The Charlotte Distributed Operating System
Part IV of the First Report on
The Crystal Project

Raphael Finkel

Marvin Solomon

David DeWitt

Lawrence Landweber

CONTENTS

1. Introduction to Crystalcoccoiviiiiiiiiiiiii
1.1, SOFLWATYE ODVEIVIEW .ovvvvvtnrrrieeiiiiinii s s e s e r s s a st e b
1.2. Phases of the projectcooooooiiii
1.3. This report U PP

2. Inter-process communication PP
2.1, AQAIeSSING ooovveverrrriiiiiiiiiii e e

2.1.1. Enclosed lHNKS o e e
2.1.2, MECHATISITIS torvviiirrirriteertrriserirrcrriersesisrer b re s tsaarttassne st enasse e sessaise
L IR M= U o1 << R PO PP PRIT
2. 1.4 Half LIS oo vt er ettt e er e st et e e e
2.1.5. Link destrUuCtion .vivrvieeri e r s v e
2.2, COIMITIUIUCALION. 11t itiirrieer st ereit e et re e re st sy e est s e s e rbaea et e baersas
2.2. 1. PrOCESS VIEW tivvvrirerrrerneiren it arrren et ttiistsrest r s v aas e aeae e e s ssens
2.2.2. SpeCifiCatiONSoooiiiiiiiiiiiiirie i e
2.2.2. 1. SEIA oottt e e e
2.2, 2.2, RECEBIVE . iiiiii ittt ettt e e

PR 3 2R T N R O P PP
2.2.2.4 CaANCEL .oviiiiniiiiiiri et e e
R.R.2.5. DESIIOY v e
2.2, DISCUSSIOIL tirtiiieiirii s er sttt e e
2.2.3.1. Selective RECEIVE ...cvvvvrviieeeerieiiin e e

29232 Tivant NOUITICAtION vttt et vra s aernens

10

11

12

12

13

13

13

2.2.3.3. Receive on ALL.LINKScoovvninns et e

2.2.3.4. Multiple actionsooovviiiiiiiiinii

2923 5. Transaction Identifiersocvvreiioriiiie e e

2 JD T W T T x o) Al 2=y 01 X ST O PS TSP o)

2.3. Implementation .

...

2 3.1. Send and Receive without Link Enclosureoooovvivniciininnnnin.

2 3.2 Send and Receive with Link Enclosurecooviiiininiiiiininien

2.3.3. Cancel an outstanding sendcoooovviviiiini

2.3.4. Cancel an outstanding receiveoovivii

2.3.5. Destroy @ liNKoovivieir i

2.4. Specifications

3. Process Control

...

...

3. 1. Process enVIrONITIEIL oot ce et er e et e ee et re it e b s r e e e ee et

3.2. Termination

...

3.3. Creating PrOCESSES ...ttt et e e

3.4. Initialization and RECOVETYc.coiviiiniiiiiiiiiiiiiinrr e

...

...

...

4.1.1. Specificalionscoooiiiiiiiiiiri

4.2. High-level 1/0
H. Utilitiesocovvrvivinennnn,

5.1. The Kerndob

5.1.1. Introduction

...

...

...

...

ii

14
15
15
15
16
18
18
18
19
19
20
22
22
23
23
23
23
25
25
26
26
28
28

28

5.1.2.

5.1.3.

5.1.4.

5.2. The

5.2.1.

5.2.2.

5.2.3.

5.2.4.

5.3. The

5.3.1.

5.3.2.

5.3.3.

5.3.4.

5.3.5.

5.4. The

5.4.1.

5.4.2.

5.4.3.

5.4.4.

KT OB ST VICES ovovenenrtiie et ee i esis it st rea s ie e e i ae e rbe e s s

Using the KernJob ...cc...oooviiiiiinniiiii i

Miscellaneousc....es e e e e

Starter ...

...

Introduction T P

L AT LY SEIVICES vrrvvvreisentrirerirererseeseennrsirassrstiasrashvaetstertiaiersiersisistaresns

Using the Starter ...

Initialization aNd FECOVETY . vveviriiiiirii i

N S LRl aY o o s Vo s RTUTUU P S P P PRI

Using the Switchboardcooiivviiiiii i

The Register ReqUEStcooviviiiiiii

The Locate ReQUEStooooririiiiiiii

MISCEILATIEOUS .oviiivviereirrreeeeirer st s ettt e e an s s s et et e st

Discussion

Fileserver

..

...

[atR o S LU eI AT « R TTE TR VST PSPPI

LIRS e -1 R UT TSP P P P T

Proposed Implementation ...

Client-Fileserver INLerTace ...oovvvvrirvriiiriieiie et is rirvt et e en e

5.5. The Termminal D ivVer oo st e e

5.6. The

5.6.1.

5.6.2.

5.6.3.

Connector

..

[T e B o AV eI AR e) « NRUDTUTTT TSP TR T

Structure of the connector description file ..o

Constants

il

28

29

31

31

31

32

33

34

34

35

36

37

38

39

40

40

41

42

42

i3

45

45

5.6.4. Processes
5.8.5. Linkupc..oenn
5.6.6. Link Specifier

5.6.7. Special link names

..

..

..

...

5.7. The Command INLErpPreterooooviiiiiiiiriri e

5.7.1. Directory COmIMANnASccoovvririirirneeeniiiiniiii e

5.7.2. History Commands

6. Initialization and Recovery

..

..

iv

45

48

47

48

49

49

50

B0

1. Introduction to Crystal

The University of Wisconsin Crystal project was funded starting in 1981 by the
National Science Foundation Experimental Computer Science Program to construct a
multicomputer with a large number of substantial processing nodes. The original pro-
posal called for the nodes to be interconnected using broadband, frequency-agile local
network interfaces. Each node was to be a high performance 32 bit computer with a
approximately 1 megabyte of memory and floating-point hardware. The total com-

munications bandwidth was expected to be approximately 100 Mbits/ second.

During the first year of the project, these specifications have been refined. We
have decided to buy approximately 40 node machines, each a VAX-11/750. The inter-
connection hardware will be the Proteon ProNet. Currently, the ProNet is available in
a 10 Mbits/second version. We have contracted with Proteon to increase the effective

bandwidth to 80 MBits/second.

1.1. Software Overview

The purpose of this hardware is to promote research in distributed algorithms for

a wide variety of applications. In order to provide different applications simultaneous

access to the network hardware, we have designed a software package called the nug-
get that resides on each node. In brief, the nugget provides the following facilities:

1. The nugget enforces allocation of the network among different applications

by virtualizing communications within partitions of the network. These

partitions are established interactively through a host machine.

2. _ Backing store is shared among the nodes by nugget facilities to virtualize
disks.
3. Interaction between the user and individual machines is provided by the

nugget facility of virtual terrninals.

2

4. Initial loading, control, and debugging of programs on node machine's is

controlled by nugget software.

The Charlotte operating system is designed to provide standard interactive

operating system support within a Crystal partition. The Charlotte kernel provides

1. multiprocessing
2. sophisticated and powerful inter-process communication
3. mechanisms for scheduling, store allocation, and migration.

All policies in Charlotte are concentrated in utilily processes. They are designed so
that each such process controls a policy on its own set of machines. The set may
range in size from one machine to the entire partition. The processes that control the
same resource on different machine sets communicate with each other to achieve glo-
bal policy decisions. The utilities that have been designed so far include a switch-
board, a program starter (which manages memory), and the file server. In addition,

there are non-policy utilities for command interpretation and program connection.

We expect that Crystal will be used for a wide range of applications. Currently
research is underway in distributed operating systems, programming languages for
distributed systemns, tools for debugging distributed systems, multiprocessor database
machines, parallel algorithms for math programming, numerical analysis and com-

puter vision, and evaluating alternative protocols for high performance local network

communications.

All Crystal software is being written in a local extension to Modula. Our compiler,
which runs on a VAX running Berkeley 4.1 Unix, employs syntactic error correction
through the FMQ algorithm and is quite fast. The code it generates compares well with

that produced by the C compiler.

1.2. Phases of the project

The first phase of the project was dedicated to defining both the hardware and the
software. This phase ended in December 1982. Decisions were reached concerning
both the node machines and the interconnection devices. The node machine decision
was difficult. We had to balance our concerns for reliability, availability, speed, and
cost. The maéhjne we chose, the VAX-11/750, although not as fast as others we investi-
gated, had the advantage of being a known architecture for which our Modula compiler
already generates code. The Proteon network is currently available. We have been
using this network to interconnect our Unix VAX machines and have found it to be

extremely reliable.

During the first phase, the nugget was specified and a prototype implementation
was completed on a network of eight Digital Equipment PDP-11 /23 computers con-
nected by the Megalink CSMA broadband network manufactured by Computrol. Char-

lotte was also specified and the kernel debugged on this network.

