly from the definiticn occurrenca of an identifier to
each of its uses, rather than requiring the type information to flow up and down
the parse tree. We will rely an characteristic graphs in the non-iocal setting to
guide incremental re-evaiuation just as wae did in previous chapters for context-
free re-evaluaticn. Furthermcre, evaluation plans can be created for non-iccal
productions using characteristic graphs just as they wera for context-free

productions.

In fhe case cof comtext-free connections between productions, we have two
characteristic graphs, the [O graph and the Ol graph, depending 6n whether we
focus attention on the production below or the production above the parse tree
ncde they have in commen. In defining characteristic graphs for interfacs
symbols, we will have an analogous situation. An interfacs symbol of a parse tree
node represents a path for communication between two different production
instances which have that node in common. Thus an interface symbol will have
two characteristic graphs, and they will correspond to the two productions which
ars communicating via the interface symbol. In one of the productions, the
irmterface symbol is a subscript, and we will (arbitrarilx) refer to that characteristic
graph as the Ol graph. The other production must be a ncn-iocal production, and
must have the interface symbol as one of its elements. We will call the

characteristic graph of the eiement of the non-iocal production an 10 graph.

In addition to the extension to the concept of characteristic graphs, we will
extend the customary classifications of synthesized and inherited attributes of
parse tree nodes. |n the casa of attributes that are inputs anq Qutputs to
grammar symbols, we retain the standard cefinition of synthesized and inherited
attributes. In the case of attributes which are inputs or outputs to interface

sympcis, we make an arbitrary decision which is consistent with our cneic2 of how

76

to classity |0 and Ol graphs for interface symbels. An attribute is defined to be an
inherited atiribute of an interface symbel if it is an output to a subscripted
cccurrenca of the interface symbcl. Conversely, an atiributa is a synthesized
attribute of interface symbel if it is an output to an occurrence of the interface
symbol as an element of a non-iocal production. The exampie below shows a
simple attribute grammar together with the inherited/synthesized classifications

of attributes and the characteristic graphs of symbals.

Su3A, 4 Ag:s, o .a
fm.d H A.7

Auza Avy:2 A8

foo foo.q := 47

foo.z :2 foo.d

Figure 4.5.
A ron=local atiribute grammar.

A.t
A.d
< N\
Ay A.g Aag
~_
Figure 4.5.

Attribute dependencies at node A for a parse tree
darived from the attribute grammar of Figure 4.5.

77

Synthesized Inherited
A 7 g
feo as & é
Figure 4.7.

Synthesized and inherited atiributes of symboils
of the atiribute grammar in Figure 4.5.

We define define characteristic graphs for grammar and interface symbols in
the non-locai setting in a manner analogous to the method used for their definition
in the context-free setting. We start by constructing a parse tree with a node
labeled by the syfnbol tor which we desire to find a characteristic graph. (In all
that follows we will engage in a slight abuse of terminclogy and refer toc a parsa
tree together with all its non-iccal productions as simply a parse tree. We might
more properly refer to such cbjects as "parsa graphs’ since arcs corresponding to
non-liccal productions will cause them no longer to be trees, as can be seen, for
instance, in Figure 4.3.) Then, we prune out of the compound dependency graph
of the parse tree the attribute dependencies that come from the production
instance opposite tne one for which we are trying to find a characteristic graph.
It we are computing the characteristic graph of a subscripted interfaca symbal,
for instance, we trim out the dependencies from the non-iocal production instance
which has that interface symbol as an element. We then form the projection of of
the reduced ccmpound dependency graph on the synthesized and inherited
attributes of the symbol, and this is the desired characteristic graph.
Characteristic graphs for the parse tree of Figure 4.4 are presented in the figure

below.

73

10 graph Ql graph
foo Ul => a; § => ¢ gsa=>96
A B> nU=>4

Figure 4.8.

Compound dependency graphs for symbols of the
attribute grammar of Figure 4.5.

As a further example of determination of characteristic graphs for interface
symbels, consider the follcwing the fcollowing grammar involving definiticns and

uses of identifiers.

S ::= Defs ; Uses Uses.symtab := Defs.symtab;

Defs ::3 INT iddef Defs def .type := integer;
Defs1.symtab 1= Addld(Defsz.symtab,
id.STRING._REP);

Oefs ::3 CHAR id, g/ Defs qer TYPe = character;
Def:1.s-ymtab 1= Addld(Defsz.symtab,
id.STRING_REP);

Defs ::3 epsilon Defs.symtab := empty;

Uses ::= ‘duse Uses use -&MF 1= usa.:ype # integer;

Usesz.:ymtab := Uses, .Symtab;
id.use :2 MakeLink(Uses, .symtab,
id.STRING__REP);

Uses ::3 epsilon

def - use usa.type := def.type;
def.errer (= Use.efrror;

Figure 4.8.

Wa intend that each definition of an identifier bind to exactly one use of that
identifier, an-d that there be no dupiicate definitions. Thesa rules must be
enforcad by the funclions “Addid” and “Makelink”. So, "INT a; a’ is a valid stnng,
whereas none of INT a; o', "INTa;aa’. or “INT a; INT a; a a' is valid. The parse

-~

tree for INT a; a ' 1s shown below.

79

O
-

o D a U
| i

| |

; |

l £ } &
\ l

\ /

\ /

\ /
N /
\\‘--‘;’/
Figure 4,10,

Contaxt-free links are solid lines.
The non-iocal production is a dotted line.

The corresponding compound dependency graph for the tree is given in the

following figure.

80

. /\

! / N,
a.type [? | a.type a.error
a.error \\ : » /

e\ N /’/ /,/

\\‘ SN— L~ /‘/

Figurs 4,11,
Compound dependency graph for the parse tree
of Figure 4.10.

To obtain a complete set of characteristic graphs for this grammar, we must
compute the characteristic graphs for the interface symbols “def” and “use” in
addition to the 10 and Ol graphs for the various grammar symbois. Note that 10/0l
graph computation Algerithm 2.1 cannot be used in this augmented setting; that
algorithm depends on the assumption that no attribute information can be
introduced into a production instance from “below” a leaf node, whereas the

terminal 'asubuse " recsives information through the non-iocal link.

