RETARGETABLE CODE GENERATION AND OPTIMIZATION
USING ATTRIBUTE GRAMMARS

by

Mahadevan Ganapathi

Computer Sciences Technical Report #406

December 1980

Ganapathi SatJan 31 11:47:35 1981 Page 1, line 1

RETARGETABLE CODE GENERATION AND OPTIMIZATION
USING ATTRIBUTE GRAMMARS

BY

MAHADEVAN GANAPATHI

A thesis submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

{(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

- 1980

ii

Retargetable Code Generation and Optimization

using Attribute Grammars

Mahadevan Ganapathi

Under the supervision of

Associate Professor Charles Nicholas Fischer

Abstract

Attribute grammars are used to specify translations from an
intermediate representation (a 1linear representation of
parse-trees) to a target code fepresentation of programs,
A code generator may be obtained automatically for any com-
piler using &attributed parsing techniques. A compiler
built on this model can automatically perform most popular
machine-dependent optimizations, including peephole optimi-
zations. The code generator is alsc easily retargetable to
different machine architectures. Implementations of a code
generator based on this model exist for the VAX-11/780 and

the PDP-11/70.

iii

I dedicate this dissertation to

THE FLUTE PLAYER of the Jamuna banks

and also to

Koma Patti, my parents (Mahadevan and Sulcchana),

Uma, Kamala Babu, Bhanubhai and Indira mami

who have always provided encouragement and have

been primarily responsible for my success in life

iv

Acknowledgements

Charlie Fischer taught me parsing theory and compiler con-
struction. He provided motivation, encouragement and

transformed my ideas into a dissertation.

Raphael Finkel, Will Leland, Dave DeWitt and Bob Cook im-
proved the readability of this thesis. Johannes Heigert,
Steve Scalpone, Don Neuhengen and Keith Thompscn provided

invaluable help in the implementation of this thesis.

Ed Desautels and my colleagues at the Systems Lab have made
my four years of stay very pleasant and most enjoyable.
Some of them have been a source of many thought-provoking
discussions (and also entertainment, especially during late

hours!).

Don Dietmeyer has been a source of inspiration in logiec
design and digital hardware. Len Uhr, Larry Landweber and
Jim Goodman have been a source of many pleasant conversa-

tions.

Finally, the Kchler Foundation and the Graduate School pro-

vided fellowship support for the past year.

I am grateful to all these people and I thank them all.

Copyright (c) 1980 by Mahadevan Ganapathi.

All rights reserved.

Contents

Introduction
1.1 Motivation
1.2 Goals
1.3 Code-Generation Research
1.4 Thesis Organization

Intermediate Representation

2.1 Machine-Independent Phases

2.2 Design Considerations

2.3 Attribute Grammars

2.4 Attributed Prefix Notation

2.5 Storage Assignment and Display set-up

Attribute-Grammar Machine Description
3.1 Architecture Primitives
3.2 Attribute-Grammar Productions
3.3 Transfer Code Sequences

Code~Selection Issues

4.1 Code-Generator Generator

4.2 Instruction Pattern-Matching:
Attributed Parsing with

Contextual Predicates
Code-Generation Algorithm

Examples of Parsing using Attributes

=
[SIRCIRC RN R RE) = =
L4
=W

chine-Dependent Optimization

.1 Handling Special Instructions
.2 Delaying Code Generation

.3 Subsuming Code

.4 Deleting Redundant Code

5 Back Patching

5

Time versus Space Optimizations
Implementation and Results

Conclusions

page

10

31

46

61

73

838

W N —

u7

48
52
56

64

68
69
70
71

Bibliography

Appendices

TEO QW

Intermediate Representation
Addressing-Mode Tables

Op~code Tables

VAX-11/780 Attribute Grammar

PDP-11/70 Attribute Grammar
Implementing Disambiguating Predicates
in CFGs

97

104

104
106
108
111
123

130

vii

Chapter 1: Introduction

1.1 Motivation

The past decade has seen a number of attempts at automating

the process of building code generators for compilers. In-

terest in this area is motivated by the following factors:

(1)

(2)

(3)

(4)

Advances in hardware technology (microprogramming and
VLSI) have led to the design and manufacture of a large
number of diverse computer architectures (Intel-8086,

2-8000, MC-68008, TMS-99490).

Advances in programming language design have led to the
design cf a large number of sophisticated programming

ianguages (Pascal, Ada, Bliss, C, Fortran 77).

Portable compilers producing high quality code for a

variety of machine architectures are needed [Wulf 7.

Such compilers must rest on a formalization of
machine-dependent aspects of compilation including,

(a) storage and temporary allocation,

(b) code generation,

(c) machine-dependent optimization.

(2)

(3)

(4)

Goals

aims of this research are:

to design an intermediate representation that is flexi-
ble enough to accommodate the diversity of popular pro-

gramming languages,

tc use Attribute Grammars [Knuth 68] as a formal means
of describing a machine architecture for purposes of

code generation,

to derive efficient code generators from such formal

specifications and

to generate high quality code by incorporating a large
number of popular machine-~dependent and peephole optim-

izations.

1.3 Code Generation Research

Previous research in code generation can be broadly classi-
fied into three categoriés: formal treatments [Newcomer 75,
Aho 76], interpretive approaches [Elson 7@, Richards 71,
Wilcox 71, Donegan 73, Young 74, Ammann 77, Donegan 79] and
descriptive approaches [Miller 71, Weingart 73, Snyder 75,
Johnson 77, Fraser 77, Glanville 77, Ripken 77, Johnson 78,
Glanville 78, Cattell 78, Cattell 79, Cattell 8¢, Graham
89, Wulf 8g@b]. For an extensive review and critique of

these approaches, the reader may refer to [Ganapathi 8¢].

Formal treatments thus far have considered arithmetic ex-
pressions only. Interpretive approaches are improvements
over ad-hoc code generation (because only P+M translators
are needed to implement P languages on M architectures).
But in such schemes machine descriptions are intermixed
with the code generation algorithm. Retargeting thus re-

quires changing the code generator for every new machine.

Descriptive approaches separate the machine description
from the code generation algorithm, providing a higher de-
gree of portability. In such schemes, pattern matching is
used to replace interpretation. Fraser, Glanville, Ripken
and Cattell have tried to derive code generators automati-

cally from a machine description, although their methods

are very different. They differ principally in

(a) the amount of processing that must be done by other
parts of a compiler,

(b) the way multiple matches between machine instructions
and source-language operations are handled,

(c¢) code generation speed and

(d) quality of generated code.

Fraser's rule based system is inefficient and its portabil-
ity 1is questionable. He uses ad-hoc, machine-specific
rules to perform storage allocation. His code generator is
also very slow: It generates one line of assembler code
each second on a PDP-1@ KAl@g. Furthermore, redundant loads
and stores are often emitted. It is not clear how his code
generator can use special machine instructions to yield op-

timized code (e.g. an increment instead of an add by one).

Ripken extended Aho and Johnson's algorithm [Aho 761 to
generate locally optimal code. He also considered the in-
teraction between different phases in a compiler. However,
an implementation of his dynamic programming algorithm can

be expected to be prohibitively slow.

Glanville's code-generation algorithm is derived from
context- free parsing theory [Aho 733. Storage is assumed
to be bound by other phases of a compiler. His implementa-

tion 1s very efficient because standard context-free pars-

ing techniques (which forbid back-up) are used. But, be-
cause of pure context-free matching, in certain cases it
fails to generate optimized code (e.g. using indexing to
avolid explicit addition in an addressing context). Furth-
ermore, side effects and condition-~code settings are ig-
nored. Multiple matches of instruction patterns with the
intermediate representation result in shift/reduce or
reduce/reduce conflicts during bottom-up parsing. Such
matches are always resolved in favor of the longest pat-
tern. In many cases such a heuristic resolution fails to
produce optimized code. For example, the VAX-11/780 has
both two-address and three—address addition. Sometimes, a
two-address op-code is preferable (e.g. for A := A + B),
whereas 1in other instances a three-address op-code is

better (e.g. for A := B + C).

Cattell designed a more complete code generator with a
fixed set of operations for TCOL (an intermediate
language). A recursive goal-directed heuristic search al-
gorithm is used to derive code sequences in cases of opera-
tor mismatches between TCOL representations and target-
machine templates. Such automatic derivation using axioms
and a goal-directed heuristic search is not practical for a
variety of machine instructions. Sometimes, it is very
hard and time consuming (if not impossible) for a code gen-

erator to derive certain code sequences automatically.

These code sequences include floating-point operations on
machines that do not support floating-point arithmetic,
2n-bit arithmetic on n-bit architectures and 'branch if
equal' or ‘bganch if greater or equal' on the Intel-8g89
(which require a large number of instructions). Optimal
code sequences that use auto-increment/decrement and recog-

nize equivalent storage locations cannot be produced.

Glanville's scheme seems to be the most practical. Howev-
er, his scheme requires other phases of the compiler to
perform a significant amount of machine~dependent work
(storage assignment, allocation of temporary operands,
stack management, run-time display set up and linkage dur-

ing procedure calls).

Our approach can be viewed as an extension to Glanville's
scheme. Semantics and context in the form of attributes
are used to control parsing of the intermediate form. Mul-
tiple matches between instruction patterns and the inter-
mediate representation are resolved using disambiguating
predicates [Milton 77]. The use of such predicates is a
key point in this dissertation. Attribute grammar produc-
tions and disambiguating predicates not only provide con-
siderable flexibility in retargeting the code generator,
but also enhance the readability of the implementation and

facilitate efficient optimizations.

We use a more complete machine description (including ad-
dressing modes and machine data~types, e.g. bytes, words,
gquadwords). Unlike Fraser or Cattell, we do not use ISP
[Bell 71] (a CHDL: computer hardware description language)
as a starting point. Lengthy code would be necessary to
describe hardware stacks and floating point instructions.
CHDLs are essentially programming languages with special
features to describe digital hardware. Processing them to
extract higher level abstractions (as needed in code gen-
eration) is as hard as writing a compiler for a programming
language. For code generation it seems better not to spend
a significant amount of effort translating procedural
machine descriptions. Furthermore, in practice, an imple-
mentor using a machine manual can easily write new instruc-
tion descriptions [Graham 8¢]. Therefore, we resort to
formal mechanisms for which easy and efficient translators
are feasible. In light of +the above, we re-state our
research goals:

(1) structure the code generation process so that target
machine dependency does not taint other phases of a
compiler. Interfacing the code-generator package with
other phases of a compiler should therefore become con-

siderably easier.