The second phase of the project has just gotten underway. We are finalizing the
nugget specifications, which changed in minor ways when we decided that the node
machines would be VAXen. The nuggetmaster, which controls the partitions, has also
been specified. Charlotte is undergoing debugging of the utility processes. During this
phase, which lasts until July 1984, we will transfer the nugget and Charlotte to the
node machines and modify them as necessary for the ProNet. Charlotte will be
modified to fit with the nugget. (Until now, they have been developed independently.)
The utility processes will be supplemented with login and authentication processes,
and the file system will be converted to use Crystal disks instead of a file systermn on

the host machine. We plan to have a production, stable operating system by the end of

this phase.

The third phase of the project will see large-scale applications actively pursued.
Some of this work will start during the second phase. We also expect to re-evaluate
the hardware decisions at some point during this phase. There is some reason to
expect that frequency-agile modems will be available that will make communication
within each partition truly independent of communication within other partitions.
Each partition will be able to use its own set of frequencies; Work with optical fiber
technology for computer interconnection is also underway at various laboratories
around the country. Within five years, impressive bandwidths should be available,
reaching into the gigabit/second range. We will continue to monitor progress in this

area.

1.3. This report

The purpose of this report is to describe the current state of the design and
implementation of the Crystal project. It is intended for readers who have no familiar-
ity with Crystal and wish to see the design decisions that have been made. It is also
intended for implementers who need a coherent and reasonably complete
~ specification in order to interface various parts of the project. This dual readership
requires us to repeat ideas, first presenting them in an overview fashion, and then div-
ing into tedious details. We urge the reader to skip over those parts of the document

that are not at the right level of detail. This report is divided into several documents.

This document describes the Charlotte distributed operating system. It is a
direct descendent of the Arachne distributed operating system, which has been dis-

cussed elsewhere .

! R, A. Finkel and M. H. Solomon, The Arachne Kernel, Version 1.2, University of Wisconsin—Madison
Computer Sciences Technical Report 380, April 1980; R. A. Finkel and M. H. Solomon, The drachne Disiributed
Operating Systern, University of Wisconsin--Madison Computer Sciences Technical Report 439, July 1981; R. A.
Finkel, M. H. Solomon, and R. Tischler, Arachne User Guide, Version 1.2, University of Wisconsin Mathematics
Research Center Technical Summary Report 2088, April 1880,

An identical copy of the Charlotte kernel resides on every machine in a partition.
The kernel provides a limited number of low-level services. These services can be
categorized as inter-process communication, process control, and input-output. A sin-
gle kernel supports all the processes on its machine. Processes request services by
submitting kernel calls, which appear much like subroutine calls to a process written
in Modula. Some of these processes represent resource allocation policy modules, and
should therefore be counted as part of the operating system. We call these modules

utilily processes,

This paper discusses the current design of Charlotte. The kernel for Charlotte
has been completely designed. Other parts are still under development. A prototype
implementation (based on a closely related, but different design) has been developed
and is running on the PDP-11 network, and the current design is currently being
debugged on the VAX-11 network, Many utility processes have been defined. Most have
been implemented and are being debugged. Al Charlotte software is written in
Modula, except for startup code written in assembler and some of the interprocess

communication code written in C.

2. Inter-process communication

Charlotte provides a unique form of inter-process communication that combines
the addressing features of capabilities and the transmission facilities of message-
based communication. We will discuss these aspects separately. The kernel calls
associated with inter-process communication are summarized at the end of this sec-

tion.

2.1. Addressing

A link is a connection between two processes, each of which has a capability to

one end of the link. Processes therefore address each other by presenting these capa-

bilities, which are represénted by local names called link identifiers. Link identifiers
are assigned by the kernel when the link is formed. (When we speak of "the kernel”,
we include the case in which the two ends are on separate machines, each governed by
its own kernel.) Information about the name of and route to the process at the other

end of the link is stored by the kernel for both ends.

The following picture shows three processes and two links. Links are represented

by boxes.
Process A - Process B
Link #9 ----------]| [-==cemmmmm Link #23
- Link #2
|
Process C -
Link #10 ------- |

Process A uses the link identifier 9 for the same link that process B calls link 23.

Every kernel maintains a link table on behalf of all the processes on that
machine. The link identifiers used by the processes are treated as indices into the
table by the kernel. Each entry in the table indicates the machine, process, and link
number of both the local and the remote end of the link. Information about both ends
is enclosed in each message sent on the link. The receiving kernel uses this informa-

tion to associate the message with a particular process and link.

2.1.1. Enclosed links

A process may give its end of a link away by enclosing it in a message. If process

B gives away its link 2 in a message sent on link 23, the resuit is:

Process A - Process B
Link #9 ----------- | | ===mmmem-- Link #23
Lirllk #7 ---

.- Process C

I EEEEEEEEEEEE Link #10

Process A not only receives a message from B, it also gets é new link, to which we have
arbitrarily assigned link identifier 7. Process C is not aware that the other end of its
link 10 has moved. Therefore, the meaning of link 10 has changed for C, and A has

acquired a new link.

2.1.2. Mechanisms

We will briefly discuss the implementation of link enclosure. We ignore details of
message passing, which are discussed later. For clarity, we will distinguish between

processes, like A and B, and their kernels, K(A) and K(B).

Assume that B sends its link 2 (which connects with C) to A along link 23, as
described above. K(B) describes this link in a message to K(A) and marks link 2 as "in
transit”. K(A) tentatively installs the link in its link table, say as link 7. K(A) sends an
update message along the new link, number 7, to inform K(C) about the new location of
the moved end of the link. K(C) uses this information to update its tables and sends
an acknowledgement back to K(A). K(A) then marks the new link (number 7) as truly
present and informs K(B) that the enclosure was successful. When K{(B) hears this
assurance, it removes link 2 altogether. On the other hand, if K(A) fails to get ack-
nowledgement from K(C), then it rejects this new link (and B's message that came with
it) and tells K(B) about the failure. K(B) then it marks link 2 as "usable” again and

informs B that the message failed.

A difficult case arises if B and C are connected by a link, as before, but at the
same time B tries to give this link to A, C tries to give its end of the link to D. The
update messages sent by K(A) and K(D) are treated differently by C and B, respec-
tively. The order of machine numbers C and B is used by both to allow one to accept

and the other to reject to attemmpt to update.

2.1.3. New links

In order to introduce two colleagues A and B together, a third process C can form
a link and hold both ends. C can then give one end of this link to A and the other to B.

The Makelink kernel call constructs a new link with the caller holding both ends.

2.1.4. Half links

One process on each machine, the kernjob, is allowed to construct links to the
kernjob on any other machine. The Kernlink kernel call provides this service. Such
links are required during initialization (discussed later). Messages sent along these
links are received on link 0; they cannot be used for responses from the remote end.

These links are therefore called half links, since only one end is normal.

2.1.5. Link destruction

A process may delete a link in which it is no longer interested by submitting a
DestroyLink request to the kernel. After this action, no new Send or Receive requests
are allowed on the link. Any request that is pending is cancelled. This subject is dis-

cussed in greater detail below.

2.2. Communication
Process-level cornmunication is

(1) non-blocking: A process can generally continue executing while the kernel is

transmitting a message on its behalf,

(2) unbuffered: A message is not transmitted until the receiver has provided a place

to put it, and
(3) synchronous: Processes are not interrupted by the arrival of messages.

The unit of communication is a message, which is a package of information of any

length up to some defined maximum (about 2K bytes). Messages are assumed to have

no internal structure. A buffer is an area in the memory of a process that contains or
is expected to receive a message. A message is sent from a sending process (or simply
sender) by submitting a request to the sending kernel. It is received by the receiving
process (or receiver) with the help of the receiving kernel. In order to transmit mes-
sages, kernels exchange packets. A packet contains zero or one messages as well as
additional information. We present | the sending and receiving kernels as distinet,

although obvious optimizations are possible if they are the same.

2.2.1. Process view

The sender initiates a transmission with the Send kernel call, in which it supplies
a buffer of data to the sending kernel. The receiver indicates willingness to receive a
message using the Receive kernel call, in which it supplies a buffer to the receiving
kernel. After a matching Send and FReceive have been executed, the kernels
cooperate to transmit the data and return the results to the processes if they are

waiting for it, or store it for later Wait.

Completion of a Send or Receive operation is called an event. A process tests for
an event by executing a Wait kernel call, which delays the process until at least one
event has occurred and returns an indication of an event. A Send or Receive together

with the matching completion event is called a fransaction.

2.2.2. Specifications

All kernel calls are shown in detail at the end of Section 2.

2.2.2.1. Send

The Send kernel call specifies a link identifier and a buffer. (It also specifies an
enclosed link, if any, but we will ignore this aspect of communications here.) It
returns either the link identifier or a negative error code. (The return value, which-

ever it is, may be used immediately as an argument to Wait, described below.) Send

10

initiates a transfer of data from the indicated buffer along the indicated link. The
send, transaction remains in progress until its completion event is indicated by the
Wait call (see below). It is ill-advised to change the contents of the buffer before the
transaction completes. It is an error to issue a send over a link on which a Send is still

in progress.

