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ABSTRACT

By using an exterior penalty function and recent boundedness and exis-
tence results for monotone complementarity problems, we give existence and
boundedness results, for a pair of dual convex programs, of the following
nature. If there exists a point which is feasible for the primal problem
and which is interior to the constraints of the Wolfe dual, then the primal
problem has a solution which is easily bounded in terms of the feasible
point. Furthermore there exists no duality gap. We also show that by solv-
ing an exterior penalty problem for only two values of the penalty parameter
we obtain an optimal point which is approximately feasible to any desired
preassigned tolerance. This result is then employed to obtain an estimate
of the perturbation parameter for a linear program which allows us to solve
the linear program to any preassigned accuracy by an iterative scheme such

as a successive overrelaxation (SOR) method.
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SOME APPLICATIONS OF PENALTY FUNCTIONS
IN MATHEMATICAL PROGRAMMING

0. L. Mangasarian

1. Introduction

We consider in this work the constrained minimization problem

(1.1) min f(x), X:= X, n X

xeX 0

1

where XO and X] are subsets of the n-dimensional real space R" which
have a nonempty intersection X, and f: X0 -+ R. Associated with the
above problem is the classical exterior penalty problem [3,2,1]

(1.2) min P(x,a):= f(x) + aQ(x)
XeXO

where o 1is in R,, the nonnegative real line, and Q(x): X0 - R+ such
that Q(x) = 0 for xeX, else Q(x) > 0. We have two principal applica-
tions in mind regarding the penalty problem (1.2). The first application,
which employs in addition to (1.2) the recent boundedness and existence
results for monotone complementarity problems [10] and which is described
in Section 3 of the paper, gives existence and boundedness results for a
convex program obtained from (1.1) and the associated dual problem. In
particular we show in Theorem 3.1 that if there exists a point which is
feasible for a primal convex program and is interior to the constraints of
its Wolfe dual [12,5], then the primal problem has a solution which is
easily bounded in terms of the feasible point, and that there is no duality

gap between the primal problem and its Wolfe dual. Theorem 3.2 shows that
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if there is a point which is interior to the constraints of a primal convex
program which is also feasible for the associated Wolfe dual, then the
Lagrangian dual [4,1] of the convex program has a nonempty solution set
which is easily bounded in terms of the feasible point, and in addition
there is no duality gap between the primal problem and its Lagrangian dual.
In Section 4 our main concern is the recasting by means of an exterior
penalty function of the standard 1inear programming problem as a quadratic
minimization problem on the nonnegative orthant in the spirit of previous
work [6,7,8]. The principal new result here is to show how to obtain a
precise value of the penalty parameter which allows us to satisfy the
Karush-Kuhn-Tucker optimality conditions [5] for the linear program to any
preassigned degree of precision. Theorem 4.1 shows that this can be done
by minimizing a convex quadratic function on the nonnegative orthant for
only two values of the penalty parameter. Iterative methods developed
in [6,7,8] can solve by this approach very large sparse Tinear programs
which cannot be solved by a standard linear programming simplex package [8].
Because of the key role played by exterior penalty functions in this
work, we give in Section 2 some fundamental results regarding these functions
in a form convenient for deriving our other results. Although some of these
penalty results are known under more restrictive conditions [3,2], some are
new. For example, Theorem 2.3 shows that by solving only two exterior
penalty function minimization problems, we can obtain an optimal point which
is feasible to any preassigned feasibility tolerance. Theorem 2.8 shows
that under rather mild assumptions each accumulation point of a sequence of
solutions of penalty functions, corresponding to an increasing unbounded

sequence of positive numbers, solves the associated constrained optimization



problem. Furthermore the corresponding sequence of products of the
penalty parameter and the penalty term tends to zero.