First, we determine the Ol graph of the symbal “"def” for the parse tree by
deleting the dependency graph of the other producticn instance in which the node
participates, "def - use”, and forming the projection on “def”. This results in the

graeh

81

Ut => def.type; def.error

Nex:, we determine the characteristic graph for the interface symbcl “‘use’:

deleting the dependency graph for the production U s idusa U" and projecting

resuits in the graph

Ul => usa.type; use.error.

Repeating the procadure gives

use.type -> use.error

as the Ol graph for “use”, and

def.type -> def.error

as the characteristic graph for the interface symbei "def"”.

We will presemt below an extensicn of Algorithm 2.1 which computes
characteristic graphs for a class of attribute grammars' %hat contain non-iocal
productions. 1t should be noted first, however, that there are some non-iocal
attribute grammars to which the algorithm wiil not be applicable; moreover there
are some grammars invelving nen-local producticns for which the very concept of a
characteristic graph is of guestionable meaning. Ho;.vever, our intended use of
characteristic graphs is for construction of incremental evaluation algorithms and
evaluation plans for Pascai-iike languages. The subset of non-iocal atiribute
grammars fcr which the algorithm of this saction will be meaningful is large enough

to encompass the non-iocal techniques we wish 10 employ for program-oriented

aditors for conventional languages.

We will define a class of none-iocal attribute grammars for whnich
charactenstic graohs are meaningfui, and to which an extension to Algerithm 2.1

will e apolicable. In crcer to motivate the definition, we present an exampie of

82

the sort of anomaly we wish to rule cut. The attribute grammar is presented in
Figure 4.12 below, and a parse tree and correspending czmpound dependency

gragh are shown after that

S s Aa Aa:zl;
Ab := a¥®
A:38 B.a :3 A.a;
8 s bﬁ g3 B.a;
a- a.a:= f.a;
Figure 4,12,

A non-local attribute grammar with node-level circularity.

U'c\
o—

|
A N '? .
\ - \
o |
5 | !'
/ i /
b=~ a —

Figure 4.13.
A parse tree and campound dependency graph fcr
the grammar of Figure 4.12.

Node A in the exampie receives attribute "b" as an cutput of the prcduction
“g 1:2 A", and ‘D"’ depends indirectly on attribute “"A.a”, which is an in;:ut 0 the
poduction A ::z 8", In this example we have lost the produc:x‘on-by-pwrcducticn
modularity whnich is so powerful for various analyses. The attribute dependency

benavior of part of the tree cannot be summarized oy a charactenstic grapn wnich

83

is compietely independent of the rest of the tree. The outputs of part of the tree
no lenger depend exclusively on inputs to that part of the tree. In order %O
rastrict ourselves to attribute grammars im which the notion of characteristic
graphs is meaningful, we will require that the attributes of a node which are
outputs of a given producticn instance depend cnly on inputs to the same

production.

in arder to construct an algorithm analogous to Algorithm 2.1 for the non-lecal
setting, we will formalize a notion of "node-wise non-circularity”’ on non-iccal
attribute grammars which eliminates situations like that presented in the previous
paragraph. Unfortunately, we do not have a general algerithm which tests a non-
local attribute grammar for this property, since the property debends on behavicr
of evaluation funcions, which are assumed to be "black boxes.” We start from a
symbol N in a parse tree, pick some attribute N.alpha, and follow a dependency arc
mackwards to cne of N.aipha's predecessors. Say the predecesscr we pick is
attribute beta, associated with symbcl N'. We then pick an attribute of N' which is
an output of the same producticn as beta, and follow one of its predecassor arcs.
We continue the process umtil we either return to symbol N or come to an attribute
with no predecessors. (If it should happen, for instance, that N equals N', then we
stop after one step.) If it happens that we stop because we come back tn‘ N, we
will require that the first and last dependency arcs in our chain be asscciated with
the same groduction instance. If all parse trees derived from an at‘m“bute grammar
have this property, then we will say that the attribute grammar is '‘noge-wise
non-circular.” .Notice that the above grammar is not node-wise non=-circular, since
we can get from "AD" to "A.a" going backward along dependency arcs, and the
first and last arcs are not asscciated with the same production instance. The
aigenthm for computing charactenstic graphs for non-ocal attribute grammars wiil

depend on the assumpticn that input grammars satisfy the node-wise non=--

84

circularity assumpticn.

In computation of characteristic graphs for non-iccal attribute grammars, we
will require a notion of the symbols that are “raachabie” from a given symtol in a
production. At each iteraticn of the main locp ot algarithm , we will compute a
characteristic graph of a symbol of a production. The reachable symbois of the
production are the ones for which we require previously computed characteristic
graphs in order to compute a new characteristic graph. We start with an output
attribute of the given symbel, and move backward along an arc of the dependency
graph of the production to an attribute of ancther symbol. We then select an input
attribute of that symbol and repeat the process, moving back along a dependency
graph arc. The reachable symbols are those which can be reached by this

precess.

Input: a node-wise non-circular ateribute grammar
Qutput: the set of 10 and Ol graphs for each symbal in the grammar

finitialization{

for aach procuction P which has a gymbol 1" that is not reachable
from any other symbals in P,

do begin

G := the projecticn of P's dependency graph on pesition “1";

if position 1" is a grammar symbol, then
iti=sQ
then add G to the |0 graph set of symbol 1"

eisa add G to the Ol graph set of symbal "i";

eise | position 1" is an interface symbol |
it position "i".is a subscript
then add G to the 10 graph set of symbol "I”
eise add G to the Ol graph set of symbal “1";

aend for;

{main loop
while there remains an unexamined 3-tuple
(production P,
symbot “I" in P,
{characteristic graphs C; for reachable positions
of P other than the symbol at pesition i

)
da begin

let D be the dependency graph for P augmented by the selected
characteristic graphs;

G := the projection of O on pasition s

if position "1 is a grammar symbol, then
ifi=0Q
then add G to the 10 graph set of symbol 1"
aise add G to the Ol graph set of symbal "i";

alsa | position “I" is an interface symbal |
it position 1" is a subscript
then add G to the |0 graph sat of symbol “i”
eisa add G to the Cl graph set of symbol "1";

end while;

88

im Algorithm 2.1, of whnich Algornthm is an sxtension, we were able to prove

snat the aigenthm would generate a characteristic graph if and oniy if there was a

388

parse tree with that characteristic graph. In the current setling we will lose
implication in cne cdirection; the algorithm can be given a nen-=iccal atiribute
grammar that will causa it to producs graphs which are not characteristic graphs
of any parse tres derivable from the grammar. Fortunately, we arse still able o
~ prove that for any parse tree the aigorithm wil tind ail possible characteristic
graphs. In practice, attribute grammars which viclate the implication in the one
direction have not arisen, but even if they did, the cnly cest would be that thev
evaluatcr generator would invest time and table size planning tor situations that

could never arise at evaiuation time.

