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Abstract
A sufficient condition for the existence of optimal solutions
to feasible integer or mixed-integer programs with bounded objec-
tive functions is shown to be the finiteness of the set of extreme
points. This condition is more general than those previously

given. A further question is presented.

This material is based upon work supported by the National Science
Foundation under Grant No. MCS-7901066.



1. Introduction

Unlike a linear programming problem (LP), an integer programming problem

(IP) or a mixed-integer programming problem (MIP) may have no optimal solution

even if it is feasible and its objective function is bounded on its feasible
set (when the latter property holds the problem is said to be bounded). Con-

sider the following IP (from Meyer [1]):

maximize -0Xy + Xos
(P) subject to -ax; + X, < 0,
X]Z15
Xp 2. 0,

X1 Xo integer,

where o is a positive irrational number. This problem is feasible
since (x],xz) = (1,0) ds a feasible point. Its objective function is
bounded above by 0. In fact, the supremum of the objective function on
the feasible set is 0, but no feasible point can attain this value
because of the irrationality of o. Therefore, this IP has no optimal
solution at all.

Meyer [1] gave some sufficient conditions for the existence of
optimal solutions to feasible and bounded IP's and MIP's. Let (M)

denote the problem

minimize CixX *+ Co¥s
(M) subject to A]x + Azy = b,
x > 0,
y >0,

X integer,



n n
where xeR T and yeR 2, and the problem data €15 Coa A1, AZ’ b

are vectors and matrices of sizes

(1Xn]), (1xn2), (mxn1), (mxnz), (mx1),

respectively. If either

1 and A2 are comprised of rational data,

or (iii) x s bounded on the feasible set
and, if (M) is bounded and feasible, then (M) has an optimal solution.

Meyer also proved that S, the feasible set of (M), has only a
finite number of extreme points under any of the above conditions.
Later, Meyer and Wage [2] proved further that the convex hull of S is
polyhedral under any of those conditions.

If S has a polyhedral convex hull, then it is clear that (M) fis
either unbounded, infeasible, or has an optimal solution. However, if
we know only that S has a finite number of extreme points, the convex
hull is not necessarily polyhedral, and it may not even be closed. In
Section 2, we give an example to show this.

However, if S has at most a finite number of extreme points,
then (M) has an optimal solution if (M) 1is bounded and feasible.

In Section 3, we prove this main result. In this way, we generalize the
results of [1]. This also shows that non-existence of optimal solutions
is caused by an infinite number of extreme points.

Is the inverse proposition correct? It seems so, but has not yet

been proven. In Section 4, we consider this question.



2. An Example
We now give a three-dimensional example. The feasible set of this
MIP has only one extreme point, but its convex hull is not polyhedral

and not even closed. The set is
S = {(x],xz,x3)|—ax]+x2+x3=0, X1 3X9s%3>05 Xq5X, integer}
where o 1is a positive irrational number.

Example. The set S given above only has one extreme point (0,0,0), but
conv(S) = {(x1,xz,x3)|-ax1+x2+x3=0, X120, X5>0, x3>0} v {(0,0,0)}, (2.7)

which is not polyhedral and not closed.

It is clear that (0,0,0) is an extreme point of S. For any
point x = (x1,x2,x3) in S, it is obvious that 2x = (2x],2x2,2x3)
is also in S. Since x 1is a convex combination of (0,0,0) and 2x,

there is no other extreme point of S.

Clearly,

conv(S) © {(XysXysxg) [-oXy#Xo#X5=0, Xq5Xy5%a>00 (2.2)

From [1] or [4, p. 194], there exists a sequence of points

{(x}, x;, x;,)} c S, such that

x{' > oo (2.3)
and

o —
0<a- x;/x} 5_(x%)



1)—1.

i
0 < X3 3.(x]

Now we suppose (§1, 22, 23) satisfies
-ui1 + 22 * %3 =0, i], Xs > 0, 23 > 0.

k Uk

From (2.4) and (2.5), there is a point (x?, X x3) e S, such that

k . = k =
x1 > x] and x3 < x3.

