PERFORMANCE SIMULATION STUDY
OF AN APPLICATIVE MULTIPROCESSOR

by

M. K. Vernon

Computer Sciences Technical Report #536

February 1984

Performance Simulation Study of an Applicative Multiprocessor
M. K. Vernon

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

Abstract

As new complex distributed architectures, are proposed, there is an increasing
need for performance estimation prior to system, or prototype, implementation. This
paper describes the use of a Graph Model of Behavior to carry out a queueing simula-
tion study of a proposed tightly-coupled local area ring network. The network design
includes special-purpose hardware and software to execute applicative programs. The
performance study was carried out prior to detailed design or prototyping of special-
ized VLSl hardware, in order to evaluate certain design decisions, and to gain
confidence that system implementation would be worthwhile. In this case, perfor-
mance bottlenecks were discovered which indicate design modifications are needed
prior to prototype implementation. An understanding of the reasons for the perfor-
mance problems, gained during highly interactive simulation experiments, points to
directions for design improvements.

1. Introduction

Performance modeling and analysis tools are generally employed both during sys-
tem implementation and after a system is built, in order to better understand observ-
able behavior and to discover system modifications which will increase system perfor-
mance. Most frequently, models are constructed after system implementation because
at this point a model can be calibrated with measurement data, and then used to evalu-
ate performance tuning options. This approach can be successful if the basic system
structure remains fixed, and performance tuning is accomplished by minor changes in
system architecture and/or by increasing the speed or capacity or various system

resources.

For complex distributed system designs, significant effort can be involved in proto-
type implementation, combined with the substantial risk that acceptable performance

will only be achieved by major restructuring of the systemn architecture. As new

complex distributed architectures are proposed, there is an increasing need for per-
formance estimation prior to system, or prototype, implementation. It is our conjec-
ture that performance tools which depend on statistical characterization of workload,
and may only yield rough, "ballpark'-type performance estimates, can be useful during
the early stages of system design. However it is important to have evidence with indi-
cates that relative estimates for two or more alternative architectures correspond
directly to what would be observed from relative measurements on the implemented

systems.

This paper describes a queueing simulation study of a proposed tightly-coupled
distributed system architecture. The architecture is a local area ring network
designed with special-purpose hardware and software to execute applicative programs
[Bacd78], through concurrent expression evaluation. There exists the potential for
parallelism in the execution of applicative programs because the language encourages
use of parallel constructs and because operations in the program can be applied to
large arrays of data. Any operation can be executed as soon as its arguments are avail-
able, since no side-effects are allowed. In order for the potential for parallelism to be
realized, a suitable multiple-processor architecture is needed. The ring architecture
examined in this performance study has the main advantages of modularity, extensibil-

ity, and simplicity of the distributed control structure.

The performance study was carried out prior to detailed design or prototyping of
specialized VLSI hardware, in order to evaluate certain design decisions, and to gain
confidence that system implementation would be worthwhile. Furthermore, we relied
on queueing models which characterize behavior at a more abstract level than gen-
erally used in the initial stages of system design and development [GriD80, GurJ83].
Characterizing system workload was a significant part of the performance evaluation
effort. In the study, performance bottlenecks were discovered which indicate design
modifications are needed prior to prototype implementation. An understanding of the

reasons for the performance problems, gained during the simulation experiments,

2

points to directions for design improvements.

The tools used in the simulation study have two characteristics which are impor-
tant to the credibility of the simulation results. The Graph Model of Behavior (GMB)
used to represent the local ring network design, supports specification of queueing
behavior, and the associated probabilistic view of system behavior, at the same time it
supports specification of functional behavior in an arbitrary amount of detail
[VerM83a]. Thus, we were able to add a minimum amount of detailed functional
behavior to the performance model, which increased our confidence that significant
data-dependencies in the proposed system were adequately represented. Further-
more, the GMB Simulator which was used to gather performance statistics, can be used
interactively to observe modeled behavior [VerM83c]. Interactive observation of sys-
tem behavior played a key role in debugging the model, determining performance
improvements for the proposed architecture, and in discovering characteristics which

would be important in alternative architectures.

The following sections describe the ring architecture (Section 2), workload charac-
terization for the model (Section 3), and the model structure (Section 4). In Section 5

we describe our simulation results. Conclusions of this work are discussed in Section 6.