(2)

(3)

(4)

devise a simple and clean model of code generation and
machine~dependent optimization using attribute gram-
mars; ideally, one that is simpler and c<¢leaner than.
Newcomer's and Cattell's means—end-analysis model
[Newell 69].

retain the speed and efficiency of Glanville's approach
by wusing a fundamentally single-~pass code generation
scheme.

include machine-dependent optimizations that have not
been included in other portable code-~generators. These
optimizations include choosing between three-address
and two-address instructions, subsuming (via auto-
increment) additions widely separated from the current
instruction (in effect, 'floating' an addition across
many instructions), subsuming subtractions wvia auto-
decrement in a similar fashion, removing redundant
loads and stores, replacing memory references by regis-
ter references, delaying operand movement into costlier
storage locations and span-dependent optimizations
[szymanski 78, Szymanski 80]. Such optimizations are
hard te incorporate as a separate pass of peephole op-
timization [Fraser 79] since the instruction could have
effects cutside the window (e.g. condition~code set~

ting and register contents).

1.4 Thesis Organization

The task of implementing a portable code generator is di-
vided into:

(1) design of an intermediate representation (Chapter 2),
(2) attribute grammar machine description (Chapter 3),

(3) code selection (Chapter 4),

(4) machine-dependent optimizatiocn (Chapter 5).

Each chapter includes a brief review of the state of the
art 1in its area. Implementation results, both for the
VAX-11/780 and the PDP-11/78, are presented in Chapter 6.
Ideas for improvements to our implementation and future
‘research in code generation are in the conclusions (Chapter
7). Details of the desigﬁ of the intermediate representa-
tion and complete attribute grammar descriptions for the

VAX-11/780 and the PDP-11/7@8 are included as appendices.

10

Chapter 2:) Intermediate Representation

This chapter discusses the machine-independent phases of a
compiler and the intermediate representation (IR) we will
employ. Design considerations for a machine-
independent/language-independent IR, which forms the input
language for a portable code generator, are outlined. A
Polish-prefix representation is used in our implementation.
The use of attributes in such a representation to assign

storage and set up displays is described.

2.1 Machine-Independent Phases

The major phases of a compiler's machine-independent struc-

ture are:

(1) lexical analysis (scanning},

(2) syntax analysis (parsing) with associated (optional)
syntax error correction and recovery [Graham 79, Fisch-
er 801,

(3) semantic analysis (e.g. type checking, procedure param-
eter checking and type coercions) and

(4) machine-independent optimizations, some of which are
done at the source level while cthers are achieved as

IR to IR transformations [Standish 76].

(a)

(b)

(c)

(a)

(e)

11

Examples of these machine-independent optimizations
are:

global flow analysis [Kennedy 71, Allen 72, Kildall 73,
Ullman 75],

optimizations involving constants, such as folding (ex-
cluding pointer arithmetic in address computations) and
constant propagation [Aho 77], arithmetic on constants,
strength reduction, replacing exponentiation to a con-
stant power with multiplication and wunrolling loops
with constant step and limits,

expression optimizations, such as common sub-expression
elimination, expression transformations exploiting as-
sociative, commutative and distributive laws, arithmet-~
ic identities (e.g. addition to zero and multiplica-
tion by one), Boolean short-circuit evaluation and use
of unary complement operators [Frailey 7@],
pre-planning strategies that estimate optimum use of
registers (e.g. global register allocation [Johnsson
75] and temporary allocation [Sethi 7@1]),

frequency reduction (moving operations out of frequent-
ly executed regions), such as hoisting loop-invariant
computations and removing multiplication from a loop by
detecting linear expressions involving induction vari-
ables (variables that assume values in an arithmetic

progression) [Aho 77].

12

Not all of these optimizations are used in production com-
pilers. Some are difficult to implement (e.g. detecting
all induction variables in a program is unsolvable; optimal
expression-evaluation order in the presence of common sub-
expressions is NP-complete); others may be unsafe (use of
associativity with floating point addition) or irrelevant
(Sethi-Ullman register optimization for stack computers or
machines with asymmetric registers). However, portable
code generators can use information gathered by some of
these optimization algorithms (e.g. Johnsson's TNBIND and
Sethi-Ullman computations) to bind registers. The IR
should therefore provide a facility for allowing optimizing
front-ends to express their resource allocation intentions.
However, it must be the decision ¢f the code generator to

either satisfy these requests or ignore them, depending on

the resources available in the target machine.

2.2 Design Considerations

Within a single compiler, an IR such as gquadruples, triples
or trees [Aho 77] is normally used for object code optimi-
zation. BAmong portable compilers an IR also serves to dis-
tinguish language-dependent issues from machine-dependent
issues. Therefore, the design of an IR is critical to com-

piler portability, code generator portability and efficien-

cy.

13

Considerations involving the design of a common IR for

a family of retargetable compilers are:

(1)

(2)

The 'level' of an IR determines the wocrk to be redone
in either transporting a compiler to a new machine or
using the same code generator for a new source
language. ;f the level is too high, language dependen-
cies creep in. Similarly if the 1level is too low,
machine dependencies seem unavoidable.

From UNCOL [Strong 58, Steel 61] experience, it seems
impossible for a single IR to satisfy the requirements
of all programming languages. To avoid compromises or
inefficiencies, IRs should be flexible. Such a need is
addressed in the Janus [Coleman 73] family of abstract
machines and the TCOL [Wulf 8fa] family of IRs. While
Janus was developed to study portable compilers, TCOL
is more ambitious in using the same family of IRs (e.g.
TCOL

TCOL l) for, among other things, genera-

Ada’ Jovia

tion of verification conditions, language-oriented
editing and code generation.

The IR strongly influences the efficiency of code gen-
eration algorithms. Portable code generators commonly
match the IR with instruction patterns of the target
machine. Pattern matching in a tree is not as well un-
derstood as string matching. Most tree-matching algo-

rithms rely on heuristics, and the results are not

14

provably correct. String matching is quite well under-
stood, and efficient (i.e. linear) algorithms exist to
parse strings. Also, typical parsers such as YACC

[(Johnson 75] use very simple drivers.

We will use a linearizediPolish-pmefix notation augmented
with attributes (e.g. type, scope of a variable, register
preference and context in which local evaluation takes
place) to convey information to the code generator. The

next section is a brief excursion into attribute grammars.

2.3 Attribute Grammars

Attribute grammars were proposed by Knuth [Knuth 68] as a
means of formally specifying semantics within the context
free grammar of a language (CFG). For a formal definition
of attribute grammars or affix grammars, see [Koster 74,
Lewis 76, Milton 77, Watt 77, Raiha 8@]. Intuitively, each
grammar symbol in a CFG is allowed to have a fixed number

of associated values, termed attributes, whose domains may

be finite or infinite. As an input is parsed, attributes
are evaluated. The resulting syntax tree augmented with
attributes represents the semantics of the input. The at-
tributes associated with a given symbol may be synthetic or
inherited. Synthetic attributes (which we denote by pre-

fixing them with a 'f') are used to pass information up a

15

parse tree. Inherited attributes (prefixed with a 'Y') are
used to pass information down a parse tree. FEach context-
free production has an associated set of attribute evalua-
tion rules. All rules can be packaged into predicate sym-
bols (which check for attribute correctness) or action sym-
bols (which compute new attribute values). To evaluate an
action symbol, its inherited attributes are first made
available. The action symbol is then applied; its synthet-
ic attributes are computed as a result. This model makes
it very easy to implement action symbols as subroutine

calls.

Attribute grammars have been used as an effective tool to
structure the translation phase of compilers [Watt 74,
Lewis 76, Milton 79]. Our use of attribute grammars in
code synthesis (storage allocation, code generation and
machine-dependent optimization) should complement their

traditional usage.

2.4 Attributed Prefix Notation

Linear notationé can be classified as tuples (e.g. triples
or quadruples that require explicit temporary specifica-
tion) and strings (e.g. Polish-prefix, infix and postfix)
that de not need explicit temporary specification. The

number of temporaries required in the evaluation of an ex-

16

pression 1is often a machine-~dependent issue. For example,
the statement "A := B + C" requires one temporary on two-
_address machines (such as the PDP-11/7¢) but none on
three—address machines (such as the VAX-11/78¢). The qua-
druple representation of the above statement is:

(+, B, C, Ta)

(:=, A, Ta).
To generate three-address code requires a separate optimi-

zation pass to eliminate extraneous temporaries (Ta in the

above example).

Infix notation is ambiguous without parentheses. Prefix

notation is preferred to postfix for the following reasons

(the discussion assumes a single-rpass processing of the

IR):

(1) Many architectures have non-orthogonal instruction
sets. Some op-codes reqguire operands to be in special
machine locations (e.g. even-odd register Eairs for
muitiplication and division on the IBM-37@ and PDP-
11/79, registers for operand movement on the Intel-
8086) . In postfix notation, an operand is encountered
before its operator, and until the operator is seen the
other associated operand is not known. The code gen-
erator might therefore have to back up in special cases
to fix the operands (i.e. move them to valid loca-

tions).

17

(2) The context in which an expression is to be evaluated
should Dbe known prior to evaluation of the expression.
For example, A < B requires an explicit Boolean result
when evaluated in the context: C := A < B but does not
need one in the context: IF A < B.

(3) Even if the IR-context does not require an explicit
Boolean result, the instruction set of the target
machine may nevertheless require creation of an expli-
cit result. For example, a Boolean OR on the PDP-11/70
or the VAX-11/780 (bis) will always produce an explicit
result. Furthermore, the VAX~11/780 provides a choice
between a two-address (bis2) and a three-address (bis3)
OR. In a conditional-statement context such as IF A OR
B, bis3 will be used; in an assignment context (e.g. A
:= A OR B), bis2 may be éreferable.

(4) Knowledge of the immediate destination of a result can
influence the choice of operands for machine instruc-
tions. For example, a new temporary is unnecessary if
the lefthand side of an assignment can store temporary
results. It is therefore valuable to know the lefthand
side of an assignment before encountering the righthand

side.

The notation developed in this dissertation is essentially
Polish-prefix with operators having a fixed number of

operands. We augment this notation with attributes for

18

operators and operands to carry forward semantic informa-
tion essential for address~binding, code optimization and

resolution of conflicts in cases of multiple matches during

code selection. Some examples of attribute values we use
are:

Te character data type

Ti integer data type

T1 long~integer data type

Tp pointer data type

tr real data type

fc variable accessed through 'static chain'

D variable accessed through display

TE external procedure or function

tF function or procedure name

te global variable

L local variable

To push parameters in opposite (reverse) order

Tp procedure or function parameter

TR register preference

Ts variable to be placed in static area

T optimize object-code for execution speed

We have a prototype IR processor that uses LEX [Lesk 79].
The complete IR specification is given in Appendix A. The
following examples illustrate IR-form programs for binary
search written in Modula and string comparison in C.
Notation:

beginning of declaration

opening of new scope

end of variable declarations

assignment

indirection

address of variable

unconditicnal branch

end of current scope

procedure or function call

test and jump (takes two operands and a label)
@relop relational with second operand implicitly 4.

