OPTIMAL CODE GENERATION FOR CONTROL STRUCTURES

By

Munagala V. S. Ramanath

Computer Sciences Technical Report #461

December 1981
OPTIMAL CODE GENERATION FOR CONTROL STRUCTURES

by

MUNAGALA V. S. RAMANATH

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

1981
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>1. INTRODUCTION AND OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1.1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.2 OVERVIEW</td>
<td>6</td>
</tr>
<tr>
<td>2. THE ALGORITHM</td>
<td>8</td>
</tr>
<tr>
<td>2.1 MOTIVATION</td>
<td>8</td>
</tr>
<tr>
<td>2.2 NOTATION</td>
<td>11</td>
</tr>
<tr>
<td>2.3 THE FORMAL MODEL</td>
<td>12</td>
</tr>
<tr>
<td>2.4 DEFINITIONS</td>
<td>22</td>
</tr>
<tr>
<td>2.5 ALGORITHM PRELIMINARIES</td>
<td>29</td>
</tr>
<tr>
<td>2.6 THE ALGORITHM</td>
<td>36</td>
</tr>
<tr>
<td>3. PROOFS OF THEOREMS</td>
<td>44</td>
</tr>
<tr>
<td>3.1 PRELIMINARY RESULTS</td>
<td>44</td>
</tr>
<tr>
<td>3.2 PROOFS OF THEOREMS 1 AND 2</td>
<td>67</td>
</tr>
<tr>
<td>4. THE POWER OF MULTILEVEL EXITS</td>
<td>71</td>
</tr>
<tr>
<td>4.1 OVERVIEW</td>
<td>71</td>
</tr>
<tr>
<td>4.2 THE CLASS OF STRUCTURED FLOW GRAPHS</td>
<td>71</td>
</tr>
<tr>
<td>4.3 THE HIERARCHY OF FLOWGRAPHS</td>
<td>98</td>
</tr>
<tr>
<td>5. DISCUSSION AND CONCLUDING REMARKS</td>
<td>124</td>
</tr>
<tr>
<td>6. REFERENCES</td>
<td>128</td>
</tr>
</tbody>
</table>
OPTIMAL CODE GENERATION FOR CONTROL STRUCTURES

MUNAGALA V. S. RAMANATH

Under the supervision of
Assistant Professor Marvin H. Solomon

ABSTRACT

We investigate the problem of generating code for programs so that the number of unconditional branch instructions, or "jumps", in the object code is minimized. We show that the problem is NP-complete in general and that polynomial algorithms exist provided the source programs are limited to using a restricted set of control structures. In particular, we show that if we restrict the set of control structures to IF-THEN-ELSE and LOOP-ENDLOOP with multilevel exits, there is an efficient algorithm for finding the minimal-jump translation. The time complexity of the algorithm is quadratic in the size of the program provided the maximum number of nested loops that may be exited by an exit statement is bounded by a constant. We show that more directed graphs can be expressed if this bound is \(i+1 \) than if it were \(i \). We also compare the class of flowgraphs that can be obtained with these control structures to the well-known class of reducible flowgraphs.
ACKNOWLEDGEMENTS

It is with unqualified pleasure that I express my gratitude to Dr. Marvin H. Solomon, my advisor; that his perceptive comments played a formative role in this thesis cannot be gainsaid. His belief that what can be said in two words ought not to be said in ten resulted in the compaction of my expansive prose. His preference for assuming impatient curiosity, rather than conscientious pertinacity, on the part of the typical reader led to the inclusion of more examples and exegetic comment, to the exclusion of meretricious and obscure notation which I unfailingly generated and, whenever possible, to the substitution of perspicuous prose for the less transparent, though perhaps more precise, symbolic derivations. It will brook no denial that, but for his suggestions, several of my proofs would be substantially more complex than they are. His assistance in various advisory, bureaucratic and academic matters was generous and ungrudging. Most of all I am indebted to him for suggesting the central problem of this thesis -- a problem that, it can be said in retrospect, had all the desirable attributes of formalizability, tractability and apparent utility.

I am grateful to the members of my committee for their helpful suggestions, especially to Dr. Raphael
Finkel for his careful reading of the manuscript and to Dr. Charles Fischer for his assistance in locating journal articles.
CHAPTER 1

INTRODUCTION AND OVERVIEW

1. INTRODUCTION

It is widely recognized that machine code produced by high-level language translators is not as compact and "efficient" as could be produced by a competent assembly-language programmer. The impact of various inefficiencies can be moderated by sundry "optimization" techniques. One kind of inefficiency that is not addressed by known techniques is the presence of an unnecessarily large number of unconditional branches or "jumps" in the object code. Figure 1 shows a source program and two translations; all six jumps in the standard translation can be eliminated by paying careful attention to the linear order in which the blocks of machine code are placed.

The linear order in which code is generated and ultimately loaded often tends to be precisely the order in which the corresponding source code statements are supplied to the compiler by the programmer; transfer of control between noncontiguous blocks of machine code is achieved by jumps, many of which may not be necessary.
FIGURE 1
A program and two translations

LOOP
IF B1 THEN S1; EXIT 1 ENDIF;
LOOP
IF B2 THEN S2; EXIT 1 ENDIF;
LOOP
IF B3 THEN S3; EXIT 1 ENDIF;
IF B4 THEN EXIT 1 ENDIF;
IF B5 THEN EXIT 3 ENDIF;
ENDLOOP;
IF B6 THEN EXIT 1 ENDIF;
IF B7 THEN EXIT 2 ENDIF
ENDLOOP;
IF B8 THEN EXIT 1 ENDIF
S4
ENDLOOP;
S5

(a) The Source Program

START: if ¬B1 then L2
 S1
 jump M5
L2: if ¬B2 then L3
 S2
 jump L8
L3: if ¬B3 then L4
 S3
 jump L6
L4: if B4 then L6
 if B5 then M5
 jump L3
L6: if B6 then L8
 if B7 then M5
 jump L2
L8: if B8 then M5
 S4
 jump START
M5:S5

(b) The standard translation

L4:if B4 then L6
 if B5 then M5
L3:if ¬B3 then L4
 S3
L6:if B6 then L8
 if B7 then M5
L2:if ¬B2 then L3
 S2
L8:if B8 then M5
 S4
START:if ¬B1 then L2
 S1
M5:S5

(c) An optimal translation

B1-B8 are Boolean expressions, S1-S5 are simple statements, START is the entry point, ¬ is logical negation and "EXIT i" indicates that i levels of loops are to be exited.
Whereas the order of the source-code statements may be defensible on grounds of readability, aesthetics, tradition, or language syntax, there is no reason for this order to be preserved in the object code.

Given a program, we address the problem of finding a translation in which the number of jumps is minimal. Such a translation will result in a smaller object module in general; if the eliminated jumps are on frequently executed paths there may also be a substantial saving in execution time.

We confine ourselves to translations that preserve the nodes and arcs of the flowgraph and ignore the specific nature of the statements represented by the nodes; that is to say, techniques such as node splitting and code motion are beyond the scope of this dissertation since they modify the flowgraph. Any jump-free segment of code in the translation determines a simple path in the flowgraph. Any translation therefore determines a collection of pairwise disjoint simple paths that collectively cover all the nodes of the flowgraph. Such a collection is called a dissection. Conversely, given a dissection of a flowgraph, we can find a corresponding translation such that each path of the dissection yields a jump-free code segment; in each case, the number of jumps in the translation equals the number of paths in
the dissection. Finding a minimal-jump translation of a program, therefore, corresponds to finding a minimal-cardinality dissection for the flowgraph of the program. Figure 2 shows the dissections corresponding to the translations of Figures 1(b) and 1(c).
FIGURE 2

The dissections corresponding to the two translations of Figure 1
2. **OVERVIEW**

The problem, in its most general form, can be stated as:

THE DISSECTION PROBLEM (DP) Given a digraph G and a positive integer K, does G have a dissection of cardinality at most K?

Since a special case of DP ($K=1$) is the Hamiltonian Path problem (HP) which is known to be NP-Complete [1,2] even for the restricted class of planar digraphs with both the indegree and the outdegree of each node bounded by two, DP itself must be NP-Complete for that class. The only other known attempt to solve DP is [3] where a polynomial-time algorithm for dags and a heuristic for general digraphs are presented. We present an algorithm to solve this problem for the class of `structured` program graphs (those obtained by using only IF-THEN-ELSE, LOOP-ENDLOOP and multi-level exits).

By an SFG (Structured Flow Graph) we mean the flow-graph of a structured program. For each r in \(\{0,1,2,\ldots\} \) let $SFG(r)$ denote the class of SFGs that can be represented by a structured program using at most r-level exits. Our algorithm shows that DP is solvable in quadratic time for each class $SFG(r)$; furthermore, we show
that the class of all SFGs is the same as the well-known
class of Reducible Flowgraphs (RFGs) and that the classes
SFG(r) form a strict linear order under containment. The
question remains open whether DP or even HP is NP-
Complete for RFGs.

The rest of this thesis is organized as follows: Chapter 2 presents the formal model and the algorithm and
states the main theorems regarding the correctness and
the time complexity of the algorithm. Chapter 3 contains
proofs of the theorems of previous chapter. Chapter 4
shows that the class of SFGs is identical to the class of
RFGs and examines related issues. Chapter 5 contains
discussion, open questions and conjectures.
CHAPTER 2

THE ALGORITHM

1. MOTIVATION

We consider programs that can be built up from atomic statements (assignment statements, input/output statements, procedure calls, but no "go to" statements) and Boolean expressions using the following operations:

(a) Concatenation
(b) IF-THEN-ELSE-ENDIF
(c) LOOP-ENDLOOP with multilevel exits of the form "EXIT i" where \(i \geq 1\) specifies the number of nested levels of loops to be exited.

There are analogous operations that produce the flowgraph of a compound statement from the flowgraphs of its components. Suppose \(G(P)\) and \(G(Q)\) are flowgraphs for programs \(P\) and \(Q\) respectively. The flowgraph \(G(P;Q)\) of the compound statement "\(P;Q\)" is obtained by drawing arcs from the 'finish' nodes of \(G(P)\) to the 'start' node of \(G(Q)\):

\[
\begin{array}{c}
 \text{G(P)} \\
 \downarrow \\
 \text{G(Q)}
\end{array}
\]
The flowgraph $G(\text{IF } B \text{ THEN } P \text{ ELSE } Q \text{ ENDP})$ of the compound statement "IF B THEN P ELSE Q ENDP" is obtained by creating a new node (corresponding to the Boolean expression B) and drawing arcs from it to the 'start' nodes of $G(P)$ and $G(Q)$:

```
B

G(P)  G(Q)
```

The flowgraph model, therefore, must include specifications of a 'start' node and a set of 'finish' nodes. In the two cases above, the start node of the resulting graph is simply the start node of $G(P)$ in the first case and the new node in the second; the finish nodes of the resulting graph are the finish nodes of $G(Q)$ in the first case and the union of the finish nodes of $G(P)$ and $G(Q)$ in the second. The case of $G(\text{LOOP } P \text{ ENDDROP})$ is more involved. We draw arcs from the finish nodes of $G(P)$ to its start node; the start node of the new graph is the start node of $G(P)$:
The finish nodes of the new graph, however, ought to be all those nodes from which an exit of this particular loop is possible; in order to precisely identify these nodes we augment our model with the specification of a set of nodes called the level-i exit nodes for each \(i \geq 1 \). A node of \(G(P) \) is a **level-i exit node** iff an exit from \(i \) nested loops surrounding the program fragment \(P \) is possible immediately after performing the computation represented by that node. Thus, finish nodes can be considered to be level-0 exit nodes. Now, when the LOOP-ENDLOOP operation is applied to \(P \), the levels of all the nodes of \(G(P) \) need to be decremented by one since one surrounding loop is now accounted for. We can now describe how to construct the flowgraph \(G(\text{LOOP P ENDLOOP}) \) from the flowgraph \(G(P) \):

-- draw arcs from the level-0 exit nodes of \(G(P) \) to its start node.

-- the start node of the resulting graph is the start node of \(G(P) \).

-- the level-i exit nodes of the resulting graph are the level-(i+1) exit nodes of \(G(P) \).

The level-i exit nodes may be specified by labelling each node with an integer specifying its exit level; a single integer may prove insufficient since a node may be both a level-i and a level-j exit node (eg. IF B THEN EXIT i
ELSE EXIT j ENDIF). So we label each node with a set of integers.

2. **NOTATION**

φ is the empty set;

\(\mathbb{I} = \{0,1,2,\ldots\} \);

\(\uparrow \) is a symbol used to label the start node of a flowgraph;

\(\mathcal{P}(Y) \) denotes the power set of \(Y \);

|\(Y \)| denotes the cardinality of \(Y \);

\(A \times B \) denotes the Cartesian product of sets \(A \) and \(B \).

For any set \(A \) we define

\[A^+ = A \cup \{\uparrow\}, \quad A^- = A - \{\uparrow\}, \quad \hat{A} = A \cap \{\uparrow\} \]

If \(A \subseteq \mathbb{I}^+ \) we define

\[A^+ = \{a+1 \mid a \in A \cup \mathbb{I}\} \cup \hat{A} \]

A **unit set** is a set whose cardinality is one. A **relation** \(R \) is any set of ordered pairs \((R \subseteq A \times B \) for some sets \(A \), \(B \)). If \(R \) is a relation we define

\[\text{DOM}(R) = \{x \mid (x,y) \in R \text{ for some } y\} \]

\[\text{RAN}(R) = \{y \mid (x,y) \in R \text{ for some } x\} \]

If \(R \) and \(S \) are relations, \(x \in \text{DOM}(R) \) and \(A \subseteq \text{DOM}(R) \), we define

\[R(x) = \{y \mid (x,y) \in R\} \]
\[R[A] = \{ y \mid y \in R(x) \text{ for some } x \in A \} \]

\[R^{-1} = \{ (y,x) \mid (x,y) \in R \} \]

\[R \circ S = \{ (x,z) \mid (x,y) \in R \text{ and } (y,z) \in S \text{ for some } y \} \]

A relation \(R \) is called a function iff \(|R(x)| = 1 \) for all \(x \) in \(\text{DOM}(R) \). Every relation \(R \subseteq A \times B \) determines a function

\[<R> : \text{P(DOM}(R)) \rightarrow \text{P(RAN}(R)) \text{ defined by } <R>(X) = R[X]. \]

The following special relations will be useful later:

For any set \(Y \), \(\text{id}_Y = \{ (y,y) \mid y \in Y \} \)

For any \(i \in I \), \(z_i = ((\text{id}_{\mathbb{I}^+}) - \{(0,0)\}) \cup \{(0,i)\} \)

For any \(k \in \mathbb{I}^+ \), \(\text{del}_k = (\text{id}_{\mathbb{I}^+}) - \{(k,k)\} \)

Finally, \(\text{decr} = \{(\uparrow,\uparrow)\} \cup \{(i+1,i) \mid i \in I\} \)

We denote

\[<z_i> \text{ by } z_i, \]

\[<\text{decr}> \text{ by } \text{DECR}, \text{ and} \]

\[<\text{del}_k> \text{ by } \text{DEL}_k. \]

3. **THE FORMAL MODEL**

A program graph \(G \) is a triple \((N,A,L)\) where:

\(N \) is a non-void finite set of nodes.

\(A \subseteq N \times N \) is a set of directed arcs.

\(L \subseteq N \times \mathbb{I}^+ \) is a relation that associates labels with nodes such that \(|L^{-1}(\uparrow)| = 1 \) (that is, exactly one node is labelled by \(\uparrow \)).
The unique element of $L^{-1}(\uparrow)$ is denoted by $s(G)$ and called the start node of G, the elements of $L^{-1}(i)$ are called the level-i exit nodes for each $i \geq 0$, and the set $L^{-1}(0)$ is denoted by $F(G)$ and its members are also called finish nodes of G. The pair (N,A) is called the digraph of G. We will write N_G, A_G and L_G if we need to explicitly identify the program graph in question.

Implicit in the above is the assumption that nodes are associated with the atomic actions of a program (simple statements or Boolean expressions). Each node of a program graph is distinguishable from all other nodes of that program graph (by a unique name for instance). Distinct nodes of a program graph may however be associated with the same atomic action as would happen, for example, when the assignment "X:=0" occurs in two different places in a program. We emphasize that labels are not used to distinguish one node from another and so several distinct nodes may have the same set of labels.

A program expression (or simply expression) E, and its program graph $G = (N,A,L)$ are defined recursively:

(a) For any $i \in I$, and any node n, $E = \text{EXIT}(i,n)$ is an expression and $N = \{n\}$, $A = \emptyset$, $L = \{n\} \times \{\uparrow,0,i\}$.

[If $i=0$ this corresponds to the simple statement associated with n; if $i \geq 1$, it corresponds to either:

IF B THEN EXIT i ENDIF or]
IF B THEN ELSE EXIT i ENDF

where B is the Boolean expression associated with n.]

(b) Suppose E1 and E2 are expressions, G1=(N1,A1,L1) and
G2=(N2,A2,L2) are their respective program graphs,
N1 n N2=Φ, t is a node not in (N1 U N2) and i ∈ I, i≥1. Then, E and G=(N,A,L) as defined by the five operations
below are respectively an expression and its program
graph.

BREAK

E=BREAK(E1,i), N=N1, A=A1, L=z_i o L1

[If E1 is a program, this corresponds to the new
program "E1;EXIT i". Since control can reach the
"EXIT i" only from the finish nodes of G1 we simply
replace all 0-labels with i-labels using the rela-
tion z_i. Note that we do not create a new node for
the "EXIT i" statement.]

LOOP (See Figure 3)

E=LOOP(E1),

N=N1, A=A1 U (F(G1) X {s(G1)}), L=decr o L1.

[If E1 is a program, this corresponds to the new
program "LOOP E1 ENDL00P". The 'decr' relation is
used to specify that the new level-i exit nodes are
the old level-(i+1) exit nodes; the new arcs are
given by F(G1) X {s(G1)}]

CAT (See Figure 3)
E=CAT(E1,E2),
N=N1 U N2, A=A1 U A2 U (F(G1) X \{s(G2)\}),

L=(del_0\circ L1) U (del_1\circ L2)

[This corresponds to concatenating two programs E1 and E2. The two parts of the labelling relation L specify respectively that the finish nodes of G1 are no longer finish nodes and that the start node of G2 is no longer the start node; all other labels are unaltered.]

IF (See Figure 3)
E=IF(t,E1), N=N1 U \{t\}, A=A1 U \{(t,s(G1))\},
L=\{t\} X \{\uparrow,0\} U (del_1\circ L1)

[This corresponds to either of :
 IF B THEN ELSE E1 ENDIF
 or IF B THEN E1 ELSE ENDF where B is the Boolean expression associated with t. The new node t is the start node and a finish node of the new graph: this is specified by \{t\} X \{\uparrow,0\} in the labelling relation.]

ELSE (See Figure 3)
E=ELSE(t,E1,E2), N=N1 U N2,
A=A1 U A2 U (\{t\} X \{s(G1),s(G2)\}),
L=(del_1\circ(L1 U L2)) U \{(t,\uparrow)\}

[This corresponds to the statement
 IF B THEN E1 ELSE E2 ENDIF]
FIGURE 3
SPG operations

LOOP

CAT

IF

ELSE
A program graph is called a **Structured Program Graph** (SPG) iff it is the program graph of some expression; the six operations listed above are called **SPG-operations**.