Theorem 4.1. Let "I" be a symbol of some parse tree derived from a node-wise
non-circular non-iocal attribute grammar. Then the characteristic graph of """ will
have been computed by the algerithm.

Proof. It the contrary is true, then cne of the reachable interfaces of the
preduction to which N interfaces via “I" must also have a characteristic graph“not
generated by the algorithm. Since by the assumption of node-wise non-circularity
tneke are no circular chains of reachable predecesscrs, the two characteristic
graphs are distinct. We continue tracing through reachable predecessors, and are
guaranteed (by assumption) that we will not form a circular chain. Consequently,
by the finiteness of the tree, we must reach a predecassor which itself has no
predecessors, but for which the aigorithm found no charactenstic graph. Sut this
is impossible, since during initialization the aigorithm found characteristic graphs

fer all interfaces with no reachable predecasscrs.

a

Chapter 5§ - Attribute Evaluation for Non-lccal Attribute Grammars

We now address the issues of initial and incremental attribute evaluation in
the presence of non-local productions. In the first section after this introduction
the related issues of building ncn-local productions and initial attribute evaluation
wiil be discussed. After discussing initial evaluation, we will tumn to the probiem of
incrementai evaluation. An incremental evaluator for an example language that
has non-iocal productions for definitions and uses of identifiers will be presented.
The incremental evaluator will use evaluation pricrities as discussed in chapter :3
in the next section an algorithm will be presented for transiating a non-iccal
attribute grammar into an equivalent local attribute grammar; non-iocal evaiuation
‘priorities will be cbtained from the priorities of the equivalent local attribute
grammar. In the final secticn, a condition under which inccremental evaluation can
use non-local productions will be stated, and an incremental evaluator which builds

and uses non-iccal productions will be presanted.

5.1. Initial evaiuation and creation of non-local productions

As mertioned in the previcus section, non-iocal attribute grammars will have
two components, that dealing with construction of non-local productions, and that
dealing with flow of data. We present in Figure 5.1 a re-capitulation of the

attribute grammar invelving definitions and uses of identifiers of Figure 4.1.

83

S ::3 Defs ; Uses Uses.symtap := Defs.symtab;
Defs ::= INT iddef Cefs gef -tyPe i@ intager;
Defs.‘.symtab 1= Addld(Dafsz.symtab.
id.STRING_REP);

Defs ::2 CHAR idyer Defs gar TYPE 2 character;
Dets,.symtab := Addald(Betfs,.symtab,

iI.STRING__RER);
Defs ::3 epsilon Dets.symtab := empty;

usa - &TOf 2 s type = integer;

Usesz.symtab 1= Uses1 Symtab;

id.use := MakelLink(Uses,.symtab,
id.STRING__REP);

eom® |
Uses :: 'dusa Uses

Uses ::3 epsilen

def - uss " usa.type := def.type;
def.error := ysa.erron;

Figurs 8.1,

It might be noted that evaluation of "type" attributes for definition identifiers
can occur befora, during, or after evaluation of the “symtab” attributes.

Specificaily, an iddef node may receive type information before a "det - use”

non-icqal production invcl_/ing that node is created. This situation is analogous to
evaluation of independent inherited attributes of a parse tree node before the
subtree of the node has been created. In general, attributes which are inputs to a
sactien of a parse tree may be evaluated before the section has been sulilt,
provided. of course, that they do not depend on outputs of the new section. The
paint o be emphasized is that the node receiving the 'type’ attribute exists and
is able to receive attmbutes even though the evaluation function might make it
appear that some new node which sprngs into existencs on creation of the
“daf - use ' producticn instance receives the attribute. Non-local productions do

not cause new parse ‘ree nodes to be created; rather, they link exisung parse

83

tree nodes together in new ways.

The algorithm which impiements the initial evaiuation and creation of non-iocal

productions discussed in the previous paragraphs appears below.

Algerithm S.1.
input: An unevaluated parse tree from a well-formed nen-iccal
attribute grammar.
Output: The tree with non-iccal productions built and attributes
evaiuated.
Put production instances with attributes of in-degree zero in Evaiuable.
whila Evaluable is not empty,
select and remove an element P from Evaluable;
Evaluate the attributes of Plan(P);
if one of the evaluated attributes is actually an interface symbel,
create the ncn-local production and initialize the attribute
availabiiity set by looking at the status of the other productions
in which the nodes of the new production participate. Put the new
production in Evaluabie if its Plan is non-empty.

Update the status of neighbors and put them in Evaluable if they
have evaluabie attributes.

The algorithm of the above figure is identical to Algerithm 2.2, except for the
possibility of creation of non-iocal productions. The proof of correctness is
identical to that of Algc:rithm 2.2 atter we shaow that newly created non-local
productions are in the Evaiuable set if and only if they have evaluable attributes.
The latter fcilows from the fact that newly created non-local productions have
their attribute availability vectors initialized after they are created; it is possible
at that time to determine whether a new non-iocal production has any unavaiable
output attributes all of whose inputs are available. Sinca no attributes are
actually evaluated after creation of a non-iocal preduction, the evaiuability states

of other productions are not affectad.