'--‘LQ HeE (DD ee “o v as
(s]
ct
(o]

nQ
o

=
0+
e

MODULE main;

USE
CONST
VAR

BEGIN

printd; (* system procedure for output *)
num items = 14;

item : ARRAY l:num_items OF INTEGER;
index : INTEGER;
result : INTEGER;

PROCEDURE printd (n:INTEGER);

PROCEDURE binary search (number:INTEGER):INTEGER;

VAR low, high, middle : INTEGER;
BEGIN
ilow = 1;
high = num_items;
REPEAT
middle := (low + high) / 2;
IF item[middle] >= number THEN
low := middle + 1;
END;

IF item[middle] <= number THEN
high := middle - 1;

END;

UNTIL low > high;

IF (low + 1) > high THEN
binary search := middle;

ELSE
binary search := g;

END;

END binary search;

(* body of main program *)

index := 1;
REPEAT
item{ index] := index;
INC (index):
UNTIL index > num_items;
result := binary search (5);

IF result <> ¢ THEN
‘printd (result):
END;

END main.

19

(* Modula program to search for an item *)

20

An experimental Modula front end produced the following IR:

: main

{ " comments are enclosed within quotes "

: item TG T1g T1 " 1@ times size of long datum "

se w8 os

L2#

L2l
LIS

L23

index TG T1 T1
result TG¢ T1 T1
adritem s Tl Tp TR " compiler-generated name "

binary search Tl TF T1 {" return long datum "

number TP T1 T1

low TL 71 T1

high L T1 T1

middle TL T1 T1

arraybase TL Tl Tp TR " Compiler-generated "

.3 o5 o8 ss e» oo'

low |
high 1|8
adritem # item
" repeat scope begins "
:= middle / + low high 2
" increment adritem by middle * size of long "
:= arraybase + adritem * middle SIZETl
if array element (a long datum) is less
than number, branch to label L21 "
< @71 arraybase number L2l
:= low + middle |
@71 arraybase number LI9
high - middle !
low high L28 "repeat scope ends"
+ low | high L23
binary search middle
to proced end
binary search @

Wou

A A e Ve
WO " u i

e LY oo

proced_end } " procedure declaration ends "

L30

L3I

:= index |
" obtain address of first item "
:= adritem + # item SIZET1
" repeat scope begins "
@7l adritem index
advance to next element of array "
adritem + adritem SIZET1

-
=

:= index + index |

<= index 1@ L3§ " repeat scope ends "
:= result call binary searchll 5

= result L3l -

call printdll result

21

The target code produced by our code generator for this IR
is compared (in Chapter 6) with that produced by C com-
pilers on the VAX-11/780 and the PDP-11/7@0 for the follow-

ing equivalent C program:

#define NUM ITEMS 10
int item[NUM ITEMS+l];
int index;

int result;

binary search(number)
%nt number ;
int low, high;
register int middle;
low = 1;
high = NUM ITEMS;
do -
{
middle = (low + high) / 2;
if(item{middle] >= number)
low = middle + 1;
if(item[middle] <= number)
| high = middle - 1;
while(low <= high);
if((low + 1) > high)
return{middle);
else
return{g);

main()

index = 1;
do

item[index] = index;
} index++;
while(index <= NUM_ITEMS);
result = binary search(5);
if(result != @)~
printd(result);

22

As another example, consider the IR translation for the

following C program:

#define SAME @
#define DIFF 1

main(argec, argv)
int argc;
register char **argv;

{

}

/* C program for string comparison */
register char *arg;

if(arge > 2) { /* more than 2 arguments */
arg = *{(argv + 1);
/* check if argument '-p'
*/appears on command line
*
if(*arg == '-' && *(arg + 1) == ‘'p') {
/* compare first eight
* characters of next
* two arguments
*/
if(strncmp(*(argv + 2),
*(argv + 3),
8)

== SAME)
exit(1l);

}
exit(9);

strncmp(strl, str2, len)
register char *strl, *str2;
register int len;

{

/* string compare function compares character
* by character; returns true 1f identical

* otherwise returns false

*/

register int i;

for(i = @; i < len; i++)
if(*strl++ l= *str2++)
return(DIFF);
return(SAME);

The hand-coded IR for the string-comparison program is:

: main T2 { " main is not a function; no [F is needed "

: argc TP 71 T1
argv [P 71 Tp TR
arg TL T1 Tp TR

.

N\ “e ve

= argc 2
:= arg
<>
<>
g<>
L3
L2
Li5
call exitT!
}
: strnemp T3 TF T1
: strl Tp 11
: str2 TP 11
: len TP Tl
: i TL T1I
: temp TL TI
= 1
goto L25
L2961
:= temp =
= strl
1= str2
4<> temp
:= strncmp
goto LI3
L23
t= i+ 1]
L25
< i len
:= strncmp
Li3

}

@Tc arg 45
@Tc + arg SIZEfc
call strncmpl3

L2601

@Tp + argv SIZETp
"ascii -" L2
112 "ascii p" L2

@Tp + argv * 2 SIZETp
@Tp + argv * 3 SIZETp
8
L3

call exitTl 1

{

TR

TR

TR

R

TR

@Tc strl @Tc str2

+ strl SIZETc
+ str2 SIZETc

The code generated for this IR is given in Chapter 6.

23

24

2.5 Storage Assignment and Display Set-up

This section discusses some of the storage-assignment op-
tions offered by the current code~generator implementation.
A compiler front end selects options by setting synthetic

attributes of tokens.

At the IR level, variables are represented by their names,
which are then bound to machine addresses before instruc-
tion selection. The decision of how to address locals and
globals 1is not made at the IR level; it is treated as a
code~generation issue. Some storage allocation and recla-
mation is done at well-defined times during execution (e.g.
allocating space at block entry and releasing it at block
exit). Other storage management is done at arbitrary mo=-
ments (e.g. acquiring and releasing heap space). Storage
assignment, that is, binding constants, simple variables
and aggregates to machine storage-locaticns, may be based
on a pre-planned strategy, such as global flow analysis, or
done during code generation. In the former case, register
preferences appear as attributes in the IR. For example,
': X TR' denotes that X is a variable that should prefer-
ably be placed in a register. Whether the code generator
is able to satisfy requests for register assignment depends
on the number of general-purpose registers in the target

machine and the peculiarities of the instruction set (e.g.

25

even-odd register-pair use and ordering of operands in in-

structions).

Assembler instructions are used to allocate space for Glo-

bal and Static variables (e.g. "a: .space 4" on the VAX-

11/7806). To support block structure, references to non-

global variables are usually implemented through one of the

following mechanisms:

(1) descending a 'static chain' of linked frames; elements
in the chain are at a fixed offset from the frame
pointer (FP) [Aho 771],

(2) displacement from the relevant display [Dijkstra 68];
the display is stored in a fixed location that is in-
dexed off a display pointer (DP), usually a register,

(3) displacement from a display created at every procedure
or Dblock entry and placed on the stack [Gries 71]. 1In
this case, the chain is descended only once per block
(or procedure) entry instead of once per non-local
reference.

The target architecture usually provides the FP (or a base

register), DP and a hardware stack-pointer as registers.

If they are not registers, then memory locations must be

used to simulate them. Non-global variables whose space

requirements are determinable at compile-time (e.g. in-
tegers, reals, characters and Booleans) can be bound to

general-purpose registers, addresses with a fixed offset

26

from the FP, addresses accessed indirectly through the DP
or by explicit code sequences that descend a static chain
that 1links frames. The current code-generator implementa-

tion supports all of these accessing methods.

The displacement from the frame may be positive or negative
depending on the direction of frame growth; this informa-
tion is provided as part cf the machine description to the
code generator. Variables that are both non-local and
non-global are accessed through a display or through the
static-chain mechanism outlined above. In these cases,
another attribute (in the form of Tnumber) specifies either
the index of the relevant display or the number of levels
of indirection from the FP (via the static link). This at-
tribute is used to obtain the base register used to address

the variable.

The machine data-type of an IR-variable is determined by
searching a machine-description table, which provides in-
formation on data-types, their alignment restrictions and
the maximum values storable in them. If the frame is part
of the stack (as is usual in most architectures), the stack
pcinter may also have to Dbe aligned. For example, the
storage assignment and display set-up can be described as

follows for the VAX-11/788:

#define MAXREG 15 /* max # general regs */
#define USEREG 19 /* max # scratch regs */
$define DISPLAYREG 11 /* display pointer */
#define ARGREG 12 /* arg pointer */
#define FRAMEREG 13 /* frame pointer * /
#define STACKREG © 14 /* stack pointer */
#define STATICSTART %) /* start of static area */
$define FRAMESTART 2 /* frame start offset */
#define PARMSTART 4 /* parameters start off */
$#define MAXALIGN 4 /* max align on stack */
$#define FRAMEDIRECTION 1 /* 1 = down, @ = up */
#define GSPACE ".globl"
#define SPACE " .space"
#define DSPACE . ".data"
#define TSPACE ".text"
#define ARGALIAS "rl2 ap"
#define FRAMEALIAS "ri3 fp"
$#define STACKALIAS "rl4 sp"

IR variables are thus converted into addresses before in-
structions are selected. In order to provide flexibility
to allow any of the above block-structure mechanisms, our
implementation of the code generator accepts multiple lev-
els of both indirecticn and indexing (even indexing through
a memory location). These machine-independent addressing
modes are automatically mapped to the addressing modes of
the machine by productions (details in Section 3.2). The
usefulness of multiple levels of indexing is apparent on
machines such as the Burroughs B-558@, which needs no in-
teger multiplication for array-element referencing. The
subscript values are pushed on the stack, and the hardware
uses a base descriptor and a subscript to obtain a descrip-
tor for the correct row. Other subscripts are used to in-
dex the desired element. In our scheme, one could provide

productions tc capture this array indexing mode.

28

Addresses for dynamic arrays, strings and pointers are cal-
culated and assigned at run time. Usually, for dynamic ar-
rays, the dimensions of the array are known at block entry.
Since space for arrays will be released at block exit, ar-
rays can be assigned areas on the stack and accessed
through a dope vector [Gries 71]. Dynamic strings and heap
objects, however, cannot be stored on the stack. They need
a heap and associated routines for heap management and gar-
bage collection. Almost all machine architectures provide
primitives for stack management. Comparable heap-
management primitives are usually not available. Such al-
location primitives are therefore normally realized as sub-

routine calls or as in-line code.