The **size** of an expression \(E \) is the number of SPG-operations used in \(E \); the **rank** of \(E \) is \(\max \{ i \mid \text{EXIT}(i,n) \text{ or BREAK}(-,i) \text{ occurs in } E \} \); that is, the rank is the maximum depth of nested loops that are exited by an "EXIT i" statement in the program. If \(E \) is an expression, \(G \) its program graph and \(H \) the digraph of \(G \) we will say that \(G \) is a program graph of \(H \),

\(E \) is an expression for \(H \), and

\(E \) is an expression for \(G \).

We will sometimes use graph-theoretic terms in connection with an expression; it is to be understood in these cases that the terms apply to the program graph of the expression. Thus if \(E \) is an expression, the phrases: the start node of \(E \), the nodes of \(E \), the arcs of \(E \), a path in \(E \), all refer to the program graph of \(E \).

REMARKS :

1. \(L \) is always a finite relation.

2. Each node of an SPG can have at most two numeric labels; that is, \(\left| L(n)-\{\uparrow\} \right| \leq 2 \) for all nodes \(n \).

3. An SPG can have any number of finish nodes but can
have at most one start node.

Several points are noteworthy about our model:

1. We do not explicitly label the 'TRUE' and 'FALSE' branches; this information, though easy to incorporate, is superfluous for our purposes, since randomly interchanging the 'TRUE' and 'FALSE' branches leaves the underlying digraph, and hence the minimal-cardinality dissection, unchanged.

2. We only deal with graphs where the outdegree of each node is bounded by two.

3. Other models in the literature [4,5,6] create individual nodes for the statements "EXIT i" or for the keywords "LOOP" and "ENDLOOP" (sometimes called "REPEAT" and "END" respectively). We diverge from this practice for several reasons: Firstly, these statements (or keywords) merely represent control information like the keywords "THEN" and "ELSE" in an IF statement and do not constitute atomic actions as we understand them. Secondly, creating nodes for them destroys the correspondence between jump-free segments in the object code and paths in the flowgraph. Thirdly, graph isomorphism in our model becomes the more obscure "very strong
equivalence" in the other models [6]. Figure 4 shows an example of an infinite class of programs, all of which have the same program graph in our model but have progressively larger non-isomorphic flowcharts in the other models.

4. Even though we have not formally defined the relationship between a program and the expression for it, it should be clear that given a program, a parse tree for it provides an expression.

5. If digraphs are to model programs accurately, it is essential that they include specifications of start and finish nodes, as our model does, since the same underlying digraph could represent different programs depending on the start/finish specifications. For instance, the digraph:

![Digraph Diagram](image)

represents the following program if A is the start node and B is the only finish node:

```
IF A THEN C ELSE
ENDIF ;
```

B

However, if B and C are both required to be finish nodes, a more complex program is necessary:
LOOP
IF A THEN
 IF C THEN EXIT 1
 ELSE ENDIF
ELSE ENDIF;
B; EXIT 1
ENDLOOP

6. We make no assumptions about whether or not Boolean expressions may have side effects; that is, we permit the case where the evaluation of a predicate modifies the values of the other variables of the program via, for example, function calls. The models of [4] and [6] assume that predicate evaluation can have no side effects.

7. It is possible in our model to obtain graphs in which there are unreachable nodes (i.e. there is dead code in the corresponding programs). This will happen whenever the CAT(P,Q) operation is applied and the program graph of P has no finish nodes. We could prohibit the use of the CAT operation under such circumstances but we do not do so since unreachable nodes do not cause any difficulties in our algorithm.
Figure 4

An infinite class of expressions all of which have isomorphic program graphs in our model.

\[E_0 = \text{EXIT}(0, n), \quad E_i = \text{LOOP}(\text{BREAK}(E_{i-1}, 1)) \text{ for } i \geq 1. \]

The corresponding class of programs \(\{P_i \mid i \in \mathbb{I}\} \) is given by:

\[
\begin{align*}
P_0 : & \quad \langle \text{code for } n \rangle \\
P_i : & \quad \text{LOOP} \quad (\text{for } i \geq 1) \\
& \quad \langle \text{program } P_{i-1} \rangle \\
& \quad \text{EXIT 1} \\
& \quad \text{ENDLOOP}
\end{align*}
\]

All of these expressions have the same program graph \(G = (N, A, L) \) in our model: \(N=\{n\}, \ A=\emptyset, \ L=\{(n, \uparrow), (n, 0)\} \).

In the other models of the literature, the flowcharts for these programs are "very strongly equivalent" but not isomorphic:
4. DEFINITIONS

Throughout this section, $G = (N, A, L)$ is an arbitrary but fixed SPG. The definitions of this section are illustrated by an example at the end of the section. A labelled path $\gamma(G)$ in G is a pair (A, B) where:

$A = (a_1, a_2, ..., a_k)$ is a sequence of distinct nodes $a_i \in N$, such that (a_i, a_{i+1}) is an arc in G for $1 \leq i < k$; A is called the node sequence of γ, a_1 is called the beginning of γ and denoted by $b(\gamma)$ and a_k is called the end of γ and denoted by $e(\gamma)$.

$B = (L(a_1), L(a_2), ..., L(a_k))$ is called the label sequence of γ (we will write γ for $\gamma(G)$ when there is no ambiguity).

A labelled path, as we have defined it here, is a simple path in the digraph of G (in the usual graph-theoretic sense) together with the sets of labels on those nodes. If E is an expression and E_1 a subexpression of E then, a labelled path in E_1 may have the same node sequence as a labelled path in E, but their label-sequences could be quite different owing to the difference in the labelling relations of E and E_1. Suppose H is an arbitrary SPG and $\gamma(H) = (A, B)$ is an arbitrary labelled path in H such that A is also a simple path in the digraph of G. We write $L_G(\gamma)$ for the labelled path obtained from A by us-
ing the labelling relation L of G:

\[
L_G(\gamma) = (\alpha, (L(a_1), \ldots, L(a_k)))
\]

We extend this notation to collections of labelled paths. If w is any collection of labelled paths in any SPG such that $L_G(\gamma)$ is well-defined for each γ in w, then, we define:

\[
L_G(w) = \{ L_G(\gamma) \mid \gamma \in w \}
\]

This is a slight abuse of notation, since L_G is a transformation on labelled paths (and labelled path collections) and also the labelling relation of G; it should, however, be clear from the context as to which is meant.

Two labelled paths are disjoint iff their node sequences have no common elements. If γ and γ' are disjoint labelled paths in G such that there is an arc in G from the end of γ to the beginning of γ', their concatenation, denoted by "$\gamma \cdot \gamma'$", is the labelled path obtained by concatenating their corresponding node and label sequences. A dissection v of G is a collection of labelled paths in G such that every node of G occurs in exactly one member of v. A dissection v of G is called an optimal dissection iff no dissection of G has cardinality lower than $|v|$. The cost of G, denoted by $d(G)$, is the cardinality of an optimal dissection of G. We will write v_G or $v(G)$ if there is need to explicitly identify the
SPG for which \(v \) is a dissection. We will write \(v_E \) or \(v(E) \) to indicate that \(v \) is a dissection for the program graph of the expression \(E \).

If \(\gamma = (\alpha, (c_1, \ldots, c_k)) \) is a labelled path in \(G \), the signature of \(\gamma \), denoted by \(\text{sg}(\gamma) \), is the subset of \(\mathbb{I}^+ \) defined by:

\[
\text{sg}(\gamma) = c_1 \cup c_k
\]

In other words, \(\text{sg}(\gamma) \) consists of all the labels of the end of \(\gamma \) except \(\uparrow \), together with \(\uparrow \) if it is a label of the beginning of \(\gamma \). A labelled path \(\gamma \) in \(G \) is called a T-path iff its signature is the set \(T \) (i.e. \(\text{sg}(\gamma) = T \)), a start-path iff it begins at the start-node of \(G \) (i.e. \(\uparrow \in \text{sg}(\gamma) \)) and a finish-path iff it ends at a finish-node of \(G \) (i.e. \(0 \in \text{sg}(\gamma) \)).

Remark (4) A dissection can have any number of finish-paths but at most one start-path.

The following example illustrates the concepts of this section.

Example (1) Two expressions \(R \) and \(E \) and their respective program graphs \(H \) and \(G \) are shown in Figure 5. The corresponding programs are shown below:
The following table shows some node sequences and the labelled paths they determine respectively in H and G.

<table>
<thead>
<tr>
<th>NODE SEQUENCE</th>
<th>LABELLED PATH IN H</th>
<th>PATH IN G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_1=(n_1,n_3,n_6)$</td>
<td>$Y_1=(\alpha_1, (\uparrow, \phi, {0})$</td>
<td>$\delta_1=(\alpha_1, (\uparrow, \phi, \phi))$</td>
</tr>
<tr>
<td>$\alpha_2=(n_2,n_4)$</td>
<td>$Y_2=(\alpha_2, (\phi, {0,2})$</td>
<td>$\delta_2=(\alpha_2, (\phi, {1})$</td>
</tr>
<tr>
<td>$\alpha_3=(n_5)$</td>
<td>$Y_3=(\alpha_3, ({1,3})$</td>
<td>$\delta_3=(\alpha_3, ({0,2})$</td>
</tr>
<tr>
<td>$\alpha_4=(n_7)$</td>
<td>$Y_4=(\alpha_4, ({0,2})$</td>
<td>$\delta_4=(\alpha_4, ({1})$</td>
</tr>
</tbody>
</table>

For each i, $\delta_i = L_G(Y_i)$.

The concatenations
$\delta_2 \delta_1 = ((n2, n4, n1, n3, n6), (\phi, \{1\}, \{\uparrow\}, \phi, \phi))$

and $\delta_4 \delta_1 = ((n7, n1, n3, n6), (\{1\}, \{\uparrow\}, \phi, \phi))$

are well-defined labelled paths in G since $(n4, n1)$ and $(n7, n1)$ are arcs of G; the concatenation $\delta_1 \delta_2$ is not well-defined in G since $(n6, n2)$ is not an arc of G.

The signatures of these labelled paths are:

<table>
<thead>
<tr>
<th>PATH</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_1</td>
<td>${\uparrow, 0}$</td>
</tr>
<tr>
<td>γ_2</td>
<td>${0, 2}$</td>
</tr>
<tr>
<td>γ_3</td>
<td>${1, 3}$</td>
</tr>
<tr>
<td>γ_4</td>
<td>${0, 2}$</td>
</tr>
<tr>
<td>δ_1</td>
<td>${\uparrow}$</td>
</tr>
<tr>
<td>δ_2</td>
<td>${1}$</td>
</tr>
<tr>
<td>δ_3</td>
<td>${0, 2}$</td>
</tr>
<tr>
<td>δ_4</td>
<td>${1}$</td>
</tr>
<tr>
<td>$\delta_2 \delta_1$</td>
<td>ϕ</td>
</tr>
<tr>
<td>$\delta_4 \delta_1$</td>
<td>ϕ</td>
</tr>
</tbody>
</table>

The collection $w = \{\gamma_1, \gamma_2, \gamma_3, \gamma_4\}$ is a dissection for H.

The collections

$v = \{\delta_1, \delta_2, \delta_3, \delta_4\}$,

$x = \{\delta_2 \delta_1, \delta_3, \delta_4\}$, and

$y = \{\delta_4 \delta_1, \delta_2, \delta_3\}$ are all dissections for G.

The start and finish paths of these dissections are given below:
<table>
<thead>
<tr>
<th>DISSECTION</th>
<th>START-PATH</th>
<th>FINISH-PATHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>γ_1</td>
<td>$\gamma_1, \gamma_2, \gamma_4$</td>
</tr>
<tr>
<td>v</td>
<td>δ_1</td>
<td>δ_3</td>
</tr>
<tr>
<td>x</td>
<td>none</td>
<td>δ_3</td>
</tr>
<tr>
<td>y</td>
<td>none</td>
<td>δ_3</td>
</tr>
</tbody>
</table>
Figure 5

Two expressions and their program graphs.

\[R = \text{ELSE}(n1, \text{ELSE}(n3, \text{EXIT}(2, n7), n6), \text{CAT}(\text{IF}(n2, \text{BREAK}(\text{EXIT}(1, n5), 3)), \text{EXIT}(2, n4))) \]

\[E = \text{LOOP}(R) \]

\[H \quad (\text{prog. graph of } R) \quad G \quad (\text{prog. graph of } E) \]

The labels of each node are shown next to it. Both \(R \) and \(E \) have rank 3; their sizes are respectively 8 and 9.
5. **ALGORITHM PRELIMINARIES**

Let \(D = \{ v \mid v \text{ is a dissection for some SPG} \} \). We define functions \(\# \) and \(f : (P(\mathbb{I}^+) - \{\emptyset\}) \times D \rightarrow I \) by

\[
\#(T,v) = \text{the number of } T\text{-paths in } v
\]
\[
= |\{ \gamma \mid \gamma \in v \text{ and } \text{sg}(\gamma) = T \}|
\]
\[
f(T,v) = \min \{ |T|, \#(T,v) \}
\]

Every dissection \(v \) of an arbitrary SPG \(G \) determines a function \(f_v : (P(\mathbb{I}^+) - \{\emptyset\}) \rightarrow I \), called the **character** of \(v \), defined by \(f_v(T) = f(T,v) \). We define an equivalence relation on dissections based on their character:

\(v \sim w \) iff \(f_v = f_w \) [i.e. \(f(T,v) = f(T,w) \) for all \(T \)].

This equivalence relation has a crucial role to play in the algorithm. Example 2 below gives the characters of the dissections of Example 1.

For any collection \(X \) of dissections we define an **optimal choice-set** from \(X \) to be any collection of dissections \(Y \) obtained by choosing from each equivalence class \(C \) of \(X \), exactly one dissection whose cardinality is minimal in \(C \).

EXAMPLE (2) The characters of the dissections \(v, w, x, \) and \(y \) of Example 1 are given below.
Suppose E, E_1, E_2 are expressions and v_1, v_2 are dissections for E_1, E_2 respectively. We define several operations on dissections; each operation is the analogue of an SPG-operation and produces a set of dissections for a composite graph from dissections of the component subgraphs. For each operation we provide, in addition to a precise and formal definition using the notation of the previous section, an informal definition where only the node sequences of the dissections are specified, it being understood that the labels of E are used in all cases to obtain the corresponding label sequences. These operations are illustrated pictorially in Figure 6 (which follows these definitions) and by a specific example at the end of the section.

(a) If $E = \text{BREAK}(E_1,i)$ then
BREAK(v1,i) = \{ L_E(v1) \} \\
= \{ \text{The unique dissection of } E \text{ whose node} \\
\text{sequences are exactly those of } v1 \} \\

Remark (5) \(L_E(v1) \) is a single dissection, so BREAK(v1,i) \\
is a unit set.

(b) If \(E = \text{LOOP}(E1) \) then \\

\[
\text{LOOP}_1(v1) = \{ L_E(v1) \} \\
= \{ \text{The unique dissection of } E \text{ whose node} \\
\text{sequences are exactly those of } v1 \} \\
\text{LOOP}_2(v1) = \{ L_E(v1-\{p,q\}) \cup \{L_E(p), L_E(q)\} \ |
\text{q is a start path and } p \text{ is a finish} \\
\text{path in } v1 \} \\
= \{ v \mid v \text{ is a dissection of } E \text{ obtained} \\
\text{from } v1 \text{ by concatenating a finish path} \\
\text{and a start path. } \}
\]

\[
\text{LOOP}(v1) = \text{LOOP}_1(v1) \cup \text{LOOP}_2(v1)
\]

Remark (6) \(\text{LOOP}_1(v1) \) is a unit set; \(\text{LOOP}_2(v1) \) may have \\
zero, one or more elements.

(c) If \(E = \text{CAT}(E1,E2) \) then \\

\[
\text{CAT}_1(v1,v2) = \{ L_E(v1) \cup L_E(v2) \} \\
= \{ \text{The unique dissection of } E \text{ whose node} \\
\]
sequences are those of v1 together
with those of v2 }

\[CAT_2(v1,v2) = \{ L_E((v1-\{p\}) \cup (v2-\{q\})) \cup \]
\[L_E(p).L_E(q) \mid p \text{ is a finish path of } v1 \text{ and } q \text{ is a start path of } v2 \} \]

= \{ v \mid v \text{ is a dissection of } E \text{ obtained from } v1 \cup v2 \text{ by concatenating a finish path of } v1 \text{ to a start path of } v2 \} \]

\[CAT(v1,v2) = CAT_1(v1,v2) \cup CAT_2(v1,v2) \]

Remark (7) \(CAT_1(v1,v2) \) is a unit set; \(CAT_2(v1,v2) \) may have zero, one or more elements.

(d) If \(E = IF(j, t, E_1) \), let \(p' \) be the single-node labelled path \((t,L_E(t))\) in \(E \). Then,

\[IF_1(t,v1) = \{ L_E(v1) \cup \{p'\} \} \]

= \{ The unique dissection of \(E \) whose node sequences are those of \(v1 \) together with \(t \) \} \]

\[IF_2(t,v1) = \{ L_E(v1-\{q\}) \cup \{p'.L_E(q)\} \mid \]
\[q \text{ is a start path of } v1 \} \]

= \{ v \mid v \text{ is a dissection of } E \text{ obtained from } v1 \text{ by concatenating } (t) \text{ with a start path of } v1 \} \]
IF(t,v1) = IF_1(t,v1) U IF_2(t,v2)

Remark (8) IF_1(t,v1) is a unit set; IF_2(t,v1) is either empty or a unit set.

(e) If E = ELSE(t, E1, E2), let p' be the single-node labelled path (t,L_E(t)) in E. Then,

ELSE_1(t,v1,v2) = { L_E(v1) U L_E(v2) U {p'} }

= { The unique dissection of E whose node sequences are those of v1 and v2 together with (t) }

ELSE_2(t,v1,v2)

= { L_E(v2 U (v1-{q})) U {p'.L_E(q)} | q is a start path of v1 } U

{ L_E(v1 U (v2-{q})) U {p'.L_E(q)} | q is a start path of v2 }

= { v | v is a dissection of E obtained from v1 U v2 by concatenating (t) with a start path of v1 or v2 }

Remark (9) ELSE_1(t,v1,v2) is a unit set; ELSE_2(t,v1,v2) has no more, though possibly fewer, than two elements.
FIGURE 6

SPG-Operations on dissections

\text{LOOP}(v_1)

\text{CAT}(v_1, v_2)

\text{ELSE}(t, v_1, v_2)

\text{IF}(t, v_1)
We will use $\text{OP}(i,t,v_1,v_2)$ to mean any one of:

$\text{BREAK}(v_1,i)$, $\text{LOOP}(v_1)$, $\text{CAT}(v_1,v_2)$, $\text{IF}(t,v_1)$ or $\text{ELSE}(t,v_1,v_2)$. Likewise, $\text{OP}(i,t,B_1,B_2)$ will denote any of the corresponding five SPG-operations.

EXAMPLE (3) We refer to Figure 5 and the dissections v, w, x and y of Example 2.

$\text{LOOP}_1(w) = \{v\}$; $\text{LOOP}_2(w) = \{x, y\}$ and $\text{LOOP}(w) = \{v, x, y\}$
6. THE ALGORITHM

This section contains a few prefatory remarks, the main algorithm, and the two main theorems regarding its correctness and time-complexity; the entirety of the next chapter is occupied with the proofs of these theorems.