Letting §1/x$ = A, note that

We also have

- k- k- -
X4 X Xq X X

(g g g) = [ (55 5) + (1 2)(x,0,00) |+ (1-7) (0,0,0),
11472 *1%2 X

where equality holds for the third component because it holds for the

first two components and because the points on both sides have the

property that Xq = OXy = X It is easily seen that this representa-
X

tion of (R],iz, 3) is a convex combination of points of S.

Thus,

{(x1,x2,x3)I-ux1+x2+x3=0, %1205 X5>0, x3>0} c conv(S)



and since
{(x],xz,o)[x1}0 or x2>0} nS=¢9,

(2.1) holds. g

However, even if the convex hull of an IP or MIP is not closed,
the problem will have an optimal solution if it is bounded and feasible
and has a finite number of extreme points. We prove this in the next

section.



3. A Sufficient Condition

We describe the theorem conversely: a necessary condition for

the nonexistence of an optimal solution is an infinite number of

extreme points.

Theorem. Consider the problem described in Section 1,

minimize CyX + Co¥
(M) subject to A]x + Azy = b,
x>0
y>0
X integer

where xeR !, yeR ¢, coeR 1, Cye R4, beR ,/H and A2 are matrices

1
of appropriate sizes. Suppose S, the feasible set of (M) 1is not empty
and X + Coy is bounded from below on S. If (M) has no optimal

solution then S has infinite number of extreme points.
Proof. According to the condition, we have

r= inf{c1x+c2yl(x,y)e S} > -

(3.1)
Cix *+ Coy > 1, ¥(x,y)eS
Denote the set of extreme points of S as E. Suppose E is finite.
Then we have
ry = min{c1x+c2y|(x,y)e E} > r (3.2)

r+yr
Choose (X,¥)eS such that C]Q + czy < ~§~l



Choose Cye Rn1, Cqe an, Cy > 0, Cq > 0 such that

Vq=r

CaX * Cp¥ <77
Then

(c1+c3)x + (c2+c4)y <y
Consider the problem

minimize (c1+c3)x + (C2+C4)y’

(MM) subject to (x,y) € S
From (3.3), (MM) is equivalent to the problem

minimize (c]+c3)x + (c2+c4)y,

(MN) subject to (x,y) € S,

(c1+c3)x + (c2+c4)y < rq.

For any (x,y) in the feasible set of (MN), from (3.1),
CqX + Cpy Sy = CqX = CpY <ry-r.
Therefore, (MM) is equivalent to problem

minimize (c]+03)x + (c2+c4)y,
(MP) subject to (x,y) € S,

Cqax * Cpy STy - T

Since Cq > 0 and Cyq > 0, the feasible set of (MP) is bounded and x can

only assume a finite number of values. The feasible set of (MP) is thus a
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union of a finite number of polyhedral sets. Moreover, the objective

function of (MP) is bounded below, since

(c]+c3)x + (c2+c4)y > Cyx ey >

Thus, there is an optimal solution of (MP).
Since (MP) and (MM) are equivalent, each optimal solution

of (MP) is an optimal solution of (MM), and vice versa. Therefore,

there is an optimal solution of (MM). It is easily shown from X > 0 and

y > 0 that there is an optimal extreme point (x*,y*) of (MM), so that

(c1+c3)x* t+ (c2+c4)y*
X A (3.4)
< (c1+c3)x + (c2+c4)y <ry.

On the other hand, for any (x,y) ¢ E, by (3.3), we have

(c]+c x + (c,*tc,)y ZCx F oy >y,

3) 2 74

contradicting (3.4). This proves the theorem.



4. An Open Question

From Theorem 2, an inverse question arises:

If

S = {(x,y)]A1x+A2y=b, X,y>0, x integer}

has an infinite number of extreme points, does there exist a
(c],cz)e Rn1><Rn2 such that problem (M) is bounded but does not have an
optimal solution?

It seems that the answer should be "yes" but this is an open

question.
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