Errors are indicated as part of the completion event. Some errors (such as
invalid arguments) cause an immediate completion. The value returned from Send
will be an error code. Others (such as remote process dead) may not be signaled for a
while. The errors include use of a destroyed link, enclosing a destroyed link, and

enclosing a link on which a Send is outstanding.

2.2.2.2. Receive

The Receive call specifies a link and a buffer. The link may be the gpecial form
ALL_LINKS. This call also returns the link number or an error number. Receive allows
a message to be received on the indicated link (or any link) and placed in the buffer.
If the buffer is not large enough to hold the entire message, only the head of the mes-
sage is placed in the buffer, the tail is lost, and the completion events for both the
Receive and the matching Send transactions indicate the fact that fewer bytes than

expected were transferred.

The receive remains pending until its completion event is indicated by the Wait
call (see below). It is ill-advised to read or modify the buffer until the transaction
completes. It is an error if the indicated link currently has a Receive pending.
Receive on ALL_LINKS precludes any simultaneous RFeceive on individual links, includ-
ing Receive calls that have completed but have not yet been reported to the process
through a Wait call. Errors (including errors in the syntax or arguments of the

Receive call) are indicated in the completion event.

11

If a Receive on AlLLINKS is matched by several Sends (which may have been
issued long before the Keceive was requested), only one of them will get through and
the others will remain pending. The Receive is satisfied by the arrival of one message.
The Send selected will not necessarily be the first one signaled to the receiving kernel

(see Implementation below).

It is illegal to have more than one Receive pending on the same link. In particu-
lar, a Receive on ALL LINKS must not be pending at the same time as any other

Receive,

2.2.2.3. Wait

The Wait call delays the calling process until an event occurs. The caller may
either specify the link on which the event is expected, in which case Wait only returns
when this event happens, or may specify ALL LINKS, in which case an event on any link
is reported. In addition, the caller indicates whether incoming, outgoing, or both
kinds of messages are to be signaled. For examnple, it is possible to await the comple-
tion of an outgoing message (that is, a Send) on link #7. The event returned is a com-
bination of a link identifier, a completion code, direction (Send or Receive), and an

enclosed link numnber, if any.

If the link is one of the error codes returned by Send or Receive, then Wail
returns an error. This feature allows Wait to take Send or Receive as its argument. If
there is no transaction pending in the given direction on the link (all transactions that
have been started have already been signalled through other calls to Wait), then Wait

returns an error.

If an event has already occurred when Wait is called, the call returns immediately
(subject to scheduling delays). If more than one event is pending, only one is indi-
cated. The completion code is an enumeration type, one of whose values is Success.

Other values indicate abnormal situations such as invalid arguments on the

12

corresponding Send or Receive, a Receive with too small a buffer, a destroyed link, or
a broken kernel. In addition, the event indicates the number of bytes received by a

Receive call,

3922 4 Cancel

The Cancel call takes a link number and a direction. A FReceive on AILLINKS is
Cancelled by specifying ALL_LINKS as the link number. The direction specifies that the
Send or Receive transaction is to be cancelled on that link if possible. Cancel returns
either success or failure. Failure occurs if the operation has progressed beyond the
point where the kernel can stop it. This call blocks the process until the kernel is able

to report success or failure.

If there is a Receive on ALL LINKS pending, and a Send on some link is Cancelled,
then that latter link is added to the list of links to which the Receive applies. 1f a Send
with an enclosed link is cancelled before a Receive on ALL_LINKS completes, the previ-

ously enclosed link is added to the list of links to which the Receive applies.

2.2.2.5. Destroy

The Destroy call desiroys a link. This call is legal even if a Send or Keceive is
pending on that link. No notification will be provided of the success or failure of such
operations if the link is destroyed. If a Send or Receive had already cornpleted, but
the event had not been noticed yet, pbecause no Wait had been submitted, the event is
lost. Destroy always succeeds, but it blocks the process until the kernel can complete

its work. Further Send and Receive operations on this link are not allowed.

As a side-effect of destroying a link, the kernel causes a message to be sent on
that link to the remote end, indicating that the link has been destroyed. This message
causes any Send or Receive pending on the remote end to terminate with completion

code "link destroyed". The process at the remote end must explicitly Destroy its end

13

of the link as well before the kernel will discard it; until then, all operations on- the link
fail with the completion code "link destroyed”. As a special case, a link that is being
used to Send or Receive an enclosed link cannot be destroyed until that Send or

Receive completes. A process attempting to destroy the link will block until then.

2.2.3. Discussion

We pause here to discuss some of the design decisions in the above specifications.

22.3.1. Selective Receive

We restrict Receive to specify a single link or ALL LINKS. Alternatively, we could
allow Receive to specify a set of links. The process may consider a set of links to be
equivalent in the sense that messages arriving on any of them are expected to need
the same size buffer and require the same sort of processing. A receiver can econorr-
ize on buffer space by tying one buffer to all of the links and processing incoming mes-
sages from any of the links first-come-first-served. However, this buffer is in danger of

being overwritten by receipt of new messages while an old one is being processed.

However, such intermediate levels of selectivity are less important here than in
other proposals. A separate Receive request may be started for each link of interest,
and one Wait will report the one that succeeds. To avoid selecting a particular link, it

is enough to avoid submitting a Receive request for it.

2 2.3.2. Event Notification

Processes can be notified of events in several alternative ways. The concept of
events as specified above allows asynchronous notification to be added as a fairly
natural extension: A procedure could be bound to a link identifier. When a transac-

“tion on that link completes, the procedure is called with arguments much like those

returned from Wuit.

14

It might also be useful to allow a process to test for a given event without waiting
for it. To make such a facility truly useful, however, there also has to be a way for the
process to remove the event from the queue of pending events, either by the conven-
tion that a "true" return from a 'test event" call removes the pending status, or by
another kernel call to remove that status explicitly. More generally, we could provide

all sorts of facilities for examining and rearranging the queue of pending events.

The Wait kernel call waits indefinitely for an event to occur. The opposite
extreme (wait no time) reduces to the "test event” call discussed above. The problem
with a "wait with timeout” call is that a simple-minded process has no idea what a rea-
sonable timeout should be. Timeouts are not necessary to guard against being
blocked by a Send to a dead process, since such requests terminate with an error indi-
cation. If the target is not dead but looping, the target is simply reflecting that "cata-
tonic" behavior back to the requester. Ultimately, there is some sophisticated pro-
cess {possibly a human waiting at a terminal) tha;t loses patience and kills the entire

chain.

A sophisticated process, on the other hand, can use a link to an "alarm clock”
server. It sends a timeout request over the link and posts a receive on it. An ordinary

blocking Wait on ALL LINKS is then guaranteed to return after a fixed maximum limit.

2.2.3.3. Receive on ALL_LINKS

Receive on ALL_LINKS precludes any simultaneous Feceive on individual links.
We have not encountered situations where we need both a general and a specific
receive at the same time. The implementation of Receive becomes complicated if we
allow both at once. First, a message that has been received on AILLINKS but not yet
discovered by the process via Wait must be copied into another buffer if the process
subsequently tries to Receive on the link over which the message arrived. Second, if a

specific Receive is issued in the middle of negotiations between kernels concerning a

15

message that satisfles a general Receive, decisions have to be changed. Third, it can
be clurnsy for the process to discover which of two Receive requests completed so that
a new Receive request can be generated. For these reasons, we have chosen to prohi-

bit such simultaneous requests.

2.2.3.4. Multiple actions

A second Send or Receive on a link could be treated as a Wait followed by the
Send or Receive. This interpretation reduces the number of kernel calls necessary in
many cases. A process that knows a Send has completed because a matching Feceive
has finished need not Wait for that Send. A producer can alternate send buffers

without fear of overwriting:

loop
fill buffer 1 (* buffer 1 is certainly not undergoing Send *)
send buffer 1
fill buffer 2 (* buffer 2 is certainly not undergoing Send *)
send buffer 2

endloop

A consumer can use similar code.

2.2.3.5. Transaction identifiers

Sending two messages simultaneously over the same link would cause no problem
of disambiguation if each transaction were given a unique identifier. We have decided
not to use this technique, however, since it is not clear how important such uses would

be, nor whether they are worth the extra kernel cost of managing transaction

numbers,

2.2.3.6. Frror Events

Some errors, such as communications failures or dead processes can only be sig-
naled to a process after a delay and are thus best indicated as a particular kind of

"completion event”. Other errors, such as invalid arguments to Send or Keceive, are

18

indicated immediately by returning a special link identifier. If the process wishes, this
number can be checked immediately. If not, the process will discover the failure the

first time it executes Wail.

Providing a receive buffer that is too small to accept an incoming message is not
necessarily a programming error. Both the sender and the receiver will be notified of
this situation as part of the completion event. It is the responsibility of higher level
protocols to use this information. A fixed but generous upper bound on message size
allows naive processes to avoid worrying about this problem. On the other hand, this
is another argument in favor of allowing Feceive to specify a set of links, since é pro-

cess may be expecting small messages on some links and large ones on others.