We briefly describe our notation now. Vectors will be column or row
vectors depending on the context. For a vector x 1in the n-dimensional real

space R", ||x|| will denote an arbitrary norm, while Hx]h) will denote the

1
n L
p-norm ||x|] := () ]x].]p)p for 1 <p <« and ||x||:= max [x.], where x;
p i=1 1<i<n
is the i-th component of x; x, will denote the vector in R" with compo-
nents (X+)i = max {xi,O}, i=1,...,n. A vector of ones in any real space

will be denoted by e. For a differentiable function L: R" XRm-+R, VXL(x,u)
will denote the n-dimensional gradient vector gg;(x,U), i=1,...,n, while

i
for f: R" >R, Vf(x) will denote the n-dimensional gradient vector. The

set of vectors in R" with nonnegative components will be denoted by RQ.
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2. Some Fundamental Properties of Exterior Penalty Functions

We collect in this section some fundamental properties of exterior
penalty functions in a form convenient for our applications and under more
general assumptions than usually given [3,1]. We begin with some elementary
but important monotonicity properties for solutions of penalty problems.

2.1 Proposition Let X; EXO be a solution of min P(x,ai) for i=1,2
XeX
0

with o, > a, > 0. Then

(2.1) Qx,) < Qxq)s Flx7) < Flxy)s Plxgs0q) < Pxp,05)

Proof Addition of P(x,,0,) < P(x7,0,) and P(xy,0q) 2 P(x5,0¢), gives,
together with Q> Gqs the inequality Q(xz) ézQ(x1), which in turn
together with P(x1,a]) ;:P(xz,u1), and op > 0, gives f(x1) §=f(X2)-

We also have that
P(x],u1):i P(x2,a1):i P(xz,az) 0

2.2 Proposition Let inf f(x) > -, let o >0 and let x(o)e X0 be such

XeX
that P(x(a), o) = min P(x,a). Then
XeX0

(2.2) f(x{a)) < inf f(x)
xeX

If x(a)eX then

(2.3) f(x{(a)) = min f(x)
XeX

Proof For any e > 0 pick x(e)eX such that

f(x(e)) < inf f(x) + ¢
XeX



Then

£ + in§ f(x) > f(x(e)) = P(x(e),a) > P(x(a),a) > f(x(a))
Xe

Since x(a) does not depend on €, (2.2) follows by letting e approach
zero. If x(a) is also in X, then (2.3) is obviously a consequence of

(2.2). 0

The following simple theorem shows how, for any desired feasibility
tolerance & > 0, solving the penalty problem (1.2) for only two values of
the penalty parameter o will yield a point x,e XO such that Q(xz) <8
and f(xz) < inf f(x). Hence if & chosen sufficiently small, X is an

XeX
approximately feasible optimal solution for the minimization problem (1.1).

2.3 Theorem Llet & > 0, a; > 0, let inf f(x) > -», let XeX and let

1

XeX
P(Xq504) = min P(x,a]). If f(X) < f(x,) then & solves min f(x), else
11 = 1
XeX0 XeX

for

F(X) - Fxg)
(2.4) ay > 07 and 0y 2 —————
it follows that
(2.5) Xo € Xgs Q(x2) <8, f(xz) ;;12; f(x)

where

P(xz,az) = min P(x,az), Xy e Xg
XeXO

Proof First note that if f(X) < f(x;) then by (2.2) X solves min f(x).
xeX

Suppose now that f(X) > f(x;) and (2.4) holds. Then
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(2.6) Flxy) + 0,Q0x,) < F(R) + a,Q(%) = £(8)

Hence by (2.4), (2.1) and (2.6) respectively it follows that

F(X)-Flxg)  F(X) - flx,)
§ > >

2 Q(x,)

% %o

which establishes the first inequality of (2.5). The second inequality of
(2.5) follows from (2.2). a

2.4 Remark Theorem 2.3 can be applied to obtain an approximate solution of

(1.1) in the sense of (2.5) as follows:

(a) Choose & >0, o > 0, XeX.

1

(b) Compute Xq € Xy such that: P(x],a]) = min P(x,a]). If f(X) g_f(x]),
xeX o

stop, X solves (1.1). 0
f(X) - fxq)

1
(¢) Choose o, such that a, > o, and a, 2

o Such that: P(X,,0,) = min P(x,a,).