2. Proposed Ring Architecture: Overview

The ring architecture we are interested in evaluating is illustrated in Figure 2.1.
The system consists of a host computer, and several hundred Processing Elements
(PEs) arranged in a ring structure, interconnected by FIFO queues. An applicative pro-
gram is represented in the system as a string of characters which are shifted around
the ring. More than one program may be on the ring at any given time, each delimited
by an "end-of-string' (EOS) character. Applicative programs and their input data are
downloaded from the host computer to any one of the PEs via the shared bus. The pro-
gram is then executed by the ring of PEs as its textual representation is shifted around

the ring.

MEM

FIFQ

direction
of program
symbol flow

MEM
o

MEM

Figure 2.1: Proposed Architecture for Functional Programming

Programs are executed using a reduction strategy [TreP82]. A reducible expres-
sion (RE) in the program is an expression for which all operands are available. Using
the reduction strategy, a reducible expression is evaluated by a PE on the ring, and is
textually replaced by its results. In some cases, the replacement string will contain
multiple new REs to be evaluated. Eventually, due to function composition, RE results
become available as operands in other expressions, until the final result for the pro-

gram is calculated.

As illustrated in Figure 2.2, each PE consists of two processors: a specialized i/o
processor (ioP), and a more general-purpose reduction processor (RP), plus some local
memory. Communication with the host machine via the shared bus is not illustrated in

this figure.

The i/o processor performs all i/o with the host, all communication on the ring,
and makes reducible expressions available to the attached reduction processor. The
reduction processor executes reducible expressions and makes the results available to

the i/o processor. Ring communication consists of reading characters from the input

/ﬂ/

utput
FIFO

Figure 2.2: Organization of the Processing Elements (PEs)

FIFO, and writing characters to the output FIFO. The FIFO queues are specially
designed for high-speed access {5 nanoseconds/character). An ioP buffers small
amounts of program text in local memory during the process of recognizing and select-
ing REs for its attached reduction processor. Due to its important role in communica-

tions, the ioP will be implemented in custom VLSI so that it will also be extremely fast.

At any point in time, an applicative program may contain many reducible expres-
sions. Minimum total execution time for the program will be achieved if the REs are
evenly distributed among the reduction processors on the ring, and if REs are executed
by the ring of PEs in order of decreasing "level number"”. Expressions can be tagged
with a "level number", by the host machine or by the reduction processor, when they
are created. The level number remains constant throughout the lifetime of an expres-
sion, and indicates the number of nested operators which are dependent on the results
of the RE. Optimal scheduling of RE execution, using these guidelines, cannot be deter-
mined a priori by the host machine, since the structure of the program changes
dynamically during the computation, depending on the input data. (See section 3).
Instead, each i/o processor must use locally calculated information to decide which

REs to select for reduction by its attached reduction processor, and which to pass on

to downstream PEs on the ring.

The following initial design decisions were made for the ring architecture in order

to achieve sub-optimal execution times:

Selection Strategy

(1) The ioP selects a priority RE for execution without constraints. Priority is deter-
mined by operator type. For the purposes of this study, operations which expand
to yield multiple new REs for execution have priority, whereas operations which
yield data values do not.

() The ioP selects a non-priority RE for execution if its assigned level number is max-
imum relative to immediate neighboring REs in the program (i.e. if the number of
nested expressions waiting for the result is maximum relative to the REs preced-
ing and following it in the program text).

Load Balancing Policy

Only one RE is selected by the ioP for execution, per program visit. The first RE
satisfying the above selection strategy rules is routed to the attached reduction pro-
cessor. All other REs are passed to the downstream PEs, until the program returns

from its travel around the ring.

Replacement Policy

After an RE is executed by an RP, its result must be inserted in the program text.
The proposed replacement policy, implemented in the ioP and the reduction processor,

is as follows:

(1) A priority RE selected by the ioP is executed in the "foreground". It is executed
immediately by the reduction processor, and its results are placed in the output
FIFO before subsequent program text is read from the input FIFO by the ioP.

(2) Non-priority REs selected by the ioP are executed in FCFS order in the "back-
ground". The ioP writes a labeled "token” in the output FIFO, which serves as a
place-holder for the result of the RE. The ioP continues processing input text from
the input FIFO while the reduction processor executes the non-priority RE. When
the token returns to the ioP, it is replaced by the result. A token never traverses
the ring more than once.