When a link is destroyed, then all transactions (whether to Receive or Send) on
both sides of the link are aborted, with notification in the completion event. On the
other hand, transactions that have already completed but have not yet been awaited
are unaffected. The process that did not instigate the link destruction is notified
either by a Wait that reports an aborted transaction or by trying a new transaction
and discovering then that the link has been destroyed. The link is not destroyed on

this end until the process explicitly destroys it.

2.3. Implementation

The interprocess communication described above is implemented by means of a
finite-state automaton for each link. These automata are packaged together in one
program that accepts packets for any link and modifies the state of the appropriate
automaton, possibly emitting packets as well. A message sent between two processes
generates a number of such packets. It is assumed that the underlying nugget

delivers these packets reliably.

In order to explain the algorithm used for communication, we will present some

increasingly complex scenarios,

17

The following abbreviations will be used in describing packets:

L the link involved

M the enclosed (Moved) link (if any)

S the client that initiates Send

R the client that performs Receive

C the client at the other end of the enclosed link M

The following packet types are used:

REQ(L,S,R,M) a send request on link "L" from client "S" to "R"” with link "M"
enclosed

ACCEPT(L,R,S) an acknowledgement to previous send request on link "1.", indi-
cating that the data have been received

REJECT(L,R,S) a negative acknowledgement to previous send request on link
"1, the enclosed link could not be moved.

NEED_DATA(L,R.S) an acknowledgement to the previous send request on link
"1 asking "S" to send the data again.

DATA(L.S,R) the re-transmission of the sender after the receiver made a
"NEED.DATA" request.

CANCEL(L,S,R) the sender wants to cancel the previous send request.

CANCEL_OK(L,R.S) the cancel is granted by the receiver side.

DESTROY(L,S,R) a request to destroy the link.

DESTROY_OK(L,S.R) an acknowledgement to the request to destroy.

UPDATE(M,R,C) a request to move the other end of the link to a new client.

.UPDATEL_OK(M,C.R) an acknowledgement to the request to move a link.

UPDATE_FAIL(M,C,R) a negative acknowledgement to the request to move a
link.

18

RETRY(L,R,S) the receiver asks the sender to resend the data and request
again after the sender is informed of the new link address, which is

about to change, since the receiver is moving its end of the link.

2 3 1. Send and Receive without Link Enclosure

Case I: B's client has performed Receive in time.

A-->B REQ(L,NOLINK) A sends request and datato B
A<--B ACCEPT(L) B accepts the data

case I B's client performs Receive after the Send.

A-->B REQ(L,NOLINK) A sends request and data to B
A<--B NEED_DATA(L) B needs A to resend the data again
A-->B DATA(L) A resends the data

213 2 Send and Receive with link Enclosure

link M is between client A and client C,
case I: no outstanding send from Cto A

A-->B REQ(L.M) A sends request, data, enclosure to B
B-->C UPDATE(M) B needs C's permission
B<--C UPDATE_OK(M) C permits B
A<~—B ACCEPT(L) B acknowledges both data and link
case II: interfering send request from C to A on link M
A-->B REQ(L,M) A sends request, data, enclosure to B
AL—mmmm C REQ(M,NOLINK) C sends request, datato A
B->C UPDATE(M) B needs C's permission
A——>C RETRY(M) C should retry send request latter
B<--C UPDATE_OK(M) C now allows update
A<--B ACCEPT(L) B is happy

B<-C RQ(M.NOLINK) C repeats request, now to B

2.3.3. Cancel an outstanding send

case I: client B has not done Feceive, so cancel is fine.

A-->B REQ(L)

A-->B CANCEL(L) cancel the previous send request
A<-B CANCEL_OK(L)

case II: B has already accepted the data, so cancel fails

A-->B REQ(L)

A-->B CANCEL(L) cancel the previous send request

A<-B ACCEPT(L) cancel fails

19

" case III: client B had not done a Receive

A—->B REQ(L)
A-->B CANCEL(L) cancel the previous send request
A<--B NEED.DATA(L) client B asks to resend the data

cancel succeeds

case [V: Brejects the Send request, so cancel succeeds.

A-->B REQ(L)

A-->B CANCEL(L) cancel the previous send request
A<--B REJECT(L)

case V: B had enclosed L elsewhere, so A is told to retry.

A-->B REQ(L)

A->B CANCEI(L) cancel the previous send request
A<--B RETRY(L) cancel succeeds

2.3.4. Cancel an outstanding receive

No packet is generated for canceling a receive request. The cancel will fail when a
send request from the sender has arrived and the receiver has committed this tran-
saction by either sending "accept’ or "need data” to the sender’'s kernel. The sender
may still ask to cancel the transaction even after the receiver sends out '"need data”
message, so cancelling a Feceive can succeed even after the receiving kernel has com-

mitted the transaction.

2.3.5. Destroy alink

case [: no oulstanding send/receive
A-->B DESTROY(L) A destroys link to B
A<--B DESTROY_OK(L) B grants the destroy request

case II: A is receiving a link from B across link I, and A has sent out "UPDATE"
to C. A is now waiting for a reply from C. In this case, A wails until the receive
transaction completes to issue the DESTROY request.

case III: the other end of link L is moving

B-->C REQ(U,L) B wants to move link L(A<-->B) to C
A-->B DESTROY(L) A wants to destroy link L
B-->C CANCEL(U) B must cancel previous send request

This CANCEL will always succeed: Even if C has a matching receive and is going
to update information on A, C will get "UPDATE_FAIL" since link L is half des-
troyed by A. After cancel succeeds:

A<--B DESTROY_OK(L) allows A to destroy link.

20

case IV: both sides want to destfoy alink

A-->B
A<--B

DESTROY(L) A wants to destroy link L
DESTROY(L) B wants to destroy link L also

2.4. Specifications The specification of kernel calls and associated data structures is

stored in the file "syscalls.u.h” in the "sre/include” directory of Charlotte. We give an

excerpt of that file here. The actual declarations are subject to change; any program

using these calls should include that file.

const

type

(* Values returned from kernel calls. Some of these are also
used as completion codes for transactions. *)

SUCCESS = 0

FAILURE = -1;

UNDEF_USER = -2; (* Specified user does not exist. *)
UNDEF_LINK = -3: (* Specified link does not exist. *)
RECBUFUNFLOW = -6; (* Receive buffer too small *)
KERNELDOWN = -7; (* Not getting response from other kernel *)

BADENCLOSURE = -8; (* Enclosed link involved in pending Send
or Receive, or not accepted by remote end (other end of the
link may have been in motion as well). *)

(* Maximum size (in bytes) of the Contents fleld of a DATA message. *)
MESSAGEMAX = 2000,

(* Predefined link numbers. *)
NOLINK = -1; (* Used to specify no link. *)
ALL LINKS = -2; (* Used to specify all active links. *)

ReturnCode = integer; (* Return codes from system calls. *)
CompletionCode = integer; (* completion code for transaction *)
Linkld = midint ; (* Link numbers. *)

Rl

*
* Fivents returned from the Wait call.

*
) Direction = (Sent, Received, All);
Event =
record

transaction : Linkld;
direction : Direction;
code : CompletionCode; (* completion code *)
length . integer; (* bytes *)

enclosure : Linkld,;
end,

procedure Send (
Ink : LinkID;
msg : integer; (* virtual address of data buffer *)
size : integer; (* in bytes *)
enclosure : LinkID;
) : ReturnCode;

procedure Receive (
Ink : LinkID;
msg : integer; (* virtual address of data buffer *)
size : integer; (* in bytes *)
) : ReturnCode;

procedure Wait(
Ink : LinkID;
direct : Direction;
var Result : Event
) : ReturnCode;

procedure LinkDestroy (
Ink : LinkID
) : ReturnCode;

procedure MakeLink (
var Ink1, Ink2 : LinkID

procedure KernLink (
machno : MachinelD
) © LinkID;

22

procedure Cancel (
Ink : LinkID
direct : Direction;
) : ReturnCode;

3. Process Control

Processes under Charlotte do not share memory. However, the Kerndob process
has special calls available for examining and depositing in the memory of processes on
its machine, and the KernJob makes these facilities available to holders of "control”

links. (These facilities are detailed in the KernJob docurnentation below.)

The kernel uses round-robin scheduling among active processes, with a fixed
quantum (currently 3/60 second). The holder of a control link can deactivate a pro-

cess as part of a long-term scheduling policy.

We will first discuss the process environment, ways a process can influence this

environment, and how new processes can be created.

3.1. Process environment

Charlotte provides each process with a virtual address space. Charlotte may
decide to page this space (at present it does not); such treatment is invisible to
processes. The virtual address space is composed of one region for text, initialized

data, and uninitialized data, and a second region for the stack.

The Starter utility (described later) assumes that processes are described by
Object Modules in the form used by Berkeley Unix Version 4.1. When the Starter loads

a process, it allocates sufficient room for the combined text, data, and bss areas.