The algorithm keeps track of a family of dissections for each SPG and, as each SPG-operation is applied, constructs members of this family for a composite SPG from the (recursively computed) families for the component subgraphs. The family must be chosen with care; the total number of dissections of a program graph can grow exponentially in the size of the graph and so the family of all dissections will not do. The family that our algorithm uses is an optimal choice-set (Section 5) from the class of all dissections. The equivalence relation provides sufficiently fine resolution to ensure that this choice-set has all the necessary information (to build the choice-set for the larger graph from the ones for the smaller graphs) and yet is sufficiently coarse to ensure that the number of equivalence classes does not grow exponentially in the size of the graph.
ALGORITHM Opt-Dissection

INPUT An expression E.

OUTPUT An optimal dissection v for the flowgraph of E.

METHOD Call Dissect(E,Y); v := MIN(Y).

(* MIN(Y) is a minimum-cardinality member from the family of sets Y; the procedure DISSECT is defined below. *)

PROCEDURE Dissect(E,Y);

(* E is an expression; the procedure returns an optimal choice set in Y. *)

BEGIN IF E is of the form EXIT(i,n) THEN

Let X := {u} where u is the unique dissection of the flowgraph of E.

ELSE (* E = OP(i,t,E1,E2) for some expressions E1 and E2 where OP is some SPG-operation other than EXIT. *)

Dissect(E1,Y1); Dissect(E2,Y2);

Let X := { v | v \in OP(i,t,v1,v2) for some v1 \in Y1 and v2 \in Y2 }

ENDIF;

(* The following loop creates Y from the set X created above *)

Y := \emptyset ;

FOR EACH equivalence class C of X (under ..) DO

Y := Y \cup MIN(C)

END; (* of PROCEDURE Dissect *)
The algorithm has been stated in very general terms to facilitate a quick overview of the various steps involved. We now present an expanded version in Pascal-like syntax; this version clarifies some implementation details and is useful in computing the time-complexity of the algorithm. The line numbers at left (in PROCEDURE Create_Y) are used in the proofs of the next chapter.

PROGRAM Opt-dissection;
VAR E : expression;
 v,w : dissection;
 Y : SET OF dissection;
PROCEDURE Dissect(E : expression;
 VAR Y : SET OF dissection) ;
VAR Y1,Y2,X : SET OF dissection (initially void) ;

FUNCTION Compare_f(v,w : dissection) : BOOLEAN;
(* Returns TRUE if v and w have the same character, FALSE otherwise *)
VAR L : INTEGER ; S : SET ;
BEGIN (* function Compare_f *)
 L := MAX{ i ∈ I | i labels some node
 in v or w } ;
 S := { i ∈ I | 0 ≤ i < L }⁺ ;
(* The following loop compares the characters
 of v and w; only a finite number of
comparisons are necessary since \(f(T,v) \) and \(f(T,w) \) are non-zero for only finitely many \(T \) as we shall prove in the next chapter.*

\[
\text{FOR EACH } T \text{ IN } \{ T \mid |\overline{T}| \leq 2, T \subseteq S \} \text{ DO}
\]

\[
\text{IF } (f(T,v) \neq f(T,w)) \text{ THEN}
\]

\[
\text{Compare}_f := \text{FALSE} \; ; \; \text{RETURN}
\]

\[
\text{ENDIF} ;
\]

\[
\text{Compare}_f := \text{TRUE} ;
\]

\[
\text{END} ; \; (\ast \text{ function Compare}_f \ast)
\]

\[
\text{PROCEDURE Create}_Y \; (S : \text{SET OF dissection }) \; ;
\]

\[
(\ast \text{ Creates the optimal choice-set of the set } S
\]

\[
\text{in the variable } Y \text{ which is a reference}
\]

\[
\text{parameter to Dissect } \ast)
\]

\[
\text{VAR v, w : dissection} ;
\]

\[
\text{BEGIN } (\ast \text{ procedure Create}_Y \ast)
\]
(1) \[\text{LL : FOR EACH } v \text{ IN } S \text{ DO} \]
(2) \[\quad \text{FOR EACH } w \text{ IN } Y \text{ DO} \]
(3) \[\quad \text{IF } \text{Compare}_f(v, w) \text{ THEN} \]
\[\quad \quad \text{(* The equivalence class of } v \text{ already has a representative in } Y \text{ *)} \]
(4) \[\quad \quad \text{IF } (|v| < |w|) \text{ THEN} \]
\[\quad \quad \quad \text{(* } v \text{ is a cheaper representative and so replaces } w \text{ in } Y \text{ *)} \]
\[\quad \quad \quad Y := (Y-\{w\}) \cup \{v\} \]
\[\quad \text{ENDIF;} \]
\[\quad \text{(* In either case, continue with the next iteration of the outer loop *)} \]
\[\quad \text{CONTINUE LL} \]
\[\text{ENDIF;} \]
\[\text{ENDFOR (* Inner loop *)} \]
\[\text{(* If control reaches here, the equivalence class of } v \text{ has no representative in } Y \text{ so far; we therefore add it to } Y \text{ *)} \]
\[Y := Y \cup \{v\} \]
\[\text{ENDFOR (* outer loop *)} \]
\[\text{END ; (* procedure Create}_Y \text{ *)} \]
BEGIN (* procedure Dissect *)

IF E = EXIT(i,n) THEN

 Y := [the unique dissection of E];

 RETURN

ENDIF;

(* Here E is not atomic *)

IF E = BREAK(E1,i) THEN

 Dissect(E1,Y1);

 FOR EACH v IN Y1 DO

 X := X U BREAK(v,i)

 ENDIF;

ELSE IF E = LOOP(E1) THEN

 Dissect(E1,Y1);

 FOR EACH (v IN Y1) DO

 X := X U LOOP(v)

 ENDIF;

ELSE IF E = CAT(E1,E2) THEN

 DISSECT(E1,Y1); DISSECT(E2,Y2);

 FOR EACH (v IN Y1) AND EACH (w IN Y2) DO

 X := X U CAT(v,w)

 ENDIF;

ELSE IF E = IF(t,E1) THEN

 Dissect(E1,Y1);

 FOR EACH v IN Y1 DO

 X := X U IF(t,v)

 ENDIF;

ELSE IF E = ELSE(t,E1,E2) THEN

 Dissect(E1,Y1); Dissect(E2,Y2);

 FOR EACH (v IN Y1) AND EACH (w IN Y2) DO

 ENDIF;
\[X := X \cup \text{ELSE}(t, v, w) \]

\textbf{ENDIF} ;

(* using the set \(X \) formed above, we now create an optimal choice-set from it *)

\textbf{Create_Y}(X) ;

\textbf{END} ; (* procedure \textbf{Dissect} *)

\begin{verbatim}
BEGIN (* main program *)
READ(E) ; \textbf{Dissect}(E,Y) ;

(* Find an element of \(Y \) whose cardinality is minimal. *)

\[v := \text{an arbitrary member of } Y ; \]

\textbf{FOR} EACH \(w \) IN \(Y \) \textbf{DO}

\textbf{IF} \(|w| < |v| \) \textbf{THEN}

\[v := w \]

\textbf{ENDIF;}

\textbf{WRITE}("An optimal dissection is:\) , \(v) \]

\textbf{END.} (* main program *)
\end{verbatim}
The principal properties of the algorithm are summarized by the following theorems:

THEOREM 1 The output v of the algorithm is an optimal dissection for the flowgraph of E.

THEOREM 2 The running time of OPT-DISSECTION is $3^O(r^2)n^2$ where r is the rank of E and n is size of E.
CHAPTER 3

PROOFS OF THEOREMS

1. PRELIMINARY RESULTS

LEMMA (1) Suppose T and T' are arbitrary subsets of \mathbb{I}^+ and v is an arbitrary dissection of an SPG G.

(a) $f(T,v) = 0$ iff $\#(T,v) = 0$

(b) $f(T,v) \neq 0 \implies |T^-| \leq 2$

(c) $f(T,v) = 0$ for all but finitely many T

(d) $\uparrow \in T \implies f(T,v) = \#(T,v) \leq 1$

(e) $\uparrow \in T$ and $\uparrow \in T'$ or $\#(T',v) = 0$

(f) $|T| > f(T,v) \implies f(T,v) = \#(T,v)$

Proof

(a) and (f) follow from the definitions of $\#$ and f; (b) follows from Remark (2); (c) follows from Remark (1); (d) and (e) are simple consequences of Remark (4).

LEMMA (2) For any $T \subseteq \mathbb{I}^+$, $i \in \mathbb{I}$ and $k \in \mathbb{I}$

(a) $Z^{-1}_i(T) = \begin{cases} \phi & \text{if } 0 \notin T \\
\{T\} & \text{if } 0 \notin T \text{ and } i \notin T \\
\{T, T \cup \{0\}, (T-\{i\}) \cup \{0\}\} & \text{if } 0 \notin T \\
& \text{and } i \in T. \end{cases}$

(b) $\text{DECR}^{-1}(T) = \{T \cup \{i\}, (T \cup \{i\}) \text{ or } \{0\} \}$
(c) \(\text{DEL}^{-1}_k(T) = \begin{cases} \emptyset & \text{if } k \in T \\ \{T, T \cup \{k\} \} & \text{otherwise.} \end{cases} \)

Proof:

(a) If \(0 \in T \), then \(Z_i(T') = T \) is impossible for any \(T' \).

If \(0 \notin T \), \(i \notin T \) then suppose \(Z_i(T') = T \). Since \(Z_i \)
affects only 0's and i's, we must have
\(T = T - \{0, i\} = T' - \{0, i\} \). If either 0 or i was in \(T' \), i
would be in \(Z_i(T') = T \). Hence we must have \(T' = T \).

If \(0 \notin T \), \(i \in T \), suppose \(Z_i(T') = T \). As before,
\(T - \{i\} = T - \{0, i\} = T' - \{0, i\} \). There are four possibilities:

\[0, i \in T' \implies T' = T \cup \{0\}\]
\[0 \notin T', i \in T' \implies T' = T\]
\[0 \in T', i \notin T' \implies T' = (T - \{i\}) \cup \{0\}\]
\[0, i \notin T' \text{ is impossible since } i \in T.\]

(b) Suppose \(\text{DECR}(T') = T \). Then \(T + 1 \subseteq T' \). The only other
element that could be in \(T' \) is 0.

(c) If \(k \in T \) then \(\text{DEL}_k(T') = T \) is impossible for any \(T' \).

If \(k \notin T \) and \(\text{DEL}_k(T') = T \) then we must have \(T \subseteq T' \).
The only other element that could be in \(T' \) is \(k \).

Lemma (3) Let

- \(c \) be any element of \(\mathbb{I} \)
- \(K \) be any finite set
- \(A \) be any non-void subset of \(\mathbb{I}^+ \)
- \(v \) be any element of \(D \)
B_k be any non-void subset of I^+ for each $k \in K$

v_k be any element of D

$[f] = \sum_{k \in K} f(B_k, v_k)$

$[#] = \sum_{k \in K} \#(B_k, v_k)$

Then

(a) $\min \{|A|, \, c + [f]\} \leq \min \{|A|, \, c + [\#]\}$

(b) Equality holds in (a) if $c \geq 0$ and

$|B_k| \geq |A|$ for all $k \in K$.

(c) If $0, \{0\} \not\subseteq A$ and $f(A \cup \{0\}, v) \geq 1$ then

$$\min \{|A|, \, -1 + f(A \cup \{0\}, v) + [f]\}$$

$$= \min \{|A|, \, -1 + \#(A \cup \{0\}, v) + [#]\}$$

Proof:

(a) By definition of f, $f(T, v) \leq \#(T, v)$ for all T and v.

(b) Let LHS and RHS denote respectively the left hand side and right hand side of the inequality (a). Suppose the assumptions of (b) hold. We need only show that LHS \geq RHS; equality then follows from (a).

Case I $|A| \leq c + [f]$. Here LHS $= |A| \geq$ RHS.

Case II $|A| > c + [f]$. For all $k \in K$ we have:

$|B_k| \geq |A| > c + [f] \geq f(B_k, v_k)$ and so

$f(B_k, v_k) = \#(B_k, v_k)$ by Lemma 1(f); equality follows.

(c) Let LHS and RHS denote respectively the left and
right hand sides of the desired equality; assume that the premises of (c) hold. Then \(0 \leq \text{LHS} \leq \text{RHS} \leq |A| \). By assumption and from Lemma 1(b) we see that
\(|(A \cup \{0\})| = |(A \cup \{0\}) - \{\uparrow\}| \leq 2 \) and so \(|A| = 1\) and \(|A \cup \{0\}| = 2\). So we have: \(0 \leq \text{LHS} \leq \text{RHS} \leq 1\).

If \(\text{LHS} = 1 \) then \(\text{LHS} = \text{RHS} \) follows trivially.

If \(\text{LHS} = 0 \), then, since \(|A| = 1\) we must have
\(-1 + f(A \cup \{0\}, v) + [f] = 0\) and so from our assumptions we see that \(f(A \cup \{0\}, v) = 1\) and \(f(B_k, v_k) = 0\) for all \(k \in K\). Now \(|A \cup \{0\}| = 2\) and \(f(A \cup \{0\}, v) = 1\) together imply that \(\#(A \cup \{0\}, v) = 1\) (Lemma 1(f)).

\(f(B_k, v_k) = 0\) implies that \(\text{RHS} = 0\) by Lemma 1(a).

Thus \(\text{LHS} = \text{RHS} = 0\).

The following Lemma proves that any dissection for a composite program graph can be expressed in terms of dissections of the component program graphs and expresses the cardinality of the former in terms of the cardinalities of the latter.

Lemma (4) Suppose \(E, E_1 \) and \(E_2 \) are arbitrary expressions and \(v \) is any dissection for \(E \).

(a) If \(E = \text{EXIT}(i, n) \) then \(v \) is the only dissection for \(E \) and \(|v| = 1\).

(b) If \(E = \text{BREAK}(E_1, i) \) then
(i) For any dissection w_1 of E_1,
$$v \in \text{BREAK}(w_1,i) \implies |v| = |w_1|$$

(ii) There is a dissection w_1 of E_1 such that $v \in \text{BREAK}(w_1,i)$.

(c) If $E = \text{LOOP}(E_1)$ then

(i) For any dissection w_1 of E_1,
$$v \in \text{LOOP}_1(w_1) \implies |v| = |w_1|$$
$$v \in \text{LOOP}_2(w_2) \implies |v| = |w_1| - 1$$

(ii) There is a dissection w_1 of E_1 such that $v \in \text{LOOP}(w_1)$

(d) If $E = \text{CAT}(E_1,E_2)$ then

(i) For any dissections w_1, w_2 of E_1, E_2 respectively,
$$v \in \text{CAT}_1(w_1,w_2) \implies |v| = |w_1| + |w_2|$$
$$v \in \text{CAT}_2(w_1,w_2) \implies |v| = |w_1| + |w_2| - 1$$

(ii) There are dissections w_1, w_2 of E_1, E_2 respectively such that $v \in \text{CAT}(w_1,w_2)$.

(e) If $E = \text{IF}(t,E_1)$ then

(i) For any dissection w_1 of E_1,
$$v \in \text{IF}_1(t,w_1) \implies |v| = |w_1| + 1$$
$$v \in \text{IF}_2(t,w_1) \implies |v| = |w_1|$$

(ii) There is a dissection w_1 of E_1 such that $v \in \text{IF}(t,w_1)$
(d) If $E = \text{ELSE}(t, E_1, E_2)$ then

(i) For any dissections w_1, w_2 of E_1, E_2 respectively,

$v \in \text{ELSE}_1(t, w_1, w_2) \implies |v| = |w_1| + |w_2| + 1$

$v \in \text{ELSE}_2(t, w_1, w_2) \implies |v| = |w_1| + |w_2|$

(ii) There are dissections w_1, w_2 of E_1, E_2 respectively such that $v \in \text{ELSE}(t, w_1, w_2)$.

Proof:

The proof is very simple in all cases. We illustrate the general idea by proving (d). Suppose $E = \text{CAT}(E_1, E_2)$; the conclusions of (d)(i) follow directly from the definitions of CAT_1 and CAT_2 (Section 6). For (ii) there are two cases:

Case 1. Every node sequence of v is contained entirely either in E_1 or in E_2. Hence we can write $v = v_1 \cup v_2$ where the node-sequences of v_1 are entirely from E_1 and those of v_2 entirely from E_2. Setting $w_1 = \text{L}_{E_1}(v_1)$ and $w_2 = \text{L}_{E_2}(v_2)$ we see that (ii) follows.

Case 2. There is a labelled path p in v which is the concatenation of labelled paths q_1 and q_2 such that the node-sequence of q_1 is entirely in E_1 and that of q_2 entirely in E_2. We can therefore write $v = v_1 \cup v_2 \cup \{p\}$ where the node-sequences of v_1 are entirely in E_1 and
those of \(v_2 \) entirely in \(E_2 \).

We set \(w_1 = L_{E_1}(v_1 \cup \{q_1\}) \) and
\[w_2 = L_{E_2}(v_2 \cup \{q_2\}), \]
and now (ii) follows.

The next six lemmas express the character of a dissection for a composite program graph in terms of the characters of its component dissections (whose existence is ensured by the previous lemma). We need some notation first.

If \(B \) is any predicate, let \(\overline{B} \) denote the Boolean negation of \(B \). For any \(T \subseteq I^+ \), any dissection \(w \) and any \(g \in \{Z_i^{-1}, DECR^{-1}, DEL_0^{-1}, DEL_1^{-1}\} \) define:
\[
S(\#_i, T, w, g) = \sum_{X \in g(T)} \#(X, w) \quad \text{and} \quad \quad S(f, T, w, g) = \sum_{X \in g(T)} f(X, w).
\]

Suppose, for Lemmas (5) through (10), that \(E \) is any expression, \(v \) is a dissection for \(E \) and \(T \) is an arbitrary element of \(\text{DOM}(f_v) \).
Lemma (5) If $E = \text{EXIT}(i,n)$ then

(a) $(T,v) = \begin{cases} 1 & \text{if } T = \{0,i,\uparrow\} \\ 0 & \text{otherwise} \end{cases}$

(b) $f_v(T) = \begin{cases} 1 & \text{if } T = \{0,i,\uparrow\} \\ 0 & \text{otherwise} \end{cases}$

Proof:

E has a unique labelled path and its signature is $\{0,i,\uparrow\}$.

Lemma (6) If $E = \text{BREAK}(E_1,i)$ for some expression E_1 and some $i > 0$, let w be a dissection for E_1 such that $v \in \text{BREAK}(w,i)$ [such a w exists by Lemma (4)(b)]. Then,

(a) $(T,v) = S(\#, T, w, Z_i^{-1})$

(b) $f_v(T) = \min \{|T|, S(\#, T, w, Z_i^{-1})\}$

Proof:

(a) The T-paths of v are precisely the X-paths of w such that $Z_i(X) = T$.

(b) Let $h(T) = Z_i^{-1}(T)$.

If $0 \in T$ then $(T,v) = 0$ and so $f_v(T) = 0$.

By Lemma 2(a), $h(T) = \emptyset$ and so $S(\#, T, w, h) = 0$ and hence the given equality holds.