Procedure calls and returns require code (as procedure pro-
logue and epilogue) to adjust the frame and stack pointers,
save and restore displays and registers and pass arguments.
Some architectures, such as the VAX-11/788, allow a2 vari-
able number of registers to be saved and restcred in a sin-
gle instruction, thus lowering the overhead for a context~
switch during a procedure call. 1In such a case, code has
to Dbe generated to specify which registers to save. Ad-
dress assignment for procedure parameters can be relative
to either the FP or a special argument pointer (e.g. AP on
the VAX-11/780). The front end can indicate its choice of

offset, whether positive or negative, from the FP or AP.

29

This choice may be overruled by the code generator if the
machine architecture does not provide a facility for an im-
plementation. For example, negative offsets from base re-
gisters are impossible on the IBM-37¢ and Univac-110@

series machines.

Another option provided in the current implementation is
specification of the order of pushing procedure parameters
on the stack (first argument pushed last or first).
Parameter-pushing order affects the ability of target pro-
.grams to interface with other system routines. Other
implementation-dependent issues are the run-time startup
routine (which is mostly language-dependent) and implemen-
tation of I/0 «calls (which is usually operating-system

dependent) .

In summary, IR variables are assigned storage before code
selection. IR names are transformed to machine addresses,
with machine-independent addressing modes that allow multi-
ple levels of indirection and indexing. Consider the
statement "A := B - 1", where A is a local variable and B

is both non-local and non-global. The corresponding IR is:

30

: A TL T1 T

“ B is accessed through the static
chain and is two levels outside "
B TCc T2

~e s

:i= A - B |
}

After storage binding:
A becomes , DisplTa BaselFP
B becomes , DispTb @ @ , Displs BaselFP
(s is the offset of the static
chain from the frame pointer)
| becomes DatumTl.
The assignment statement becomes:
:= , DisplTa BaselFP
- , Dispfb @ @ , DispTs Base{FP Datumll.
The mapping of these addressing modes to actual modes pro-
vided by the target architecture is discussed in the next
chapter. After parsing through addressing-mode productions
(Section 3.2), the above statement becomes:
:= AddressTa - AddressTb Addresslc
where the attributes "a" and "b" represent the addresses of
A and B, and the attribute "c" represents the constant |.
Chapter 4 describes the translation of this IR to target

code using a single-pass algorithm.

31

Chapter 3: Attribute-Grammar Machine Description

Computer hardware description languages (CHDLs) have been
traditionally wused to describe, document and simulate com-—
plex digital systems. ' Register-transfer-level languages
(AHPL [(Hill 74], CDL [Chu 74], DDL [Dietmeyer 68, Dietmeyer
74, Dietmeyer 78]) describe digital hardware at the struc-—
tural level. They are very wuseful during the initial
stages of hardware design when the organization of the
hardware and algorithms for implementing instructions are
to be established. ISP [Bell 71] has been used to describe
(informally) the instruction semantics for a large number
of computers. It is intended to provide a behavioral
description of the functioning of processors, viewed as
programs. ISPL [Barbacci 76] is the first software-
supported version of ISP. Its successor, ISPS [Barbacci
771, is implicitly oriented towards simulating the perfor-
mance of an instruction set independently of the structural
details of the hardware. To use ISPS as a starting point
for software synthesis, ISPS descriptions have to be sym-
bolically simulated by an interpreter. This simulation is
a difficult task, as shown by Wick [75], who automatically
generates assemblers, and Oakley [79], who automatically
generates asserticns. Furthermore, ISPS has some limita-

tions: It is not suited for describing special machine in-

32

structions such as the CDC-Star vector operations or the
IBM-360 translate-and-test instruction, or addressing modes
such as the auto-increment/decrement on the PDP-11/78 and
Motorola-68d0@. Lengthy ISPS code is necessary to describe

hardware stacks, floating point and block-move operations.

In our scheme, the information necessary for IR-operation
selection 1is described by attribute-grammar productions,
with at least one template for every IR operator. They are
described wunder the general categories of addressing-mode

productions and instruction-selection productions.

3.1 Architecture Primitives

Code generation requires descriptions of the following com-

ponents of a machine architecture:

(1) addressable units for storing source-language values
(e.g. memory, registers and hardware stack),

(2) a run-time display mechanism such as display pointer,
activation pointer (which may be a register or a memory
location) and direction of frame growth (either up or
down) ,

(3) the set of instructions available for implementing IR
operations; their execution time and size,

(4) primitive data types (data objects havirg direct

hardware rezlization) that can participate as operands

33

to instructions, the maximum value they can hold and
their contribution to instruction size,

(5) addressing modes available to access and retrieve
operands,

(6) side effects of instructions, such as condition-code
setting and even-odd register pair usage,

(7) assembler or binary formats of instructions and ad-

dressing modes.

The hardware abstractions essential to code generation are
data types, addressing modes and instructions. Data types

are groups of bits that can participate as operands to in-

structions. Some examples are:
VAX-11/780 byte, word, long, quad, float, double,
Z-8000 bit, byte, word, long, quad, BCD,
Intel-8086 byte, word, BCD,
MC-68000 bit, byte, word, long, BCD.

The interpretation of these bits by the central processing
unit depends on their representation (e.g. signed magni-

tude, two's complement).

Addressing modes are access paths to retrieve operands
residing in storage locations such as memory, stack or re-
gister. The time taken to access an operand depends on the
access path and the storage location in which the operand
resides. For example, it is faster to retrieve an operand
from a register than from memory or the stack. The timings

may also be dependent on the presence of a cache, a

34

floating-point accelerator, pipelining or other configura-
tion details. The size of a machine instruction is also
affected by the addressing mode. Addressing-mode produc-
tions describe patterns for address formation in the target
architecture (details are in the next section). The assem-
bler formats for these modes are tabulated. Appendix B

contains addressing-mode tables for the VAX-11/784.

The operations of machines can broadly be classified, with
respect to mapping IR operators to machine op-codes, under
the following categories:

(1) Data~transfer instructions are used to implement
source-~language assignments to variables. Assignments
can sometimes be subsumed as part of other operations
(e.g. A := A + B can be implemented as add B, A). As-
signments of aggregates may not be implementable in a
single data-transfer instruction; often a series of
moves or a loop is required to implement them.

(2) Arithmetic instructions are used to implement
arithmetic-expression evaluation and address calcula-
tions. |

(3) Boolean instructions are used to implement Boolean-
expression evaluation under two contexts: (a) as values
tc be manipulated or assigned and (b) as predicates to

control constructs.

(4)

(5)

(6)

(a)

(b)

35

Control instructions (comparisons and branches) are
used to implement relational operators, sometimes in-
cluding an implicit comparison with zero. Often the
result of a comparison is a condition-code setting that
is subsequently tested to decide the control flow of
the user-program.

Subroutine call and return instructions are necessary
to implement procedures.

Special instructions are used to optimize object code.
Examples include:

single instructions that effectively perform combina-
tions of arithmetic and control operations (e.g. 'sub-
tract one and branch' on the PDP-11/74, '‘add one and
branch if less than' on the VAX-11/7898), and

shift instructions on integers (often used to replace
integer-multiplication and, in some cases, division by

a power of two).

Appendix C contains op-code description tables for the

VAX-11/784.

3.2 Attribute-Grammar Productions

For purposes of pattern matching and instruction selection,

the

instruction set of the target architecture 1is

represented as a set of attribute~grammar productions.

36

These productions form the input to a program that gen-
erates a code generator for the target machine. This sec-
tion illustrates the use of attribute~grammar productions;
the attributed parsing algorithm is discussed in Section

4.3.

All productions are of the form 'LHS - RHS', where LHS

stands for lefthand side, RHS for righthand side. The LHS

is a single non-terminal usually appearing with synthetic

attributes. The RHS contains:

(1) terminals with synthetic attributes,

(2) non-terminals with svnthetic attributes,

(3) disambiguating predicates (underlined) with inherited
attributes and

(4) action symbols (capitalized) with synthetic and inher-
ited attributes.

Attribute occurrences may be constants or variables. Con-

stant attributes (with the excepticn of self-defining con-

stants) are enclosed within quotes. An attribute variable

is a shorthand referring to a data structure that contains

all the attributes of some symbol. The same attribute

variable may appear more than once in a production. 1In

such cases attribute values are implicitly copied from syn-

thetic attributes of a symbol in the RHS to synthetic at-

tributes of the LHS or to inherited attributes of disambi-

guating predicates and action symbols. For example, in the

37

production:
Bytefa » Addressfa,
the attribute variable a is copied from symbol Address to

Byte.

Disambiguating predicates do not compute new attribute
values. They yield true or false only. The disambiguating
predicates of each production are included to determine
when the production is applicable (i.e., when it should be
selected as a template for code generation), e.g.,
Bytefa + Addressfa IsByte (vVa)

This production is used only if Address has attributes that
show it is a byte. A production is applicable only if all
its disambiguating predicates evaluate to true. In order
to guarantee that at most one production is selected, pro-
ductions are tried in order of specification. In general,
a hierarchy of disambiguating predicates can be designed to
select only one production. The crdering could be selected
for either decreasing object-code space or increasing exe-
cution speed. Our experience suggests that a single linear

ordering usually suffices.

The kinds of productions needed for an entire code genera-
tor <can be broadly classified into addressing-mode produc-—
tions and instruction-selection productions. Although ex-

amples in this section pertain to the PDP-11/78 and the

38

VAX411/78@, the technique 1is generally applicable and

feasible, as demonstrated by our specific implementations.

Addressing-mode productions:

Each production has an RHS specifying the pattern of an IR
addressing mode. The production creates the proper machine
address (in an action symbol). For example, the following
production is used to specify an index addressing mode on
the PDP-11/70 or a displacement addressing mode on the
VAX~11/780 (',' denotes indexing in the IR):
Addressla » , Displb Baselc ADDR (¥bbcla)

"Disp" represents a local variable with attributes specify-
ing the machine data type and offset from a frame pointer.
These attributes are determined when IR variables are bound

to locations in the target machine. The attribute variable

"c" specifies the base (or display) register of the IR
variable. The action symbol ADDR synthesizes an address
for a datum on the target machine. The attribute "a"

represents this address; in our implementation, it has the
following components:

(1) a base register,

(2) an offset from the base register,

(3) an optional level of indirection,

(4) an index register (if any) and

(5) the name of a variable (in case it is global).
These components may vary when the code generator is retar-

geted to new machines. However, for a variety of machines,

including the VAX-11/780, IBM-370 ané the PDP-11/78, this

39

structure seems to suffice. The addressing mode produc-
. tions determine the components used. For some machines, a
component may never Dbe necessary. For example, on the
PDP-11/78, the index-register field will never be used (on
the PDP-11/78, the index register and the base register
cannot be used simultaneously). The addressing-mode pro-
ductions reflect addressing modes supported by the target
machine. If the target machine does not support simple ad-
dressing modes, code sequences may be needed for addressing
purposes. For example, if a machine does not support in-
dexing, the IR will be parsed by other productions that
represent simpler addressing modes; code for composing

those modes will be generated.