There is presently no way a process can request more space.

23

3.2. Termination

A process ceases execution by executing the Terminate kernel call. Any link
owned by the process is destroyed. The KernJob on the machine where this process
lived is notified and may take action, in particular, to destroy any control link for the

process,

3.3. Creating processes

New processes are constructed by the KernJob through the restricted MakePFro-
cess call, which returns a process identifier that can later be used to control the pro-
cess. The Starter process, which manages memory, asks the KernJob on the appropri-
ate machine to execute MakeProcess on its behalf. Arguments to MakeProcess
describe the memory requirements of the new process: where it starts in physical

store and how long it is.

3.4. Initialization and Recovery

The GetMemoryMap kernel call is used by the Kernlob to discover the initial
arrangement of memory and then is given to the Starter so it can assume its responsi-

bility of managing this resource.

In order to provide for reconstruction after partial network failure, a KernJob can

derive information for every process in the machine to give to the Starter by using the

GetProcessDesc kernel call.

3.5. Specifications

24

type
Pageld = integer; (* Physical page frame numbers. *)
UsrAddr = integer;
Machineld = integer;
Procld = integer;

*

* Record type returned by the GetMemoryMap kernel call. This
* structure describes the physical memory available for user

* processes.

*)
MemoryMap =
record
MachineNumber : MachinelD;
FreeMemStart : Pageld
FreeMemSize :integer; (* blocks *)
end,

*

* Record type returned by the GetProcessDesc kernel call. This
*)structure describes the physical memory occupied by a particular process.
*
ProcessDescription =
record

Processld : integer;

Controilink : LinkID;

ImageStart : Pageld

ImageSize : integer,
StackStart : Pageld;
StackSize :integer;

end;
procedure Terminate;

procedure MakeProcess (
imagestart, stackstart : Pageld;
imagelength, stacklength : integer;
link: LinkId
) : Procld;

procedure GetMemoryMap (
var memmap : MemoryMap
) : ReturnCode;

procedure GetProcessDesc (
lastproc : integer; (* which one we have just seen; we want the next *)

var procdesc : ProcessDescription
) : ReturnCode;

25

procedure Kernlink (machno : Machineld) : LinkId;

procedure Peek (
Pld : Procld;
startloc : UsrAddr;
length, bufaddr (*address*) : integer
) : ReturnCode;

procedure Poke (
Pld : Procld;
startloc: UsrAddr;
length, bufaddr (*address*) : integer
} : ReturnCode;

procedure Inspire (PId : Procld) : ReturnCode;
procedure Expire (PId : Procld) : ReturnCode;
procedure Suspend (Pld : Procld) : ReturnCode;

procedure Resume (PId : Procld): ReturnCode;

4. 170

Most high-level input and output are provided by utility processes. However,
some very low-level facilities are provided by the Charlotte kernel. We will discuss

aspects of both these levels.

4 1. Lowlevel 1/0

The PutChar and Getchar routines are provided for low-level control of the console
terminal on each machine. These calls are intended to be used by the Terminal Driver
process. The PutChar call adds the character to a list of characters ready to be
printed out; the caller is blocked only if this list has overflowed, Getchar gives the

caller the next character, blocking it if necessary.

26

The kernel echoes all characters on the terminal.- If characters are typed in fas-
ter than the program is accepting them, characters that are lost are echoed by ~G

(bell).

4.1.1. Specifications

procedure PutChar (ch : char);

procedure GetChar : char;

4.2. Highdevel 170

A frequent situation that is represented by a pipe in Unix has a producer creating
information that is directed to a consumer accepting this information. These two
processes may have bursty behavior. Occasidnally the consumer may wish to modify

the behavior of the producer.

For example, the producer may be a file server for a file opened for reading. The
consumer is a process reading the file. The occasional modifications are requests to

seek to another region of the file.

In another exarnple, the producer is the Terminal Server producing lines of data
for a process reading from the terminal. Occasionally the consumer may wish to set

echoing characteristics.

The producer may be a process creating data, and the consumer may be a file
server accepting this data into a file opened for writing. In this case, there are no

messages in the reverse direction.

Interposed between the producer and the consumer may be a Buffer process,
whose duty is to even out the bursty nature of its two clients. This Buffer should

appear to the consumer to be a producer, and should appear to the producer to be a

_7

consumer. Reverse-direction messages from the consumer to the producer should

flow through the Buffer.

The semantics of Send and Receive were designed for uniform treatment of all
these producer-consumer cases. The convention that Charlotte processes are
expected (but not forced) to obey is the following: Given a link to a producer, the con-
sumer may Keceive whenever it wishes more data. It can then Wait until the data
arrive, or it may perform other duties in the meantime. There is no need to request
the next batch of data explicitly. Given a link to a consumer, the producer may Send

whenever it has more data and the previous data have been Received.

The producer should also have a Receive pending on the same link so it can
detect requests from the consumer. These requests are always composed of itwo mes-
sages. The first alerts the producer that a request is coming. The producer should
cancel the current Send, if there is one, and then Receive the second part of the
request. The request is then serviced, and the result is transmitted to the consumer
via a Send. Then the normal situation resumes, in which the producer continues to

Send as fast as it can and the consumer is willing to Receive.

In sorme cases, it is not necessary to respond explicitly to the request from a con-
sumer. For example, if the consumer wishes to seek randomly in a file, it is not neces-
sary to respond, only to properly send the next section of data from the new point in
the file. In such cases, the first Send after receipt of the second half of the request is

a normal data Send.

In other cases, the consumer has asked a gquestion that must be answered, like
"where is the current file pointer?' or "what is the current mode on the terminal?". In
these cases, the first Send after receipt of the second half of the request answers the

guestion, and further Sends revert to data.

28

If the producer and the consumer have not agreed on the proper amount of data
to be transferred with each message, the producer might send more than the consu-
mer is ready to receive. In this case, both parties are informed that the transmission
succeeded and how many bytes were transmitted. They can use this information to

adjust their buffer sizes.
5. Utilities
5.1. The KernJob

5.1.1. Introduction

One of the design decisions for the Charlotte operating system is to keep the ker-
nel, which will reside on the each node machine, efficient, concise, and easily imple-
mented. As a result, only those services essential to the entire system are included in
the kernel, such as inter-process communication and process control. All other ser-
vices are implemented through utility processes, which wait for requests coming from

client links.

The KernJob is a utility process always résident on every node. It acts arepresen-
tative on this node for programs that need special actions. In particular, the Starter
process controlling this node may reside on a different node. It uses the KernJob's
ability to make and control processes, Control links governing these created

processes are implemented by links to the KernJob and by kernel calls only allowed to

the KernJob.

5.1.2. KernJob Services

The KernJob provides services for process control, including:
1. To get the memory allocation map of the node machine: GETMEMORYMAP.

This information is needed by the Starter during initialization and during

29

failure recovery.
2. To get the existent process descriptions: GETPROCESSDESC. This informa-

tion is also needed by the Starter during initialization and during failure

recovery.
3. To make a new process: MAKEPROCESS.
4, To exercise control over the created process: PEEK, POKE, INSPIRE,

EXPIRE, STATUS, SUSPEND, and RESUME.
All these services are accomplished through the privileged kernel calls allowed only
for the KernJob. The KernJob maintains a table that associates control links with

processes.

The main client of the KernJob is the Starter, which asks the KernJob to create
new processes on behalf of its own clients. If the request succeeds, the new control
link is returned to the Starter. The Starter may, of course, transfer the link to any

other process.

The KernJob has a special "input link", predefined as link 0, that has several
unusual properties. First, it may only be used for Receive, not Send. Second, mes-
sages from the kernel arrive on the input link when processes terminate. Third, mes-
sages between KernJobs arrive on the input link. A KernJob that wishes to send a note
to another KernJob can use the kernel call "KernLink" to generate a link whose remote
end is the input link of the specified KernJob. This facility is used during initialization

and recovery.

5.1.3. Using the Kerndob

In order to use the KernJob, a client program should include the file "kernjob.h"
from the Charlotte include directory. This file contains the message format used to

communicate with the KernJob, as well as a number of useful constant declarations.

30

Messages to the Kerndob follow this record format:

KIMesg =
record
Action : shortint;
ImageStart : Pageld;
ImageSize : integer;
StackStart : Pageld,
StackSize :integer;
Msg : array 0 : MESSAGEMAX-1 of shortint;
end,

This message format is used both for receiving and sending messages between the
KernJob and the client. The Action field is used by a client process to denote the par-
ticular service it requires. The actions include MAKEPROCESS, GETMEMORYMAP, GET-
PROCESSDESC, FORWARD, PEEK, POKE, INSPIRE, EXPIRE, SUSPEND, RESUME, STATUS,
DEATH_NOTICE and NEWKERN. The Msg field is mainly used to hold the data in PEEK
and POKE requests. The ImageStart, ImageSize, StackStart, and StackSize fields are
used in GETMEMORYMAP, GETPROCESSDESC, MAKEPROCESS, PEEK and POKE requests
to specify the corresponding memory address and the size. Any links enclosed in
MAKEPROCESS and POKE are given to the affected process. Links enclosed in other
requests are discarded. Not only virtual space, but also registers may be inspected
and modified by PEEK and POKE. By convention, negative addresses refer to registers.