=[e

5.2, Ineramental evaluation in the presanca of non-lecal atiributes

In pricrity-based incremental evaluation, we impesa a structure on the pooi of
attributes to be evaiuated, and are thus able to infer in some cases that ail
predecesscors of a given attribute have their final values without going to the
expense of explicitly veritying them. For instance, say some attribute Az in a

- parse tree has an input} A.84 which has changed value, together with several
other inputs A.ﬁz, resy A.ﬁn about which we knew nothing. If in analyzng the

attribute grammar we have noticed that of the various attributes in the tree which

have received new values none of them can possibly be ancestors of any of A.ﬁz.
- A8, we can evaluats A.a with confidence that ail of its inputs have their final,

correct values. In the context-free setting of previous chapters, this sort of
analysis was not strictly necessary; we could always explicitly verify every input
to an attribute if required to do sa. This verfficaticn process depends on the fact
that in context-free grammars the anly way the parts of a parse tree that are
connected together by & given production instance can communicate is through
that production instance. For instance, say we have a languag.e which allows
sub-range types, but the bounds may onily be manifest integer consiants. Part of

the grammar might be

<subrange type> ::= <int constant> . <imt constant>
<subrange type>.type := CheckSubRng(<int constant>, wvalue,

<int constant>,.value)

<int constant> ::= <copticnal sign> INT__TOKEN
it constant>.value := MakeNum(<cpticnal sign>.sign,
INT__TOKEN.StringReg)

Say an editing cperation is perfcrmed which changes "1 .. 100" to "0 . 1Q0". The
left <int constant> non-terminal will have a new value attribute, reguiring inclusion

of *he '<suprange type> procduction nstance n the Intenor set Frem the facts

81

that

(1) the right <int constant> recsives no inputs from the <subrange type>

production and

(2) the only way inputs may be presented to that subtree is from the

<subrange type> production

we may infer that the outputs remain the same, i.e. that the value attribute of the

right <int constant> node has its correct, final vaiue.

Now lat us change the situation somewhat and say that sub-range types may
have bounds that are declared constants, and further that the declared constants
participate in "def - use” non-local productions. Say we have a program fragment

such as

const a = 86;

type Hashindex = a .. b;

If the user changes ""a" from 86 to 97, eventually the <const> ncn-terminal above
“a" will have an active "valug’ input, but we cannot infer that the <const> above
“b” has a cocrrect "value” attribute, sincé there is a source of input to that
subtree about which we c¢an leaﬁ nothing by locking at the <subrange type>
preduczion instance. That source of input is the non-iocal production involving the
icentifier "b”. If the definition of "b’" does not depend on ‘a’, then <constd>.value
is independent of any active attributes, and we must infer that it is available for
use in the ccmputation of other attributes which depend on it. On the other hand,

there might be scme intervening declaration of the form
const b = -a;

in whicn case the “"vajue' artribute of the <const> node above "b'’ does cepend

on active attributes, and we must infer that it is unavailable until it 1s re-ccmputed

82

or beccmes dominated by passive attributes.

The above discussion makes the difficulty of trying to rely on expiicit
veriflcation of input attributes apparent. On the other hand, it is possible 1o
extend the pricrity-based approach to the non-local case. That approach relies
en a determinaticn of priority classes for artributes, and in some casas a
.rqurehent that certain classes be evaluated in some fixed order. The
~daf - use' non-local producticn wil fit into this scenario naturally, since in several
high-level languages such as Pascal and Ada an identifier must be defined
lexicaily to the left of any uses. We will allow order relations among nodes which
participate in nen-iccal procductions to be specified to the evaluater generator,

which will incorparate this information into its priority calculations.

As an example of a pricrity-based incremental evaluator for a grammar with
ncn-local productions, we will examine a small language which allows declarations
of constants, subrange types, and variables, and ";nhich has assignment
statements. Subsequently we will add array declarations as an exampie of a more

complex data structure. The first (fairly extensive) example appears below.

a3

S ::= Defs $ Uses Defs.symtab := empty;
Uses.symtab := Defs.newtab;

Defs ::= Def ; Defs Def.symtab :3 l‘.Z>e1‘31 .symtab;
Defsz.symtab := Def.newtab;
Defs‘,‘ newtab :3 Defs,.newtab;

Defs 3 epsilen Defs.newtab :3 Defs.symtab;

Det ::= CONST idde! = <int or id>

Def.newtab := Addlid(Def.symtab,
id.STRING._REP);
<int or id>.symtab := Def.symtab;

def type := <int or id>.type;

id.use := Makelink(<int or id>.symtab,

id.STRING_REP);
<int or id>.type :3 use type;

<imt or id> ::3 ’dusa

<int or id> ::= INT__TOKEN <int or id>.type := Int..Type;

Def ::= TYPE iddef s <type> Def.newtab := Addld(Def.symtab,
id.STRING._REP);
<type>.symtab := Def.symtab;
def type := <type>.type;

Def ::= VAR iddef = <type> Def.newtab := Addld(Def.symtab,

id.STRING__REP);
<type>.symtab := Def.symtab;
ger ‘TYP® i3 <type>.type;

<type> ::= <intor id> <. int or id>
<type>.type := SubRng(<int or id>.type,
<..int or id>.type);
<int or id>.symtab := <type>.symtab;
<. int or id>.symtab := <type>.symtab:

<.. int or id> := . <int or id>
<int or id>.symtab := <. int or id>.symtab;
<. int or id>.type := <Lint or id>.type;

<.. ift or id> ::= epsilon <. int or id>.type := NoType;

Uses ::= Use ; Uses Use.symtab := Us'es1.symtab:
Usesz.symtab := Uses, .symtab;

Uses ::= epsiion

Use ::= iduse <= 'duse id, .use := Makei.nk(Use.symtab,
idq STRING__REP):

34

idz.usa :2 Makelink(Use.symtab,
idz.ST‘RiNG__REP)i
&3, errar i 2 id1.type
<> idz.type;
def - usa use.type :3 def.type;

Figure 5.2,

Subtree replacements on strings from this language fall into two categeries

that will be handled cifferentty: those that insert of delate ulddef “ nodes, and

these that do not. A change of a definition cccurrence ot an identifier affects the
entire program string to its right, possibly causing radical changes both in non=
local productions and infcrmaticn flow. Handling a change of this sort using non-
local incremental update is quite complex, and the changes made are basically the
cnes that would have to be made using comtext-free incremental update.
Consequently, changes t0 definition identiflers will be handled using context-free
re—evaluat'icn techniques. Other changes will be handled using non-iocal
techniques. Changes that do nct involve definition identifiers ¢an be handled in a
relatively straightforward way using non-local productions, and in some cases the
number of nodes that must be visited is far smaller than in the context-free
setting. Specifically, changes 10 right-hand sides of declarations will be

propagated to locaticns they affect via non-iccal productions.