2
XeX0

If a, of step (c) is too large, an &1 such that oy <&] <o, can be chosen

(d) Compute x,eX

2

to replace o, and steps (a)-(b)-(c) are repeated. Also X may be replaced
when possible by some iez[i,x]]fwx such that f(X)<f(X).

The next result shows that for a sequence of solutions {Xi} of the
penalty problem (1.2) for an increasing unbounded sequence of penalty para-
meters {ui}, the sequence of penalties {Q(xi)} converges to 0 and the

sequence {f(xi)} converges to a lower bound for inf f(x), provided the
XeX

latter is finite. We do not require that the sequence {xi} have an
accumulation point here.

2.5 Theorem Let inf f(x) > -, Tlet {ai} be an increasing unbounded
XeX

sequence of positive numbers, let {Xi} be a corresponding sequence of

points in XO not in X such that P{(x.,a.) = min P(x,a.).
LA R i
0



Then

(2.7) Tim Q(xi) =0 and Tim f(xi) < inf f(x).

i-»00 §-ro0 XeX

Proof By (2.1), the sequence {Q(x;)} 1s nonincreasing and bounded below by
0 and hence converges to Q >0 and Q(xi) izﬁ, i=1,2,... . If Q>0 we get
from (2.5) by picking i sufficiently large such that a ;:Z(f(?)-f(xi))/ﬁ
where ReX, that Q ;=Q(xi) ;:Q/Z which is a contradiction. Hence Q = 0

and 1im Q(Xi) = 0. Now again by (2.1), the sequence {f(xi)} is nondecreas-

{0
ing, and by (2.2) it is bounded above by inf f(x). Hence {f(xi)} converges
- xeX
to f and
f(x;) < F < inf £(x) N
xeX

To make the inequality in (2.7) an equality we need additional assump-

tions such as those given in the following corollary.

2.6 Corollary If in addition to the assumptions of Theorem 2.5, f s

Lipschitz continuous on XO’ that is for some K > 0
(2.8) [fly)-f(x)]| < KHy-—xH2 for all x, yeX,

and there exists a constant u > 0 such that for each Xxe XO there exists

an X(x)eX such that

(2.9) [|x - %(x2 ], < walx)

then

(2.10) Tim f(xi) = inf f(x)
o0 xeX

Proof For each x; there exists an Qie:X such that




”X-; - 21 “2 hY 11Q(.X]-)
Hence by (2.8) and (2.9)

(2.11) 0 < [Flx;) - )] 2 Kllxg - %11, < KuQlx;)

Since by (2.7) Tim Q(x;) = 0, it follows from (2.11) that

jo0

(2.12) Tim f(ﬁi) = Tim f(xi)

j->o0 i->00

From (2.11) and Qié X we get the inequalities

f(x;) + KuQ(x;) ng(ﬁi) > inf f(x)
XeX

Taking the 1imit as i+« and using (2.7) gives

inf f(x) > Tim f(x;) > inf f(x)

XeX i xeX
Hence 1im f(xi) = inf f(x). 0
o0 xeX

2.7 Remark Condition (2.9) is satisfied if the feasible region X is convex
and satisfies an appropriate constraint qualification [9, Theorem 2.1]. In
particular (2.9) holds in the special case when X, = R" and Xy s defined
by Tinear inequalities [9, Remark 2.2].

We observe that in both Theorem 2.5 and Corollary 2.6 the sequence {Xi}
need not have an accumulation point. A stronger result is obtained if {Xi}
has an accumulation point.

2.8 Theorem Let inf > -», and let {ai} be an increasing unbounded
xeX

sequence of positive numbers. Let {xﬁ} be a corresponding sequence of points

in Xy not in X such that P(Xi’ai) = min P(x,ai) with an accumulation point
XeX
0



X € Xg- If f and Q are lower semicontinuous at X, then Q(Xx) = 0 and

X solves min f(x). Furthermore
xeX

(2.13) Tim o Q(xi ) =0 for X; = iesXO.
Joee J J

1.