If $0 \notin T$ then by Lemma 2(a), $X \in h(T) \implies |X| \geq |T|$.

So $f_v(T)$

$= f(T,v) = \min \{|T|, (T,v)\}$ (by definition)

$= \min \{|T|, S(\#, T, w, h)\}$ (using part (a))
= \min \{ |T|, S(f, T, w, h) \} \quad \text{(by Lemma 3(b))}

Lemma (7) If \(E = \text{LOOP}(E_1) \) for some expression \(E_1 \), let \(w \) be a dissection for \(E_1 \) such that \(v \in \text{LOOP}(w) \) [such a \(w \) exists by Lemma (4)(c)]. Then,

(i) If \(v \in \text{LOOP}_1(w) \) then

(a) \(\#(T, v) = S(\#, T, w, \text{DECR}^{-1}) \)

(b) \(f_v(T) = \min \{ |T|, S(f, T, w, \text{DECR}^{-1}) \} \)

(ii) If \(v \in \text{LOOP}_2(w) \) then (by def. of \(\text{LOOP}_2 \))

\(v = L_E(w - \{p_1, p_2\}) \cup \{q\} \) where \(L_E \) is the labelling relation of the program graph of \(E \), \(p_1 \) and \(p_2 \) are respectively finish and start paths of \(w \) and \(q \) is the labelled path "\(L_E(p_1).L_E(p_2)" ";

let

\(h(T) = \text{DECR}^{-1}(T) \),

\(B_1 \) be the predicate "\(sg(q) = T \)",

\(B_2 \) be the predicate "\(sg(p_1) \in h(T) \)",

\(B_3 \) be the predicate "\(sg(p_2) \in h(T) \)",

\(K_2 = \begin{cases} 1 & \text{if} \ B_1 \\ 0 & \text{otherwise} \end{cases} \)

\(K_3 = \begin{cases} 1 & \text{if} \ B_2 \text{ or } B_3 \\ 0 & \text{otherwise} \end{cases} \)

(a) \(\#(T, v) = S(\#, T, w, h) + K_2 - K_3 \)
(b) \(f_v(T) = \begin{cases}
0 & \text{if } (\overline{B1} \land \overline{B2} \land \overline{B3}) \\
\min \{ |T|, S(f, T, w, h) \} & \text{if } (B1 \land B2 \land B3) \\
or (\overline{B1} \land \overline{B2} \land \overline{B3}) \\
\min \{ |T|, S(f, T, w, h) + 1 \} & \text{if } (B1 \land \overline{B2} \land \overline{B3}) \\
\min \{ |T|, S(f, T, w, h) - 1 \} & \text{if } (\overline{B1} \land B2 \land B3)
\end{cases} \)

Proof:

(i) (a) The T-paths of v are exactly the X-paths of w such that \(\text{DEC}(X) = T \).

(b) By LEMMA 2(b) \(|X| \geq |T| \) for all X in \(h(T) \).

\[
f_v(T) = f(T, v) = \min \{ |T|, \#(T, v) \} \\
= \min \{ |T|, S(#, T, w, h) \} \text{ (by part(a))} \\
= \min \{ |T|, S(f, T, w, h) \} \text{ (by Lemma (3)b)}
\]

(ii) (a) Ignoring the labelled paths \(L_B(p1), L_B(p2) \) and q for the moment, we can estimate the number of T-paths of v by counting the number of X-paths of w such that \(\text{DEC}(X) = T \). Corrections may be necessary to this estimate for two reasons:

-- If q is a T-path of v then we need to add one to this estimate; K2 does this.

-- If either \(L_B(p1) \) or \(L_B(p2) \) was included in this estimate (both cannot be, since p2 is the start-path) we need to subtract one from
this estimate; K3 does this.

(b) The three combinations:

\((B1 \land B2 \land B3), (B1 \land \overline{B2} \land B3),\)

and \((B1 \land B2 \land B3)\) are not accounted for; but they are impossible as can be seen from:

\[
\begin{align*}
B3 & \implies \uparrow \in T \quad (\uparrow \in \text{sg}(p2)) \\
B2 & \implies \uparrow \notin T \quad (\uparrow \notin \text{sg}(p1) \text{ by Remark (5)}) \\
B1 & \implies \uparrow \notin T \quad (\uparrow \in \text{sg}(q) \text{ iff } \uparrow \in \text{sg}(p1))
\end{align*}
\]

Clearly \(v\) cannot have a start-path (since \(v \in \text{LOOP}_2(w)\)). Now, if \((B1 \land \overline{B2} \land B3)\) then \(\uparrow \in T\) and so \(#(T,v) = 0\). Using this fact, the expression for \(#(T,v)\) of part (a) and the definitions of K2 and K3 we get:

\[
#(T,v) = \begin{cases}
0 & \text{if } (B1 \land \overline{B2} \land B3) \\
\min \{|T|, S(#,T,w,h)| \text{ if } (B1 \land B2 \land \overline{B3})\} & \text{or } (B1 \land \overline{B2} \land \overline{B3}) \\
\min \{|T|, S(#,T,w,h)+1| \text{ if } (B1 \land \overline{B2} \land \overline{B3})\} & \text{if } (B1 \land \overline{B2} \land \overline{B3}) \\
\min \{|T|, S(#,T,w,h)-1| \text{ if } (B1 \land B2 \land \overline{B3})\} & \text{if } (B1 \land B2 \land \overline{B3})
\end{cases}
\]

By Lemma 2(b), \(X \in \text{DECR}^{-1}(T) \implies |X| \geq |T|\). So the given expressions for \(f_v(T)\) follow from Lemma 3(b) and the expressions for \(#(T,v)\) derived above
in all cases except the last, namely,
\[(B1 \land B2 \land \overline{B3}).\]

Now, \(B2 \implies \text{sg}(pl) \in h(T)\)
\[\implies \text{sg}(pl) = (T+1) \cup \{0\} \text{ (Lemma 2(b))}.\]

Hence \(f((T+1) \cup \{0\}, w) \geq 1. \quad \text{--------- (*)}\)

So \(f_v(T) = f(T,v)\)
\[= \min \{|T|, \#(T,v)\} \text{ (by definition)}\]
\[= \min \{|T+1|, S(\#,T,w,h)-1\} \text{ (derived above)}\]
\[= \min \{|T+1|, -1 + \#((T+1) \cup \{0\}, w)\}\]
\[\quad + \#(T+1,w)\text{ (Lemma 2(b))}\]
\[= \min \{|T+1|, -1 + f((T+1) \cup \{0\}, w)\}\]
\[\quad + f(T+1,w)\]

(since (*) holds, Lemma 3(c) applies)
\[= \min \{|T+1|, -1 + S(f,T,w,h)\}\text{ (Lemma 2(b))}\]

Lemma (8) If \(E = \text{CAT}(E_1,E_2)\) for some expressions \(E_1\) and \(E_2\), let \(w_1\) and \(w_2\) be dissections for \(E_1\) and \(E_2\) respectively such that \(v \in \text{CAT}(w_1,w_2)\) [such \(w_1\) and \(w_2\) exist by Lemma 3(d)].

Let \(h(T) = \text{DEL}^{-1}_0(T)\) and \(h'(T) = \text{DEL}^{-1}_1(T)\).

(i) If \(v \in \text{CAT}_1(w_1,w_2)\) then
 (a) \(\#(T,v) = S(\#,T,w_1,h) + S(\#,T,w_2,h')\)
 (b) \(f_v(T) = \min \{|T|, S(\#,T,w_1,h) + S(\#,T,w_2,h')\}\)

(ii) If \(v \in \text{CAT}_2(w_1,w_2)\) then, (by definition of \(\text{CAT}_2\))
\[v = L_E((w_1 - \{p_1\}) \cup (w_2 - \{p_2\})) \cup \{q\} \]
where

\(p_1 \) is a finish path of \(w_1 \), \(p_2 \) is the start path of \(w_2 \) and \(q \) is the path "\(L_E(p_1) . L_E(p_2) \)".

Let \(B_1 \) be the predicate "\(sg(q) = T \)"

\(B_2 \) be the predicate "\(sg(p_1) \in h(T) \)"

\(B_3 \) be the predicate "\(sg(p_2) \in h'(T) \)"

\[K_1 = \begin{cases} 1 & \text{if } B_1 \\ 0 & \text{otherwise} \end{cases} \]

\[K_2 = \begin{cases} 1 & \text{if } B_2 \\ 0 & \text{otherwise} \end{cases} \]

\[K_3 = \begin{cases} 1 & \text{if } B_3 \\ 0 & \text{otherwise} \end{cases} \]

(a) \[\#(T,v) = S(#,T,w_1,h) + S(#,T,w_2,h') \]

\[+ K_1 - K_2 - K_3 \]

(b) \[f_v(T) = \min \left\{ \begin{array}{l} \{|T|, S(f,T,w_1,h) + f(T,w_2) \} \text{ if } \\
(B_1 \land B_2 \land B_3) \text{ or } (\overline{B_1} \land \overline{B_2} \land B_3) \\
\min \left\{ \{|T|, S(f,T,w_1,h) + S(f,T,w_2,h') \} \text{ if } \\
(B_1 \land B_2 \land B_3) \text{ or } (B_1 \land B_2 \land B_3) \\
or (\overline{B_1} \land \overline{B_2} \land B_3) \\
\min \left\{ \{|T|, S(f,T,w_1,h) + S(f,T,w_2,h') + 1 \} \text{ if } \\
(B_1 \land \overline{B_2} \land \overline{B_3}) \\
\min \left\{ \{|T|, S(f,T,w_1,h) + S(f,T,w_2,h') - 1 \} \text{ if } \\
(\overline{B_1} \land B_2 \land B_3) \end{array} \right. \right. \]

Proof:

(i)(a) The T-paths of \(v \) are exactly
\{ \text{the } X\text{-paths of } w_1 \text{ such that } \text{DEL}_0(X) = T \text{ and} \\
\text{the } X\text{-paths of } w_2 \text{ such that } \text{DEL}^<_1(X) = T. \}

(b) By Lemma 2(c), \(X \subseteq h(T) \cup h^-(T) \implies |X| > |T|. \)

\[f_v(T) = f(T, v) = \min\{|T|, \#(T, v)\} \text{ (def. of } f) \]
\[= \min\{|T|, S(#, T, w_1, h) + S(#, T, w_2, h') \} \]
(by part (a))
\[= \min\{|T|, S(f, T, w_1, h) + S(f, T, w_2, h') \} \]
(by Lemma 3(b))

(ii) (a) We can count the \(T \)-paths of \(v \) as in (i) (a) above.

This count could be inaccurate for three reasons:
-- \(q \) has not been counted but should be;
 \(K_1 \) corrects for this.
-- \(p_1 \) has been counted but should not be;
 \(K_2 \) corrects for this.
-- \(p_2 \) has been counted but should not be;
 \(K_3 \) corrects for this.

(b) The only combination of truth values that is not accounted for is \((\overline{B_1} \land B_2 \land B_3)\) but this cannot occur, since,
\[B_2 \implies \text{sg}(p_1) \in h(T) \implies \text{sg}(p_1) - \{0\} = T \]
\[B_3 \implies \text{sg}(p_2) \in h^-(T) \implies \text{sg}(p_2) - \{↑\} = T \]
Now \((B_2 \land B_3) \implies ↑\emptyset T \implies ↑\emptyset \text{ sg}(p_1).\)
So, \[\text{sg}(q) = \text{sg}(L^{\overline{B_1}} (p_1) \land L_E(p_2)) \]
\[= (\text{sg}(p_1) \cup \text{sg}(p_2)^-) \]
\[= \phi \cup T \]
\[= T \text{ and so } B1 \text{ holds.} \]

Using the expression for \(\#(T,v) \) derived in (a), the definitions of \(K1, K2 \) and \(K3 \), and the fact that \(B2 \Rightarrow \text{sg}(pl) = T \cup \{0\} \Rightarrow \#(T \cup \{0\}, w) = 1 \), we get the following expressions for \(\#(T,v) \):

\[
\#(T,v) = \begin{cases}
S(#,T,w1,h) + \#(T,w2) \text{ if } \\
(B1 \land B2 \land B3) \\
or (\bar{B}1 \land \bar{B}2 \land B3) \\
S(#,T,w1,h) + S(#,T,w2,h^r) \text{ if } \\
(B1 \land B2 \land \bar{B}3) \\
or (B1 \land \bar{B}2 \land B3) \\
or (\bar{B}1 \land \bar{B}2 \land \bar{B}3) \\
S(#,T,w1,h) + S(#,T,w2,h^r) + 1 \text{ if } \\
(B1 \land \bar{B}2 \land \bar{B}3) \\
or (\bar{B}1 \land B2 \land \bar{B}3) \\
S(#,T,w1,h) + S(#,T,w2,h^r) - 1 \text{ if } \\
(\bar{B}1 \land B2 \land \bar{B}3)
\end{cases}
\]

Now from Lemma 2(c), \(X \in h(T) \cup h^r(T) \Rightarrow |X| \geq |T| \) and so the given expressions for \(f_v(T) \) follow from Lemma 3(b) in all cases except the last, viz. \((\bar{B}1 \land B2 \land \bar{B}3) \); in this case, \(B2 \Rightarrow \text{sg}(pl) \setminus \{0\} = T \) and so \(0 \not\in T \) and so \(f(T \cup \{0\}, w1) \geq 1 \) (since \(\text{sg}(pl) = T \cup \{0\} \)). Furthermore,
we can assume that \(\uparrow \not\in T \) since

\[
\uparrow \not\in T
\]

\[\Rightarrow S(\#, T, w_1, h) = 1 \quad \text{and} \quad S(\#, T, w_2, h') = 0\]

since \((B_2 \land \overline{B_1})\) holds.

\[\Rightarrow S(f, T, w_1, h) = 1 \quad \text{and} \quad S(f, T, w_2, h') = 0\]

\[\Rightarrow f_v(T) = \min \left\{ |T|, \, S(\#, T, w_1, h) \right\} + S(\#, T, w_2, h') - 1\]

\[= \min \left\{ |T|, \, 0 \right\} + S(f, T, w_1, h) - 1\]

We can now apply Lemma 3(c) to get the result

since \(0 \not\in T\), \(\uparrow \not\in T\), and \(f(T \cup \{0\}, w_1) \geq 1\).

LEMMA (9) If \(E = IF(t, E_1)\) for some expression \(E_1\), let \(w\) be a dissection for \(E_1\) such that \(v \in IF(t, w)\) [such a \(w\) exists by LEMMA 4(e)]. Let \(h(T) = DEL_+^{-1}(T)\) and \(q_1\) denote the single-node labelled path \(\langle \{t\}, \{0, \uparrow\} \rangle\) in \(E\).

(i) If \(v \in IF_1(t, w)\) then let \(K_1 = \begin{cases} 1 & \text{if } T = \{\uparrow, j\} \\ 0 & \text{otherwise.} \end{cases}\)

(a) \(\#(T, v) = S(\#, T, w, h) + K_1\)

(b) \(f_v(T) = \min \left\{ |T|, \, S(f, T, w, h) + K_1 \right\}\)

(ii) If \(v \in IF_2(t, w)\) then (by definition of \(IF_2\))

\(v = L_E(w - \{p_1\}) \cup \{q_1.L_E(p_1)\}\) where

\(p_1\) is the start-path of \(w\).
Let q denote the path "ql.L$_{B}(pl)" \text{ and let}

\[h(T) = \text{DEL}^{-1}_T(T) \]

B1 be the predicate "sg(q) = T"

B2 be the predicate "sg(pl) \in h(T)"

\[K2 = \begin{cases} 1 & \text{if } B1 \\ 0 & \text{otherwise} \end{cases} \]

\[K3 = \begin{cases} 1 & \text{if } B2 \\ 0 & \text{otherwise} \end{cases} \]

(a) $\#(T,v) = S(\#,T,w,h) + K2 - K3$

(b) $f_v(T) = \begin{cases} \min \{ |T|, S(\#,T,w,h) \} & \text{if } (\overline{B1} \land \overline{B2}) \\ \min \{ |T|, S(\#,T,w,h) + 1 \} & \text{if } (B1 \land \overline{B2}) \\ \min \{ |T|, f(T,w) \} & \text{if } (\overline{B1} \land B2) \end{cases}$

Proof:

(i) (a) We can estimate the number of T-paths of v by counting the number of X-paths of w such that $\text{DEL}_X(T) = T$. This estimate could be inaccurate if q_1 is also a T-path of v; $K1$ corrects for this.

(b) By Lemma 2(c), $X \in h(T) \implies |X| \geq |T|$ and so Lemma 3(b) can be applied as in the proofs of the preceding Lemmas.

(ii) (a) We can estimate the number of T-paths of v by counting the X-paths of w such that $\text{DEL}_X(T) = T$. This estimate may be inaccurate for two reasons:

-- q has not been counted but should be,

$K2$ corrects for this.
-- pl has been counted but should not be;

K3 corrects for this.

(b) The combination of truth values for B1 and B2

that is not accounted for is \((B1 \land B2)\), but this case is impossible since,

\[
\begin{align*}
B1 & \implies \text{sg}(q) = T \implies \uparrow \in T \\
B2 & \implies \text{sg}(pl) \in h(T) \implies \uparrow \notin T
\end{align*}
\]

We note also that \(B2 \implies \text{sg}(pl) = T \cup \{\uparrow\}\)

\[
\implies S(\#, T, w, h) = S(T, w) + 1 \text{ (by Lemma 2(c)).}
\]

Using this fact, the definitions of \(S(\#, T, w, h)\), K2 and K3, the expression for \(S(T, v)\) derived in part (a), and Lemma 3(b) we can get the given expressions for \(f_v(T)\).

LEMMA (10) If \(E = \text{ELSE}(t, E1, E2)\) for some expressions \(E1\) and \(E2\), let \(w1\) and \(w2\) be dissections for \(E1\) and \(E2\) respectively [such \(w1\) and \(w2\) exist by Lemma 4(f)]. Let \(q1\) denote the single-node labelled path \((t, \{\uparrow\})\) in \(E\) and let \(h(T) = \text{DEL}_{\uparrow}^{-1}(T)\).

(i) If \(v \in \text{ELSE}_1(t, w1, w2)\) then let \(K1 = \begin{cases} 1 & \text{if } T = \{\uparrow\} \\ 0 & \text{otherwise} \end{cases}\)

(a) \(S(T, v) = S(\#, T, w1, h) + S(\#, T, w2, h) + K1\)

(b) \(f_v(T) = \min \{ |T|, S(\#, T, w1, h) + S(\#, T, w2, h) + K1 \}\)

(ii) If \(v \in \text{ELSE}_2(t, w1, w2)\) then by definition of \(\text{ELSE}_2\),
either
\[v = L_E((w_1-{p_1}) \cup w_2) \cup \{q_1.L_E(p_1)\} \]
where
\[p_1 \] is the start-path of \(w_1 \).

or
\[v = L_E(w_1 \cup (w_2-{p_2})) \cup \{q_1.L_E(p_2)\} \]
where
\[p_2 \] is the start-path of \(w_2 \).