Summary

We have outlined the system architecture which is the subject of this performance

evaluation study. More detail, including use of simple analytic equations to predict

speedup of this architecture relative to sequential machines for certain constructs,
can be found in [PatD80]. The goal of the current study is to develop an abstract per-
formance model which can be used to study some initial performance trade-offs rela-

tively quickly.

3. Workload Characterization and Model Parameters

A fundamental decision to be made in constructing a performance model for the
proposed architecture is how to characterize the system workload. The decision is
guided on the one hand by the need to estimate job characteristics with confidence,
and the need to capture a significant amount of functionality in the PE submadel (i.e.
service and routing based on types of operators and availability of operands.) The deci-
sion is guided on the other hand by a desire to characterize program behavior statisti-
cally, in order to evaluate the performance over long-term operation of the ring rela-

tively quickly.

In the implemented system, the customers on the ring are the characters which
comprise the program text. Since the details of the algorithm to recognize REs in the
program text are not important to the initial performance model, a more abstract
representation of the customers is needed. We are not aware of any results which
characterize functional program (or related dataflow program) behavior for the pur-
poses of defining the statistical workload in a queueing model. Thus, we begin by exa-

mining the dynamic structure of applicative programs.

The structure of an applicative program can be represented by a tree. Each node
in the tree represents an operator or user-defined function which is bound to operands
that will be received from descendent nodes. Leaves in the tree represent reducible
expressions. The initial structure of an applicative program is always a linear composi-
tion of functions or operators applied to the input data, as illustrated in Figure 3.1a.
Execution of an RE may replace the node with a sub-tree of new operations to be per-

formed (Figure 3.1b and c¢) or with an operand for its parent operator in the tree

(Figure 3.1d). Eventually, operands are available for the root of the tree, and the final
result of the program can be evaluated. Nodes in the initial execution tree are gen-
erated at the host machine. Expansions and reductions in the tree are performed by

the PEs on the ring.

For performance modeling purposes, it is important to capture the dynamic
behavior of the program execution tree. Thus, we choose to have customers in the
modeled network represent nodes in the dynamically changing execution tree (i.e. REs
or operators waiting for operands). Relevant information for a customer includes the
type of the operator, its level in the tree, the textual size and data values of available
arguments, which operands it is waiting for, if any, and whether is is a place-holding
"token”. The customers must be generated and characterized in a way that reflects
the program behavior outlined above. Accordingly, the ordering of customers gen-

erated in the initial program by the host, and the sub-trees generated by the reduction

fa{x) 7§
fs(xn) fﬁ(r-/)
f7(xn)
(a) initial (b) reduction of fa {c) reduction of f};(x) (d) reduction of f., f
execution tree n 775

Figure 3.1: The Dynamic Structure of Functional Programs

processors, should correspond to a pre-order traversal of the execution (sub-)trees.
Furthermore, we need to decide which information about each customer should be
represented explicitly in the form of attributes or data values, and which information
can be determined by probability distributions as needed. In the absence of better
information, we are interested in defining separate workloads that should yield optimis-

tic, and pessimistic, performance estimates.

In this study, we decided to represent the level number, the number of operands
not yet available for execution, and the place-holding token indicator explicitly, since
probabilistic estimation of these quantities would not yield a reasonable representation
of the structure and behavior of the execution tree. The type of the operator (priority
or non-priority) is decided probabilistically when the node is generated. All other
quantities are determined by (optimistic or pessimistic) probability distributions when
needed. We note that the explicitly represented information is used primarily for cus-

tomer routing decisions in the network.

The following parameters are associated with each customer in the model in sup-

port of the explicit information required:

(1) A pair of indices identifying the program containing the customer, and the node in
the program that the customer represents. This pair of indices is used to access
data which defines how many operands the customer is waiting for (0 for REs).

(2) The level number of the customer.

(8) The index of the parent node of the customer. This index is used to update the

number of operands the parent node is waiting for after the customer is executed
by a PE.

(4) A value which can be set to indicate that the customer is a priority RE, an end-of-
string (EOS) marker, or a place-holding token.