Proof Let Xx. - Xe XO' From (2.7) and the 1sc of Q we have
J

0 = 1im Q(x, ) > Q(x) >0
oo N

Hence Q(X) = 0 and XeX. Frem (2.7) and the 1sc of f we have

f(x) < 1im f(x; ) < inf f(x)
Jre J xeX

Since XxeX, it follows that X solves min f(x). To establish (2.13)
xeX

note that

0 ;:P(x. Lo, ) - P(X,a; ) = Fix: ) - Ff(X) + a, Q(x,; )
i i i i v

Hence

J J J

By letting Jj-=+e and recalling that f 1is Isc at x it follows that

Tim o Q(Xi ) = 0. 0
oo ] J
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3. Bounds and Existence for Dual Convex Programs

We consider in this section the convex primal program

(3.1) min f(x), X = {x]x.erl, g(x)< 0}
XeX

where f: R" =R, g: R" > R™ are differentiable and convex on R". The
Wolfe dual [12,5] associated with this problem is
(3.2) ma X L(x,u) - vx, ¥ = {(Xx,u,v) x e R, UERT, VeR:l,

(x,u,v)eY
VXL(x,u) -v=0}

and the Lagrangian dual [4,1] is

(3.3) max inf L(x,u) - vx
(u,v)>0  xeR"

where L(x,u):= f(x) + ug(x) 1is the usual Lagrangian. Note that (3.2) is
equivalent to
(3.2") max me)—>NQ(huL Z={(hu)XeWHueR$,

(x,u)eZ
v, L(x,u) >0}

Note that (3.1) can be identified with problem (1.1) by setting XO = R2

and X, = {x|g(x)<0}.

Our primary objective here is to give simple conditions for the separate
existence of a solution to each of primal and Lagrangian dual problems and to
bound their solutions. Loosely speaking we shall establish existence of a
solution and a bound for the primal (Lagrangian dual) problem under a primal
and Wolfe-dual feasibility assumption together with a Wolfe-dual (primal)

constraint interiority assumption. Our principal tools will be the recent
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boundedness and existence results for monotone complementarity problems and
convex programs of [10] and the penalty function results outlined in the
previous section. We begin with an existence and boundedness result for the

primal problem (3.1).

3.1 Theorem (Primal feasibility & Wolfe dual interior-feasibility => Primal
solution existence-boundedness & zero duality gap with Wolfe dual) Let f

and g be differentiable and convex on R" and let (%,0) satisfy
XeX, (X,u)eZ, VXL(SZ,G) >0

Then there exists a primal optimal solution x to (3.1) which is bounded by

-lig (%) + v L(X,0)
(3.4) X1} <

= min (VXL( 0)).

. i
i

In addition there exists no duality gap between the primal problem (3.1) and

the Wolfe dual (3.2), that is:

(3.5) min f(x) = f(x) = sup L(x,u) - vx
xeX (x,u,v)eY

Proof Consider the penalty function problem associated with (3.1)

(3.6) min f(x) + ueg(x)
x>0

or equivalently

(3.6') min  f(x) + aez  s.t. g(x) - z<0
(x,2)>0

The Wolfe dual associated with (3.6') is
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(3.7) - max L{x,u) + z (ce-u=-w) - VX
(X,Z,U,V,W)

s.t. V,L{x,u) - v =0, 0e-u-w=0,uv,w>0
which is equivalent to

(3.7%) max L(x,u) - xVXL(x,u) s.t. VXL(x,u) >0, 0e >u>0
(x,u) N -

Note that the only difference between (3.7') and (3.2') is the constraint
oe > u. Now, for any e > 0, the point (X, 2:= ee, (i) satisfies a
"Slater" constraint qualification for the dual problems (3.6')-(3.7') for
a > ||i]]_. Hence these probems have equal extrema and a solution

(x(a), z(a), u(a)) such that x(a) is bounded by [10, Theorem 2.3]

