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Introduction:

The debugging environment for Multilisp 1is modelled
after the Interlisp break package (Teitelman, 1974). It is
also similar to the debug system of MTS/LISP (Hall, 1972).
It provides interactive capabilities for error handling and
algorithm debugging plus the addition from Multilisp of a
single-step evaluation mode.

Once a break has been entered, the user can interrogate
the state of the LISP, modify variable bindings on the
stack, edit function definitions, continue the evaluation,
single-step the interpreter through the evaluation of a
form, restart the evaluation at some higher 1level on the
control or access stacks, or return to top-level.

The system makes use of four special variables which
can be accessed by the user:

@form: The form which caused the break to be entered
called the breakform.

@frame: The control frame at the time the break was ack-
nowledged.

@stack: Initially set to the value of @frame. Can be
changed via stack searching commands.

@value: Initially @undef@. If @form is evaluated during
the break, then @value is set to its value.

Entry into the System:

The debug system is entered in one of the following
ways:

1
2

An error occurs.
The system is called explicitly on a form via
debug.
3: The function break is called.
4: A breakpoint is encountered in a user-defined function.

Whenever an error occurs, ah error message 1is printed, the form
being evaluated at the time of the error 1is printed, and the
break is entered.
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The debug system can be called explicitly via the fol-

lowing two functions:

(debug <form>) type=noeval

Calls the debug system explicitly on <form>.

(break <flag> <mess>*) type=eval
This function facilitates tracing program execution
and handling user defined error conditions. It first

evaluates and prints each form <mess> on a single
line. If the global switch @break is true or if <flag>
is true, then the debug system is entered with Dbreak
as the Breakform. Otherwise, break returns nil.

Finally, the debug system is entered whenever a user
defined breakpoint in an interpreted function is encoun-
tered. The name of the function broken is printed and the
first form within the function body becomes the breakform
@form. Breakpoints are set and removed from functions with
the following operations:

(breakf <foo> <pred>) type=noeval

Sets a breakpoint on the first form within the
function definition of <foo>. Function definitions
must be either lambda, nlambda, or glambda-
expressions. When the Dbreakpoint is encountered,
<pred> is evaluated which defaults to T. If the value
of <pred> is non-NIL, the break is entered. Otherwise,
it is ignored. Note that breakf actually modifies the
function definition for <foo>.

(unbreakf <foo>) type=noeval

Removes an existing breakpoint from the function
<foo>. If no arguments are supplied, unbreakf removes
all current global breakpoints. The atom @broken-fns
contains a list of all functions currently containing
breakpoints.

Debug Commands:

A summary of the commands recognized by the system fol-
lows:

args Abbreviation: none
Prints the argument names and current values of
the function being evaluated at @stack.
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eval Abbreviation: e
Evaluates @form and prints its value. @value is
set to this value.

bk <n> Abbreviation: none
Prints a backtrace of forms on the stack starting
at @stack for length <n> which defaults to 10.

bka <n> Abbreviation: none
Prints a backtrace of frames on the access stack
starting at @stack for length <n> which defaults
to 10.

bkc <n> Abbreviation: none
Prints a backtrace of frames on the control stack
starting at @stack for length <n> which defaults
to 14.

PP Abbreviation: none
Pretty-prints the form contained in the frame at
@stack.

top Abbreviation: none

find <loc>

Resets @stack to @frame which is always the top of
the stack.

Abbreviation: £

Searches either the control or access stacks
beginning at @stack looking for a locator <loc>.
If found, @stack is set to that frame. <Loc> can
be specified as a positive integer, negative
integer, or the name of some function. <Loc>
defaults to -1. Negative values, -<n>, cause
@stack to be advanced <n>-frames up the control
stack. Positive values for <n> cause @stack to be
advanced <n>-frames up the access stack. If <loc>
i1s specified as a literal atom, the control stack
is searched for a frame created for a function of
that name. Else the message ">> Not Found"” is
printed and @stack remains unchanged.

go Abbreviation: none
Breaks on the form at the current value of @stack.
return <form> Abbreviation: ret
Evaluates <form> and returns it as the wvalue of
the break.
restart <form> Abbreviation: res

Restarts computation from where @stack points
using <form>. If <form> is not coded, computation
is restarted using the previous form on the stack
at @stack.
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continue Abbreviation: c
Continues with @form. If @form has been previously
evaluated by the eval command, it will not be re-
evaluated.

step Abbreviation: S
Single-steps the interpreter causing a break on
the next non-atomic form encountered by eval.

next Abbreviation: n
Fvaluates @form and breaks on the next non—atomic
form. If @form has been previously evaluated via

the eval command, it will not be re-evaluated.

up <n> Abbreviation: |
Causes the debug system to ascend <n> levels. If
there is no higher break level, control is

returned to top-level. <n> defaults to 1.

stop Abbreviation: nil ||
Causes a return to top-level Multilisp.

findvar <var> Abbreviation: fvar
Finds frame containing <var> on control chain.
@stack is set to this frame.

value <var> Abbreviation: A
Returns current value of <var> from access link
starting at @stack, else error.

Any form typed at debug other than the above commands

or there abbreviations will be evaled and its value printed.
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