Probability distributions chosen for the remaining workload characteristics are
summarized in Figure 3.2. Parameters of the various distributions, reflecting optimis-
tic or pessimistic workloads for the ring, can be specified at simulation time for the

model. The parameters selected for the current study are discussed in section 5.

program arrival rate exponential{exprarate)

initial program size uniform{(minPsize ,mazPsize)
(number of nested expressions)

probability RE will be expanded expandP

RE expansion bounds uniform(minX,mazX)

Figure 3.2: Probability Distributions for Ring Network Workload
4. System Configuration Submeodels

The ring network model is composed from two submodels: a Host submodel (Sec-
tion 4.1), and a PE with associated input FIFO submodel (Section 4.2). The
configuration models define resource demands and routing of customers in the net-
work, and support performance measurement. Performance measurements of interest
include: 1) program response time, 2) utilization of PEs, including relative utilization of
the i/o processor and the reduction processor, 3) queue lengths for the FIFO queues on

the ring, and 4) queue lengths for processing at the reduction processor.

We use the Graph Model of Behavior (GMB) notation for defining the configuration
models [VerM83a]. The Graph Model has primitives for defining control flow, data
access paths, data transformations, and timing. In this papér, we show only the control
graphs for the two submodels (Figures 4.1 and 4.2). Control graph execution is based
on tokens (i.e. small black circles on the control arcs) that activate control nodes
(named circles) which may have some associated functionality. When a control node
terminates, tokens are distributed on output arcs, which may lead to new control node
activations. A '"*"' operator in the graph indicates a logical "AND" condition on the input
or output control arcs. Similarly, the "+" operator in the graph indicates a logical "OR"

condition on the input or cutput control arcs.

For queueing simulation purposes, some of the control nodes represent system

resources (i.e. servers), and some of the control arcs represent customer queues.

10

Other control nodes simply capture relevant system functionality. Control nodes are
single-server by default, but can be defined to have infinite capacity instead. We are
able to estimate utilization and throughput for control nodes, and queue length and
waiting time distributions for control arcs in the model, using automated measurement
facilities in the GMB Simulator. The functional specification domain includes capabili-
ties to select values from probability distributions, to define delay for the node, and to
perform arbitrarily detailed data transformations. The functionality of control nodes is

discussed in the paragraphs below.

4.1. Host Machine Submodel

The model of the host machine, which generates applicative programs and uses
the shared bus to communicate with PEs on the ring, is illustrated in Figure 4.1. Appli-
cative programs are generated by PgmGen in the model. GetEntry sends out a broad-
cast message (token on notifyPFEs) to initiate transfer of the program to the ring, and
one PE responds to the broadcast message by placing a token on reqPgm. MmitEzpr
selects the initial program length (according to the probability distribution in Figure
3.2, and NodeGen generates the customers in the initial execution tree. Each
customer’s parent node index is the index of the previously generated customer, and
each customer except the final RE is initially waiting for one operand. The delay for
downloading the program to the PE (shared bus transfer time in Figure 3.2) is
represented by ioBus. The token output by ioBus on PFizfer represents the EOS

marker for a program, and indicates that transfer of the program is complete.

The initial number of tokens on SpaceOnkfing, specified at simulation time, con-
trols the number of programs which can be executed concurrently in the network. One
of these tokens is needed for each initiation of Getfniry, and will be returned when
CheckResult terminates. Average gueue length measurements for the SpaceOnRing arc

will yield the average number of programs executing in the network.

11

SpaceOnRing

al o

ioQueue

WaitResult

ioBus

*

Result

Availi,r]\l

notifyPEs PExinput

PEixfer

$request 3hostIN $result

Figure 4.1: Control Model of the Host Computer (HOST)

$request $hostIN Sresult
Host.
eq EOS Final
gm Input Result
readExpr
ead * /;::2\,) }
Inpu readNode “%

ioPass

io
Replace

backgroundRE

Figure 4.2: Control Model of the PE with Input FIFO (PEwFIFO)

12

The waiting time for tokens on WaitResult, which synchronize with the final resuits
of executing the programs on the ring (on Fesult4vail), can be be used to measure pro-
gram response time. This is true as long as results are received in the same order that
programs were generated. Due to the lack of better synchronization methods,
Check Result will determine if this assumption is ever violated during a sirnulation run.
Alternatively, response times could be calculated for results received in arbitrary

order by the function associated with CheckResult.

The only delays in the HOST model are for PgmGen (program interarrival times)
and ioBUS (service delay on the broadcast bus). The parameters of these delay distri-
butions may be changed before each simulation run (Figures 3.2 and 4.3). Parameter
values minPsize and mazPsize (Figure 3.2) used by InitExpr in the HOST model support

variation of initial program size.