ﬁ(-g(ﬁ)'*EE)'+§VXL(§,U)+-ee(ae— )

(3.8) Ix(e)lly < nin (V.L(%,0)).
i o

Since the left side of (3.8) does not depend on e, we can let €~ 0 1in

(3.8) and we have

-lg(®) + &v,L(%,0)

(3.9) Hx(a)ll] < — =

m}n (VXL(x,u))i
Note now that by the weak duality theorem [5] applied to (3.1) and (3.3) we
have

”~

inf f(x) > L(X,0

) - QVXL(Q,G) > -
XeX

Hence for an unbounded increasing sequence of positive numbers {ai} exceed-

ing ||Gi]|,, it follows [10, Theorem 2.3] that there exists a sequence of
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points {x(ai), u(ai)} with x(ai) bounded as in (3.9), such that each x(ai)
solves the penalty function problem (3.6) with o = o and (X(ai)’ u(ai))

solves its dual (3.7'). Since {x(ai)} is bounded it has an accumulation
point X which is bounded by (3.9). Since ez(ai) = e(g(x(oci)))'+ is the penalty
term for (3.6'), it follows by Theorem (2.8) that ez = eg(x), = 0, that X

solves min f(x) and that
xeX

(3.10) Tim ai_ez(ai_) = 1im ai.e(g(x(ai.)))+ =0 for x(ui_) + X

J>* ] J Jre ] J J
Now we establish the zero duality gap. Let {Ei} be any decreasing sequence
of positive numbers converging to 0 and let {ui} be an unbounded increasing
sequence of positive numbers chosen as follows:

w > sup L(x,u) - xVXL(x,u) - €
(x,u)eZ

(By weak duality theorem)

< Llxley)s uley)) - x(eg) T Llx(eg)s ule;))

(For some (x(si),u(ei))e Z, by definition of sup)

A

L(x(e)s ulay)) = x(og)v Lix(og)s ulay))
(For a; sufficiently Targe s.t. ai;=Hu(ei)”m’
because (x(ui), u(ai)) solves max L(x,u) - xVXL(x,u)

s.t. V,L(x,u) 2 0, a;e > u > 0)

f(x(a;)) + ozez(a;)

(By equality of primal-dual optimal objective func-

tions of problems (3.6') and (3.7') with a = “i)

fl

(sup {L{x,u) - xV,L(x,u) VXL(x,u);_O, ocieg__u;O}
X,U)

A

sup L(x,u) - XVXL(x,u)
(x,u)eZ
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Since by (3.10), 1im ai.ez(ai.) = 0 for X(ai.) + X, it follows that

Joo ] J J
sup  L(x,u) - vaL(x,u) = f(x) = min f(x) 0
(x,u)ez xeX

We establish now an existence and boundedness result for the Lagrangian

dual problem (3.3).

3.2 Theorem (Wolfe-dual feasibility & primal interior-feasibility =
Lagrangian dual solution ekistence-ﬁoundedness & zero duality gap with primal)

Let f and g be differentiable and convex on R" and let (X,d) satisfy:

~

(3.11) XeX, (X,u)eZ, X >0, g(X) <0

There exists a dual optimal solution (u,v) to the Lagrangian dual (3.3)

which is bounded by

-Gg(i)*—ivxL(i,ﬁ)

3.12) u,v
( ) |G V”] b m1n {'91‘(%)’ )N(j}
1,J

In addition there is no duality gap between the primal problem (3.1) and the

Lagrangian dual (3.3), that is:

(3.13) inf f(x) = max inf L{x,u) - xv
xeX (u,v)>0 xeR"

Proof For B > 0 consider the bounded version of (3.1)
(3.14) min f(x) s.t. g(x) <0, Be>x2>0

and its Wolfe dual
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(3.15) max L{x,u) = vx + w(x - Be)
(x,u,v,w)

s.t. VL{xu) -v+w=0,u,v,w>0
or equivalently
(3.15") max L(x,u) - xVXL(x,u) - Bew

(x,u,w)

s.t. Vo L{x,u) +w2>0, u,w20
which again is equivalent to

(3.15") max L(x,u) - xV L(x,u) - Be(-V L(x,u)),

(x,u)
u>0

which is nothing other than an exterior penalty function formulation for the
Wolfe dual (3.2') with penalty parameter B. Thus the bound B on the «-norm

of the primal variable x becomes a penalty parameter on the Wolfe dual.

