A CONJUGATE DECOMPOSITION OF THE EUCLIDEAN SPACE

by

S.-P. Han & O. L. Mangasarian

Computer Sciences Technical Report #480

August 1982
A CONJUGATE DECOMPOSITION OF THE EUCLIDEAN SPACE

S.-P. Han & O. L. Mangasarian
University of Wisconsin-Madison

ABSTRACT

Given a closed convex cone \(K \) in the \(n \)-dimensional real Euclidean space \(\mathbb{R}^n \) and an \(n \times n \) real matrix \(A \) which is positive definite on \(K \), we show that each vector in \(\mathbb{R}^n \) can be decomposed into a component which lies in \(K \) and another which lies in the conjugate cone induced by \(A \) and such that the two vectors are conjugate to each other with respect to \(A + A^T \). As a consequence of this decomposition we establish the following characterization of positive definite matrices: An \(n \times n \) real matrix \(A \) is positive definite if and only if it is positive definite on some closed convex cone \(K \) in \(\mathbb{R}^n \) and \((A+A^T)^{-1} \) exists and is positive semidefinite on the polar cone \(K^0 \). If \(K \) is a subspace of \(\mathbb{R}^n \) then \(K^0 \) is its orthogonal complement \(K^\perp \). Other applications include local duality results for nonlinear programs and other characterizations of positive definite and semidefinite matrices.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based on work supported by the National Science Foundation under Grants ENG-7903881, MCS-7901066 and MCS-8200632.
Let A be an $n \times n$ real matrix and K be a closed convex cone in the n-dimensional real Euclidean space \mathbb{R}^n. A vector a in \mathbb{R}^n is said to have a conjugate decomposition with respect to A and K if there exists an x in K and a y in the conjugate cone

$$K_A := \{y \mid y^T(A + A^T)x \leq 0, \forall x \in K\}$$

such that

$$a = x + y \quad \text{and} \quad x^T(A + A^T)y = 0.$$

When K is a subspace and A is the identity matrix such a decomposition becomes the classical orthogonal decomposition of a vector into its projections onto the subspace K and its orthogonal complement K^\perp. It is well known that, in this case, such a decomposition exists and is unique for any given vector a. This result was generalized by Moreau [5] to the case where K is any closed cone in a Hilbert space with any Hilbertian norm. Thus, if A is positive definite on the entire space, it defines a norm $\|x\|_A^2 := x^T A x$, and our decomposition result, Theorem 1, follows directly from Moreau's theorem. The main point of this paper is to extend Moreau's result to the case where A is not positive definite on the entire space but merely on the closed convex cone K, that is, $x^T A x > 0$ whenever $0 \neq x \in K$. Although the results of this paper are extendable to a Hilbert space, they are presented here only for a real Euclidean space. We begin with our first principal result.

Theorem 1 Let A be an $n \times n$ real matrix and K be any closed convex cone in \mathbb{R}^n. If A is positive definite on K then any vector in \mathbb{R}^n has a conjugate decomposition with respect to A and K. Moreover, if A is positive definite on the linear hull of K then the decomposition is unique.
Proof (Existence) Let \(a \) be a given fixed vector in \(\mathbb{R}^n \), and let

\[
S := \{ x | x \in K \text{ and } \| x \| \leq \frac{\| a^T (A + A^T) \|}{\alpha} \}
\]

where \(\| \cdot \| \) denotes the Euclidean norm and

\[
\alpha := \min \{ x^T A x | \| x \| = 1, x \in K \} > 0.
\]

Let \(f(x) := (x-a)^T A (x-a) \) and consider the following problems

\((Q)\) \hspace{1cm} \min \{ f(x) | x \in K \},

\((Q')\) \hspace{1cm} \min \{ f(x) | x \in S \}.

Any solution of \((Q')\) also solves \((Q)\) because for any \(x \in K \setminus S \),

\[
f(x) = x^T A x - a^T (A + A^T) x + a^T A a \\
\geq (\alpha \| x \| - \| a^T (A + A^T) \|) \| x \| + a^T A a \\
> f(0).
\]

It follows from the compactness of \(S \) that \((Q)\) has a solution \(\bar{x} \), say. Then by the minimum principle [4, Theorem 9.3.3], we have that

\[
(x - \bar{x})^T (A + A^T) (x - \bar{x}) \geq 0 \quad \forall x \in K.
\]

By letting \(x = 2\bar{x} \) and \(x = 0 \) and letting \(\bar{y} = a - \bar{x} \), we have that

\[
a = \bar{x} + \bar{y}, \bar{x} \in K, \bar{y} \in K^A \text{ and } \bar{x}^T (A + A^T) \bar{y} = 0,
\]

which is a conjugate decomposition of \(a \) with respect to \(A \) and \(K \).