We will consider only the former alternative; the latter follows by symmetry. Let \(q \) denote the path "\(q_1.L_E(p_1) \)" and let

\(B_1 \) be the predicate "\(sg(q) = T \)"
\(B_2 \) be the predicate "\(sg(p_1) \in h(T) \)"

\[K_2 = \begin{cases}
1 & \text{if } B_1 \\
0 & \text{otherwise}
\end{cases} \]

\[K_3 = \begin{cases}
1 & \text{if } B_2 \\
0 & \text{otherwise}
\end{cases} \]

(a) \(\#(T,v) = S(\#,T,w_1,h) + S(\#,T,w_2,h) + K_2 - K_3 \)

(b) \(f_v(T) = \min \{ |T|, S(f,T,w_1,h) + S(f,T,w_2,h) \} \) if

\[(\overline{B_1} \land \overline{B_2}) \]

\[\min \{ |T|, S(f,T,w_1,h) + S(f,T,w_2,h) + 1 \} \]

if \((B_1 \land \overline{B_2}) \)

\[\min \{ |T|, S(f,T,w_2,h) + f(T,w_1) \} \] if

\[(\overline{B_1} \land B_2) \]

Proof:

(i)(a) We can estimate the number of T-paths of \(v \) by counting the X-paths of \(w_1 \) and \(w_2 \) such that
DELA(X) = T. This estimate could be inaccurate if q1 is a T-path; K1 corrects for this.

(b) By Lemma 2(c), X ∈ h(T) ==> |X| ≥ |T| and so Lemma 3(b) can be applied as in the proofs of the previous Lemmas.

(ii) We can estimate the number of T-paths of v by counting the X-paths of w1 and w2 such that DELA(X) = T. This estimate may be inaccurate for two reasons:
-- q has not been counted and should be;
 K2 corrects for this.
-- p1 has been counted but should not be;
 K3 corrects for this.

(b) The truth value combination that is not accounted for is (B1 ∧ B2), but this is impossible since,
B1 ==> sg(q) = T ==> ↑ ∈ T
B2 ==> sg(p1) ∈ h(T) ==> ↑ ∈ T

We also note that
B2 ==> sg(p1) = T ∪ {↑}
 ==> #(T+ ,w1) = 1
 ==> S(#,T,w1,h) = #(T,w1) + 1
 (by Lemma 2(c)).

Using this fact, the result of part (a), the definitions of K2 and K3, and Lemma 3(b) we can get the given expressions for fV(T).
The following Lemma is central to the proof of Theorem 1 and is proved using the previous six Lemmas (5-10).

Lemma (11) Suppose E, E_1 and E_2 are expressions, v_1 and w_1 are dissections for E_1, and v_2 and w_2 are dissections for E_2.

(a) If $E = \text{BREAK}(E_1,i)$ and $v_1 \sim w_1$ then

$$w \in \text{BREAK}(w_1,i) \implies v \sim w \text{ for some } v \in \text{BREAK}(v_1,i)$$

(b) If $E = \text{LOOP}(E_1)$ and $v_1 \sim w_1$ then

$$w \in \text{LOOP}_1(w_1) \implies v \sim w \text{ for some } v \in \text{LOOP}_1(v_1)$$

$$w \in \text{LOOP}_2(w_1) \implies v \sim w \text{ for some } v \in \text{LOOP}_2(v_1)$$

(c) If $E = \text{CAT}(E_1,E_2)$, $v_1 \sim w_1$ and $v_2 \sim w_2$, then

$$w \in \text{CAT}_1(w_1,w_2) \implies v \sim w \text{ for some } v \in \text{CAT}_1(v_1,v_2)$$

$$w \in \text{CAT}_2(w_1,w_2) \implies v \sim w \text{ for some } v \in \text{CAT}_2(v_1,v_2)$$

(d) If $E = \text{IF}(t,E_1)$ and $v_1 \sim w_1$, then

$$w \in \text{IF}_1(t,w_1) \implies v \sim w \text{ for some } v \in \text{IF}_1(t,v_1)$$

$$w \in \text{IF}_2(t,w_1) \implies v \sim w \text{ for some } v \in \text{IF}_2(t,v_1)$$

(e) If $E = \text{ELSE}(E_1,E_2)$, $v_1 \sim w_1$ and $v_2 \sim w_2$, then

$$w \in \text{ELSE}_1(t,w_1,w_2) \implies$$

$$v \sim w \text{ for some } v \in \text{ELSE}_1(t,v_1,v_2)$$

$$w \in \text{ELSE}_2(t,w_1,w_2) \implies$$

$$v \sim w \text{ for some } v \in \text{ELSE}_2(t,v_1,v_2)$$

Proof:

We illustrate the idea of the proof by proving (b) and (c); the other cases are similar.

(b) Suppose $E = \text{LOOP}(E_1)$, $v_1 \sim w_1$ and $w \in \text{LOOP}(w_1)$.
Let $h = \text{DECR}^{-1}$.

Case 1 $w \in \text{LOOP}_1(w_1)$. In this case, let v be the unique element of $\text{LOOP}_1(v_1)$.

For any non-void $T \subseteq I^+$, we have

$$f(T,v) = \min \{|T|, S(f,T,v_1,h)\} \text{ by Lemma 7(i)(b)}$$

$$= \min \{|T|, S(f,T,w_1,h)\} \text{ since } v_1 \sim w_1$$

$$= f(T,w) \text{ by Lemma 7(i)(b)}.$$

Case 2 $w \in \text{LOOP}_2(w_1)$. In this case, w must be of the form $w = L_E(w_1-\{p_1,p_2\}) \cup \{q\}$ where p_1 is a finish path of w_1, p_2 is the start path of w_1 and $q = L_E(p_1).L_E(p_2)$.

Let $v = L_E(v_1-\{p_1', p_2'\}) \cup \{q'\}$ where p_1' is a finish path of v_1 such that $sg(p_1') = sg(p_1)$, p_2' is the start path of v_1 (and $sg(p_2') = sg(p_2)$) and $q' = L_E(p_1').L_E(p_2')$. It is possible to choose such p_1' and p_2' since $v_1 \sim w_1$. It is easy to see that $v \in \text{LOOP}_2(v_1)$, $sg(q) = sg(q')$, and that $S(f,T,v_1,h) = S(f,T,w_1,h)$. It now follows directly from Lemma 7(ii)(b) that $f(T,v) = f(T,w)$ and so $v \sim w$.

(c) Suppose $E = \text{CAT}(E_1,E_2)$, $v_1 \sim w_1$, and $v_2 \sim w_2$.

Let $h = \text{DEL}_0^{-1}$ and $h' = \text{DEL}_1^{-1}$.

Case 1 $w \in \text{CAT}_1(w_1,w_2)$. In this case, let v be the unique element of $\text{CAT}_1(v_1,v_2)$. Now, for any non-void $T \subseteq I^+$, we have,
\[f(T,v) = \min \{ |T|, S(f,T,v_1,h) + S(f,T,v_2,h') \} \]

by Lemma 8(i)(b)

\[= \min \{ |T|, S(f,T,w_1,h) + S(f,t,w_2,h') \} \]

since \(v_1 \sim w_1 \) and \(v_2 \sim w_2 \)

\[= f(T,w) \text{ by Lemma 8(i)(b)}. \]

Case 2 \(w \in \text{CAT}_2(w_1,w_2) \). In this case, \(w \) must be of the form
\[w = L_E((w_1 - \{p_1\}) \cup (w_2 - \{p_2\})) \cup \{q\} \]
where \(p_1 \) is a finish path of \(w_1 \), \(p_2 \) is the start path of \(w_2 \), and \(q = L_E(p_1) \cdot L_E(p_2) \).

Let \(v = L_E((v_1 - \{p_1'\}) \cup (v_2 - \{p_2'\})) \cup \{q'\} \) where \(p_1' \) is a finish path of \(v_1 \) such that \(\text{sg}(p_1) = \text{sg}(p_1') \), \(p_2' \) is the start path of \(v_2 \) (and \(\text{sg}(p_2') = \text{sg}(p_2) \)) and \(q' = L_E(p_1') \cdot L_E(p_2') \). It is easy to see that \(v \in \text{CAT}_2(v_1,v_2) \), \(\text{sg}(q) = \text{sg}(q') \), \(S(f,T,v_1,h) = S(f,T,w_1,h) \) and that \(S(f,T,v_2,h') = S(f,T,w_2,h') \) since \(v_1 \sim w_1 \) and \(v_2 \sim w_2 \). It now follows directly from Lemma 8(ii)(b) that \(f(T,v) = f(T,w) \) and so \(v \sim w \).

We now develop some results necessary for the proof of Theorem 2. For any non-void \(T \in \mathbb{I}^+ \), let
\[
\text{max}(T) = \begin{cases}
0 & \text{if } T = \{\uparrow\} \\
\text{the largest integer in } T \text{ otherwise.}
\end{cases}
\]

For any \(r \in \mathbb{I} \), let
\[
Q(r) = \{T \subseteq \mathbb{I}^+ \mid \text{max}(T) \leq r \text{ and } |T^-| \leq 2\}.
\]
Lemma (12) For any \(r \in \mathbb{I} \), \(|Q(r)| = r^2 + 3r + 3 \)

Proof:

A simple combinatorial argument shows that
\[
|Q(r)| = 2\left(\frac{r+1}{1}\right) + \frac{r+1}{2} + 1
\]

Lemma (13) Let \(E \) be any expression of rank \(r \). Then
\[
|\{f_w \mid w \text{ is a dissection of } E\}| = 3^0(r^2).
\]

Proof:

From Lemma 1(b) it follows that
\[
f_w(T) \neq 0 \implies \max(T) \leq r \text{ and } |T^-| \leq 2.
\]

Since \(0 \leq f_w(T) \leq 2 \) for all \(T \) and \(w \), it follows that the maximum number of character functions possible is \(3|Q(r)| \)

and now Lemma 12 yields the desired result.

2. **Proofs of Theorems 1 and 2**

The next two Lemmas refer to the algorithm of Chapter 2.

Lemma (14) After the set \(Y \) has been created from \(X \) at the end of DISSECT, the following property holds:
\[
v \in X \implies w \sim v \text{ and } |w| \leq |v| \text{ for some } w \in Y.
\]

Proof:

Let \(C \) be the equivalence class of \(v \in X \). Then some \(w = \text{MIN}(C) \) must have been chosen for inclusion in \(Y \); this \(w \) has the required properties.
LEMMA (15) If Y is the output of DISSECT and r is the rank of the input expression, then

(a) Distinct elements of Y have distinct characters.
(b) $|Y| = 3^O(r^2)$.

Proof:

(a) To form Y we choose exactly one element from each equivalence class of X.

(b) This follows from (a) and Lemma 13.

Proof of Theorem 1:
The statement of the Theorem is a simple consequence of the following assertion:

"If Y is the output of DISSECT(E,Y) and w is a dissection for E, then $v \sim w$ and $|v| \leq |w|$ for some $v \in Y$." We now prove this assertion. Suppose Y is the output of DISSECT(E,Y) and w is a dissection for E. Then,

either

$E = \text{EXIT}(i,n)$ in which case $w \in X$ and the result follows from Lemma 14.

or

$E = \text{OP}(i,t,E_1,E_2)$ for some expressions E_1, E_2 and some

$\text{OP} \in \{\text{BREAK, LOOP, IF, ELSE, CAT}\}$.

In this case, by LEMMA 4, there are dissections w_1 and w_2 for E_1 and E_2 respectively such that $w \in$
OP(i,t,w1,w2). Assuming inductively that the assertion holds for the smaller expressions E1 and E2 we see that there are dissections v1 and v2 for E1 and E2 respectively such that:

\[v1 \sim w1, v1 \in Y1, |v1| \leq |w1|, \]
\[v2 \sim w2, v2 \in Y2, |v2| \leq |w2|. \]

Using Lemmas 4 and 11 we see that \[|v^*| \leq |w| \text{ and } v^* \sim w \text{ for some } v^* \in OP(i,t,v1,v2). \]
From the way X was created we see that \[v^* \in X. \] The conclusion of the assertion now follows from Lemma 14.

Proof of Theorem 2.

The cost of a single call to DISSECT is (exclusive of recursion):

Cost to compute X + Cost to compute Y from X.

Since \[|Y1| = |Y2| = 3^O(r^2) \] from Lemma 15, it follows that the cost to compute X (from Y1 and Y2) is:

\[3^O(r^2) \cdot 3^O(r^2) \cdot O(n) = 3^O(r^2) n \]

Therefore, the outer loop (line (1) of Create_Y) in the procedure Create_Y is executed \[3^O(r^2) n \] times; the inner loop (line (2)) is executed \[3^O(r^2) \] times (Lemma 15(b), once for each element of Y) and each iteration involves one call to the function Compare_f (line (3)). Each such call costs \[O(r^2) \] by Lemma 12. Hence the cost of computing Y from X is the product of these three quantities
which is still \(3^0(r^2) \cdot n\). Since there can be at most \(n\) calls to DISSECT, the total running-time of the algorithm is as asserted by the theorem.
CHAPTER 4

THE POWER OF MULTILEVEL EXITS

1. OVERVIEW

In this chapter we show that the class of flowgraphs that can be produced using the SPG-operations is identical to the class of reducible flowgraphs. We show further, that (i+1)-level exits are strictly more powerful than i-level exits in the following sense: There are digraphs for which no program representation using at most i-level exits is possible but a program representation exists if (i+1)-level exits are permitted.

2. THE CLASS OF STRUCTURED FLOW GRAPHS

A flowgraph has often been defined in the literature to be a triple \((N,A,s)\) where \((N,A)\) is a digraph and \(s \in N\) is a distinguished node called the start node with the property that every node in \(N\) is reachable from \(s\). An SPG, as we have defined it, may contain nodes that are not reachable from the start node; consider, for example, the SPG of the expression

\[
\text{CAT (LOOP (CAT (BREAK (EXIT (0, A), 1), EXIT (0, B))), EXIT (0, C))}
\]
The corresponding program is:

```
LOOP
  A;
  EXIT 1;
B
ENDLOOP;
C
```

The node B is not reachable from the start node A. We can, however, obtain from an SPG $G = (N, A, L)$ a flowgraph $G' = (N', A', s)$ as follows:

(i) $s = s(G)$
(ii) $N' = N - \{\text{all nodes not reachable from } s\}$
(iii) $A' = A \cap (N' \times N')$

G' is called a Structured Flow Graph (SFG).

We now review a few characterizations of Flowgraph Reducibility. If h is a node of a flowgraph $F = (N, A, s)$, we define the interval $I(h)$ with header h [7] as the set of nodes constructed as follows:

1. h is in $I(h)$.
2. If $n \in N - \{s\}$ is not in $I(h)$ but all the predecessors of n are in $I(h)$, add n to $I(h)$.
3. Repeat (2) until $I(h)$ is stable.

Every flowgraph F can be uniquely partitioned into disjoint intervals [7,8]. From such a partition we can create another flowgraph $I(F)$ called the derived flowgraph of F by collapsing each interval into a single node. The sequence: $F = I^0(F), I^1(F), \ldots, I^m(F)$ where
$I^{m+1}(F) = I^m(F)$ is called the derived sequence of F and $I^m(F)$ is called the limit graph of F. The flowgraph F is said to be reducible iff its limit graph has exactly one node. Suppose $G = (N, A)$ is a digraph and $C = (a_0, a_1, \ldots, a_{n-1})$ is a sequence of nodes of G. Denote addition mod n by \oplus. We say that C is a

- **path** iff $0 \leq i < n-1 \implies (a_i, a_{i+1})$ is an arc of G.
- **cycle** iff $0 \leq i < n \implies (a_i, a_{i\oplus 1})$ is an arc of G.

A node "a" of a flowgraph $F = (N, A, s)$ is said to dominate node "b" iff every path from s to "b" contains "a". A simple cycle [simple path] is a cycle [path] all of whose nodes are distinct. A node n in a subgraph C of a flowgraph $F = (N, A, s)$ is called an entry node of C iff there is a path p in F from s to n such that $p \cap C = \{n\}$. We call n an open node of C iff $(n=s)$ or $(x,n) \in A$ for some node x not in C. Every entry node of C must be an open node of C but not necessarily conversely. C is called multi-entry iff it has more than one entry node. A subgraph H of a digraph G is called strongly connected iff for every pair of nodes $a, b \in H$, there is a path in H from a to b. H is called a strongly connected component (SCC) of G iff it is strongly connected and is not properly contained in any other strongly connected subgraph of G. Any digraph G can be uniquely partitioned into strongly connected components. An SCC is called trivial
iff it has no arcs and has exactly one node. A digraph G is said to have the unique-open-node property iff every SCC of G has a unique open node. We now define operations T_1-T_4 on any digraph G; T_2 is applicable only if G is a flowgraph.

T_1: For each node n of G, remove the arc (n,n) if it exists in G [9].

T_2: For each node n of G, if n is not the start node of G and (m,n) is the unique incoming arc of n, then create new arcs out of m such that every successor of n is a successor of m. Then remove n [9].
T3: For each SCC H of G, if H has a unique open node n then delete all in-arcs of n [10].

T4: Same as T3, but only those in-arcs of n that originate within H are deleted.

If G is a digraph, let $T_3^i(G)$ denote the digraph obtained from G by i applications of T3; $T_4^i(G)$ is defined similarly. Let $k = \min \{i \mid T_4^i(G) = T_4^{i+1}(G)\}$. The digraph $T_4^k(G)$ is called the core of G. The notion of Depth First Search (DFS) may be found in [11,12]. Every DFS of a digraph determines a set of back arcs, whose deletion renders the digraph acyclic.

A flowgraph (N,A,s) is said to contain a forbidden subgraph iff it has a subgraph of the form (a) or (b) below where s, n_1, n_2, and n_3 are all distinct nodes and the dotted lines are disjoint paths (i.e. any pair of paths have no nodes in common except possibly the endpoints).

(a)

(b)
Theorem 3 For a flowgraph $F = (N,A,s)$, the following are equivalent:

(a) (Reducible) [7] F is reducible.

(b) (Collapsible) [9] Repeated applications of T_1 and T_2 eventually yield a single node.

(c) (Arrangeable) [13] There is a total order \prec of N such that $s = a_0$, a_1, ..., a_n is a simple path in $F \Rightarrow a_i \prec a_{i+1}$ for $0 \leq i \leq n-1$.

(d) (Single-entry) [13] Every strongly connected subgraph of F has a unique entry node.

(e) Every simple cycle of F has a unique entry node.

(f) (Well-formed) [10] For all $i \geq 0$, $T_3^i(F)$ has the unique-open-node property.

(g) For all $i \geq 0$, $T_4^i(F)$ has the unique-open-node property.

(h) F has an acyclic core.

(i) F has a DFS starting at s such that the terminal node of every back arc dominates the initial node.

(j) (Unique DAG) [9] Any two DFS's starting at s yield the same set of back arcs.

(k) F does not contain a forbidden subgraph.

Some preliminary results are necessary for the proof of this theorem.
REMARK (10) For an arbitrary digraph G, and $i \geq 0$

(a) If H is an SCC of $T_4^i(G)$ [respectively $T_3^i(G)$] and

x is a unique open node of H, then $\{x\}$ is a trivial

SCC of $T_4^{i+1}(G)$ [$T_3^i(G)$].

(b) Every SCC of $T_4^{i+1}(G)$ [$T_3^{i+1}(G)$] is contained in

some SCC of $T_4^i(G)$ [$T_3^i(G)$].

(c) If H is an SCC of $T_4^i(G)$ [$T_3^i(G)$] with no open

nodes then, for all $j \geq i$, H is an SCC of $T_4^j(G)$

[$T_3^j(G)$] with no open nodes.