There are only two productions in the exampie which have atiributes with

more than one input:
<type> 1= <int or id> <. int of id>,

and

85

The join attribute of the second production potentially depends on every
other attribute in the grammar, so it must have the lowest evaluation priority.
Sincs no Instancs of the attribute can depend cn other instances of the same

attribute (the attribute has no successors), the pricrity class can be unordered.

The join attribute of the subrange type production is a bit more interesting. It
may depend on ail attributes in the grammar except thcse associated with the Use
productions. Furthermors, <type>.type may depend on other instances of
<typed.type, implying that its priority class must be ordered. We may infer from
the grammar that an instance of <type>.type may depend only on ancther
instance of <type>.type to its left in the following way: first, <type>.type

depends on attributes of nodes "ldu“ * that are children of the <type> ncde.

.

Second, the "‘dusa" nodes receive attributes from "‘ddef' nodes that appear to
the left of the <Def> node which is the parent of <type>. This latter fact is
obtained from the part of the grammar used to build “def - use’ non-iocal
productions. The "symtab” attribute which flows down through the <type> node

to "idusa" nodes below it does not depend on the "]ddef " in the same right-hand

side as the <type> ncde. It depends only on iddef nocdes further to the left.
Each of those nodes in turn depends on a <type> node immediately to its right.
The net result of the above discussion is that attributes "<-".error have
lowest priority, and that attributes "<type>.type” have next lowest priority.
Elements of the latter priority class must be retrieved in depth-first, left-to=-right
order. All other attributes have highest priority.
As an extension of the above example, we may allow arrays in the language

by adding a preduction

<type> ::= ARRAY [<type>] of <type>.

=]

We will require that the <type> inside brackets be a subrange type, and will allow
the right-most type to be either a subrange or an array declaraticn, so that multi-
dimensional arrays can be declared. The attribute evaljuation rule for the above

preduction is

<type>,.type :3 ArrayType(<type>,.type, <type>s.tyre)

As it stands, this definition of array deciarations presants a probiem: the

<type>1.type ariribute depends on cccurrences of <typed>.type g its left as it

did in the precading example, but now it also depends on <type>.type atiributes
of nodes to its right, namely those in its subtree. This requires a slight re-
definition of cur ncde crde?ing schemg. We simply use a post-arder traversal, in
which a ncde is considered to have been visited after, rather than before, its
chiidren in a depth-first, left-to-right traversal of a parse tree. Then, once again,
<type>.type depends on other occcurrences of <type>.type toits leftin the parse

trea.

§.3. Transiation of non-iccal attribute grammars into local attributa

grammars

In this section we present a method for translating a non-iccai attribute
grammar into an equivalent attribute grammar that has no non-local productions.
Our primary purpose for this translation is to use context-frea pricrity creation
algorithms; pricrities for nen-local incremental re-evaiuation can be gotten Dy
applying priority computation schemes of previous chapters to transiated non=ocai
attribute grammars. Of secondary impartance (from a practical standpoint) is the
ability to pertorm non-circulanty tests on non-iocal attribute grammars. |f we can
transiate a ncn-iccal atinbute grammar intp an equivaient lacal attribute grammars,

then we can apoly the non-circulanty test of Xnuth L8]

87

The algorithm works iteratively, removing one ncn-iocal producticn at a time.
|t first finas a nen-iocal production whose construction in a parse tree does not
depend on the presence of any other non-local productions in that parse tree.
This can be done by finding a subscript in an output position which dces not
depend cn any attributes in the grammar which are outputs of non-iccal

productions.

When a non-local producticn has been selected, we consider every attribute
which participates in creation of that non-local production. Such an attribute must
have an element of the non-iocal producton as an ancesior and ancther element
as a descendant. For each such attribute, we build a set of copy rules into the
productions which possess it. Attributes such as "SymTab" contain information
necessary to construct a set of non-locali productions; we will construct a
correspending set of attributes which contain the information that wouid have

Been communicated via those mon-local productions.

When we have perfcrmed the above cperaticn on all non-iocal productions
whese existence in a tree does not depend on the presencs of other non-iccal
productions, then we take the modified attribute grammar and repeat the
procedure. The procedure is applied iteratively until all non-local productions have
meen removed., and information that had been communicated using them is now

communicated along the local productions of the parse tree.

¥ at some point in the above program we should enccunter two non=iocal
productions the construction of each of which depends on the prior presence of

the other, then we canciude that the non-iocal attribute grammar is ill-formed.

The algorithm described in last tew paragraphs is summarized telow.

g3

Algorithm S.2.
imput: A non-igcai attribute grammar.
Output: An equivalent local attribute grammar.

while there is still a non-iccal production in the grammar,
da bagin

Plex a non-iccal producticn P whose construction attributes
desend cn no artributes output by non-iccal productions.

For each evaluation rule in P, create a set of copy rules

which parallel the ccnstruction attributes of P and take

the arguments of the evaluation rule to the node which is

to receaive the output of the evaluation ruie.

Make the evaluaticn function of P take as inputs the resuits

ot the copy rules and produce as output the appropriate attribute
of the node which received the attribute in the non-=iocal production.
Tag the attribute name with the name of the interfaca symbol

of the non-local production.

Remcve P from the grammar.

end.

in order to establish evaluation priority classes for non=local attribute
grammars, we transform the non-iocal attribute grammar into a local attribute

grammar and apply the priority computation aigerithm to the transformed version.

§. Incremertal evaiuation in the presanca of muitipie intersection nodes

The final issue which must be resolved is the determination of which subtree
repiacements will be handled using context-free incremental evaluaticn and which
will be handled using non-iocal techniques. After a change is made which results
in medificaticn of non-iocal productions, we are faced with a situation n wnich
there are several intersection nodes, rather than the situation of a single
imersection node studied in previous chapters. A certain class of tree
modifications which reguire re-evaluation in the presence of several interseclion
» nodes can be handled with the same set of priorities camputed for the case of a

single intersection node. ‘Ne will illustrate with an examele.