Now for any € > 0, the point
(X, U, W:= ee)

satifies a Slater constraint qualification for the dual problems (3.14)-(3.15')
for 8 > ||X]|,. Hence [10, Theorem 2.3] there exists (x(8),u(B), v(g),w(B))
which solves the dual problems (3.14)-(3.15) with equal extrema. For any such

solution, (u(B),v(B)) is bounded by [10, Theorem 2.2]

-ﬁg(%)-&ﬁeeer+ivxL(§,ﬁ)

(3.16) lu(e), v(8Hl; < <
i,
Since the left side of (3.16) does not depend on e, we can let €+ 0 1in

(3.16) and we have
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-tg(X) + XV, L(X,1)

(3.17) u(B), v(B)|l; <
| h < min {-g;(X), X;}
15
Define now
(3.18) d(u,v):= inf L(x,u) - vx
xeR"
(3.19) P(u,v,w):= inf L{x,u) - vX +wx
xeR
Then
(3.20) ¢ (u,v) = v(u,v,0)

Note now that by the weak duality theorem [5]

o > f(x) sup L{x,u) - xVXL(x,U)

(x,u)eZ

Hence for an unbounded increasing sequence of positive numbers {Bi} exceed-
ing ||X]|,, it follows [10, Theorem 2.3] that there exists a sequence of
points {X(Bi),U(Bi), v(g;), w(B.)} which solve the dual pair (3,14)-(3.15)
for B = Bi’ giving equal extrema and such that {u(Bi),v(Bi)} is bounded by
(3.17). Since ew(Bi) =e(~VxL(x(Bi),u(Bi)))+ constitutes the penalty term
for (3.15"), it follows by (2.7) that {ew(Bi)} converges to zero and since
w(B,) > 0, it follows that {W(Bi)} also converges to w = 0. Let (u,v,0)

i
be an accumulation point of the bounded sequence {u(Bi),v(Bi), W(Bi)}' Now

we have
c:= L(X,u) - XVXL(X,G) <inf f(x) (By weak duality)
xeX
< F(x(8;)) (Since x(B;)eX)
< L(x(B)s u(By)) - v(By)x(B;) + w(B,)x(8;)

(Since u(B,)g(x(8,))=0,v(B;)x(B;) =0 and w(B;)x(8;) 20)
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< L0 u(By)) - v(By)x + w(B,)x ¥x e R"

(Since V,L(x(B;)su(B;))-v(B;) +w(p;) = 0

L(x,u(Bi)) —v(Bi)x-+w(Bi)x is convex in x)
In the 1imit we have

¢ < L(x,d) - ¥x +wx Y¥xeR"
and so (since w = 0)

C ; inf L(X,U) - VX + WX = lP(asVaV-V) = ‘b(
xeRM

Since u(u,v,w) is finite, it follows by Theorem A.1 of the Appendix, that

p(u,v,w) 1is upper semicontinuous at (u,v,w) with respect to R

m+2n
+ . Now

let {ej} ¢+ 0. It follows by the upper semicontinuity of ¢(u,v,w) at

(a,v,w) that there exists a subsequence {Bi.} 4+ o of the unbounded increas-
J

ing sequence {Bi} such that {u(Bi.);v(Bi.),w(Bi‘)} converges to

o J J J
(u,v,w=0) and

(3.21)  ¢(U,V) + &5 = WU, v,w) + ¢y

\%

W(U(Bij),V(Bij),W(Bij))

(By usc of ¢ at (u,v,w))

inf L(x,u(Bi.))-V(Bi_)X'FW(Bi_)X
X J J J

(By definition of )