Requests that are out of the bounds of the affected process cause failure returns.

The KernJob answers every request it receives with a return message in the same
format as shown above. In this case, the Action field is used by the KernJob to return
SUCCESS or FAILURE. With the failure message, a error code is also returned in the

ImageSize field. The error codes include:

31

KI_UNKNOWN_REQUEST : Unknown request to Kerndob.
KIJLLEGAL LINK.USE : Illlegal request on the link.
KJ_NO_PROC_ROOM : Process or link table overflow.
KI_ILLEGAL_ACTION : Illegal request to the process.
KI_SYSCALL.FAIL : kernel call failure.

5.1.4. Miscellaneous

During initialization, only the KernJob and the primordial connector are present
on every machine, and there is a link (called INITIALLINK) between them. The primor-
dial connector acts as a starter until the real Starter can be brought up; then the pri-

mordial connector terminates.

If the KernJob should discover that its Starter is inaccessible (either because it
terminated or because its machine has failed or the network has failed), it tries to find
another Starter to take over control of this node. To find a new starter, the KernJob
generates half links to other KernJobs until it finds one with a working Starter, with
which it then links itself. The Starter squad may, of course, decide to adjust load by

giving this link to some other (surviving) Starter.
5.2. The Starter

5.2.1. Introduction

The Starter is an utility process squad that manages the creation of the new child
processes for the clients. Not every node needs a Starter, since one Starter may con-
trol more than one node. To start a process, the client must have a link to a Starter.
Such links can be obtained from the Switchboard. The clients send the request to the

Starter with a file name from which a new process is to be created.

32

A client’s Starter link will be passed around the squad of Starters in the course of
finding a good place to create a new process. The link will remain connected to the
Starter that finally performs the process creation or to the Starter that decides that

the requested process cannot be created.

5.2.2. Starter Services

The major service that the Starter provides is to start a new child process under
the request of a parent client. Clients send messages on the links to the Starter with a
file name that corresponds to an object file (in Unix a.out format). The client may also
ask for a control link for the created child process. If the Starter succeeds in starting
the child, a control link will be returned to the client. The control link allows a parent

to exercise some degree of control over its child.

To provide the services to the clients, the Starter is registered on the Switch-
board. Therefore a client can get a link to a Starter from the Locate request to the

Switchboard. (See the Switchboard documentation.)

The Starter maintains information about all the nodes it serves, including current
memory allocation and current processes states on each node. Based on this informa-
tion, the Starter can decide where in memory to place new processes (and on which
node within its domain). The Starter communicates with the Fileserver to obtain the
text and data for the child and with the KernJob on the appropriate machine to cause

the child to start and to have the proper contents.

In most cases, a single Starter will manage more than one node machine. Each
Starter also has a link to one or more other members of the Starter squad. The Star-
ters periodically exchange information about load situations so that requests to start

a new process can be directed to the most appropriate Starter.

33

The Starter maintains tables of information about processes for each node, the
process counts for all the node machines under direct control, and the load status of

all of its neighbors.

5.2.3. Using the Starter

In order to use the Starter, a client program should include the file "starter.h"
from the Charlotte include directory. This file contains the message format used to

communicate with the Starter as well as a number of useful constant declarations.

Messages to the Starter should be in the following record format:

ST_NAME_SIZE = 80,
STName = array 0:ST_NAME _SIZE-1 of char;

STMesg =
record
Request : shortint;
Rcode : integer;
Namie : STName;
end;

This message format is for communications between the Starter and clients as well as

between the Starter and its neighbors.

The Request field is used by the client to indicate whether it wants the control
link of the new child process or not. The Starter always returns a message responding
to every client request, placing either SUCCESS or FAILURE in the Request fleld of the
return message. If the client has requested a control link, the return message will
enclose it. Failure returns are amplified by an error code in the Rcode field. The

Name field should be a full path name of a file in load-image format.

In addition to a control link, the client may establish a communication link to the

child by enclosing one end of the link in the request to create the child.

34

After the child process has started and the Starter gives away or destroys the
control link for that process, the Starter does not to exercise any control over the
process. When the child terminates, the Starter is informed by the KernJob and

updates its tables.

The error codes returned by the Starter are:

ST_STARTER_ERROR: Processing error in Starter
ST_CANT_OPEN_FILE: The file can’t be opened
ST-CANT_READ_FILE: The file can’t be read
ST.BAD_FILE_FORMAT: The file format is wrong
ST_OUT_OF_SPACE: No room on any node
ST_REPEATED_REQUEST: Redundant start requests
ST-KernJob_ERROR: FError in the KernJob

ST_FILESERVER_ERROR: Error in the fileserver

5.2.4. Initialization and recovery

At the start of initialization, only the KernJob and the Primordial Connector exist
on each machine. Other utility processes (Starter, Switchboard, Fileserver, and Con-
nector) are loaded on appropriate machines by the Primordial Connector. Initially,
the Starter is linked to a number of KernJobs, a Switchboard and a Fileserver. The
Starter registers itself with the Switchboard and begins to accept requests from

clients.

A KernJob that has lost contact with its Starter will find another Kerndob that has

a working Starter; the orphaned KernJob is then introduced to the working Starter.

5.3. The Switchboard

The Switchboard is a utility process designed to allow other processes to
exchange links. It allows a client process to register a link under a given character

string name, and it allows a process to locate a link registered under a given name.

35

These requests will be described in more detail later. Several Switchboards may be

active at a time, in which case they cooperate to satisfy client requests.

5.3.1. Using the Switchboard

In order to use the Switchboard, a client program should include the file
"switchboard.h" from the Charlotte include directory. This file contains the message

format used to communicate with the Switchboard, as well as a nurnber of useful con-

stant declarations.

Messages to the Switchboard should be in the following record format.:

SBMesg =
record
Request : integer;
Arg : integer;
Name : array 1:SB_MAX NAME _SIZE of char;
Searchlen : integer;
SearchHist : array 1:SB_MAX_SEARCH SIZE of integer:;
end;

The include file defines several additional fields, but these are used only for communi-
cation among Switchboards and should be ignored by clients. The Request field is used
by a client process to name the particular service it requires. The Arg field is used to
carry auxiliary arguments. Its use will be described in more detail later. The Name
field is used to hold the character string name that is to be registered or located. The
Searchlen and SearchHist fields are used to specify the maximum searching length

and return the list of the searched Switchboards.

The Switchboard answers every request it receives with a return message in the
format given above. The Request field is set to one of the constants SB.SUCCESS or
SB_FAILURE defined in switchboard.h. If the request fails, the Arg fleld contains an

error code and the Name field contains an error message.

36

A name to be registered or located is a set of keywords. Duplicate keywords are
ignored, and the order in which keywords appear is immaterial. However, the first
keyword is used as a heuristic to guide inter-Switchboard searches, so it is a good idea
to establish conventions in which the first keyword is a generic description of the ser-
vice provided, and the other keywords are modifiers. The keywords are packed in the
Name field of an SBMesg separated by NEWLINE characters and terminated with a
NULL. Keywords may include any characters other than NEWLINE and NULL. The total

length of a name, including separators and terminator, must not exceed the constant

SB_MAX _NAMF._SIZE defined in switchboard.h.

5.3.2. The Register Request

Register requests are used by clients to register links with the Switchboard. The
link to be registered should be enclosed with the message. Once a link has been
registered, it may not be used for future requests. Register requests are indicated by
the constant SB_REGISTER in the Request field of a message to the Switchboard from
the client. The link enclosed with the request is then registered under the name con-

tained in the Name field of the request message.

Links can be registered in either of two modes: once-only or sharable. A link
registered in the once-only mede is given away to the first client to request it, and all
record of the registration is then removed. A link registered in sharable mode always
remains registered and will not be given away. Whenever a client requests such a link,
a new link is made. One end of the new link is sent along the registered link to the
registered process and the other end to the requesting process. The Arg field of the
request message gives the registration mode, which must be one of the constants
SB_ONCE or SB_SHARE defined in switchboard.h. If Arg is not a legal registration
mode, SB_ONCE is assumed.

37

A Switchboard might not have room in its tables to satisfy a particular registra-
tion request. In that case, the request and the enclosed link are passed around the
network of Switchboards until one is found that can handle the request, or until the
number of visited Switchboards equals the constant SB_MAX_SEARCH_SIZE defined in

switchboard.h. If no Switchboard can register the link, then the enclosed link will be
. destroyed, which can be detected by the registering process. If some Switchboard can
satisfy the request, then the link is registered at that Switchboard and a success mes-
sage is returned on the registered link. The Arg field of the return message is set to
the number of Switchboards that were visited during the registration attempt, and the
Name field is set to the name under which the link is registered. This name will be
identical to the name in the original request, unless the original name was too long or

included duplicate keywords.

