MULTILISP DEBUGGING ENVIRONMENT

by

William S. Havens

Computer Sciences Technical Report #410

December 1980

Multilisp Debugging Environment

2 2 XX EEEEEEEXE LR EEE R LR L SR LR LA SRS SRR LR D SSS

* *
* Multilisp Debugging Environment *
* *
* 'by *
* *
* William S. Havens *
* *
* Revised December 1988 *
* *
khkkkhkhkhkkhkhkhkhkhkihhkhkhhhhhkdhordbbhrdkhhhkdrihihiid

Department of Computer Science
The University of Wisconsin
Madison, Wisconsin 53706

(c) Copyright 1979, 1980 by William S. Havens
All rights reserved.

Multilisp Debugging Environment 2

Introduction:

The debugging environment for Multilisp 1is modelled
after the Interlisp break package (Teitelman, 1974). It is
also similar to the debug system of MTS/LISP (Hall, 1972).
It provides interactive capabilities for error handling and
algorithm debugging plus the addition from Multilisp of a
single-step evaluation mode.

Once a break has been entered, the user can interrogate
the state of the LISP, modify variable bindings on the
stack, edit function definitions, continue the evaluation,
single-step the interpreter through the evaluation of a
form, restart the evaluation at some higher 1level on the
control or access stacks, or return to top-level.

The system makes use of four special variables which
can be accessed by the user:

@form: The form which caused the break to be entered
called the breakform.

@frame: The control frame at the time the break was ack-
nowledged.

@stack: Initially set to the value of @frame. Can be
changed via stack searching commands.

@value: Initially @undef@. If @form is evaluated during
the break, then @value is set to its value.

Entry into the System:

The debug system is entered in one of the following
ways:

1
2

An error occurs.
The system is called explicitly on a form via
debug.
3: The function break is called.
4: A breakpoint is encountered in a user-defined function.

Whenever an error occurs, ah error message 1is printed, the form
being evaluated at the time of the error 1is printed, and the
break is entered.

Multilisp Debugging Environment 3
The debug system can be called explicitly via the fol-

lowing two functions:

(debug <form>) type=noeval

Calls the debug system explicitly on <form>.

(break <flag> <mess>*) type=eval
This function facilitates tracing program execution
and handling user defined error conditions. It first

evaluates and prints each form <mess> on a single
line. If the global switch @break is true or if <flag>
is true, then the debug system is entered with Dbreak
as the Breakform. Otherwise, break returns nil.

Finally, the debug system is entered whenever a user
defined breakpoint in an interpreted function is encoun-
tered. The name of the function broken is printed and the
first form within the function body becomes the breakform
@form. Breakpoints are set and removed from functions with
the following operations:

(breakf <foo> <pred>) type=noeval

Sets a breakpoint on the first form within the
function definition of <foo>. Function definitions
must be either lambda, nlambda, or glambda-
expressions. When the Dbreakpoint is encountered,
<pred> is evaluated which defaults to T. If the value
of <pred> is non-NIL, the break is entered. Otherwise,
it is ignored. Note that breakf actually modifies the
function definition for <foo>.

(unbreakf <foo>) type=noeval

Removes an existing breakpoint from the function
<foo>. If no arguments are supplied, unbreakf removes
all current global breakpoints. The atom @broken-fns
contains a list of all functions currently containing
breakpoints.

Debug Commands:

A summary of the commands recognized by the system fol-
lows:

args Abbreviation: none
Prints the argument names and current values of
the function being evaluated at @stack.

Multilisp Debugging Environment 4

eval Abbreviation: e
Evaluates @form and prints its value. @value is
set to this value.

bk <n> Abbreviation: none
Prints a backtrace of forms on the stack starting
at @stack for length <n> which defaults to 10.

bka <n> Abbreviation: none
Prints a backtrace of frames on the access stack
starting at @stack for length <n> which defaults
to 10.

bkc <n> Abbreviation: none
Prints a backtrace of frames on the control stack
starting at @stack for length <n> which defaults
to 14.

PP Abbreviation: none
Pretty-prints the form contained in the frame at
@stack.

top Abbreviation: none

find <loc>

Resets @stack to @frame which is always the top of
the stack.

Abbreviation: £

Searches either the control or access stacks
beginning at @stack looking for a locator <loc>.
If found, @stack is set to that frame. <Loc> can
be specified as a positive integer, negative
integer, or the name of some function. <Loc>
defaults to -1. Negative values, -<n>, cause
@stack to be advanced <n>-frames up the control
stack. Positive values for <n> cause @stack to be
advanced <n>-frames up the access stack. If <loc>
i1s specified as a literal atom, the control stack
is searched for a frame created for a function of
that name. Else the message ">> Not Found"” is
printed and @stack remains unchanged.

go Abbreviation: none
Breaks on the form at the current value of @stack.
return <form> Abbreviation: ret
Evaluates <form> and returns it as the wvalue of
the break.
restart <form> Abbreviation: res

Restarts computation from where @stack points
using <form>. If <form> is not coded, computation
is restarted using the previous form on the stack
at @stack.

Multilisp Debugging Environment 5

continue Abbreviation: c
Continues with @form. If @form has been previously
evaluated by the eval command, it will not be re-
evaluated.

step Abbreviation: S
Single-steps the interpreter causing a break on
the next non-atomic form encountered by eval.

next Abbreviation: n
Fvaluates @form and breaks on the next non—atomic
form. If @form has been previously evaluated via

the eval command, it will not be re-evaluated.

up <n> Abbreviation: |
Causes the debug system to ascend <n> levels. If
there is no higher break level, control is

returned to top-level. <n> defaults to 1.

stop Abbreviation: nil ||
Causes a return to top-level Multilisp.

findvar <var> Abbreviation: fvar
Finds frame containing <var> on control chain.
@stack is set to this frame.

value <var> Abbreviation: A
Returns current value of <var> from access link
starting at @stack, else error.

Any form typed at debug other than the above commands

or there abbreviations will be evaled and its value printed.

Multilisp Debugging Environment 6

References:

TEITELMAN, W.(1974) INTERLISP Reference Manual, Xerox Palo
Alto Research Center, Palo Alto, Calif.

HALL, W.(1972) A LISP Interactive Programming Environment,

M.Sc. Thesis, Dept. of Comp. Science, U. of Brit-
ish Columbia, Vancouver, Canada.

Comments