Addressing-mode productions are augmented by a few produc-
tions that map machine-independent addressing modes to tar-
get addresses (such as multiple levels of indirection and
indexing, as discussed in Section 2.5). For example, if
the target machine has no display registers, then a vari-
able is indexed from a memory location. Most architectures
require the index to be a register. The following produc-
tions force an index to be located in a register:

Basela » Modesla IsReg (+a)

Basefla -+ Modes{b

GETREG (+'long' ta)
EMIT (¥'movl' ¥b +a)

40

The non-terminal Modes represents any addressing mode sup-

ported Dby the target architecture. The predicate IsReg

checks if "a" is already in a register. If not, a register
"a" 1is obtained from the action symbol GETREG, and "b" is
moved to "a®. The action symbol EMIT takes a machine op-

code, addresses, and labels (optional) as input and formats

target code with the help of machine-description tables.

Architectures wusually support one level of indirection.

The following productions implement one level of indirec-

tion on the PDP-11/70 (@ specifies indirection in the IR):
Addressla » IndirectModesfa

IndirectModesfa -+ @ DirectModes!b NotIndirect (¥b)
ADDR (¥@ +b Ta)

The predicate NotlIndirect ensures that "b" does not specify

an indirect addressing mode (i.e. its indirection flag is

not set). ADDR turns on the indirection flag for datum
"b*". However, the IR may have multiple levels of indirec=~
tion (e.g. when descending a ‘'static chain' +that 1links
blocks). To implement more than a single level, two more

productions are needed:
IndirectModeslb » AnctherLevellb
Anotherleveltlb » @ IndirectModesla
GETREG (v'word' 1r)
EMIT (¥'mov' Ya vr)
ADDR (¥@ +r Tb)

Similarly, multiple levels of indexing require a few extra

productions. Thus, each IR variable is converted into an

41

address (or datum) with an attribute that is automatically
synthesized using productions. Some addressing modes, such
as auto-increment, modify the address of the datum after
usage. They are used to subsume addition or subtraction in

the context of address calculations (Section 5.3).

Instruction-selection productions:

Each production has an RHS specifying the pattern in the IR
and the corresponding code sequence to be emitted on a
match. The LHS may be an explicit result location (a re-
gister or . a memory location), in which case it specifies
the data type of the result, or a condition code location,
or simply a non-terminal place-holder. Consider addition
on the VAX-11/780. There are two-address and three—~address
add op~codes. Furthermore, the increment instruction can
be used for adding one. For a byte datum, these three
forms of addition are expressed as follows:

Bytelr - + Bytela Bytelr IsOne ($a) IsTemp (¥r)

EMIT (¥'incb’ vr)

- + Bytelr Bytela IsOne (+¥a) IsTemp (¥r)
EMIT (4'incb' ¥r)

-+ + Bytefla Bytelr TwoOp (¥+¥adr)
EMIT (+'addb2' va {r)

-+ + Bytelr Bytefa TwoOp (V+Vavr)
EMIT (¥4'addb2' va ¥r)

- + Bytefa Bytelb
GETTEMP (¥'byte' fr)
EMIT(¥'addb3 " vatbdr)

The first and second productions specify the addition of 1

42

to "r". Both productions are needed to represent the com-
mutativity of addition. In case either production is
selected, the op-code incb (increment byte) is emitted.
The non-terminal on the LHS (Byte) and its attribute (r)
specify the data type and address of the result respective-
ly. The third and fourth productions specify two-address

”"

addition of "a and

r" using op-code addb2. Similarly,

the last production specifies three-address addition of "a"

and "b" using op-code addb3. In this case, the sum is

stored in "r" that is obtained from action symbol GETTEMP.
The location "r" may be a free register or the LHS of an
assignment statement whose previous contents need not be

preserved.

An addition of two IR data in byte format will match the
RHS of one of these productions. The choice of the RHS is
determined by attribute values and the disambiguating
predicates. If an operand is 1 then an incb instruction is
selected. Producticns three through five handle addition
of a constant other than 1. In an assignment context, a
global attribute keeps track of the target address of the
assignment statement. The disambiguating predicate TwoOp
evaluates to true if either operand is the target of as-
signment or its value need not be preserved after addition.
Consequently, a two-address addb2 is selected. If TwoOp

evaluates to false, then a three-address addb3 is selected.

43

3.3 Transfer Code Sequences

Operands may be intentionally relocated by the code genera-
tor to storage locations other than the one in which they

normally reside, for any one of the following reasons:

(1) Destructive operations:

Many machine operations, such as two-address instructions,
destroy the contents of a participating operand. For exam-
ple, on the PDP-11/78, "add A, B" destroys the contents of
location B. Thus, to implement "C := A + B", either B or A
must be moved to a temporary location before addition, or a
three—-address instruction must be used.

(2) Data-type conversion:

Most machine op-codes operate only on operands of identical
data types (except on tagged architectures [Feustal 73]).
Mixed-mode operations are therefore implemented by convert-
ing all operands to the same machine data type before per-
forming the operation. Thus, the statement C := B + C,
where B is an integer and C a floating-point number, is im-
plemented by converting B to a floating-point data type and
then adding B to C. Such conversions are either specified
by compiler front-ends as type coercions or are automati-
cally performed by the code generator (e.g. when both B and
C above are integers but B occupies a byte data-type and C

occupies a word data-type). To implement data-type conver-

44

sions, some machines provide a special conversion instruc-
tion (e.g. ‘'cvtbw' on the VAX-11/780) whereas other
machines might require a sequence of instructions.

(3) Instruction set non-orthogonality:

The orthogonality of an instruction set is the regularity
with which any op~code can be used with any machine-
primitive data type and addressing mode. Every architec-
ture designed and marketed so far possesses some amount of
non-orthogonality. For example, on the Z-80¢9¢ and Intel-
8086, no memory-to-memory arithmetic is possible. On the
PDP-11/78 and IBM-37@ no memory-to-memory multiplication or
division 1is possible, but memory-to-memory addition and
subtraction are allowed. Such irreqularities force the
code generator to produce extra code for relocating
operands. To implement “C := B * C" on the PDP-11/74,
where both B and C are integers in memory locations, C has
to be relocated to an even register of an even-odd pair.
Consequently the corresponding odd register may need to be
relocated before the multiplication so that its contents

are not destroyed as a side-effect.

Transfer code sequences implement forced operand reloca-
tions. They are specified as part of the RHS of a transfer

production. For example, to convert a word datum to a long
datum on the VAX-11/780, the following transfer production

is used:

45

LongTa - Wordlb ConvToLong (¢b)
GETTEMP (v'long' fa)
EMIT (¥'cvtwl' ¥b va)

If such transfer code-sequences are not provided, the code
generator may block while parsing a semantically correct IR
input. Usually, simple moves are adequate, but sometimes

lengthy code sequences are necessary.

In summary, the components of target architectures needed
for instruction selection are described as attribute-
grammar productions to a generator for the target machine's
code generator. The next chapter describes the translation
of IR to target code using transition tables automatically

produced by the code-~generator generator.

46

Chapter 4: Code~Selection Issues

Code generation is the process of mapping some intermediate
representation of the source program into assembly or
binary machine~code. This complex task iﬁvolves selecting
machine instructions to implement programming language con-
structs for all of the following operations:

(1) storage assignment,

(2) accessing variables and selecting addressing modes,

(3) setting up run-time display linkage,

(4) procedure body prologue and epilogue,

(5) evaluating arithmetic and Boolean expressions,

(6) executing control constructs and evaluating Boolean ex-

pressions that do not need to store an explicit result.

The attribute grammar for the target machine is input to a
code-generator generator (CGG) whose output is a specific
code generator for the machine. The code generator con-
sists of a set of transition tables and a driver for these
tables. This driver serves as a push-down automaton that
parses the IR form. Instructions (machine operations) are
seiected during parsing. To transport compilers to a new
machine, the attribute-grammar description of that machine
is given to the CGG. Transition tables for the machine are

then automatically obtained and the same driver is used.

47

ﬁ'l Code-Generator Generator

The CGG constructs a context~sensitive parser [Watt 74,
Watt 77]. The parser constructor is a generalization of
context-free parsing methods that accepts a useful class of
attribute grammars: those that are amenable to single pass,
left-to-right parsing. Apart from the evaluation of action
symbols, resulting parsers from such constructors retain
the linear performance characteristics of context-free
parsers. Watt has related the parsing problem of attribute
grammars to the context-free parsing problem. He Thas
decomposed construction of attributed-grammar parsers into
three stages:

(1) To guarantee correspondence between symbols on top of
the parse stack of the code generator and their associ-
ated attributes on top of the attribute stack, copy
symbols (special null non-terminals) are introduced
into the grammar. A new grammar (called the head gram-
mar) is automatically formed from an attribute grammar,
with production rules stripped of their attributes and
augmented with copy symbols. This construction is in-
dependent of the parsing method to be adopted and is
detailed in [Watt 77].

(2) A context-free parser 1is constructed from the head

grammar.

48

(3) The context-free parser is generalized to include an
attribute stack to deterministically parse attribute

grammars.

4.2 Instruction Pattern-Matching:
Attributed Parsing with Contextual Predicates

Both top-down and bottom-up parsers have proved attractive
to langquage implementors since they organize the transla-
tion phase of compilers. This section discusses the use of
parsing techniques to organize a compiler's code-generation

phase.

Top-down (LL) parsing is not well suited to matching prefix
IRs against prefix target-machine templates. An operator
in the IR (say +) corresponds to many templates beginning

with the same operator (e.g. 'incb', 'inc', 'add' on the
PDP-11/7@). 1In top-down parsing, producticn identification
takes place before all of the RHS components have been pro-
cessed. Ambiguities that occur in LL parsing are all
‘predict-predict' conflicts. A disambiguating predicate
(also called a contextual predicate [Milton 77]) can be as-
sociated directly with the production whose prediction it
will determine. Since, before prediction, very little in-

formation is availakle on the operands, many lookaheads are

required to select the proper template. Contextual predi-

49

cates need to consider the non-terminal on top of the

parser stack along with these look-aheads.