5.3.3. The Locate Request

Locate messages are used by clients to get a link registered under a given name.
Locate requests are indicated by the constant SB_LOCATE in the Request field of a
message to the Switchboard from the client. The name to be located is contained in
the Name field of the request message. If the request cannot be satisfied locally, then
a depth-first search is instituted through the network of Switchboards. The link on
which the request arrived is enclosed with the search. The Arg field of the request
message gives an upper bound on the total number of Switchboards that may be
visited in such a search, including the search originator. The maximum length of such

a search is given by the constant SB.MAX_SEARCH_SIZE.

When the requested link is found, it (or a new link, if it is registered as sharable)
is returned to the requester in a success message. The Arg field of the return message
is set to the number of Switchboards that were visited in order to satisfy the request,

and the Name field is set to name under which the requested link was registered. If

38

the link cannot be found by visiting the allowed number of Switchboards, then a failure
message is returned, The link on which the original request arrived remains attached

to the Switchboard that eventually answers the request, either positively or negatively.

For a registered name to satisfy a locate request, the keywords in the request
must form a subset of the set of keywords in the registered name. The order of the
keywords in the two names is unimportant. If several registered names satisfy the
request, then ties are broken in favor of names that have fewer extra fields. If there
are still ties, they are broken in favor of links that have been given away fewer times.

Any remaining ties are broken arbitrarily.

These rules are applied at the first Switchboard through which the request passes
that has any match at all to the query. A "better" match at some other Switchboard

will not be found.

5.3.4. Miscellaneous

Any link to a Switchboard may be duplicated by making a new link and sending
one end of the new link to the Switchboard. If the original was a registered link, the
new link is not registered, but may be used to make requests to the Switchboard.
Similarly, any link may be destroyed. Destroying a registered link causes the link to
become unregistered. In fact, this is the only way a process can unregister a link it

has registered.

The following error codes are defined in switchboard.h. They are used in the Arg

field of failure messages.

39

SB.UNKNOWN_REQUEST : Unknovwn Switchboard request.
SBILLEGAL LINK USE : lllegal request on a registered link.
SB_NO_REGISTRATION_ROOM : No room for registration.
SB_SERVICE_NOT_FOUND : Requested service not found.
SB_SEARCH_LENGTH_EXCEEDED : Maximum search length exceeded.

5.3.5. Discussion

The specifications given here are a first, simple solution to the general question of
what sort of registration values should be supported and how pattern matching works.
Currently, a registration value is a set of fields. Pattern matching returns the value
with the greatest number of matching fields. If there are none, then the request is for-
warded.

This algorithm has some drawbacks:

(1) A poor match at the first switchboard is preferred to a good match elsewhere.

(2) If the match is unacceptably poor in the eyes of the client, there is no way for the

client to make a more specific request.
Other techniques could be used. For example:

(1) Same as above, but also an 'exact count’ on patterns that specifies how many ini-

tial fields must match. This method is fairly simple and easy to implement.

(2) Same as above, but each field has an optional 'must match’ mode. This method is

more general and is still not too hard to implement.

(3) Registration values are arbitrary strings, not lists of fields. Patterns are regular

expressions. Quality of match may be measured in various ways:

40

a. Any match is fine.
b. Select match with shortest élongest) registration value.

c. Select match with greatest (fewest) number of invocations of
the '* operator.

d. Select match with greatest (fewest) number of constants matched.

The criterion might even be specified by the requester. This method is much less

efficient, since all values must be inspected.

(4) Registration values are sets, not lists, of flelds. Patterns are also sets. Match
requires each field in the pattern to be found. This technique is fairly general and
not too hard to implement. To get the effect of weak matches, queries could be
made very specific at first, and if they fail, the client could then submit a weaker
query. It seems likely that most clients will want requests of only one field, with

exact match. Therefore, even the current method is fine.
5.4. The Fileserver

5.4.1. Introduction

The current version of the Fileserver is a simple prototype. All files reside on a
Unix file system on the host machine. The Fileserver communicates with this file sys-
tem through a “demon link", one end of which is connected to the Fileserver, the other

end connected to a program running under Unix.

The Fileserver registers itself with the Switchboard. Any client that needs to read
or write files should acquire a link to the Fileserver from the Switchboard and then
communicate directly with the Fileserver. File service is provided by a squad of
processes, any of which can potentially access any file. In fact, each process in the
squad can only access a subset c;f the files directly. Any request outside its jurisdic-
tion is transparently forwarded to the file server process that can handle it; the link to
the client is passed along with the request, so the file server that has jurisdiction can

then communicate with the client directly.

41

5.4.2. File Services

The Fileserver provides services to manipulate a file. Since Unix files are used in
the implementation, the operations are identical to those available under Unix: OPEN,

READ, WRITE, CREATE, and SEEK.

In order to open a file, the client sends an OPEN request with an enclosed link to
the file server. The file server then turns that enclosed link into an open-file link. The
open request indicates whether the file is to be open for reading or writing and what
the block size for transmissions should be. When a Fileserver can't satisfy the request
because of wrong permissions or non-existent file, an ERROR message is sent to the
client on the link, which does not become an open-file link. If the Fileserver does

succeed in opening the file, the first message is a SUCCESS message.

If the file is opened for reading, the file server begins to send data sequentially in
full blocks from the file on the open-file link. As soon as the client receives one block,
the next one is sent; no explicit READ call is available. If the client receives less than
the amount sent by the file server, the next message will start with the unread portion

of the previous message.

If the file is opened for writing, the client may send DATA messages on the open-
file link. The client may try to send more than the block size, but the file server may
only be willing to accept a smaller amount. DATA messages that are sent to files not

open for writing are discarded.

The client may SEEK to any location in the file by sending a SEEK message to the
file server. The client then sends one additional dummy message to the file server to

allow the file server an opportunity to cancel the next outstanding message before the

client reads the next data block.

To close the file, the client destroys the link.

42

An OPEN request is illegal if a file is already open on the link. A WRITE or SEEK is
illegal if the link is not an open-file link. If any request includes a new link, then the
new link becomes a service link to the file server, not an open-file link. The file server

may choose to reject this link.

5.4.3. Proposed Implementation

A native Charlotte file server will look a bit less like Unix. File distribution will be
accomplished as follows. Each file has a unique full path name. To find which
fileserver has a file /a/b/c, a standard hash function will be applied to the prefix name
/a/b. Extendible hashing is used to allow new disks to be brought into the network or
to take old ones out. There is a reorganization cost, of course. To bring a new disk in,
about half the files on an existing disk must be brought to the new disk. Protection is
performed on a file-by-file basis, not by locking at the protections in directories on the
path to that file, Directories do not point to files; they just mention what files exist.
As a result, to delete a file, it must be removed from the server on which it resides and
must also be deleted from the directory that mentions it. The deletion from the direc-

tory should be done first. Directories cannot be renamed.

5.4.4. Client-Fileserver Interface

Messages to the file server use the following message format: (These declarations

are also in fileserver.h, along with the subordinate types they use.)

43

(* File action constants *)

const
OPEN = 1;
WRITE = 2,
CREAT = 3;
UNLINK = 4;
STAT = B
READLINE = 6;
SEEK = 7,
LINK = B;
DATA = 9,

FSMesg =
record
FileAction : longint; (* see list above *)
Remnant : array 1:MESSAGEMAX-4 of char;
end;

For DATA messages, the entire Remnant is devoted to data (if the block size

requires). For OPEN messages, the Remnant is treated as having this structure:

FSOpenMesg =
record
Mode : longint; (* as in Unix *)
FileName : array 1:MESSAGEMAX-8 of char; (* null terminated *)
end,

ERROR and SUCCESS messages do not use the Remnant at all. The SEEK request uses

the Remnant like this:

FSSeekMesg =
record
Offset : longint;
Whence : longint; (* same as in Unix *)
end;

The CREAT request uses the Remnant in this way:

FSCreatMesg =
record
Mode : longint; (* same as in Unix *)
FileName : array 1:MESSAGEMAX-8 of char; (* null terminated *)
end,

5.5. The Terminal Driver

The terminal driver has not been completely designed. It will follow the

producer-consumer paradigm described above.
5.6. The Connector

5.6.1. Introduction

The connector is a tool to establish initial links in a group of processes. It is
implemented as a free-standing utility registered with the switchboard, A program
that wishes to institute a connection episode (usually a command interpreter, but in
general any top-level entity in a group of processes) will be called a "parent’, and the
members of the newly connected group will be called "children”. Children are fresh

processes called into being by the connection episode.

The program for the parent should be linked with the library routine "LinkEp-
isode”. This routine implements the client-connector protocol. The programs for the
children should each be linked with the library routine ''Linkup". This routine imple-

ments the child-connector protocol.