(d) If H is an SCC of $T_4^i(G)$ [$T_3^i(G)$] with two or

more open nodes then, for all $j \geq i$, H is an SCC of

$T_4^j(G)$ [$T_3^j(G)$] with two or more open nodes.

(e) H is an SCC of $T_4^i(G)$ [$T_3^i(G)$] and

H is not an SCC of $T_4^{i+1}(G)$ [$T_3^{i+1}(G)$] iff

H is a non-trivial SCC of $T_4^i(G)$ [$T_3^i(G)$] and

H has a unique open node.

LEMMA (16) For any flowgraph F and any $i \geq 0$, every non-

trivial SCC of $T_4^i(F)$ [$T_3^i(F)$] has at least one open

node.

Proof:

Since $T_4^0(F) = T_3^0(F) = F$ the statement is true for $i=0$.

Assume it holds for $i \leq k$ for some k and let H be a non-

trivial SCC of $T_4^{k+1}(F)$ [$T_3^{k+1}(F)$].
Case 1

If H is a SCC of $T_4^k(F) [T_3^k(F)]$, by the induction hypothesis it has at least one open node in $T_4^k(F) [T_3^k(F)]$. Now, H cannot have a unique open node in $T_4^k(F) [T_3^k(F)]$ by Remark (10e). So H has two or more open nodes in $T_4^k(F) [T_3^k(F)]$. By Remark (10d) H has two or more open nodes in $T_4^{k+1}(F) [T_3^{k+1}(F)]$.

Case 2

If H is not an SCC of $T_4^k(F) [T_3^k(F)]$ then, by Remark (10b) $H \subseteq J$, $H \neq J$ for some SCC J of $T_4^k(F) [T_3^k(F)]$. Also J must be non-trivial since H is so. Now,

-- J must have a unique open node, say x, in $T_4^k(F) [T_3^k(F)]$ by Remark (10e).

-- H cannot contain x, by Remark (10a).

-- Since J is an SCC, every element of H is reachable in J from x.

-- Hence H must have at least one open node in $T_4^{k+1}(F) [T_3^{k+1}(F)]$, since $T_4 [T_3]$ affects only in-arcs of x.

Lemma (17) Suppose F is a flowgraph and $i \geq 0$. If H is a non-trivial SCC of $T_4^k(F) [T_3^k(F)]$ and x is a unique open node of H then, H is a non-trivial SCC of $T_3^k(F) [T_4^k(F)]$ and x is a unique open node of H.
Proof:

We proceed by induction. The result is trivial for $i = 0$ since $T^0_4(F) = T^0_3(F) = F$. Assume the result holds for all $i \leq k$. Let H be a non-trivial SCC of $T^{k+1}_4(F)$ [$T^{k+1}_3(F)$] and let x be a unique open node of H.

-- H cannot be an SCC of $T^k_4(F)$ [$T^k_3(F)$] (Remarks 10(c), 10(d) and 10(e)).

-- So, $H \subset J$, $H \neq J$ for some non-trivial SCC J of $T^k_4(F)$ [$T^k_3(F)$] (Remark 10(b)).

-- J has a unique open node, say y, in $T^k_4(F)$ [$T^k_3(F)$] (Remark 10(e)).

-- by the induction hypothesis J is a non-trivial SCC of $T^k_3(F)$ [$T^k_4(F)$] and y is a unique open node of J in $T^k_3(F)$ [$T^k_4(F)$].

-- H cannot contain y (Remark 10(a)).

-- x is a unique open node of H in J since it is a unique open node of H in $T^{k+1}_4(F)$ [$T^{k+1}_3(F)$] and T^k_4 does not affect arcs to H from outside.

-- Hence x is a unique open node of H in $T^{k+1}_3(F)$ [$T^{k+1}_4(F)$].

-- H is a non-trivial SCC of $T^{k+1}_3(F)$ [$T^{k+1}_4(F)$] since T^k_3 does not affect arcs of H and H is a maximal strongly connected subgraph of J.
Lemma (18) If \(F \) is a flowgraph and \(i \geq 0 \) then \(T^i_4(F) \) is a flowgraph with the same start node as \(F \).

Proof:
Since \(T^4 \) only removes the in-arcs of the unique open node of an SCC that originate inside the SCC, reachability from the start node of \(F \) is unaffected.

Proof of Theorem 3
(a) \(\iff \) (b) \(\iff \) (i) \(\iff \) (j) \(\iff \) (k) is shown in [9].
(a) \(\iff \) (c) \(\iff \) (d) is shown in [13].
(e) \(\iff \) (k) is easy to see.
(f) is mentioned in [10] without any mention of the notion of reducibility.
We will show that (f), (h) and (k) are all equivalent to (g).

\[(g) \implies (h)\]
Suppose the core of \(F \) has a cycle \(C \). Let \(H \) be the SCC of the core of \(F \) which contains \(C \). \(H \) must be non-trivial since there is at least one arc in \(C \). By Lemma (16), \(H \) has at least one open node. By definition of the core, it cannot have a unique open node. Hence it has two or more open nodes and so (g) fails.

\[(h) \implies (g)\]
Suppose \(T^i_4(F) \) fails to have the unique-open-node property. Let \(H \) be an SCC of \(T^i_4(F) \) with two open nodes. By Remark 10(d), \(H \) is a non-trivial SCC of the core of \(F \) and
so (h) fails.

(g) \iff (f)

This follows directly from Lemma (17).

(k) \implies (g)

Suppose for some $i \geq 0$, $T_4^i(F)$ fails to have the unique-open-node property. Let H be an SCC of $T_4^i(F)$ with two open nodes a, b, $a \neq b$. Let (a', a) and (b', b) be arcs of $T_4^i(F)$ with $a', b' \notin H$.

By Lemma (18), there are paths p_1 and p_2 from s to a' and b' respectively. No element of H can be in p_1 or p_2 (otherwise we would have either $a' \in H$ or $b' \in H$). Since H is strongly connected, there are paths q_1 and q_2 from a to b and b to a respectively. Let c be the first node of q_1 other than a that occurs in q_2. Now F has a forbidden subgraph:

(g) \implies (k)

Suppose F has a forbidden digraph:
Assume that (g) holds. For all \(i \geq 0 \), \(T_4^i(F) \) must contain all the arcs of pl, p2 and p3; this can be seen as follows:

Suppose \((x,y)\) is the first arc of "pl.p2" that is deleted and this happens when \(T_4 \) is applied to \(T_4^j(F) \). This means that \(y \) is the unique open node of some SCC of \(H \) of \(T_4^j(F) \) which also contains \(x \). Since there is a path from \(s \) to \(x \) in \(T_4^j(F) \) which avoids \(y \) (viz. an initial segment of pl.p2), it follows that \(H \) has an open node other than \(y \). This is a contradiction of the assumption that (g) holds. A similar argument may be used for the path "pl.p3".

Consider the first time an element of \(p_{bc} \) or \(p_{cb} \) becomes an open node of an SCC \(H \) of some \(T_4^i(F) \) (if no element ever does, the cycle "\(p_{bc}.p_{cb} \)" is in the core of \(F \) and so (h), and hence (g), are violated).

Now \(H \) cannot contain any element of pl (otherwise an element of pl would be another open node of \(H \)). Let \(a' \) and \(b' \) be the first elements respectively in paths pl and p3 which are in \(H \). They must both be open nodes of \(H \) and so (g) is violated. This completes the proof of Theorem 3.

We will now show that every structured flowgraph is reducible.
THEOREM 4 Every SFG is an RFG.

Proof:

Let MESC stand for "Multi-entry Simple Cycle." We will show that no SPG has a MESC. The result then follows from Theorem 3(e). We proceed by induction on the size of the expression. Clearly, if we have an expression of size 1, it cannot have a MESC since only one node exists in the flowgraph. Assume that the program graphs of all expressions of size at most n have no MESC. Let E be an expression of size \(n + 1 \). We will show that the program graph of E has no MESC. There are five cases to consider, one per SPG-operation.

Case 1

Suppose \(E = \text{BREAK}(E_l, i) \) for some expression \(E_l \) and some \(i \geq 1 \). By the induction hypothesis, \(E_l \) has no MESC since it is a smaller expression than E. Since E has the same nodes, arcs and start node as \(E_l \), it follows that E has no MESC either.

Case 2

Suppose \(E = \text{LOOP}(E_l) \) for some expression \(E_l \). As before, \(E_l \) has no MESC. Hence, any MESC of E must use a newly created arc of the form \((x, s(E))\). But by the definition of an entry node, any subgraph containing
the start node has a unique entry node.

Case 3
Suppose \(E = \text{CAT}(E_1, E_2) \) for some expressions \(E_1 \) and \(E_2 \). As before, neither \(E_1 \) nor \(E_2 \) can have any MESC's. Any simple cycle of \(E \) would have to be contained entirely in \(E_1 \) or entirely in \(E_2 \). If \(E \) had a MESC, it is easy to see that it must either be a MESC of \(E_1 \) or a MESC of \(E_2 \) since all paths from the start node of \(E \) to any node of \(E_2 \) must pass through \(s(E_2) \).

Case 4
Suppose \(E = \text{IF}(t, E_1) \) for some expression \(E_1 \) and some node \(t \). As before \(E_1 \) cannot have any MESC's. Since \(s(E_1) \) dominates all nodes of \(E_1 \) in \(E \), we see that any MESC of \(E \) must also be a MESC of \(E_1 \).

Case 5
Suppose \(E = \text{ELSE}(T, E_1, E_2) \) for some expressions \(E_1 \) and \(E_2 \) and some node \(t \). As in the previous cases it is easy to show that any MESC of \(E \) must be either a MESC of \(E_1 \) or a MESC of \(E_2 \).

This completes the proof of Theorem 4.

We will now show that every RFG is an SFG. An algorithm for producing a structured program (using infinite loops with multilevel exits and IF-THEN-ELSE statements) from a well-formed flowchart is presented by Kasami et.
al. in [10]. Their model of a flowchart, however, is different from ours since they associate primitive actions with arcs rather than nodes. So, rather than modify their algorithm to accommodate our model, we present an alternative algorithm based on the concepts of [14]. Our algorithm takes any RFG and produces a program for it using loops with multilevel conditional and unconditional exits. We first review a few definitions from [14].

Suppose \(F = (N,A,s) \) is a flowgraph and the nodes of \(F \) are arranged in an arbitrary but fixed linear order: \(a_1, a_2, \ldots, a_n \). For \(i \leq j \), let \([a_i, a_j] = \{ a_k \mid i \leq k \leq j \} \). Any arc \((a_i, a_j) \) where \(i < j \) is called a forward arc; any path that uses only forward arcs is called a forward path. An arc \((a_i, a_j) \) where \(i \geq j \) is called a reverse arc. For \(i \leq k, [a_i, a_k] \) is called a primitive formal loop iff

(i) \((a_k, a_i) \) is an arc of \(F \) and

(ii) there is no arc \((a_m, a_j) \) such that

\[i < j < k < m. \]

The following figure illustrates this definition.
The set of nodes \([a_h, a_k]\) is called a \textit{formal loop} iff

(a) it is a primitive formal loop or

(b) there are indices \(i\) and \(j\) such that

(i) \([a_i, a_k]\) is a formal loop and

(ii) \((a_j, a_h)\) is an arc of \(F\) and

(iii) \(h < i \leq j < k\)

The following figure illustrates this definition.
A maximal **formal loop** is a formal loop that is not properly contained in any other formal loop. It is easy to see that if \((a_i, a_j)\) is a reverse arc then \([a_j, a_i]\) is contained in some maximal formal loop and that any two maximal formal loops are disjoint.

A linear order is called a **straight order** iff

(i) Every formal loop is strongly connected and

(ii) There is a forward path from the start node of F
to every other node, and

(iii) For every reverse arc \((a_i, a_j)\), there is a forward path from \(a_j\) to every element of \([a_j, a_i]\).

It is possible to show, though we do not do so here, that (iii) is redundant for RFGs. The following example illustrates the concept of a straight order.

EXAMPLE (4) For the flowgraph (a) below, (b) is a straight order but (c) is not since there is no path from \(a_2\) to \(a_1\) in \([a_1, a_5]\).

(a) \hspace{2cm} (b) \hspace{2cm} (c)

\[\begin{array}{c}
\rightarrow a_1 \\
\leftarrow a_2 \rightarrow a_3 \leftarrow a_4 \rightarrow a_5
\end{array}\]

Given a straight order for an RFG we see that if \([a_i, a_j]\) is a formal loop then, by Theorem 3(d) and properties (i) and (ii) of a straight order, \(a_i\) must be the unique entry node of that formal loop. A two-phase algorithm for producing a straight order for any flowgraph appears in [14]. We are now ready to present our algorithm.
ALGORITHM STRUCTURE

INPUT An RFG G.

OUTPUT A program using LOOP-ENDDOOP with conditional and unconditional (labelled) multilevel exits.

METHOD

Step 1 Using the algorithm of [14], output the nodes of G in straight order:

\[a_1 \]
\[a_2 \]
\[. \]
\[. \]
\[. \]
\[a_n \]

Step 2 Replace each node \(a_i \) by the appropriate statements given below: \(<a_i> \) denotes the simple statement or predicate that corresponds to the node \(a_i \); \(F_j \) and \(IL_j \) are used to label LOOPS.

If \(a_i \) has no successors, replace it by \(<a_i> \).

If \(a_i \) has exactly one successor, \(a_j \), then

If \(j \leq i \) (reverse arc) then replace it by: \(<a_i>; \)
\[\text{EXIT IL}_j \]

If \(j \geq i \) (forward arc) then replace it by: \(<a_i>; \)
\[\text{EXIT F}_j \]
If a_i has exactly two successors a_j, and a_k, then

If $(j>i)$ and $(k>i)$ (both forward arcs), replace a_i by:

\[
\begin{align*}
&\text{IF } <a_i> \text{ THEN EXIT } Fk \text{ ENDIF;} \\
&\text{EXIT } Fj
\end{align*}
\]

If $(j<i)$ and $(k<i)$ (both reverse arcs), replace a_i by:

\[
\begin{align*}
&\text{IF } <a_i> \text{ THEN EXIT } ILk \text{ ENDIF;} \\
&\text{EXIT } ILj
\end{align*}
\]

If $(j<i)$ and $(k>i)$ (one forward and one reverse arc), replace a_i by:

\[
\begin{align*}
&\text{IF } <a_i> \text{ THEN EXIT } Fk \text{ ENDIF;} \\
&\text{EXIT } ILj
\end{align*}
\]

Denote by $CODE(a_i)$ the statements that replaced a_i in this step.

Step 3 We now create the reverse arcs.

For each maximal formal loop $[a_i, a_j]$ do

For $m = i$ to j do

If a_m has an incoming reverse arc then

Write

\[
\begin{align*}
&\{ \text{LOOP} \} \text{ just before } CODE(a_m) \text{ and} \\
&\{ ILM: \text{LOOP} \} \\
&\{ \text{ENDLOOP} ILM \} \text{ just after } CODE(a_j). \\
&\{ \text{ENDLOOP} \}
\end{align*}
\]

The following figure illustrates this step.
Step 4 We now create the forward arcs.

For \(m = 2 \) to \(n \) do

Let \(j \) be the smallest integer such that \((a_j, a_m)\)
is an incoming forward arc of \(a_m \).

Write "ENDLOOP Fm" just before the sequence of

LOOP-keywords that immediately precedes CODE\((a_m)\).

{If no such sequence exists then write it just

before CODE\((a_m)\).}

Write "Fm: LOOP" just before the outermost statement

that contains CODE\((a_j)\) but not CODE\((a_m)\). {If

no such statement exists, write it just before

CODE\((a_j)\).}

The following figure illustrates this step.
EXAMPLE (5) We illustrate this algorithm with the straight order given in Example 4(b):
\[a_1 \]
\[\text{IF } <a_1> \text{ THEN EXIT F2 ENDF;} \]
\[\text{EXIT F3;} \]

\[a_2 \]
\[<a_2>; \]
\[\text{EXIT F4} \]

\[a_3 \]
\[\text{Step 2} \]
\[\text{IF } <a_3> \text{ THEN EXIT F4 ENDF;} \]
\[\text{EXIT F5} \]

\[a_4 \]
\[<a_4>; \]
\[\text{EXIT IIL1} \]

\[a_5 \]
\[<a_5>; \]
\[\text{EXIT IIL1} \]

\[\text{LOOP} \]
\[\text{IIL1: LOOP} \]
\[\text{IF } <a_1> \text{ THEN EXIT F2 ENDF;} \]
\[\text{EXIT F3} \]
\[<a_2>; \]
\[\text{Step 3} \]
\[\text{EXIT F4} \]
\[\text{EXIT IIL1} \]

\[\text{ENDLOOP} \]
The following program results after one iteration of the "For" loop of Step 4 (with m = 2) to create the incoming forward arcs of a₂:

LOOP

ILL1: LOOP

F2: LOOP

IF <a₁> THEN EXIT F2 ENDF;

EXIT F3

ENDLOOP F2;

<a₂>;

EXIT F4

.

.

.

ENDLOOP ILL1

ENDLOOP
The final program output by the algorithm is

LOOP

IL1: LOOP

F5: LOOP

F4: LOOP

F3: LOOP

F2: LOOP

IF <a_1> THEN EXIT F2

ENDIF;

EXIT F3

ENDLOOP F2;

Step 4

<<a_2>>;

EXIT F4

ENDLOOP F3;

IF <a_3> THEN EXIT F4;

EXIT F5

ENDLOOP F4;

<<a_4>>;

EXIT IL1

ENDLOOP F5;

<<a_5>>;

EXIT IL1

ENDLOOP IL1

ENDLOOP
Lemma (19) Suppose $G = (N, A, s)$ is an RFG that is input to Algorithm Structure and suppose P is the output. If $G' = (N', A', s')$ is the SFG of an expression for P, then $G' = G$.

Proof:

We must prove that the loops created by the algorithm are properly nested. This is clear for the loops created in Step 3. Call the loops created by Step 4 *fake loops*. We must show that when we create a fake loop "$Fm\)", there is no interlocking loop as shown below:

```
  Fm: LOOP
      CODE(a_j)
      .
      .
      LOOP
      CODE(a_i)
      .
      .
      ENDLOOP Fm
      CODE(a_m)
      .
      .
      ENDLOOP
      .
      .
```

We will show that if such an interlocking loop exists, the flowgraph cannot be reducible. Let a_i be the first node in the interlocking loop. Clearly the interlocking loop cannot be a fake loop since we create the forward incoming arcs to the nodes in the order a_1', \ldots, a_n'. Hence, a_i has an incoming reverse arc and so there is a
formal loop of the form \([a_i, a_k]\) for some \(k > i\). This formal loop is strongly connected (property (i) of a straight order) and has two entry nodes \(a_i\) and \(a_m\) violating Theorem 3(d). Hence \(P\) is a legal program and so \(G'\) exists.