In contrast, bottom-up parsing is better suited to instruc-
tion selection because a reduction takes place only when
the entire RHS of a production has been processed. All in-
formation on operands, available as attributes of symbols
on the RHS, can therefore be used to disambiguate multiple
matches and to control parsing. However, attribute gram-
mars must be restricted in the following ways to make <them
suitable for attributed bottom-up processing.

(1) Since the proper actions to perform depend on identify-
ing the associated production, action symbols may appear
only at the extreme right end of a production. However,
this restriction may be 1lifted in certain special cases
where occurrences of action symbols before the right end of
productions can be automatically replaced by non-terminals
that generate the empty string (and thus serve as markers).
If such movement of action symbols to the left is inap-
propriate, an unresolyable parsing conflict will arise
[watt 771.

(2) Bottom-up parsers operate by constructing forests of
derivation sub-trees and then piecing them together. In-
formation flowing down a sub-tree (in inherited attributes)
cannot guide a parse, since by the time such information

becomes available the entire sub-tree has already been con-

50

structed. Furthermore, information cannot flow from one
sub-tree to a sibling sub-tree, since the fact that they
are siblings is not established until both have been con-
structed. All attributes of non-terminals must therefore

be synthetic.

The flow of contextual information is therefore highly res-
tricted. In the absence of action symbols, information can
only flow strictly up the tree, while an action symbol node

can receive information only from siblings to its lef:.

Contextual predicates take a fundamentally different form
for LR parsers than for LL parsers. In LR parsing the con-
flicts are of the 'shift-reduce' or ‘'reduce~reduce'
variety. Moreover, the conflicts are present only in the
context of a particular state or configuraticn set. Thus,
while an LL parser bases its decision on a non-terminal and
a look-azhead, an LR parser bases its decisions on a parse
state and a look-ahead. Disambiguating predicates are
therefore associated with states, not productions. Furth-
ermore, the top stack symbol (along with its attributes)
will typically not provide enough left context for a predi-
cate to perform disambiguation, due to restriction (2)
above. Left context in bottom-up parsing can only be
transmitted up the derivation tree. Thus the symbol on top

of an LR parser stack can only convey information (in its

51

synthetic attributes) from the sub-tree it heads. There-
fore, in general, disambiguating predicates will need to
examine more than one of the symbols at top of the stack.
The state (actually, the corresponding configuration set)
will determine how many symbols on top of the stack will be

available to the disambigquating predicate.

The disambiguating predicates of each production are usual-

ly written as the productions are designed. They serve as

a guide to when the production is applicable. In most
cases, these predicates also serve to resolve parsing con-
flicts (i.e. they control parsing). In practice, some

disambiguating predicates are added only after a canonical
collection of configuration sets has been computed and
found to contain conflicts. Upon the occurrence of a pars-
ing conflict, disambicuating predicates of successive prc-
ductions in the current state are polled to determine the
one whose attributes allow it to be applied (predicates are
not ignored if there 1is no conflict). Disambiguating
predicates are implemented within the standard framework of
attribute evaluation by an evaluation rule that examines
the attribute stack and checks for applicabiiity of the

productions.

In summary, one-pass disambiguated bottom-up attributed

parsing requires that:

52

(1) Non-terminals must have only synthetic attributes.

(2) Inherited attrilutes of action symbols must depend only
on the attributes of symbols to their ieft in the pro-
duction.

(3) Each production includes optional disambiguating predi-

cates to control production recognition.

Fa
w

Code-Generation Algorithm

The attributed bottom-up parser with disambiguating predi-
cates employs the standard LR(k) parsing loop with added
code to manipulate attributes. Although using two stacks
(the control stack and the attribute stack) aids conceptual
clarity, in practice all attributes of a given symbol can
be packaged into a single data structure with a pointer to
it (the attribute variable) kept on the control stack.
Since the set of attributes is relatively small {the proto-
type code generator uses ten attributes in all, covering
many architectures), the parser does not need to be able to

handle fully general attribute sets.

In our notation, RHS symbols with constant attribute Valueé
differ significantly from RHS symbols with symbolic (vari-
able) attributes. Symbols with constant attribute values
can only match corresponding values in productions. Da-

tumf2 will only match a datum with an attribute value of 2,

53

whereas Datumfa can match a datum with any attribute value.
In case the same attribute variable appears several times
within one production, attribute values need not be copied;
the relative offset (from the stack top) 6f the defining
instance of the attribute variable is carried forward. On
a shift operation, attribute values of a symbol are copied
onto the stack. On a reduce operation, action svmbols are
processed and synthetic attributes are returned to the LHS
symbol of the production. For each action symbol, in turn,
its inherited attributes are first evaluated, and then the
corresponding function (the action symbol) is called to
evaluate its synthetic attributes. The algorithm is de~

tailed below:

Notation:

Token
LaToken
Tsym
Stack

Stack[4]

Push(X)
Pop(N)

Func(Inh, Svn)

Prod

thProd

RhsProd

State

54

current IR token being scanned.
look-ahead token.
synthetic attributes of Sym.

control stack of IR parser.

dth symbol from top of the stack (Stack([1]
is the top).

push X onto the stack.

pop N symbols off the stack.

action symbol with Inh inherited and

Syn
synthetic attributes. .

production recognized.
LHS of Prod.
RHS of Prod.

current state in auto-

maton.

the code~generator

Nextstate(State, Symbol)

Nextaction(State,

Actset

determines the next state of the automaton.

Symbol, [Symbol, LaToken)
determines the set of possible actions that
could be performed when shifting Symbol

(with its synthetic attributes) in state
'State' and the look-ahead LaToken.
set of possible actions determined by Nex-

taction.

Disambiguate(State, Actset)

Action

predicate that takes the current state and
action set as 1input and returns only one
action as output. The attributes on the
stack are available for disambiguating pur-

poses.

current operation cf the driver.

55

PROGRAM CodeGenerator;

State = 0
Action := Shift;

SWITCH (Action) OF

CASE sShift:

Push(State);

(* stack the token's synthetic attributes *)
Push(TToken);

(* determine next action *)

Actset := Nextaction(State,Token, [Token,LaToken):
IF Actset is single-valued THEN Action := Actset
ELSE Action := Disambiguate(State, Actset);

(* determine next state *)

State := Nextstate(State, Token):

END; (* case shift *)

CASE PReduce:

END.

SWITCH (thProd) OF

CASE actionsymbol: (* Func(Inh, Syn) *)
Func(Stack[1l],..,Stack[Inh],
Stack[Synl,..,Stack[1]);
END; (* case action symbol *)

CASE nonterminal:
Pop(Rhs) :
pop(tRAEL2D)
State := 58ack[1]; (* top of stack *)
Push(TthPrO);
END; (* case non%erminal *)
END; (* switch *)
Actset :=
Nextaction(State, Lhs

-, TLhs ,LaToken) ;
d d

Pro Pro

IF Actset is single-valued THEN Action := Actset
ELSE Action := Disambiguate(State, Actset):
State := Nextstate(State, thprod);

END; (* case reduce *)

CASE Accept: halt, accepting;
END; (* case accept *)

CASE Error: halt, rejecting;
(*the front-end generated an invalid IR sequence¥*)
END; (* case error *)
END; (* switch *)
(* end program codegenerator *)

56

4.4 Examples of Parsing using Attributes

In this section we illustrate examples of using attributed
parsing to generate VAX-11/780 code. These examples em-
phasize the PDP~11/76 and the VAX-11/780. Howéver, attri-
buted parsing is a generally applicable technique for com-

piler code generation and optimization usable on almost any

architecture. Its feasibility is demcnstrated by specific
implementations.
Consider the translation of the statement "A =B - 1"

on typical architectures with several lengths of integers
(e.g. byte, word, long). The IR after storage-binding is:
:= Addressfa - Addressfb Aaddresstc
where the attribute variable a includes 'long' and address
information for A, b has 'word' and other information for
B, and ¢ has 'byte' and 1 as the actual value. We now
trace the parsing process.
(1) The following production is recognized:
Longta - Addressfa IsLong (Va)
This production matches any Address with attributes that
declare that its type is long. Because a appears twice in
this production, it is implicitly copied from Address to
Long. Thus, the attributes of A are carried forward. We
now have

:= Longfa - Addressfb Addressfc

57

(2) Next, production

Wordla - Addressfa IsWord (+a)
matches Address{b, because it is a word. The local attri-
bute variable "a" is instantiated as "b". We reduce the IR
further to:

:= Longfa - Wordlb Addressfc

(3) Now, the following production is matched:

Longla -+ Wordtb ConvTolLong (¥b) GETTEMP (¢'long'ta)
EMIT (¥'cvtwl'vbva)

We convert from word to long format by first allocating a
temporary (say register rl) through the action symbol GET-
TEMP, then issuing a 'convert word to 1long' instruction
through the action symbol EMIT. We now have reduced the IR
to:

:= Longfa -~ LongTr1 Addressfc
(4) Next, the constant 1 is reduced to a Long by the pro-
duction

Longta » Addressla IsLong (va)
We have reduced the IR to:

:= Longla - LongTrl Longtc
(5) The following production is now matched:
LongTb » - Long!b Longlc IsCne (Yc) EMIT (¥'decl' +b)
This production describes a special-purpose dJdecrement in-
struction, applicable only if the second operand is the
constant 1. We have reduced the IR to:

:= Longta LongTrl

58

(6) Finally, the following production is matched:
Instruction - := Longfa Longlb

IF NotEquate (¥a¥b) THEN

DELAY (v movl' ¥b +Ya)
NotEquate evaluates to false if "a" and "b" are equivalent
locations and consequently, reducing by this production
does not produce any code. DELAY is a variant of EMIT that
can delay generation of an instruction pending future in-
structions. In this case, the move of r, to A is delayed
so that future references to A can be replaced by ry-.
Also, the move may be completely suppressed if, for exam-

ple, another assignment +to A is encountered before it is

referenced.