(Uniqueness) Let \(a = \hat{x} + \hat{y} = \bar{x} + \bar{y} \) be two conjugate decompositions of \(a \). Then it follows from \(\bar{x} - \hat{x} = \hat{y} - \bar{y} \) that
\[(\bar{x} - \hat{x})^T A (\bar{x} - \hat{x}) = \frac{1}{2} (\bar{x} - \hat{x})^T (A + A^T) (\bar{y} - \hat{y})
\]
\[= \frac{1}{2} \bar{x}^T (A + A^T) \bar{y} + \frac{1}{2} \hat{x}^T (A + A^T) \hat{y}
\]
\[\leq 0
\]

Since \(A\) is positive definite on the linear hull of \(K\), the last inequality can hold only when \(\bar{x} = \hat{x}\). Hence, the decomposition is unique. \(\Box\)

An important consequence of Theorem 1 is the following characterization of positive definite matrices.

Theorem 2 Let \(A\) be an \(n \times n\) real matrix and let \(K\) be a closed convex cone in \(\mathbb{R}^n\). \(A\) is positive definite if and only if \(A\) is positive definite on \(K\) and \((A + A^T)^{-1}\) exists and is positive semidefinite on the polar cone \(K^0 := \{y | y^T x \leq 0, \forall x \in K\}\).

Proof The "only if" is trivially true. Let \(a\) be any given vector in \(\mathbb{R}^n\), then by Theorem 1, there exists a conjugate decomposition \(a = \bar{x} + \bar{y}\) with \(\bar{x} \in K\), \(\bar{y} \in K^0\) and \(\bar{x}^T (A + A^T) \bar{y} = 0\). Let \(\bar{z} = (A + A^T) \bar{y}\) then \(\bar{z} \in K^0\). Thus
\[a^T A a = (\bar{x} + \bar{y})^T A (\bar{x} + \bar{y})
\]
\[= \bar{x}^T A \bar{x} + \frac{1}{2} \bar{y}^T (A + A^T) \bar{y}
\]
\[= \bar{x}^T A \bar{x} + \frac{1}{2} \bar{z}^T (A + A^T)^{-1} \bar{z} \geq 0.
\]

Hence, \(A\) is positive semidefinite and so is \(A + A^T\). Since \(A + A^T\) is nonsingular, \(A + A^T\) is in fact positive definite and so is \(A\). \(\Box\)

A direct consequence of Theorem 2 is the following.
Corollary 3 Let A be an $n \times n$ real matrix and let K be a closed convex cone in \mathbb{R}^n such that $-K^0 \subseteq K$. A is positive definite if and only if A is positive definite on K and $(A+A^T)^{-1}$ exists and is positive semidefinite on K.

If we let $K = \{x | Bx \preceq 0\}$ in Corollary 3 where B is some $m \times n$ real matrix, then $-K^0 = \{y | x^T y \geq 0, \forall x \in K\} = \{y | y = -B^T u, u \geq 0\}$. Hence $-K^0 \subseteq K$ if and only if $BB^T u \succeq 0$ for all $u \geq 0$ or equivalently if $BB^T \succeq 0$. Consequently we have the following.

Corollary 4 Let A be $n \times n$ real matrix and let B be an $m \times n$ real matrix such that $BB^T \succeq 0$. A is positive definite if and only if A is positive definite on $K = \{x | Bx \preceq 0\}$ and $(A+A^T)^{-1}$ exists and is positive semidefinite on K.

By letting B be the negative of the identity matrix in Corollary 4 we obtain the following interesting characterization of positive definite matrices in terms of strictly copositive and copositive matrices.

Corollary 5 A necessary and sufficient condition for an $n \times n$ real matrix A to be positive definite is that A be strictly copositive (that is $x^T Ax > 0$ for $0 \neq x \succeq 0$) and $A + A^T$ has a copositive inverse (that is $x^T (A+A^T)^{-1} x \geq 0$ for all $x \succeq 0$).

By letting K in Theorem 2 be a subspace of \mathbb{R}^n, we get the following result obtained in [1] by a different technique which does not extend to cones.

Corollary 6 Let A be an $n \times n$ real symmetric matrix and K be a subspace of \mathbb{R}^n. A is positive definite if and only if A is positive definite on K and A^{-1} exists and is positive semidefinite on the orthogonal complement K^\perp of K.

Applications of Corollary 6 and Theorem 2 to local duality results of nonlinear programming are given in [1,3]. Additional results pertaining to conjugate decomposition with respect to positive semidefinite matrices are given in [2]. Other possible applications are to the theory of penalty functions and augmented Lagrangians [6].
References