88

'(1) EusE+T E,.type := DeriveType(E,.tyPe.
T.type);

(2)E =T E.type := T.type;

(3) T2 INT T.type :3 int_type;

(4) T ::2 CHAR T.type :3 char_type;

The "+ function is assumed to be avericaded. If applied to integers, it means
imeger addition, and if it is applied to characters or Strings it means string
concatenation. If an integer and a character are given as arguments to “+", then

the "type" attribute is given the value "error_type.” The attribute E,.type has
two inputs, so it must be put in a pricrity class below the attributes that it can
depend on, and since it can depend on another instanca of itself its priority class
must be oriented.

Ncw, say that we have a collecton of severai attributed tree fragments of

the form

0

p
m
=

—1

/

™
P
—
+
—
Py
_

s i

CHAR |

Figurs §.3.

The vaiue of the 'type’ attribute (i for int_type. ‘e for char__type) is indicateg

190

in parentheses next to each symbol.

We pasta the left fragment above together with three instances of the rght

fragment to obtain the tree

CHAR

Figure 6.4.

The intersection nodes have two versions of the “type ' attribute, as is indicated
in Figura 6.4. The version that supersedes is capitalized. We take indepencent
attributes of the intersection nodes, determine whether they are aclive or
passive, and placa the active ones in Evaluation sats according o ther priorities.
In this' example ail attributes are independent, since we have no chains of
attributes which go through a set of ncdes and then turn around and go back
through the same set of nodes. The intersection nodes are the three lower ‘T

nodes. and all three of them have active “type’ atiributes. The evaiuaticn cap

101

(get a high-priority attribute, evaluate it, place dependents in evaluation sets if it

changes value) is then iterated until all evaluation sets are empty.

it is possible that an independent intersecticn attributa may receive a new
value in this re-evaluaticn process, uniike thosa of previcus chapters in which we
had only one intersection nede. In this example, all of the the "E" ncdes excapt
the beticm one recesive new versions of the "type” attribute, namely the value
“grrer_type.” Even sg, in this casa we are not in danger of using an attribute as
an input to an evaiuation function and then having it change at a later time in the
same evaluation process. This is because the “E.type’ attributes are in an
oriented pricrity class. Even though several independent intersection attributes of
ditferent nodes are in the evaiuation set, they will be retrieved in the pre-

determined order.

On the cther hand, it is easy to construct examples in which the pricrity
c!gsStfic;ticn will not keep us from using an attribute before it has its final vaiue in

the presencs of muitipie intersaction nodes. Such an exampie appears below.

SusA
AuzaA A4.count := Ay.count 1
Anza A.count := 1;

In this example we simpily have a string of a's, and the 'count” attribute counts
the number of a's in the string. There are no jain attributes, and so there is a
single unordered priority class. ¥ we take several intemaily consistent fragments
from this grammar, paste them together, and try to apply the evaluaticn scheme
outlined abave, we will very likely run into problems. All of the ‘count’ attriputes
are incependent, so whenever two versions of “count” in an intersection ncde
ditfer, that attribute instance will be placed in the evaluable set. Attribute vaiues
travel up the tree here as they did in the srevious example, but in this casea Ne

prionty class is unardered, SO tme evaluater is ‘ree to avaiuate a ‘count’ atinbpute

i02

high in the tree. |f an attribute melow that is also active, then we will give a new
value to an atiribute which was used as an input to an evaluation function. This is
the situaticn which gives risa to non-linear sehavior in the evaiuation process, and

the which wa are trying to aveid.

Wea are still restricting the user 10 making changes which censist of
replacement of one subtree by ancther, but each such change may give rise to a
modification of non-local production instances. We will perform re-evaiuation after
rree madification using muitiple intersecticn nodes and non-local preductions if the

tollowing conditicn is met:

() the pricrities established for evaluation in the attribute grammar by the
method of the previcus section will ensure that nd attribute is used as an

input to an evaluation function and subsequently given a new value.

. In POE (and in the axtensiva examplie given at the beginning of this chapter)
changes that do not insert or delete definiticn identifiers satisty the conciticn of
the previous paragraph, whereas changes that affect definition identifiers co not.
Consequently, we handle all of the former using non-iccal productions, whereas
changes of the latter variety will be handled using the equivaient local atiribute
grammar and cantext-free re-evaiuation technigques discussed in previocus
cmapters. inciuded in the set of changes which will be nandled with non-iocal
productions are changes which affect the apstract syntax of expressions. The
attribute flow rules for expressions in POE are essentiaily thcse presented in the

example af expressions given at the beginning of this section.

At this point, classes of changes must be lacked at cn a case-py-case basis
to determine whether they satisty the above property. It is hoped that further
research wmil uncover an algontam which automaticaily cetermines whicn classes

of snanges must be hancled using cantext-free re-evaluation and wilch can make

103

use of non-iocal productions.
The re-evaluation algorithm for non-iccal productions is given below.

Input: A fully attributed tree possibly containing non-iocal preductions,
a designated subtres which is 1o replaced, and an internally
consistent subtree.

Output: A fully attribute, censistent tree with the new subtree inserted in
placa of the cld one.

Evaluate that part of the attribute grammar which builds non-iocal
productions. For every new non-iocal production that is built,
mark the nedes it combines as new intersection nodes.

Fer each intersection node, compare new and old versions of
independent attributes and piace active attributes in appropriate
avaluation sets. Mark dependent attributes whose old and new
versions differ as being unavailable.

Perform the evaluation loop of Algorithm 3.5.

That the algorithm works correctly follows immediately from the assumption that

the change which necessitates the re-avaluation satisfies condition ().

- 104
Chapter 7 = Canclusion

In this thesis we have axamined the problem of making updates to the static
samantics of a program in response to small, incremental changes to the program.
We have proposad an extansion of the atfribute grammar tormalism in which
samantic information can Be axchanged betwaen samantically related cb jects. An
attribute evaluation process somewhat different from those discussed in the
literature has been presented. That evaluation process has been extended to
allew for incremental updates’ and non-local preductiens. The method provides a
new approach to the problem of incremental semantic evaluation studied, for
instance, in [9] and (7] in that attributes may flow directly to where they are
needed, rather than being restricted In their flow to paths in the parse tree of 2~
pregram. The links take up space in memory and require time o construct, so their
use invoives trade-affs. In the casa of linking definitions and uses of identifiers,

the advantages out-weigh the cosis.