The use of attribute values to control parsing the IR al-
lows us to significantly improve the quality of generated
code with little effort. For example, in step (5), above,
if the 1left operand had not been in a temporary, we would

have generated two instructions (a 'move', then the decre-

ment) . A Dbetter code sequence would be to use the VAX's
three address format to generate, for example,
“subl3 1, B, r;". To include this optimization we add a

disambiguating predicate "IsTemp" to the Decrement produc-

tion to obtain

LongTa » - Longla Longfb IsOne (¥b) IsTem ($a)
EMIT (¥'decl' va)

If the a's attributes show it is not a temporary, ZIsTemp

59

evaluates to false, and recognition of this production is
blocked. Instead, an equivalent (but longer) instruction
is generated by this alternate production:

Longlta » - Longtb Longlc GETTEMP (+'long'fla)
EMIT (4'subl3’' Yc b +a)

Many machines, including the VAX, contain specialized
hardware features that are difficult to exploit in
compiler-generated code. A good example is the auto-
increment/decrement feature. Compilers find it difficult

to recognize the special cases in which a subtract opera-
tion can be subsumed 1in a later instruction (or an add
operation in an earlier instruction) by auto-decrement
(auto-increment). Our approach can naturally exploit such
features. For example, we can add the production

Longla + - Longtfa Longftc Four (¥c) IsTemp (va)
AUTODEC (¥'subl2 ' vcva)

Thisz production will be matched only when we find a sub-
traction of the constant 4 from a long format datum in a
temporary. AUTODEC is a version of EMIT that delays gen-
eration of a subtraction instruction in hopes of realizing
it as an auto-decrement in a future instruction. If this
optimization cannot be dcne (or the updated value of the
expression is needed), the subtraction is generated. Simi-
larly, AUTOINC is another variant of EMIT that attempts to

use auto-increment in an earlier instruction (Section 5.3).

60

In summary, the IR is translated to target code by parsing
it through attribute~grammar productions. Multiple matches
are handled by disambiguating predicates. A simple code
generator can be implémented for a new machine using these
basic productions. As time permits, the code generator can
be tuned by adding new "optimization productions". The
next chapter describes optimization productions and other

machine-dependent optimizations.

61

Chapter 5: Machine-Dependent Optimization

Optimizing compilers attempt to produce a more efficient
representation of user programs, aiming both for compact
object code size (an operational constraint on computers
with 1limited address space) and execution speed. A large

number of optimizations are wholly architecture-dependent:

1) using special machine instructions (e.g. increment,
subtract-one-and-branch, add-one-and-branch-less~than-or-
equal) and available addressing modes (e.g. indexing) to

avoid explicit addition; also, subsuming addition or sub-
traction (e.g. using auto-increment/decrement),

(2) avoiding redundant register loads and stores (or redun-—
dant pushes and pops),

(3) optimizing branches (e.g. branch chaining, cross-
jumping [Wulf 75], span-dependent instructions [Robertson
77, Szymanski 78, Szymanski 80]). Code generation for con-
trol constructs has not been given much attention in recent
approaches to formalization and automatic derivation of
code generators. For example, Fraser, Glanville, Cattell
and Ripken have not handled redundant condition code set-
ting and the problems of generating short or long branches
(as found in the PDP-11/78, VAX-11/780 and many other mini
and micro-computers). Glanville does not provide a means

for describing long and short branches. Fraser and Cattell

62

are able to describe the restrictions imposed on short
forms in ISP but they do not exploit this capability. In
fact, all three imply the use of short forms in their exam-
ples. Ripken uses attribute predicates to describe dif-
ferent forms of branch instructions, including forms other
than merely long and short. (The VAX-11/780 has three
types of branch instructions: branch-byte (2 Dbytes),
branch-word (3 bytes) and jump (5 bytes)). He proposes
rearranging basic Dblocks of code in order to generate ap-
propriate branch instructions in a later pass. Finding
such an optimal rearrangement (to minimize program length)
has been proved to be NP-complete by Robertson and Szyman-
ski.

(4) peephole optimizations [McKeeman 65]. A separate
peephole-optimization pass over assembler code is used by
the Unix C compiler [Ritchie 78]. Bliss' FINAL [Wulf 75]
has demonstrated that a considerable reduction (15-49%) in
code size can be achieved by such a pass. FINAL directs
almost all its efforts in improving code for contrcl con-
structs. Recently, Fraser [Fraser 79, Fraser 8] has im-
plemented a machine-independent peephole optimizer that
reacs machine descriptions and attempts to optimize adja-
cent pairs of assembler instructions. For a window of more
than two instructions, the speed of the optimizer is de-

graded. Optimization of instructions not physically adja-

63

cent requires more 'context' information. Attributes are a

good means of maintaining contextual information.

Our implementation attempts to express optimization in a
non-procedural form, replacing the hand-coding of machine-
dependent optimizations by the use of attribute grammars.
Our intention is not to expand on the vast store of optimi-
zation techniques, but to cleanly organize ‘tricky'
machine~dependent optimizations (especially those optimiza-
tions that are both popular and effective). Some of these
optimizations, such as removing redundant loads/stores and
using arithmetic shifts instead of multiplications, are
commonly used in compilers with the help of specially
hand-coded routines. Others, such as the use of 'sob'
(subtract-one-and-branch) on the PDP-11/79 and auto-
increment, are not common. Our implementation formalizes
machine-dependent optimization within the attributed pars-
ing framework under the following categories:

(1) addition of attribute grammar productions to incor-

porate special instructions,
(2) delaying generation of code till the end of a basic
block,

(3) code subsumption within addressing modes,

(4) deletion of redundant code and

(5) code alteration (back-patching) using information gath-

ered after instruction selecticn.

64

5.1 Handling Special Instructions

In order to use special instructions, productions are added

to describe special combinations of

(1) operands (e.g. multiplication or division of an integer
by a power of two, incrementing or decrementing in-
tegers by one, assignments to or from an operand at the
stack top) and

(2) operations (e.g. subtract-one-and-branch on the PDP-
11/79, subtract-one-and-branch-greater-than and add-
one-and-branch-less-than-or-equal on the VAX-11/784).

These optimization productions are added incrementally to

improve the target code. They are specified before general

productions so that their predicates are checked first.

Such a scheme enhances modularity and allows incremental

development of a code generator.

Consider the addition of another disambiguating predicate
DontTrySob before IsTemp in the Decrement production (Sec-
tion 4.4) to obtain

Longfa » - Longla Long!b IsOne (¥b) DontTrySob ({a)
IsTemp ($a) EMIT (¥'decl' va)

In this case, both DontTrySob and IsTemp must evaluate to
true in order that the production be applicable. The con-
text in which an evaluation takes place 1is determined by

interrogating the left context of the evaluation (i.e.

65

looking at symbols below the RHS on the stack). In the as-

signment context ":= A - B 1", the target address A is

i it

known after step (1) in Section 4.4. If "a here 1is not
the same as A (a global attribute keeps track of A) or if
the following operator (which is determined by examining
the look-ahead already provided by the parser) is not a
'greater-than' or 'greater-than-or-equal' comparison with
zero, then DontTrySob evaluates to true. This evaluation
does not include any 'less-than' comparisons because the
VAX-11/780 does not provide a corresponding special in-
struction for 'subtract-one-and-branch'. If DontTrySob
evaluates to false, recognition of this production is
blocked in hopes of matching one of the following 1longer
productions so that a special instruction may be selected.
If this hope fails (determined by the predicate SobOk),
then an alternate longer production is matched and a se-
quence of equivalent instructions is emitted. In the fol-
lowing example, '@<' is a unary operator that tests if its
operand is greater than zero. Similarly, '@=<' tests if

its operand is greater than or equal to zero. ‘'@rel’

stands for other tests with zero as the second operand :

66

Instruction - := Longld - Longfa Longlb @< Longlc Labelln
IsOne (¥b) SobOk (¥d¥avc¥n)
EMIT (¥'sobgtr’ vd vn)

-+ := Longld - Longla Longfb @g=< Longlc Labelln
- IsOne (+b) SobOk (Vdbvatcin)
EMIT (¥'sobgeq' +d ¥n)

-+ := Longld - Longfa Longtb @relfbranch Longfc
Labelfn IsOne (¢b)
EMIT (¥'decl' +d)
EMIT (¥'tstl' +Yc)
EMIT (¥branch +vn)

The disambiguating predicate SobOk evaluates to true if ¢,
d and a are the same variable, and the distance of n from
the current position is not greater than the short-branch
distance. Forward references are taken as farther than a
short-branch distance. If SobOk evaluates to false, we
generate the sequence of instructions that would have been
generated if DontTrySob evaluated to true. This sequence
consists of first decrementing d, then setting condition
codes by testing c¢ and finally branching on the condition

of the appropriate condition-code bit(s).

5.2 Delaying Code Generation

Within basic blocks [Aho 77], variables should be kept in
faster locations as much as possible. Our code generator
attempts to replace references to a variable's memory ad-
dress by equivalent but cheaper addressing modes. The

principles on which this strategy is based are:

67

(1) Whenever an assignment involves moving an operand from
a cheaper addressing mode to a costlier one, the generation
of the move instruction is delayed. Thus, in step (6) of
4.4, the movement of r; to A is delayed.

(2) Operand relocations (Section 3.3) may involve movement
from a costlier addressing mode to a cheaper mode (e.g.
moving B to ry in step (3) of 4.4). In such cases, the
move instruction is ‘'hoisted' to the position after the
last use of the cheaper addressing mode (the last use of ry
in the preceding example) within the current basic block
and after all intervening aésignments to B. Then all sub-
sequent references to B are replaced by rl.

Such hoisting of register loads and subsequent alterations
of addressing modes are achieved through the use of data
structures that provide the necessary flexibility to alter
operand addressing: instructions that are buffered use
descriptors for the addressing modes of their operands.
These addressing alterations require buffering code for the
duration of a basic block. Instead of a straight- forward
‘match-generate-match-generate' code—-generation scheme,
many matches are performed follocwed by a single ‘generate'’
at the end of a basic block. Such optimizations assume
that if an iastruction can take an expensive addressing
mode, it can also take a cheaper one. On machines with

non-orthogonal instruction sets where this assumption might

not prevail, this optimization should not be done. There-
fore, our implementation permits optional use of this op-

timization.

5.3 Subsuming Code

Attributes are used to buffer previously generated instruc-—
tions in order to subsume additions and subtractions by ad-
dressing modes such as

(1) indexing:

If the subtraction in step (5) of 4.4 was performed within
the context of address calculation (i.e the IR representa-
tion is := A @ - B 1), a longer production is matched:

Addrfa -+ @ - Longlb Longlc IsCons (&g) IsReg (¥b)
ADDR (¥- ¥b vc Ta

If the attribute variable "c" is an integer constant and
“b" 1is a register, then the subtraction is implicitly per-
formed by using the index addressing mode supported by the
architecture. ADDR composes an address attribute "a" with
negative displacement "c" and base register "b".