4.2. PE with FIFO Submodel

The PE with input FIFO (PEwFIFO) submodel is illustrated in Figure 4.2. The sub-
model is designed such that any number of these building blocks can be connected
together to form the ring of PEs. The port names at the top of the Figure ($request,
$hostIN, and $result) indicate how the PE model is connected to the host model. A
PEwWFIFO submodel is connected to neighboring PE models via the two arcs that enter

and exit on each side of the Figure.

At first glance, the control structure appears quite complex. However, most of the
functionality of the FIFQO queue, the i/o processor, and the reduction processor is
represented in the control graph. Very little functionality is specified separately for

each control node.

The PEwFIFO submeodel is logically divided into four parts: 1) communication with
the host computer is modeled by GenReq, zferFin, and read/nput, 2) write and read
operations on the input FIFO are modeled by write F/FO and readFIF0, 3) the func-

tionality of the reduction processor is modeled by isubtree, csubtree, and KP, and 4)

13

all other nodes model routing of customers in the i/o processor.

The initial control state for the i/o processor contains a token on readFzpr, wait-
ing for input customers. readFzpr is a double-headed arc which will initiate node Gen-~
Req if input arrives from "notifyPEs" in the host, or will initiate node readF7FO if input
arrives from the input FIFO. In response to input from the host, PEwWFIFO generates a
request for the new program and receives input customers on Host/nput and a token

on EOS {from PEnxfer in HOST).

Tokens on SpacelnFIF0O model the fixed queue size of the input FIFO. In response
to FIFO write operations from the PE connected on the left, FifoW generates ack-
nowledgements on ACKs. Once input customers have arrived from the host or the FIFQ,
the i/o processor removes them one at a time from readlnput or readFIFQ, and routes

them according to the functionality associated with the node 0P,

The complex routing functions of the i/o processor, and all i/o processing delays
including FIFO read access times, are modeled in the i0 P node. Customers are routed
by ioP to the HOST submodel if the final result has been calculated, to ioReplace if the
customer is a token place-holder inserted by the current PE, to the RP if it is a
selected RE, and otherwise to its internal buffer (BFR) or to the output FIFO (ShiftOut),
depending on the customer attributes. The RE selection, load balancing, and replace-

ment policies are modeled in the interpretation for ioP.

When a priority RE is selected for execution it will be expanded by isubfree and
csubiree, and then "executed” by RPFP. Priority REs are executed in the foreground,
indicated by the non-preemptive priority scheduling at node RP ("'>""), and by routing
them directly to ShiftOut after KP. In the initial performance model, csubtree expands
the RE into a set of new REs which can all be executed concurrently (see Figure 3.1b).
This expansion leads to the maximum amount of parallelism in the program, and
should yield optimistic measures of performance. In a more accurate follow-on study,

the expansions perfoermed by csubtree would be determined by analyzing the fre-

14

quency of execution of various types of expansions in a large number of representative

applicative programs.

A non-priority RE is executed by RP and then routed to TokenReplace to wait for
its place marker. Replacement of the token by the result is modeled by updating the
number of operands the parent node is waiting for, and then reading a new input custo-

mer.

All data processors in PEWFIFO except ioP have very simple interpretation includ-
ing simple, if any, routing decisions. Two nodes (writeFIFO and RP), have non-zero ser-

vice delays.

Summary

The probability distributions associated with the two configuration submodels are
summarized in Figure 4.3. We chose uniform distributions when the customer includes
a large array of data to be processed (estimated to be 5% of the total customer popula-
tion on the ring, and corresponding to priority REs), and exponential distributions oth-
erwise. Furthermore, we assume a 5 nanosecond FIFO access time, 8 characters per
data array element, and a 30 nanosecond delay per character in the i/o processor due
to the RE recognition and selection algorithms. Foreground service times in the reduc-
tion processor are faster than background service times because program expansion is
done by csubtree. Thus, foreground service reflects the time to generate one of the
new REs, and should be faster than executing the RE. Parameters for the distributions
are again defined at the start of a simulation experiment, and are discussed in Section

5.

The models support estimates of program response time (WaitResult in HOST),
utilization of ioPs and RPs, queue length of the FIFOs (Fifo in PEwFIFOQ), and queue
length and waiting times for RP input queues (foreground and background). In addi-
tion, the waiting times on waitToken in PEwFIFO, which reflect how long a background

result is available before it is inserted in the program text, are of interest.