7.1, Directions for future research

Artribute grammars suffer from the limitation that an attribute mZc. zaly
receive cne value in the course gt evaluation. Skedzeleski [10] has adcressed
this problem, and | feel »hat this is an area worth more research. The restriclcon
limits a system like POE to consideration of static program semantics. The
approach of denotational semantics gives mare flexibility n acdressing issues of
static (compile-time) and dynamic (run-time) program meaning. This aperoaca
' might lead ta automated interpreters and program testing and debugging systems

that can be praduced automatically from language descriptions.

Short-term research goals incilude development of an algonthm whnich <an

verify hat some attnpute grammars possess the nocge-wise non-circulanty

103

property cefined in Chapter 4 and develcpment of general tests for ciasses of
tree modifications that can be re-evajuated using non-local productions. AS
automated systems for the sottwars develcpment process become increasingly
widespread, and varicus components such as compiling, editing, and debugging
hecome more imtegrated, it is hoped that research will provide models that will be

of assistanca to designers and implementors of those systems.

(1l

(2]

(al

(4]

(sl

(el

(71

(el

1086

Rafersnces

Alberga, C. N, A. L Brown, G 8. Leeman Jr., M. Mikeisons, and M. N. Wegman,

“A program development tool,” 8th POPL Cenference, pp. 92104 (1981).

Archer, James and Richard Ccnway, “COPE: a cocperative programming

envireament,” TR 81-458, Cornell University (18381).

Calentane, A., P.D. Vigna, C. Ghezzi, and 0. Mandrioli, "SIMPLE: a program

development system,” Computer Languages 5, pp. 103-114 (1980Q).

Donzeau-Gouge, V., G. Huet, G. Kahn, 8. Lang , and J. Levy, "A structure
crientad program editor: a first step towards computer assisted

programming,” Technical Report 114, IRIA Laboratories (1875).

Habermann, A. N., “The gandaif research project,” Carnegie-Mellon

University Coemputer Science Research Review - 1979, pp. 28-35 (1979).

Teiteibaum, T. and T. Reps, "The Comell program syntnesizer: a syntax-
directed programming environment,” Communications of the ACH 24, 3, ep.

563-573 (September, 1981).

Demers, Allan, Thomas Reps, and Tim Teitelbaum, 'lncrementail evaluation for
attribute grammars with application tao syntax-directed editors.,” 8th ACWY

Symposium on Principles of Programming Languages, pp. 108-11 6 (13981).

Knuth, Oonald E., “Semantics of Caontext Free Languages,’ Math. Systems

Theory Journal 2, 2, pp. 127-1 45 (June 1968).

(sl

(10]

(111

(12]

(18]

(14]

(18]

(18]

107

Reps, T., "Optimai-time Incremental Semantic Analysis for Syntax-directed
Editors,” 9th ACY Sympesium on Principles of Programming Languages, pp.

168-176 (1882).

Skedzeleski, Stephen Kart, "Definition and Use of Attribute Reevaluation in
Attributed Grammars,” Computer Sciences Technical Repeort 340,

University of Wiscansin-Madison (October 1978.) PhD thesis.

Cohen, R. and E. Harry, "Automatic generation of near-optimal linear-time
transiators for non-circular attribute grammars,” 6th Symposium on

Principies of Pregramming Languages, pp- 121-134 (January 1879).

Bochmann, Greger V., “Semantic avaluation from left to right,”

Communications of the ACM 189, 2, pp. 55-862 (February 1978).

Jazayeri, M., "On attributes grammars and the semantic specification of
programming languages,” PhD thesis, Comp. and Inf. Sci. Deet, Case

Western Reserve University (October 1873).

Kennedy, K. and S.K. Warren, ~Automatic generation of efficient evaluators
tor atiribute grammars,” Third ACM Sympesium on Principles of

Pregramming Languages, pe. 32-49 (January 1876).

Kennedy, X and J. Ramanathan, "A deterministic attribute grammar
evaluator based on dynamic sequencing,’ ACM Transacticns on

Programming languages and Systems 7,1, pp. 142-160 (July 1979).

R., Rowiand, Bruce, "Combining Parsing and the Evaluation of Atirnibuted

Grammars, #nh.D. Tnesis, Computer Sciences Department, University of

(171

(18]

(18]

[20]

108
Wiscensin (June 1877).

Knuth, Donald E., "Semantics of Context Free Languages: Corre tien,”

Math, Systems Thecry Journd §, 1, pe. 95-86 (1871).

Fischer, Charies N., Greg Johnson, and Jon Mauney, "An Introduction 1o
Editcr Allan Pee,” Tech. report #4S1, University of Wisconscn-Madison

(1881).

Katayama, Takuya, 'T ransiation of Attribute Grammar into Procecdures,”

Tech. Report CS-K8001, Tokyo Institute of Techanolegy (July 1878).

Hoperoft, John E. and Jeffrey D. Ullman, Imroduction to Autcmata Thecry,

Languages, and Computation, Addiscn-Wesiey, Reading, Mass. {1978).

i08

Appendix 1 = Correction to Section 3.2

in this Appendix, we presant an expanded version of algorithm 3.1. The
version given in section 3.2 depends on the assumption that a ’rendezvous
ancestor appears in the same production as the join attribute, and it is possible to
construct attributs grammars in which this assumption is viclated. For instancs,

the attribute grammar given in Figure A.1 will causa Algorithm 3.1 to fail.

SusA Adown := A.up
AusB Aup := B.up1
A.join := A.down + B.up2
B:2C Bup1 := C.sead
’ B.up2 := C.seed
Cusg C.saged :=2 2
Figurs A.1.

The attribute A.join depends on C.seed via two distinct paths in the only parse
tree derivable from the grammar, but when Algorithm 3.1 is applied to the grammar
It does not detect this muiti-path dependency. The problem is in step (b) of the
~ algorithm: In examining production "A ::= 8", the fact that attributes C.up1 and
C.up2 have a common ancestor in a parse tree derivable from the grammar is not

taken into account.