To start an episode, the parent calls LinkEpisode, passing it a link to an open file
that describes the desired group structure. The file mentions three kinds of

processes, which are

45

1. child: a new process that should be created and loaded from backing store.

2. oldtimer: a process that already exists and is registered with the switch-
board.

3. newtimer: a process that may already be registered with the switchboard,

in which case it is treated as an oldtimer, or it may not be registered, in
which case it must be created and loaded. It will then register itself with

the switchboard so that it can become an oldtimer.

5.6.2. Structure of the connector description file The connector description file will
be defined by means of BNF. The general outline of the file is to define constants and

then to define processes. The linkoges among process are described last.

H.6.3. Constants

Constants are defined to save effort later in the connector description file.

<constant decl> ::= "const" <const decl>
<const decl> 1= § <identifier> "=" <expr> """}
example:

const N = 15; A = N+4;

Forward references are not allowed in constant declarations. Every right-hand-side

operand of a constant declaration must be either a constant or an integer.

5.6.4. Processes

A process may be associated with either one or both of two names: A swifchboard
name and a pragram filename. If only the program filename is specified, the process
is a child. If only the switchboard name is specified, the process is an oldtimer. If
both names are specified, the process is a newtimer. In addition to simple names, the

connector file may also describe process arrays of children.

48

<process decl> ::= "process" <pro decl>
<pro decl> .:= {<process ids> "=" [<switchboard name>]
["@" <program filename>]";" }
<process ids> ::= <identifier> [<proc iterator>]
<proc iterator> ::= "[" <range> ']"
<range> = <eXpr>..<expr>

<switchboard name> ::= <identifier>
<program filename> ::= /* filename which "starter”" understands*/

example:
process
philosopher[1..N] = ®/usr/crystal/philosophy /phil;
/* process array for philosophers */
fork[1..N] = @/usr/crystal/philosophy /fork;
/* process array for forks */
terminal = v-term @ /usr/utility/terminal;

/* process terminal either registered as v-term on "switchboard"
or must be loaded */

Newtimer descriptions allow the program filename to be themselves connector

description files instead of runnable files.

5.6.5. Linkup

When a child starts, it should call "Linkup". This routine returns an array of links
and an array of arguments. The contents of this array are described in the connector

description file.

<linkup sec> ::= "linkup" <proc arg,links>

<proc arg links> ::= { <processes> "=" <arguments> <links> }
<processes> ;1= <identifier> [<proc index>]

<proc index>::="[" <id range> "]"

<id range> ::= <expr> | <identifier> ":" <range>
<arguments> ::= "arg" "(" <expr> {"," <expr>]")" """
<links> = "link" "(" <link> §"," <link>])"

<link> = <identifier> [<proc index>] [<link specifier>]
<link specifier> ;= "(" <identifier> ")"

47

example: /* dining philosophers and their forks */

linkup
phil[i:1..N] = arg(i),
link (fork [(i-1)<1? N: i-1],
fork [(i+1)>N? 1:i+1])
fork[i:1..N] = arg(i),
link (phil [(i-1)<1? N: i-1],
phil [(i+1)>N? 1:i+1)

resulting graph for N=R:
+

--------- + et
| phil[1] [=--=-==--euumnn- | fork[2] |
Hmmmmmmm e + R +
| [
EEEEE P + Fommmmmmen +
| phil[R] [-=-=-----mmmmmn- | fork[1] |
R EER + oo +

A consistency check will be done to match each process's link with its peer pro-

cess. Alink is deemed legal if and only if both "A: link (B)" and '"B: link (A)" exist.

5.6.6. Link Specifier

In some special cases we allow a link specifier to specify a unique link between
two processes:
1. when a process has a self link.

2. when two processes share more than one link.

48

exanple 1:
A: link(A(self), A(self), A(second-link), A(second-link))

(second-1ink) }

ot
Fomem| A |mmme-- +
-t
| | (self)
R LT +
exanple 2:
A: link(B(linkl), B(linkR))
B: link(A(link2), A(link1))
Hmmm-- + (link1) Fome-- +
l O R L LR L L LT > l
A B
l SR R R > l
mmmm + (linkR) o +

5.6.7. Special link names

A child may wish to link with some entities such as "switchboard” and its beloved
"parent”. Since the parent of a child is the process that started this LinkEpisode, and
is not likely to be unique as well as registered on switchboard, the name "parent” is
provided to specifically name the link to it in the connector file. The switchboard is
also at hand, so there is no need to search for a registration of "switchboard”. Other
names may be added to this list later; for now only "parent” and "switchboard" are

treated specially.

example:

process
child-A = @ ~crystal/foo;
child-B = @ ~crystal/bar;
linkup
child-A : link(parent, child-B)
child-B : link(parent, switchboard, child-A)

49

5.7. The Command Interpreter

Part of Charlotte initialization is to build a number of command interpreter
processes and attach them to terminals. The command interpreter prompts the user
when ready to execute a command. The user may type the name of an executable file
followed by one or more operands. The command interpreter will ask the starter to
load the program and send it a link to the switchboard and an array of characters into
which null-separated operands are packed. The program can receive these through

the LinkUp library routine.

5.7.1. Directory Commands

The command interpreter supports relative directory addressing. It maintains a
stack of directories the top of which contains the current directory. The following

commands are available:

cd change current directory

pd push directory

P pop directory

pw print working directory

dir print the stack of directories

The command interpreter prefixes the working directory to the command verb.
Absolute names may be specified by beginning them with "/". Addressing of a file will
be relative to the parent of the current directory if the file name is prefixed with "../".
Successive levels can be backed off by adding additional "../"s to the prefix. Argu-

ments to the directory relative commands are expanded similarly.

The first argument to any command is also expanded. This may not be desirable

if commands take non-file name arguments. This feature may therefore be removed.

50

5.7.2. History Commands

The interpreter maintains a history of 15 commands. Any command in the his-
tory may be redone. The following commands are supported:
n redo last command
I<number> redo command <number> if in history window
I<prefix> redo the most recent command whose verb has the specified
<prefix>

h display the history window

6. Initialization and Recovery

Charlotte startup uses the same principles as we have already discussed. The
startup protocol is designed to handle insertion of a new machine into a running Char-
lotte as well as individual machine failures. It tries not to have too much built into
KernJob, which remains in existence on each machine throughout the life of the

machine. The protocol uses the same load image for all machines.

Upon loading, each machine has K, the KernJob, and C, the primordial connector
(not to be confused with the connector utility, discussed earlier). There is a link
between K and C and a link between C and the demon D on the host machine. Each K
knows its machine number. Both K and C are capable of responding on any link to the
question "who are you'. Each will answer "I am K (or C), on machine x". Each C first

asks the K who he is, so now C knows who he is, too.

By speaking with D, each C reads the global startup file, charlotte.re. This file

uses standard Connector syntax. Here is a sample file, in simplified syntax:

81

Meaning: Machine 1 is supposed to be initialized with program D. Machine 2 has pro-
grams A and B, and so on. B has two links, the one called 1 to A, and the one called 2
to G. S has a link called 1 to the K on machine 3. The bracket syntax can be used to

allow several programs to have the same name, but be distinguishable in the file.

By speaking with D and by using kernel commands to make memory and to
inspire, each C creates the processes that belong on its machine. By speaking with
the linkup routine, which starts each of those processes, C is able to obtain all the
links that it will need. It gives away some of those links locally. In general, it gets a
link from any process in the first column of the second part of the file, and gives it to

the corresponding process in the second column.

K can answer the following question: "Give me a link to C[i]" for any machine i. It
answers the question by forwarding a similar request to K[i] along a "half link" gen-
erated on the spot to K[i]. The request it forwards is "Give me a copy of any link you
have”. By talking with its K, each C gets a link to the peers it needs to talk with to dis-
tribute the remaining links. The C's distribute the remaining links. Links that are to
connect K with other processes are given to K, which can handle the following request:

"Here, take this link and proclaim along it the answer to 'who are you'".

Having finished this work, each C terminates. The usual result is that each K gets

a link to exactly one starter program S. There may be many S's, each with several K's

52

under its control.

If a new machine is to be brought into the network, an entry should be made in
charlotte.rc for that machine that just says "recover through machine i". When C finds
that its job is to recover, it asks K "Give me a link to C[i]". The response it getsis a
link to the starter controlling machine. i, since that is the only link that K[i] owns-at

this point. C gives the link to K, saying, "Here, take this link and proclaim who you

"

are”. In this way, S discovers the presence of a new K.

If a machine fails, we assume that within some small amount of time, all kernels
dealing with this machine discover the fact, and send a "link destroyed” message to all
local clients. If S finds that its link to another S has disappeared, it realizes there are

now two problems:
(1) The network of S programs may have been disconnected.
(3) Some machines may no longer be under control.

Disconnection of starters only resuilts in poorer placement of new processes, since glo-
bal information is no longer available. Machines that are no longer under control insti-

tute a search (described earlier under KernJob) for a starter that will assume control.