15

ioBus service times exponential(10xmeanPymSize)

FIFO write distributions 0.95 : exponential{ 5xmeanREsize)
0.05 : uniform(5x8xminX, 5x8xmazX)

ioP service distributions token: 30 nsec
PE token: 0.8 X exponential(50)
0.2 x uniform(750,1500)
non-RE: exponential(30xmeanKEsize)
priority RE: uniform(30x8xminX, 30x8xmaxX)
background RE: uniform(180,360)

RE execution times foreground: exponential{100)
background: exponential{1000)

Figure 4.3: Probability Distributions for Ring Network Configuration Submodels

5. Simulation Results

We begin the simulation studies by composing four PEWFIFO models plus the Host
model. Accordingly, the program size parameters are are set to reflect the scaled-
down size of the system. These workload parameters are summarized in Figure 5.1.
The program expansion probability of 0.4 is higher than we expect in the implemented
system, but should yield optimistic performance estimates for the ring. The limits for
the size of program expansion, (50,100), are 2-3 orders of magnitude smaller than the

size of data vectors that we expect to operate on in programs running on the system,

exprarate 1 second

minPsize,maxPsize 5,10

expandP 0.4

minX,maxX 50,100
meanREsize 8 characters
meanPgmSize 500 characters

Figure 5.1: Parameters Used for Initial Performance Simulations

16

due to the size of the ring model. The effects of scaling down system size may, in gen-
eral, be significant when considering the accuracy of quantitative performance esti-
mates. However, the extrapolation of qualitative performance results obtained in this

study to larger networks, appears to be valid. We comment further on this issue below.

The initial performance measure of interest is the processing power of the ring
network. In other words, we are interested in the average number of executing reduc-
tion processors for a given load on the ring. We calculate this performance quantity
from estimates of the utilization of the i/o processors and the reduction processors in

the model. After debugging the model, we obtained the following estimates:

Pwp N B0Z

Prp < 1%

These results were estimated using 90% confidence levels within less than 10% of the
stated values. The estimates indicate much poorer performance than anticipated for
the multi-processor ring. Extrapolating the results for 200 PEs on the ring leads to the
conclusion that we would have less than twice the power of a single processor. Even if
the load on the ring (60% utilization) could be increased, the speed-up would be unac-

ceptably low.

Interactive observation of system behavior during a follow-on simulation experi-
ment, indicated that a significant cause of the poor performance was due to the overly
conservative load balancing policy, whereby a PE selects only one RE per program visit.
The conservative policy results in a large amount of unnecessary data traffic on the

ring, as unselected REs travel around the ring of PEs more than once.

The load balancing policy was modified in the model such that each PE removes 1
in N REs selected according to stated selection rules, where N is the number of proces-
sors on the ring. Each RE will be removed during its first complete traversal of the ring

according to this policy. The policy requires a small amount of global information to be

17

known by the ioP (i.e. N must be known to the PE, and should be modified when proces-
sors are added or removed from the ring). Two other minor changes were made in the
load balancing and RE selection algorithms [VerM83b]. The overall goal is to remove
REs from the input stream as soon as possible (i.e. in one pass around the ring) while

still distributing the processing load.

Performance estimates obtained for the new load balancing policy were as follows

(again within 10% of stated values using 90% confidence levels):

Piop N 807

Prp N 13%

These results show better than an order of magnitude increase in performance, and
indicate that the power of a 200-processor ring might be on the order of 25 times a sin-
gle processor. However, the results are still disappointing, particularly since we are
modeling dynamic program expansions that should result in optimistic performance

estimates (Section 4.2).

The results obtained from the performance model are qualitatively consistent with
the lower level test-case simulation results reported in [PatD80]. Execution time for a
particular parallel program construct in this model showed significant increase in
value and in slope as the number of elements in the data array are increased to multi-
ple times the number of PEs on the ring. Furthermore, results of our model were
reconciled with performance estimates obtained using simplified analytic equations
[PatD80, VerM83]. General agreement with lower-level simulations and the very
approximate analytical equation, combined with interactive observation of system
behavior increases confldence that the performance model captures relevant features

of the proposed architecture.

Interactive observation of system behavior in the modified model indicates the

remaining performance bottleneck is due primarily to unavoidable traffic on the ring.

18

For example, when tokens are replaced by results of expression evaluation, the data
may remain on the ring for a significant amount of time before other results become

available to form new REs.