CRRICRIRTCRICRENCRECE
(Since X(Bi.) minimizes L(x, U(Bi.))' v(Bi_)x-Fw(B. )x)

1.
J J J J
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> f(x(8; ))
J
(Since u(Bi.)g(X(Bi))"U, V(B.i )X(Bi.)zo
J J J J
and w(B; )x(B; )20)
J J
> L(x(B; )>ulBy D) -vx(B, ) for (u,v) 20
J J J
(Since g(x(B; )20 and x(B; )20)
J J
> ¢(u,v)  (By definjﬁion of &)

Note that for {Bi.} 4+ o, the sequence {f(x(Bi_))} of minima of (3.14)

J J
with B = Bi , constitutes a nonincreasing sequence bounded below by
J
inf f(x). Hence {f(x(Bi }} converges and
XeX J
(3.22) inf f(x) < 1im f(x(Bi ))
XxeX Jooo Jj

Letting €5 + 0 in the string of inequalities of (3.21) gives

¢(0,7) 2 Tim F(x(8; )) 2 ¢(u,v)  ¥(uv) 20

e J
Hence

(3.23)  o(u,v) = Tim f(x(Bi ) = max  ¢{u,v) = max inf L(x,u) - vx
joo i (u,v)>0 (usv)>0  xeR"

and (@,V) solves the Lagrangian dual problem (3.3). The bound (3.12) on

(G,¥) follows from (3.17). To show a zero duality gap, Jjust note that

inf f(x) < Tim £(x(B; )) = max ¢(u,v) < inf f(x)
xeX T joeo 5 (u,v)>0 xeX
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where the first inequality follows from (3.22), the equality from (3.23)
and the last inequality from the weak duality theorem for the Lagrangian
dual [4,1]. Hence

inf f(x) = max  ¢(u,v) a

xeX (u,v)>0

We remark that the existence part of this theorem and the zero duality

gap result can also be derived as a consequence of the strong duality theorem
of Lagrangian duality (e.g. [4, Theorem 3]) which is based on the entirely
different argument of a separating hyperplane. Our explicit bound on the
dual optimal variables (3.12) however does not follow from Lagrangian duality

and is based on the recent boundedness results of [10].
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4, Penalty Functions in Linear Programming

In this final section we show how to use penalty function results to
determine precisely the value of the parameter in the quadratic perturbation
to a linear program [6,7,8] in order to obtain a solution to the perturbed
problem which is dual feasible to within any preassigned tolerance. This
is a practical and important issue which has not been completely resolved
before in the iterative successive overrelaxation (SOR) methods for solving
huge sparse linear programs [8].

We consider the primal Tlinear program
(4.1) max cx  s.t. Ax < b, x>0

X

where A is given mxn vreal matrix, c e R" and be:Rm, and its dual

(4.2) min bu  s.t. v =Alu-c,ou,v >0

(u,v)

In [8] it has been shown that perturbed primal program

(4.3) max cx —-%xx s.t. Ax < b, x>0
X

is solvable for all ee (0,8] for some € if and only if (4.1) is solvable,
in which case the unique solution X of (4.3) for ee (0,e] is independent
of e and is the point in the solution set of (4.1) with least 2-norm. If

we consider the Wolfe dual to (4.3) we obtain

(4.4) min  bu + Sxx s.t. ¢ - ex - ATu +v=0,u,vy >0

(x,u,v) 2 -

Elimination of x through the constraint relation

—

T

(4.5) x = —(-A'utv+c)

™
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gives

L

(4.6) min  bu + 5e

T 2
[|-A'u+v+c]
(u,v)>0 2

which is precisely the exterior penalty function associated with the dual
Tinear program (4.2) with penalty parameter %n Using standard exterior
penalty function results, one needs that e~ 0 in order for solutions