We now need to show that \(s=s'\), \(N=N'\), and \(A=A'\). The first two equalities are obvious. For the last, suppose \((a_i, a_j)\) is an arc of \(A\). If \(j \leq i\), then it is a reverse arc and so is created in Step 3 and so is in \(A'\). If \(j > i\) it is a forward arc and so is created in \(A'\) in Step 4. Hence \(A \subseteq A'\). Now, if a node \(n\) has outdegree 2 in \(G'\) then CODE\((n)\) must be of the form:

\[
\text{IF } <n> \text{ THEN EXIT ENDIF; EXIT }
\]

But this can only happen in Step 2 of the algorithm if \(n\) has 2 successors in \(G\). So \(n\) has outdegree 2 in \(G\) and so \(|A'| \leq |A|\) and so \(A' = A\).

THEOREM 5 Every RFG is an SFG.

Proof:
Follows directly from Algorithm Structure and Lemma 19.
3. **THE HIERARCHY OF FLOWGRAPHS**

We now compare the expressive power of level-\((i+1)\) exits with that of level-\(i\) exits. If \(G\) is an arbitrary digraph or flowgraph, we define the **rank of \(G\)** to be

\[
\min \{ r(E) \mid E \text{ is an expression for } G \}.
\]

If \(G\) is not the digraph of any expression, its rank is undefined; such a digraph is shown below:

That level-\((i+1)\) exits are more powerful than level-\(i\) exits can be demonstrated by showing that, for each \(r \in \{0, 1, 2, \ldots\}\), there is a digraph of rank \(r\). A similar result has been derived in [4]. Our next theorem shows that this greater power can be demonstrated even within the domain of directed acyclic graphs. By a **Hamiltonian dag** we mean a dag which has a Hamiltonian path.

THEOREM 6 For each \(i \in \{0, 1, 2, \ldots\}\) there is a Hamiltonian dag of rank \(i\).

The dag \(H_i\) of Figure 7 has rank \(i\). The rest of this chapter contains the proof of this assertion.
Figure 7

The dag H_i:

Diagram:

```
  m_1
   ↓
  m_2
   ↓
  m_3
   ↓
  ...  
  m_i
   ↓
  x_1
   ↓
  x_2
   ↓
  y_1
   ↓
  y_2
   ↓
  y_3
   ↓
  ...  
  y_{i-1}
   ↓
  y_i
```
Several Lemmas are necessary for the proof of Theorem 6; we now proceed to develop them.

Assume that E is an expression and E₁ is a subexpression of E; this assumption will remain in effect up to the end of Lemma 28.

A node of E₁ is called incomplete iff its indegree in E is strictly greater than its indegree in E₁. A node y of E is called a successor of E₁ iff for some node x in E₁, (x,y) is an arc of E but not of E₁. Two expressions will be called equivalent if they have the same rank and the same SFG. We write E' C E if E' is a subexpression of E. If E₁, E₂, ... are expressions, we will denote the set of nodes of their respective program graphs by N₁, N₂, ...

Lemma (20)

x is incomplete in E₁ => x = s(E₁).

Proof:
The only node to which incoming arcs may later be added is s(E₁).

Corollary Any subexpression of E can have at most one incomplete node.

We say that E is a

- Break-expression if E = BREAK(E',i) for some i, E',
- Loop-expression if E = LOOP(E') for some E',

CAT-expression if $E = \text{CAT}(E', E'')$ for some E', E''.

IF-expression if $E = \text{IF}(t, E')$ for some t, E'.

ELSE-expression if $E = \text{ELSE}(t, E', E'')$ for some t, E', E''.

If $E = \text{OP}(E_1, E_2, t, i)$ for some SPG operation OP, we say that E_1 and E_2 are immediate subexpressions of E and that E is the immediate superexpression of E_1 and of E_2.

Lemma (21)

E_1 has i successors $\implies r(E_1) \geq i - 1$.

Proof:

Let L_1 be the labelling relation of the program graph of E_1 and let $\text{SUCC}(E_1)$ denote the set of all successors of E_1. Assume E_1 has i successors. Suppose there is a function $g : A \longrightarrow \text{SUCC}(E_1)$ such that

(i) $A \subseteq \text{RAN}(L_1)$ and

(ii) g is onto.

Then, $|\text{SUCC}(E_1)| = |\text{RAN}(g)|$ (since g is onto)

$\leq |\text{DOM}(g)|$ (true for any function)

$\leq |\text{RAN}(L_1)|$ (since $A \subseteq \text{RAN}(L_1)$)

$\leq r(E_1) + 1$ (by definition or rank)

and so we have $r(E_1) \geq \text{SUCC}(E_1) - 1 = i - 1$.

We will now define a function g with the required properties (i) and (ii).
Let $H = \{ (E', n, i) \mid E' \text{ is a subexpression of } E \text{ and } \quad "i" \text{ is one of the labels of } n \text{ in } E' \}$. We define a partial function $h: H \rightarrow H \cup \{ \text{nodes of } E \}$ by

$$h(E', n, 0) = x \text{ iff } \begin{cases} (x = s(E') \text{ and } \text{LOOP}(E') \subseteq E) \text{ or } \\
(x = s(E'') \text{ for some } E'' \text{ such that } \\
\quad \text{CAT}(E', E'') \subseteq E) \end{cases}$$

$$h(E', n, i) = (E'', n, j) \text{ iff one of the following holds:}$$

(a) $E'' = \text{BREAK}(E', k)$ and

$$((i > 0 \text{ and } i = j) \text{ or } (i = 0 \text{ and } j = k))$$

(b) $E'' = \text{LOOP}(E')$ and $j = i - 1$

(c) $E'' = \text{CAT}(E', E_1)$ for some E_1 and

$$(i = j \text{ and } i > 0)$$

(d) $i = j$ and

$$\begin{cases} E'' = \text{CAT}(E_1, E') \text{ for some } E_1 \text{ or } \\
E'' = \text{IF}(t, E') \text{ or } \\
E'' = \text{ELSE}(t, E', E_1) \text{ or } E'' = \text{ELSE}(t, E_1, E') \text{ for some } E_1 \end{cases}$$

We note that the value of h depends only on i and E'. (*)

Let R be the transitive closure of the relation h. Suppose E_2 is an immediate subexpression of E' and $(E', n, j) \in H$ and n is a node of E_2. By examining the various cases that arise depending on the SPG operation that was applied to E_2 to get E', it is easy to see that there is
an element \((E^2, n, i)\) in \(H\) such that \((E^2, n, i) R (E^\prime, n, j)\); that is, \(n\) must have had some label \(i\) in \(E^2\) which resulted in its having the label \(j\) in \(E^\prime\). By using this argument inductively we can prove that
\[
E^2 \subseteq E^\prime \\
(E^\prime, n, j) \in H \implies \text{For some } (E^2, n, i) \in H, (E^2, n, i) R (E^\prime, n, j) \quad \text{(**)}
\]

Every element \(p \in H\) determines a unique sequence called the \textbf{h-sequence} of \(p\): \(p = p_0, p_1, p_2, \ldots, p_k\) where

(a) \(p_i \in H\) for \(0 \leq i \leq k\)

(b) \(h(p_i) = p_{i+1}\) for \(0 \leq i < k\) and

(c) Either \(h(p_k)\) is undefined or it is a node of \(E\).

[If \(p = (E^\prime, n, i)\), the node \(n\) may, at some future stage, acquire a successor as a consequence of its having the label \(i\) in \(E^\prime\); if it does, \(h(p_k)\) identifies this successor node.]

Suppose \(p_0 = (X, n, i)\) and \(q_0 = (X, m, i)\) are two elements of \(H\). As noted earlier (*), the value of \(h\) depends only on the first and third components of the argument. It follows that the \(h\)-sequences of \(p_0\) and \(q_0\) are of equal length and \(h(p_k)\) and \(h(q_k)\) (the last elements of the respective \(h\)-sequences) are either both undefined or are equal.

We are now ready to define the required partial function \(g: \text{RAN}(L1) \longrightarrow \text{SUCC}(B1)\)
\[g(i) = m \text{ iff } \begin{cases} \text{for some triples } u_1 = (E_l,n,i) \text{ and} \\ u_2 = (E',n,0) \text{ in } H \text{ we have } h(u_2) = m \\ \text{and } (u_1,u_2) \in R. \end{cases} \]

By the conclusion immediately preceding this definition, we see that \(g \) is well-defined. We now need to show that \(g \) is onto. Suppose \(m \) is a successor of \(E_l \); we will show that \(g(i) = m \) for some \(i \). By definition of successor, there is some node \(n \) in \(E_l \) such that \((n,m) \) is an arc of \(E \) but not of \(E_l \). Hence there is a triple \((E',n,0) = u \) in \(H \) such that \(h(u) = m \) and \(E_l \subseteq E' \). By (**), there is a triple \((E_l,n,i) = v \) in \(H \) such that \((v,u) \) is in \(R \). By definition of \(g \), \(g(i) = m \) and so \(g \) is onto.

Lemma (22)

\(E_l \) is a LOOP-expression \(\implies r(E) \geq i \)

and \(E_l \) has \(i \) successors

Proof:

Assume that \(E_l = \text{LOOP}(E_2) \) and \(|\text{Succ}(E_l)| = i \). Let \(L_1 \) and \(L_2 \) be the labelling relations of \(E_l \) and \(E_2 \) respectively. Then \(L_1 = \text{decr} \circ L_2 \) by definition of the LOOP operation and so \(|\text{Ran}(L_1)| = |\text{Ran}(L_2)| - 1 \leq (r(E) + 1) - 1 = r(E) \) and the result now follows as in the proof of the previous Lemma.
Lemma (23)

No expression for a Hamiltonian dag can have an ELSE-subexpression.

Proof:

Suppose G is a Hamiltonian dag and E is an expression for it. Suppose $E_1 = \text{ELSE}(t, E_2, E_3)$ is a subexpression of E. It is easy to show inductively that if $E_1 \subseteq E'$ and E' then, any path from $s(E')$ to $s(E_2)$ or $s(E_3)$ must pass through the node t.

Since g is Hamiltonian, there is a path from $s(E_2)$ to $s(E_3)$ or one from $s(E_3)$ to $s(E_2)$. Assume without loss of generality that the former is the case. The path, say p, from $s(E_2)$ to $s(E_3)$ does not exist in E_1 and does exist in E; let E_4 be the smallest subexpression of E in which it exists. E_4 must be a LOOP-expression: $E_4 = \text{LOOP}(E_5)$. Hence p must be of the form "s(E_2).p_1.s(E_5).p_2.s(E_3)" where p_1 and p_2 are some paths. By the assertion made at the beginning of this proof, the path "s(E_5).p_2.s(E_3)" must contain the node t and so G has a cycle (which is a subsequence of "t.s(E_2).p_1.s(E_5).p_2"). This contradicts the assumption that G is a dag.
Lemma (24)

If \(n \) is a finish node of \(E \) and is not a finish node of \(E_1 \) then, \(E_1 \subseteq E_2 \subseteq E \) for some LOOP-expression \(E_2 \).

Proof:

If 0 is not a label of \(n \) in \(E_1 \), no operation other than LOOP can create it.

Lemma (25)

Suppose \((a_1, a_2, \ldots, a_n)\) is a simple path in \(E \). Then, \(1 \leq i < j \leq n \) and
\[
\begin{align*}
& \{ a_k \in N_1 \text{ for all } k \\
& a_i, a_j \in N_1 \text{ and } \\
& a_j \text{ is incomplete in } E_1
\end{align*}
\]

\(\implies \) \(\{ \text{such that } 1 \leq k \leq i. \}

Proof:

By the Corollary to Lemma 20, \(a_i \) is complete in \(E_1 \) and so \(a_{i-1} \in N_1 \). This argument may be repeated on \(a_{i-1} \).

Lemma (26)

For arbitrary expressions \(A, B \) and \(C \),

(a) \(\text{CAT}(A, \text{CAT}(B, C)) \) and \(\text{CAT}(\text{CAT}(A, B), C) \) are equivalent.

(b) \(\text{BREAK}(\text{CAT}(A, B), i) \) and \(\text{CAT}(A, \text{BREAK}(B, i)) \) are equivalent.

Proof:

It is easily seen from the definitions that

(i) \(\text{del}_k \circ \text{del}_k = \text{del}_k \) for all \(k \in \mathbb{I}^+ \).

(ii) \(\text{del}_k \circ \text{del}_j = \text{del}_j \circ \text{del}_k \) for all \(k, j \in \mathbb{I}^+ \).
(iii) $z_i \circ \text{del}_\downarrow = \text{del}_\uparrow \circ z_i$ for all $i \in I$.

(iv) $z_i \circ \text{del}_0 = \text{del}_0$ for all $i \in I$.

(v) Composition is distributive over union.

Obviously the pairs in (a) and (b) have the same rank, the same nodes and the same arcs. We will show that they have the same labelling relations.

(a) By definition of the CAT operation, the labelling relation of $\text{CAT}(A, \text{CAT}(B, C))$ is:

$$((\text{del}_0 \circ L_A) \cup (\text{del}_\uparrow \circ ((\text{del}_0 \circ L_B) \cup (\text{del}_\uparrow \circ L_C))))$$

$$= (\text{del}_0 \circ \text{del}_0 \circ L_A) \cup (\text{del}_0 \circ \text{del}_\uparrow \circ L_B)$$

$$\cup (\text{del}_\uparrow \circ \text{del}_\uparrow \circ L_C) \text{ (by (i), (ii) and (v) above)}$$

$$= (\text{del}_0 \circ ((\text{del}_0 \circ L_A) \cup (\text{del}_\uparrow \circ L_B))) \cup (\text{del}_\uparrow \circ L_C)$$

(by (i) and (v) above)

= the labelling relation of $\text{CAT}(\text{CAT}(A, B), C)$.

(b) may be similarly proved using (iii), (iv) and (v).

Lemma (27)

Suppose E_1 and E_1^\prime are equivalent. If E^\prime is the expression obtained from E by replacing E_1 with E_1^\prime, E and E^\prime are equivalent.

Proof:

It is obvious that E and E^\prime have the same rank and the same set of nodes. Let E_2 be the immediate superexpression of E_1 and let E_2^\prime be obtained from E_2 by replacing E_1 with E_1^\prime. From the definitions of the various SPG
operations we see that E2 and E2' are equivalent. The argument may be repeated with E2 in place of E1. The argument may be repeated with E2 in place of E1.

Lemma (28)

Suppose E1 = CAT(A, B) and only CAT or BREAK operations are used between E1 and E and s(E) = s(A). Then there is an expression E' = CAT(A, E2) for some E2 such that E and E' are equivalent.

Proof:

Consider the immediate superexpression E2 of E1 in E. We must have E2 = CAT(CAT(A, B), C) or E2 = BREAK(CAT(A, B), i).

By Lemma 26, there is an expression E2' of the form CAT(A, E3) which is equivalent to E2. By Lemma 27, the expression obtained by replacing E2 with E2' in E is equivalent to E. Repeating the process with E2' in place of E1 we eventually arrive at the required expression E'.

All the Lemmas hereafter refer to the dag H_i (Figure 7). Assume that E is an expression for H_i. We define a few aliases for some of the nodes for notational convenience:

Let
\[
a_{2i+1} = x_1', \\
a_{2i+2} = x_2',
\]
\[a_{2j} = m_j \text{ for } 1 \leq j \leq i \text{ and} \]
\[a_{2j-1} = n_j \text{ for } 1 \leq j \leq i, \]

\[W = \{ n_j \mid 1 \leq j \leq i \} = \{ a_{2j-1} \mid 1 \leq j \leq i \}, \]
\[V = \{ m_j \mid 1 \leq j \leq i \} = \{ a_{2j} \mid 1 \leq j \leq i \}, \]
\[X = \{ a_j \mid 1 \leq j \leq 2i+1 \} = W \cup V \cup \{ x_1 \}, \]
\[Y = \{ y_j \mid 1 \leq j \leq i \}. \]

Lemma (29)

If \(E_1 \in E \) and \(x_2 \) is not a node of \(E_1 \) then, \(|N_1 \cap Y| \leq 1 \)

Proof:

Suppose otherwise. Let \(j < k \) be the two smallest indices such that \(y_j, y_k \in N_1 \ Y. \) Since \(y_j \) has an in-arc from the preceding node \(t \) (which is either another node of \(Y \) or \(x_2 \)), it follows that \(y_j \) must be incomplete in \(E_1. \) Now \(y_k \) has an in-arc from outside \(E_1 \) (either from another element of \(Y \) between \(y_j \) and \(y_k \) or from \(t \)) and so must also be incomplete in \(E_1. \) This contradicts the Corollary to Lemma 20.
LEMMA (30)

\[\begin{align*}
E_l \in E \text{ and } & \quad Y_j \text{ is complete in } E_l \\
\Rightarrow & \quad \left\{ \begin{array}{l}
(x_1, x_2 \in N_l \text{ and } j=1) \text{ or } \\
|N_l \cap Y| \geq 2
\end{array} \right.
\end{align*} \]

Proof:
We show that under the assumptions of the Lemma, \(|N_l \cap Y| = 1 \implies j = 1\). It then follows that \(x_1, x_2 \in N_l\) since \((x_1, y_1)\) and \((x_2, y_1)\) are arcs of \(H_i\). Suppose \(|N_l \cap Y| = 1\) and \(j > 1\); we must have \(y_{j-1} \in N_l \cap Y\) since \((y_{j-1}, y_j)\) is an arc of \(H_i\). This contradicts our assumption that \(|N_l \cap Y| = 1\).

LEMMA (31)

\[\begin{align*}
E_l \in E \text{ and } & \quad N_l = \emptyset \text{ and } \\
x_2 \text{ is complete in } E_l \\
\Rightarrow & \quad \left\{ \begin{array}{l}
\text{For some } k, 1 \leq k \leq i, \\
X - \{m_k\} \subseteq N_l.
\end{array} \right.
\end{align*} \]

Proof: Let \(E_2\) be the smallest subexpression of \(E_l\) in which \(x_2\) is complete. Since \(x_2\) is complete in \(E_2\) we must have \(W \cup \{x_1\} \subseteq N_2\). If all the elements of \(W \cup \{x_1\}\) are complete in \(E_2\) then \(X \subseteq N_2 \subseteq N_l\) and the Lemma holds. Otherwise, let

\[k = \begin{cases}
-1 & \text{if } x_1 \text{ is incomplete in } E_2 \quad \text{-------------(*)(*)} \\
-1 & \text{if } n_j \text{ is incomplete in } E_2 \quad \text{-------------(**)} \\
\text{for some } j, 2 \leq j \leq i. \\
\end{cases} \]

(note: \(n_1\) is always complete)
We claim that $m_r \in N_2$ for all r such that $1 \leq r \leq i$ and $r \neq k$. If this were not the case, let r be such that $1 \leq r \leq i$, $r \neq k$ and $m_r \notin N_2$.

If $r = i$ then x_1 must be incomplete in E_2 and by (*), we have $k=i=r$ contradicting our assumption that $r \neq k$.

If $r < i$ then n_{r+1} must be incomplete in E_2 and by (**), we have $k = (r+1) - 1 = r$ and this is a contradiction as before.

Hence, for all r with $1 \leq r \leq i$, $r \neq k$, we have $m_r \in N_2$. So $X - \{m_k\} \subseteq N_2 \subseteq N_1$ and we are done.

Lemma (32)

If E_1 is as assumed in the previous Lemma and is a LOOP expression, $r(E) \geq i$.

Proof:

By the previous Lemma, there is some k such that $1 \leq k \leq i$, and $X - \{m_k\} \subseteq N_1$. Therefore E_1 has i successors:

- the elements of Y if $m_k \in N_1$
- the elements of $(Y - \{y_{(i-k+1)}\}) \cup \{m_k\}$ otherwise.