Further incremental improvements in the RE selection and load balancing policies
at the expense of design complexity are possible, and can be studied with the model.
We would also be interested in estimating other performance quantities for the system
model, such as FIFO and RP queue lengths, as well as investigating the results for
larger system models. However it appears more fruitful to examine alternative archi-
tectures before continuing the top-level design of the ring system. In searching for an
alternative architecture, we would look for architectures which provide static storage

for operands which have been calculated but are not yet part of a reducible expression.

6. Conclusions

This study was an experiment in applying queueing simulation techniques to
predict the performance of a complex architecture prior to implementation. In partic-
ular, we have focused attention on the benefits which can be derived when standard
queueing simulation techniques are supported by a Graph Model which also supports
interactive observation of functional behavior. The methods employed are aimed at
discovering potential performance problems early in the design process, before

proceeding with detailed logical design of a system.

The level of behavior represented in the performance model is more detailed than
an analytic queueing model can support, and more abstract than a standard functional
model of the proposed system. In general for new architectures, and particularly for
special-purpose applications where multiple processors cooperate in performing a
computation, initial modeling of relevant functional behavior significantly increases

confidence that a performance model is meaningful.

The effort involved in a performance study using Graph Model tools is considerably

less than would be required for construction of a simulation model using a general pur-

19

pose simulation language. We estimate that a study comparable in complexity to the
one we have described would take 2-4 weeks for an experienced analyst to design and
devlop the performance model, including resolution of ambiguities in the design
specification, two weeks to debug and enhance the model, and 2-4 weeks to run experi-

ments on the model, depending on the results.

The level at which customers in the distributed system are modeled, and the char-
acterization of customers for purposes of routing and service demands are the key
decisions to be made during the performance model design. Using the Graph Model,
the performance analyst is presented with essentially unlimited options for these deci-
sions. Explicit representation of customer characteristics for routing and service
demands, is favorable for accurately modeling unfamiliar system behavior. Stochastic
characterization of customer behavior is favorable for simplifying the performance
model, and is preferred whenever the probability distributions can be estimated with

confidence.

A model, such as the one described in this paper, which contains explicit represen-
tation of complex behavior, can be used to validate analytic results, or to guide in con-
structing simpler analytic models for further study. The model can also be used to
study performance trade-ofis more quickly and easily than is possible in detailed func-
tional models. If extensive performance results indicate the architecture is reason-
able, a more detailed functional model can be used to study the correctness of the logi-
cal design. In the case of the proposed ring architecture, this would involve more

detailed study of the custom i/o processor algorithm, and the design of the FIFOs.

As is the case in any modeling study, several ambiguities in the design
specification we uncovered and resolved during the modeling process, and significant
insight into the structure and behavior of the proposed design was gained during model
evaluation. The characterization of functional program behavior required to abstract

essential performance features, provides an initial step for future study.

20

References

[BacJ78]
Backus, J., "Can Programming Be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebra of Programs”, CACH, Volume 21, No. 8, August 1978,
pages 613-641.

[PatD80]
Patel, D.R., "A System Organization for Applicative Programming”, Report No.
CSD-810302, Computer Science Department, University of California, Los Angeles,
March 1981,

[GriD80]
Grit, D. H. and R. L. Page, "Performance of a Multiprocessor for Applicative Pro-
grams', Proc. of Performance 80, pages 181-189, 1980.

[GurJ83]
Gurd, J. and 1. Watson, "Preliminary Evaluation of a Prototype Dataflow Computer”,
Proc. of IFIP Congress, Paris, September 1983, pages 545-551.

[TreP82]
Treleaven, P. C., D. R. Brownbridge, and R. P. Hopkins, "Data-Driven and Demand-
Driven Computer Architecture”, ACM Computing Surveys, Volume 14, No. 1, March
1982, p. 93.

[VerM83a]
Vernon, M., "Performance Evaluation of Asynchronous Concurrent Systems: The
UCLA Graph Model of Behavior”, The 9th International Symposium on Compuler
Performance Modelling, Measurement, and Fualuation, College Park, Maryland,
May 25-27, 1983.

[VerM83b]
Vernon, M., Performance-Oriented Design of Distributed Systems, Technical
Report, UCLA Computer Science Dept., in publication.

[VerM83c]
Vernon, M., "GMB Simulator System Reference Manual", Computer Science Depart-
ment, University of California, Los Angeles, California, December 198%.

21