(u(e), v(e)) of (4.6) to approach a solution of the dual linear problem (4.2).
However by computing X% from (u(e),v(e)) through the relation (4.5), it
turns out [8] that for ee (0,e], X is independent of ¢ and is the unique
point in the solution set of (4.1) with least 2-norm. In [8] SOR methods
were prescribed for solving (4.6) for € sufficiently small and then comput-
ing x from (4.5). Very large sparse problems (n = 20,000, m = 5,000) were
solved by this technique, without knowing what & is, but merely by decreas-
ing € until certain approximate optimality criteria were met. We would
1ike to show here that by solving the penalty problem (4.6) for only two
values of e, we can satisfy the Karush-Kuhn-Tucker optimality conditions
for the linear program to any preassigned tolerance. In fact such a solution
will be primal feasible, satisfy the complementarity conditions between primal
and dual linear programs, and satisfy dual feasibility to any required toler-

ance. More specifically we have the following.

4.1 Theorem Let & >0, g; > 0, Tlet (4,9) be dual feasible, that is

¢=AT0-c >0, 420, and Tet (u(gy),v(eq)) be a solution of (4.6) with

€= €. If bu é:bu(e]) then (0,0) solves the dual prohlem (4.2), else for
7 < d < §

(4.7) e, < g and €, <
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it follows that

4.8)  Lp-aTule,) +vie,) +cll? < 6, bule,) < min {bu|aTu>c,u>0
2 2 2 2= 2° =" = =

where (u(ez),v(ez)) is a solution of (4.6) with € = €y Furthermore for

x(eg) defined by

(4.9) x(ey)i= 2= (-ATu(ey) +v(e,) +c)

2
we have that the Karush-Kuhn-Tucker conditions for the linear program (4.1)

are satisfied to within a tolerance & as follows
x(ez) >0, Ax(ez) < b, u(ez) >0, v(ez) >0
(4.10) u(ez)(b- Ax(ez)) = 0, v(ez)x(sz) =0
T 1
. 2
|| -A u(ez)-iv(ez)-+cH2 < (28)
Proof The first part of the theorem, (4.7)-(4.8), follows directly from

Theorem 2.3. The last part of the theorem (4.10) follows from (4.8) and

from the Karush-Kuhn-Tucker optimality conditions for (4.6) with € = €55

that is
b - -gg A-ATu(e,) +v(ey) #¢) 2 0, uley) 2 0
u(e)(b - -;—Z—A(—ATu(ez)+v(e:2)+c) = 0
- g—; (-ATU(ez)+v‘(82) +¢) 20, v(e,) 20
\—/—(%—)—(—ATU(EZ)+V(€2)+C) = 0

These conditions together with (4.8) and the definition (4.9) imply (4.10). O
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Appendix

A.1 Theorem Let y(s):= inf h(s,t) where h: S x T+R, & # S <R,
teT

0 #T c R" and h s upper semicontinuous on S with respect to S for
each fixed teT. Then ¢ 1is upper semicontinuous with respect to S at

each seS for which y¢(s) > -=,
Proof Suppose P is not usc at S with respect to S. Then
(A.1) Je > 0: ¥6 >0 3Is(8)eS: ||s(8)-5] < 8, vis(8))-w(5) > ¢

Let e be fixed. Since -»< P(5) = inf h(S,t), there exists t(e)eT
teT
such that

(A.2) h(s, t{e)) < 9(5) + €
Combining (A.1), (A.2) and the definition of ¢ gives

h(s, t(e)) < p(58) + e < w(s(8)) < h(s(8), te))

(R.3) ¥s > 0, for some s(8)eS such that ||s(§)-5] <&

Since h(s, t(e)) 1is usc with respect to S at S ¢ S we have

(A.4) ¥y >0, 36(y) > 0: ¥seS ||s-5]| < &(y), his, tle)) < h(s, t(e)) +v
Combining (A.3) and (A.4) gives

(A.5) h(s, t(e)) < ¥(5) + e < h(s, t(e)) +v ¥y >0

Since § and ¢ do not depend on vy, (A.5) gives a contradiction by letting

vy approach zero. Hence ¥ is usc at s with respect to S. 0
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