In order to remedy the situation, we must identify for each characteristic
graph which of its independent output attributes (hereafter referred to as i.o.
attributes) may have a common ancestor in some parse tree. Then, instead of
testing whether an attribute § has more than one dependency path from some
other attribute a in the production, we test whether 8 has more than one
dependency path from some set of attributes which may have a common ancastor.
The next stce in the algorithm is to determine which attributes can appear along

~ one of the paths from an ancestor to 4. In Algorithm 3.1 we needed only to lock at

110

attributes which could appear alcng an arc of cne of the characteristic graphs
trom a to A. This emtailed tracing back thmugh the creation of characteristc
graphs. In the new satting, we must tracs back through both the creaticn of

characteristic graphs and through the creation of common ancestor sets.

Algorithm A1 will associate with each characteristic graph a ccllection of
subsaets of its L.o. attributes (i.e., a subset of the power sat of the i.o. attributes).
A subsaet will appear in the collection if and only if thers exists a near-compiata
parse tres in which the elements of that set share a common ancestor a, and ncne
af the other l.o. attributes depend on a. For convenienca we will refer to a set of
l.o. attributes that satisfies our desired condition as a “family”’, and we will refer

to a characteristic graph's “famity sat”.

111

Algerithm A.1.
Input: an attribute grammar
Output: Characteristic graphs together with their family sets

for those productions P which have cnly cne non-extremum, do begin
{say the non-extremum is at pcsiticn "I” of the production]
G := the projecticn of P's dependency graph on symbal "1%;

ifi=0Q
then add G to the 10 graph set of symbal "1"
eise add G to the Ol graph set of symbal "T";

for each l.o. attribute a of G, add {aj to the family set of G;
end for;

fmain loop|
while thers remains an unexamined 3-tupie
(production P,

position '1” in P,
{characteristic graphs C, for symbois of P

other than the symbol at pesition "1}

)
do begin

let D be the dependency graph for P augmented by the selected
characteristic graphs;

G :® the projection of D on position "1;
itisQ

then add G to the 10 graph set of symboi "1"
aise add G to the Ol graph set of symbal "1

for each family iﬁki of the family set of
each C,, add to the family set of G the set of
all L.o. attributes of G which depend on an element of | ﬁki.

and while;

112

Wae can state a theorem which is an extension of Theorem 2.1:

Theorem A.1. A family {8} is included in the family set of a characteristic graph

C If and oniy if there exists some near-complete parsa tree correspanding to Cin

which the elememts of iﬁki have a common ancestor a, and no other i.0. attribute

of C depends on a.
Proof. The proof is virtually identical to that of Thecrem 2.1: For a given family

iﬂk;, we can construct a near-complete parse tree by simply following a sequence
of operations the algorithm takes which leads to inclusion of | ﬁk} in the family set.

Conversely, for a glven near-complete parse tree, it can easily be shown that if a
tamily is not in the family set of the characteristic graph ktpen we could keep
“clipping” production instances off the near-complete parse tree to find
successively smailer near-complete parse trees each having a family not in the
appropriate family set. Eventually (by the finiteness of all parse trees) we must
ocbtain a near-compiete parse tree which is a single production instance. At this
point we arrive at-a contradiction, sinca all such near-compiete parse uUees will

have been accounted for properly in the initialization step of the algorithm. q.e.d.

We now present the corrected version of Algorithm 3.1. The basic idea of
Algorithm A2 is to identity rendezvous attributes (referred to as "§°) by
determining which productions have an attribute which can be gotten to via two
distinct paths from some family. After a family and a "descendant’ rendezvous
attribute have been dentified, it is necessary to tracs pack through the

ancsstors of the family to discover all rendezvous ancestors of 3.

113

Algorithm A2
Input: A well-formed attribute grammar
Output: A simple priority order among the attributes

compute the characteristic graphs and family sets for the grammar;

for each production P in the grammar,
(a) append to its dependency graph characteristic graphs Ci at

each of its non=-terminais;

(b) determine whether there exists a family f* associated with some
and an attribute 8 such that there s more than cne

path from f* to 8. If not, lock at the next production in
the "for” loop.

(¢) insert into a "families to be examined” set all sextuples
(P, pos (pesition in P of 8), ic‘;. f, §8, 1)

where f contains 8 and is in the family set of the characteristic
graph of the symbol at "pos” that is created
by.the characteristic graphs {C;}, and ¥ is a family of some

C, such that there is more than one path from ' to 8.

while "families to be examined” is not empty,

select and remove a sextuple (P, pcs, QCI}. f, g, *);
append to the dependency graph of P the characteristic graphs {Ci;;

for every attribute ¥ on every path from an element f; of #'

to an element of g (including the elements of g but excluding the
elements of), put (¥, 8) in the relation; (This will typicaily

ertail a trace through creators of characteristic grapns to identify
attributes that are represented by arcs of characteristic graphs.)

i it is not the casa that all paths start from a single esiement of ',
then

i) add (fi, A) to the relation;

i) add ail creatcrs (P, pos', CJ, Y, ifi;, 9) ot #
tor which no sextupie (P!, pos', C;, ', g, 1)in
which g is a superset of {f;] has aiready been
processed in the “famiiles to be examined” sat.

and;
and.

114

Wae now state and prove the desired resuit about Algorithm A2

Thecrem A.2. If there exists a parse trea derivable from the grammar for which §
|s & rendezvous attribute and 7 is a rendezvous ancestor of g, then a pair (v, 8) of
attribute occurrences will be inserted into the relation.

Proof. First, wa know that g will be identified as a rendezvous attribute, since by
Thecrem A.1 the family of which ¥ is an ancestor will have been identified. |n the
parse tree, we can traca attribute dependencies backward from § to a, the
anceastor of 3 via perha{:s saveral paths. The path in the parse tree from the node
containing 8 to the ncde containing a might be called the stem of the chain of
dependencies. Attributes on the stem will have been included in the relaticn, since
each step along the stem is reflected in the algorithm by the inclusien of ~a
wepeator’ family for a famiy. Attributes not on the stem will be included in the part
of the algorithm which includes attributes aleng all paths in a particular production.

q.e.d.