The result now follows from Lemma 22.

Lemma (33)

If E_1 is as assumed in Lemma 31, $r(E) \geq i$.

Proof:

Let E_2 be the smallest subexpression of E_1 in which x_2 is
complete. Using Lemma 23 and the fact that BREAK creates no new arcs, we see that E_2 must be an IF, CAT, or LOOP expression. We deal with these cases separately.

Case 1 $E_2 = \text{LOOP}(E_3)$.

The result follows from Lemma 32.

Case 2 $E_2 = \text{IF}(t, E_3)$.

By Lemma 20, $x_2 = s(E_3)$. If $x_1 \in N_3$ then $X \subseteq N_3$ by Lemma 25. Hence, $t \in Y$. This contradicts our assumption that $N_1 \ Y = \emptyset$. So $x_1 \notin N_3$. But $x_1 \in N_2$ since (x_1, x_2) is an arc of H_i and x_2 is complete in E_2. So $t = x_1$. Now $W \subseteq N_3$ since x_2 is complete in E_2.

Since all the elements of W are complete in E_3, we have $(W \cup V - \{m_i\}) \subseteq N_3$. Now E_3 has $(i+1)$ successors:

- the elements of $Y \cup \{m_i\}$ if $m_i \notin N_3$
- the elements of $Y \cup \{x_1\}$ if $m_i \in N_3$.

The result now follows from Lemma 21.

Case 3 $E_2 = \text{CAT}(E_3, E_4)$.

By Lemma 20, $x_2 = s(E_4)$. By Lemma 31, $X - \{m_k\} \subseteq N_2$ for some k such that $1 \leq k \leq i$. If x_1 is a node of E_4, we would have $X \subseteq N_4$ (by Lemma 25) and so E_3 would be void; hence x_1 must be a node of E_3. Two cases arise according to whether or not $m_k \in N_2$.

Case 3.1 $m_k \in N_2$. (Hence $X \subseteq N_2$)
There are two cases depending on whether N4 has any nodes of X.

Case 3.1.1 \(X \cap N4 = \emptyset \)

Here, we must have \(X \subseteq N3 \) and so E3 has \(i+1 \) successors: \(Y \cup \{x_2\} \). The result follows from Lemma 21.

Case 3.1.2 \(X \cap N4 \neq \emptyset \).

Let \(p = \max \{ j \mid 1 \leq j \leq 2i, \ a_j \in N4 \} \). By Lemma 25, \(a_j \in N4 \) for all \(j \) with \(1 \leq j \leq p \).

Now \(a_{p+1} \in X \subseteq N2 \) and of \(p, \ a_{p+1} \in N3 \). Also, \(a_{p+1} \) must be incomplete in E2 since \(a_p \in N4 \) and there are no arcs in E2 from N4 to N3. Now E2 has \((i+1) \) successors, namely, the elements of \(Y \cup \{a_p\} \). The result now follows from Lemma 21.

Case 3.2 \(m_k \notin N2 \)

There are two cases, depending on whether E4 contains some node of \(X - \{m_k\} \).

Case 3.2.1 E4 has no nodes of \(X - \{m_k\} \).

We must have \(X - \{m_k\} \subseteq N3 \) and so E3 has \(i+1 \) successors, namely, the elements of \((Y - \{y_{i-k+1}\}) \cup \{m_k, x_2\} \). The result again follows from Lemma 21.

Case 3.2.2 E4 has some node of \(X - \{m_k\} \).

Since \(a_{2k} = m_k \) is not in N2 and \(a_{2k+1} \in X - \{m_k\} \subseteq N2, \ a_{2k+1} \) must be incomplete in E2. Since \(x_2 \) is incomplete in E4, \(a_{2k+1} \) is in E3 and incomplete there. Let \(q = \max\{ j \mid 1 \leq j \leq 2i, \ a_j \in N4 \} \). Now
q < 2k-1 is impossible since it implies that \(a_{q+1} \) is another incomplete node of E3 other than \(a_{2k+1} \) in violation of Lemma 20. Likewise, \(q > 2k-1 \) is also impossible since it implies, by Lemma 25, that \(a_{2k} = m_k \in N4 \subseteq N2 \). Hence \(q = 2k-1 \) and so by Lemma 25 we have \(\{ a_j \mid 1 \leq j \leq 2k-1 \} \subseteq N4 \). So \(\{ a_{2k+1} = x_1', a_{2k+2}', \ldots, a_{2i+1} \} \subseteq N3 \). Let E5 be the smallest superexpression of E2 that has more nodes than E2. E5 exists since E has more nodes than E2. By Lemma 23, E5 must be an IF or a CAT expression. We consider these cases separately.

Case 3.2.2.1 E5 = IF(t,E6).

Since E6 has the same set of nodes as E2, \(a_{2k+1} \) must be incomplete in E6 (since \(a_{2k} \notin N2 \)). But \(a_{2k+1} \) is not the start node of E5 and hence is complete in E5 and so \(t = a_{2k} = m_k \). Now E5 has \((i+1)\) successors, namely the elements of \(Y \cup \{ a_{2k} \} \) and the result follows from Lemma 21.

Case 3.2.2.2 E5 = CAT(E6,E7).

Here E2 can be a subexpression of either E6 or of E7 and so we have two further subcases.

Case 3.2.2.2.1 E2 is a subexpression of E7.

Since E2 has the same nodes as E7, \(a_{2k+1} \) must be incomplete in E7. Hence \(s(E7) = a_{2k+1} \) and it is complete in E5; so \(a_{2k} \in N6 \) and must be
incomplete in E_6 since $a_{2k-1} \in N2 = N7$. Hence any member of $Y \cap N6$ must be complete in E_6.

Now $|N6 \cap Y| \leq 1$ by Lemma 29 since $x_2 \in N4 \implies x_2 \notin N6$. Since a_{2k} is incomplete in E_6, any element of $N6 \cap Y$ must be complete in E_6. This means that $N6 \cap Y$ is void (otherwise Lemma 30 is violated). Therefore, E_6 has only one node: $m_k = a_{2k}$ (all other nodes are either in Y or in E_7. Now E_5 has $i+1$ successors, namely, the elements of $Y \cup \{a_{2k}\}$. The result now follows from Lemma 21.

Case 3.2.2.2.2 E_2 is a subexpression of E_6.

Since $N6 = N2$, a_{2k+1} must be incomplete in E_6. By assumption, E_2 and Y have no common nodes and so E_6 and Y are likewise. By Lemma 29, $N7$ and Y can have at most one common element; if they have no common elements at all, E_7 has exactly one node: $a_{2k} = m_k$ and the result follows as usual from Lemma 21 since E_5 has $i+1$ successors, namely, the elements of $Y \cup \{a_{2k+1}\}$. We now consider the case when they have exactly one element in common ($|N7 \cap Y| = 1$). That one element must be y_1, by Lemma 25. Now (x_1, y_1) is an arc of H_1 and so x_1 must be a finish node of E_6. But $x_1 \in N3$ and so cannot
be a finish node of E2. By Lemma 24, there is a LOOP expression E8 with E2 C E8 C E6. Now E8 has i successors, namely, the elements of \((Y - \{y_{i-k+1}\}) \cup \{m_k\}\) and so the result follows from Lemma 22. This completes the proof of Lemma 33.
LEMMA (34)
\[E_1 \subseteq E \quad \text{and} \quad N_1 = X \cup \{ x_2 \} \quad \implies r(E) \geq i. \]

Proof:
If \(x_2 \) is complete in \(E_1 \), the result follows from Lemma 33. Otherwise, \(E_1 \) has \(i+1 \) successors, namely, the elements of \(Y \cup \{ x_2 \} \) and the result follows from Lemma 21.

We now prove that the rank of \(H_1 \) is at least \(i \).

LEMMA (35)
If \(E \) is any expression for \(H_1 \), \(r(E) \geq i \).

Proof:
Let \(E_1 \) be the smallest subexpression of \(E \) such that \(Y \cap N_1 \neq \emptyset \) and \(x_2 \in N_1 \). \(E_1 \) must be a CAT or an IF expression by Lemma 23. We deal with these cases separately.

Case 1
\[E_1 = \text{CAT}(E_2, E_3). \] There are two possibilities for \(x_2 \).

Case 1.1 \(x_2 \in N_2 \) and \(N_3 \cap Y \neq \emptyset \).
By assumption about \(E_1 \), \(N_2 \) and \(Y \) have no common elements. By Lemma 29, \(|N_3 \cap Y| = 1 \). The unique node in \(N_3 \cap Y \) must be complete in \(E_1 \) and so by Lemma 30, \(N_3 \cap Y = \{ y_1 \} \). Since \((x_2, y_1) \) is an arc of \(H_1 \), we must have \(s(E_3) = y_1 \).
Now we have two possibilities for x_1.

Case 1.1.1 $x_1 \in N3$.

Here x_1 is complete in $E3$ and by Lemma 25, $X \subseteq N3$. Now $E3$ has $i+1$ successors, namely, the elements of $Y \cup \{x_2\}$ and Lemma 21 yields the result.

Case 1.1.2 $x_1 \in N2$.

If x_2 is complete in $E2$ the result follows from Lemma 33. Otherwise $X \subseteq N2$ by Lemma 25 and now the result follows from Lemma 34.

Case 1.2 $x_2 \in N3$ and $N2 \cap Y \neq \emptyset$.

By assumption about $E1$, $N3 \cap Y$ is void. By Lemma 29, $|N2 \cap Y| = 1$. Also $x_2 \in N3$ implies that x_2 must be complete in $E1$. We now have two subcases depending on whether x_2 is complete in $E3$.

Case 1.2.1 x_2 is complete in $E3$.

The result follows from Lemma 33.

Case 1.2.2 x_2 is incomplete in $E3$.

By Lemma 20, we must have $s(E3) = x_2$. There are two possibilities for x_1.

Case 1.2.2.1 x_1 is in $E3$.

Since x_2 is incomplete in $E3$, x_1 must be complete in $E3$. By Lemma 25, $X \subseteq N3$ and the result follows from Lemma 34.
Case 1.2.2.2 x_1 is in E_2.

By Lemma 30 the unique element y of $N_2 \cap Y$ must be incomplete in E_2 and so $s(E_1) = s(E_2) = y$. Hence x_1 is complete in E_2 and by Lemma 25 we have $X \subseteq N_2$. Let L (which may not exist) be the largest LOOP subexpression of E_2 containing y. There are two possibilities for L.

Case 1.2.2.2.1 L does not exist or y is its only node.

Let J be the largest subexpression of E_2 that contains y and no other nodes. J exists since y must be created by $\text{EXIT}(j,y)$ for some j (if y were created by an $\text{IF}(y,-)$, there would be an arc from y to X which is clearly impossible; y cannot be created by an $\text{ELSE}(y,-,-)$ by Lemma 23). If L exists $L \subseteq J$. Since J has only one node, there must be at least one operation between J and E_2. Now, the first operation on J cannot be an $\text{IF}(-,J)$ or a $\text{CAT}(-,J)$ since $s(E_2) = y$; it cannot be a LOOP or a BREAK due to our assumptions about J. Hence we must have $\text{CAT}(J,E_4) \subseteq E_2$ for some expression E_4. By assumptions about J and L, and by Lemma 23, there can only be CAT or BREAK operations between J and E_2. Using Lemma 28, we get an expression
$E_2' = \text{CAT}(J,E_5)$ which is equivalent to E_2. By Lemma 27 we can replace E_2 with E_2' in E to get an expression E' which is equivalent to E. Now E_5 is a subexpression of E' which has all the nodes of X (this is shown at the beginning of Case 1.2.2.2). Hence E_5 has $i+1$ successors in E', namely, the elements of $Y \cup \{x_2\}$ and by Lemma 21 we have $r(E') \geq i$. Since E is equivalent to E', $r(E) \geq i$

Case 1.2.2.2.2 L has at least one node other than y.

Since E_2 has exactly one element of Y, we see that $L \cap X \neq \emptyset$. Let $k = \max\{ j \mid 1 \leq j \leq 2i+1, a_j \in L\}$. By Lemma 25, for all j with $1 \leq j \leq k$, $a_j \in L$ since $y = s(E_2) = s(L)$. We will show that L cannot have fewer nodes than E_2. Assume otherwise. Let J be the largest subexpression of E_2 that contains L and has no more nodes than L. By assumption $E_2 \neq J$ and so there is at least one SPG operation between J and E_2. The first such operation must be of the form $\text{CAT}(J,E_4)$ (IF($-,J$) and $\text{CAT}(-,J)$ are ruled out since $s(E_2) = s(L) = s(J) = y$; BREAK and LOOP are ruled by the way J was defined; ELSE is ruled out by Lemma 23). Since $a_1 \in J$, it
cannot be a finish node of CAT(J,E4). But \(a_1 \) must be a finish node of \(E2 \) since \((a_1, x_2)\) is an arc of \(H_1 \) and \(x_2 = s(E3) \) is complete in \(E3 \).

By Lemma 24 there is a LOOP expression that contains \(CAT(J,E4) \) and is contained in \(E2 \). This violates our assumptions about \(L \) and \(J \). Hence \(L \) has all the nodes of \(E2 \). The result now follows by Lemma 22 since \(L \) has \(i \) successors, namely, the elements of \((Y - \{y\}) \cup \{x_2\}\).

Case 2 \(E1 = IF(t,E2) \).

It is impossible that \(t \in Y \) and \(x_2 \in E2 \) since there are no arcs from \(Y \) to \(X \). By assumption about \(E1 \), \(E2 \) has no nodes other than those of \(X \). Hence it must be the case that \(t = x_2 \) and \(N2 \cap Y \neq \emptyset \). By Lemma 29, \(|N2 \cap Y| = 1 \). By Lemma 20, the unique element of \(N2 \ Y \) is complete in \(E1 \) and by Lemma 30, that element must be \(y_1 \). Let \(E3 \) be the subexpression of \(E2 \) which created the arc \((x_1, y_1)\).

Now \(E3 = IF(x_1, E4) \) or \(E3 = CAT(E4,E5) \) are both impossible since they require \(y_1 \) to be complete in \(E3 \) and hence in \(E2 \). Hence \(E3 = LOOP(E4) \) where \(x_1 \) is a finish node of \(E4 \) and \(y_1 = s(E4) \). By Lemma 25, \(X \subseteq N4 \) and so \(E3 \) has \(i \) successors, namely, the elements of \((Y - \{y_1\}) \cup \{x_2\}\) and now the result follows from Lemma 22.
Proof of Theorem 6.

Figure 8 shows a program of rank i for H_1. The Theorem now follows from the previous Lemma.
Figure 8

A program of rank i for H_i:

```
LOOP
  ...
  LOOP
  LOOP
    IF $n_1 \succ m_1$ THEN
      IF $m_1 \succ n_2$ THEN
        IF $n_2 \succ m_2$ THEN
          ...
          ...
        ENDIF
        ELSE EXIT 1 ENDIF
      ENDIF
    ELSE EXIT (i-1) ENDIF
  ENDIF
ELSE EXIT i ENDIF
ENDIF
IF $x_2 \succ m_1$ THEN EXIT 1 ENDIF;
EXIT 2
ENDLOOP;
IF $y_1 \succ m_1$ THEN EXIT 1 ENDIF;
EXIT 2
ENDLOOP
...
<y_{i-1}> ; EXIT 1
ENDLOOP;
<y_i>
```
CHAPTER 5

DISCUSSION AND CONCLUDING REMARKS

We have provided an algorithm that finds a minimum-jump translation for structured programs obtained by using loops with multilevel 'counting' exits. Labelled exits are easily handled since they can be converted to 'counting' exits. In addition, a wide variety of control structures, such as the REPEAT-UNTIL and WHILE loops of Pascal and the loop of Modula, are subsumed as special cases by our model.

We have shown that the class of flowgraphs that can be generated by such structured programs is the same as the class of reducible flowgraphs. Our algorithm can therefore be used to perform jump minimization in any object module, regardless of the compiler that produced it, provided it represents a reducible flowgraph; one need only apply our program structuring algorithm to get a structured program from the flowgraph and use this as input to our dissection algorithm. Obviously the efficiency of this procedure depends on the efficiency of the program structuring algorithm and also on the rank of the program it produces. The problem of producing a minimum-rank program from a given flowgraph needs further investigation.
No time complexity analysis is provided by Earnest et. al. in [14] for their algorithm which produces a straight order for the nodes of an arbitrary flowgraph; inasmuch as their algorithm is used by our program structuring algorithm for reducible flowgraphs, it would be useful to derive the time complexity of their procedure and to investigate whether improvements in speed are possible if we restrict ourselves to reducible flowgraphs.

Our jump minimization algorithm can also provide a good, though not necessarily optimal, translation for irreducible flowgraphs. We identify a set of arcs that can be deleted to leave a reducible flowgraph which has all the nodes of the original irreducible flowgraph and then find an optimal dissection for this residual flowgraph. Obviously, the smaller the number of arcs deleted, the better the chance that the result of this procedure is close to optimality. Finding such a set of arcs to delete is not hard (we could, for instance, do a depth first search and delete all back arcs) though finding one with the smallest number of arcs could be. This gives rise to a question analogous to the problem of finding a minimum feedback-edge set for digraphs:

Given a flowgraph G and a positive integer K, does G have a set of K or fewer arcs which, when deleted, leave a reducible flowgraph?
Whether the Dissection Problem is NP-complete for reducible flowgraphs is an open question. We conjecture that the Hamiltonian Path problem is NP-complete even for the restricted class of flowgraphs which are acyclic except for a single incoming arc to the start node, that is, flowgraphs that become acyclic if a single incoming arc to the start node is deleted.

Performing jump minimization could affect other code improvement procedures. For instance, preliminary evidence suggests that generating code for machines that have long and short branch instructions [15] after performing jump minimization is likely to yield better code than doing it before. Another related issue that will bear investigation is the impact of jump minimization on the dynamic behaviour of the program in a multiprogramming environment: It appears likely that the number of page faults and cache misses will be favourably affected.

Of theoretical interest are the connections between the cardinality of an optimal dissection of a digraph and certain graph-theoretic parameters. Let \(d(G) \) denote the cardinality just adverted to. Two nodes \(x \) and \(y \) in a digraph \(G \) are called arc independent iff neither \((x,y) \) nor \((y,x) \) is an arc of \(G \); they are called path independent iff there is no (directed) path from \(x \) to \(y \) and there is no (directed) path from \(y \) to \(x \) in \(G \). The maximum number
of arc-independent nodes in G is called the [16] \underline{stability number} of G; denote this number by $\sigma(G)$. The maximum number of path-independent vertices in G is called the \underline{path independence number} of G; denote this number by $i(G)$. Then, we have:

$$i(G) \leq d(G) \leq \sigma(G).$$

The first inequality is easy to see; the second is proved in [16,17]. It is easy to show by means of simple examples that all three of these parameters could, in general, be distinct. Whether, and under what conditions, equality obtains is not known.

We have a linear algorithm for the case when only IF-THEN-ELSE and REPEAT-UNTIL constructs are used (without EXIT statements) [18]. When WHILE statements are included, a more complicated, but still linear, algorithm exists. This suggests that the complexity of algorithm for the general case can be significantly improved by refining the process whereby dissections for smaller graphs are combined to produce dissections for the larger graph.
REFERENCES