(2) auto-increment/decrement:

The subtraction from "a" (say r2) in Section 4.4 was de-

layed in hopes of realizing it as a future auto-decrement.
If the next use of I, is an indirect reference through r,
and the operation uses long data, then the auto-decrement

addressing mode for T> is issued for the current instruc-

69

tion. Similarly, auto-increment modes are used to subsume
additions to a register (using buffered information). 1If a
register is incremented by a constant that is usable in an
auto-increment, the previous use of the register
addressing-mode is altered to the auto-increment mode using

the mechanism outlined in the previous section.

5.4 Deleting Redundant Code

Buffering code (Section 5.2) and maintaining 1lists of
equivalent addresses also help avoid redundant loads and
stores. Other examples of deleted redundant code are
branches to the immediately following instruction and un-
necessary tests that precede branches. For example, if a
comparison with zero follows a decrement instruction, then
the following production is matched:
Ccfbr - @relopfbr Longla
IF NOT Ccset THEN
EMIT (¥ tstl' Ya)
The test instruction is not emitted because the condition
codes are set correctly by the preceding decrement. More
generally, sometimes an instruétion is used only for set-
ting condition codes. If its execution would set condition

codes exactly as the preceding instruction did, then the

instruction is suppressed.

70 -

5.5 Back Patching

Many architectures provide more than a single op-code for
an unconditional branch. In our implementation, these op-
codes are specified with their branch distances, e.g. for

the VAX-11/788:

#define RRB "brb" /* shortest branch */
#define BRW "brw" /* branch word */
#define JMP "Jmp" /* longest branch(jump) */
#define SHORTDIST 254 /* byte-branch distance */
#define WORDDIST 32766 /* word-branch distance */

The exact forms of branch instructions can usually be
determined only after their targets are defined. For back-
ward branches, the exact form can be determined when code
is generated. 1In the case of forward branches, the longest
available form is used and, once the target is determined,
the correct form is substituted. This strategy allows us
to handle multiple forms of branch instructions within a
single ©pass. Many machines {(e.g. the PDP-11/70, VAX-
11/78@), only have conditional branches of the short form.
Long-form conditionals are therefore simulated using a
three-instruction sequence. For example, on a forward
reference on the VAX-11/784, conditional branches (say
‘cbranch Label') are converted into the sequence:
opposite-of-cbranch(condition code) internal-label

jmp Label
internal~label:

71 -

The opposite branch-opcode of a conditional branch is sup-
plied by the grammar (e.g. the opposite branch of branch-
if-greater, 'bgtr', on the VAX-11/788 is branch-if-less-
than-or-equal-to, ‘bleq'). The code generator generates
necessary internal labels. When Label is subsequently de-
fined, a cheaper form of branch instruction is used. The
exact branch distance is calculated; if the distance is
less than the short-branch distance, the entire three-
instruction sequence is replaced by 'cbranch Label'. If
the distance is representable in a branch-word instruction,

the "jmp" is altered tc "brw".

5.6 Time versus Space Optimizations

Attributes and disambiguating predicates are very useful in
choosing between optimization for space and optimization
for time when they conflict. For example, the VAX-11/780
has a three-address arithmetic shift (ashl) and both two
and three-address multiply instructions {mull2, .mull3) that

we can exploit:

72

Longlr - * Longla Longfr IsTemE (¥r)
TimeOpt (¥'ashl'Vy muil2') PowerTwo (ia) LOG2 (valp)
EMIT (¥'ashl' vp ¥

- * Longfr Longfa IsTemg (¥r)
TimeOpt (¥'ashl'$"muiiz ') PowerTwo (ia) LOG2 (Yalp)
EMIT (¥'ashi'® vp v

- * Longlr Longla TwoOp (¥*¥atdr)
EMIT (¥'mull2' ¥a +4r)

- * Longla Longlr TwoOp (¥*Yatr)
EETT—%$ 'mull2' ¥a ¥r)

- * Longla Longlb PowerTwo (¥a) LOG2 (¥a fp)
GETTEMP (¢' loni Tr)
p

EMIT (¥'ashl' vb ¥r)

- * Longla Longfb PowerTwo ($b) LOG2 (¥b fp)

GE TTEMP ¢ lcni lr)
P r

EMIT (¥'ashl'

4
*

LongfTa Longfb

GETTEMP (V'long' fr)

EMIT (¥'mull3’' Ya ¥b ¥r)
The disambiguating predicate PowerTwo evaluates to true if
its attribute is a power of two. The applicability of the
arithmetic shift production depends further on whether cp-
timization for time is to be preferred over optimization
for space. A two-address multiply on the VAX-11/78¢0 occu-
pies less space than an arithmetic shift (which needs three
addresses). But an arithmetic shift is considerably faster
than a multiply instruction. The compiler writer may de-

fine predicates such as TimeOpt in terms of options that

are set by the user during compilation.

73

Chapter 6: Implementation and Results

Implementations of our code generator exist on both the

PDP-11/78 and the VAX-11/78¢. The generator occupies 86K

bytes on the PDP-11/78 (37K text + 45K data + 4.3K unini-

tialized data) and 115K bytes on the VAX-11/788 (48K text +

63K data + 3.9K uninitialized data). The 11/70 implementa-

tion generates about 3¢ lines of assembler code per second

(real time), while the VAX version generates about 5@ lines

per second. In contrast, the C compiler produces about 40

lines per second on the PDP-11/78 and about 66 lines per

second on the VAX-11/780. The goals of the implementation

are:

(1) portability (minimum change required to retarget the
code generator to new machines),

(2) use of state-of-the-art techniques (attribute grammars
and attributed parsing),

(3) efficiency of code generation (a one-pass linear pars-
ing technique),

(4) flexibility (code- optimizations incrementally incor-
porated, all optimizations optional),

(5) modularity (instruction-set specification by addition
of new productions).

Producing a small code generator was not among the primary

goals. Nevertheless, the size turned out to be reasonable.

74

The code generator can be compiled and used on a minicom-

puter such as the PDP-11/79.

YACC [Johnson 75], running on the PDP-11/7¢ and the VAX-
11/780, was used to generate tables for these implementa-
tions. Its driver was modified to accommodate disambiguat-
ing predicates and create parsers for attribute grammars.
It required about four minutes +to process each of the
(highly optimizing) code-generation grammars. More de-
tailed statistics show the complexity of the grammar re-
guired:
PDP-11/7@ grammar:

55 terminals

150 non-terminals

346 grammar rules

739 parser states

time taken on the PDP-11/7¢

{real time

user time
system time

3.48 minutes
3.48 minutes,
2.05 minutes,
8.8 seconds)

VAX-11/780 grammar:

63 terminals

179 non-terminals

578 grammar rules

1273 parser states

time taken on the VAX-11/78¢
(real time
user time
system time

4.29 minutes
4.09 minutes,
4.1 minutes,
3.8 seconds)

I

The code produced by our implementations (Cg) on the VAX-
11/78¢ and the PDP-11/7¢ was compared with that produced by
C compilers for the binary-search and string-comparison
programs given in Section 2.4. We will ignore assembler

code for allocating space for variables, because it is not

important for purposes of comparison.

lowing VAX~-11/780 code for the binary search IR

75

Cg produced the fol-

(procedure

parameters are pushed in reverse order):

WO ULbd W

WWWWWWWWWRNNNONIDNNNDNDERRERF R
VOOV LUNMNHFRVWONOAUAWNNFHFROUDNNOULIAWND R

b search:
- subl2
movl
movl
moval
addl3
divl2
ashl
addl2
cmpl
blss
addl3
cmpl
bgtr
subl3
cmpl
bleg
addl3
cmpl
bleg
movl
brb
L23: clrl
proced end:
T ret

L29:

L21:

L19:

main:

- movl
addl3
movl
aobleq
pushl
calls
movl
beqgl
pushl
calis
ret

L30:

L31:

$12, sp

$lt "4(fP)
$19, -8(fp)
item, ril
-4(fp), -8(fp),
$2, r2

$2, r2, r3

rl, r3

(r3), 4(ap)
L21

r2, $1, -4(fp)
(r3), 4(ap)
L1l9

$1, r2, -8(fp)
-4 (fp), -8(fp)
L2090

-4(fp), $1, r4
r4, -8B(fp)

L.23

r2, rg@

proced_ end

rg

$1, index
Sitem, $4, rp
index, (rg@)+
$19, index, L30
$5

$1, b_search
rd, result

L31

result

$1, _printd

begin level 1
begin level 2

:= low 1

:= high 19

:= adritem #item
r2

:= middle r2

* middle SIZE
+ adritem r3

H=

+ middle 1

- middle 1
cmp low high

+ low 1
cmp r4 high

:= bsrch middle
:= b search @
end level 2

:= index 1

+ #item SIZE
repeat scope
inc & test

arg for bsrch
proc call

:= result proc

arg for print
proc call
end level 1

He 3k 3 Fe e ek He e H = He= + He 3 R

76

Three—address instructions have been used optimally in
lines 7, 13, 16 and 19. Since, by default, optimization
for space is preferred to that for time, a two-address
‘divl2' 1is wused instead of an arithmetic shift in line 8.
The 'éompares' (lines 11 and 14) use register-indirect ad-
dressing mode for 'item[middle]'. The value in r3—indirect
is used in line 14. The value of 'middle' is saved in r,
and 1is wused in lines 16 and 22. The increment of 'index'
in 'item{index]' within the repeat-loop is subsumed as an
auto-increment of register Ly (line 386). Instead of an
increment-compare-branch instruction sequence, the special
instruction 'aobleq' is used in line 31. All branch in-
structions are of the shortest form. Possible improvements
to this code are:

(1) subsuming array-index calculations within the index ad-
dressing mode of the VAX,

(2) replacing branches to a return instruction by return
instructions and

(3) retaining temporaries in registers across basic blocks.

Code for array-index calculation is produced because it was
explicitly specified in the IR. The VAX's index addressing
mode avoids explicit index calculations. A special sub-
script operator could be added to the IR to capture this
mode. In this example, using the 1index addressing mode

would make the compare instructions occupy more space.

For comparison, the C compiler produced the following

for the same binary search program:

WOoNoOUL, W -

A»bdx¢=»L»UJwcpu)wt»un»o)wtohah)wron)wrvhlwtakﬂwbkodekJH
.:swmH&\om\:mmpwww&\om\xo\m.pww»—-lsuooo\xmm.bwm»-a&

b searc:

L17:

L20:

L21:

L22:L19:

L18:

L23:

Ll6:
_main:
L27:
L39:
L29:

L28:

L31:
L26:

jbr
movl
movl
addl3
divl?2
movl
cmpl
jlss
addl3
movl
cmpl
jgtr
subl3
movl
crmpl
jleg
addl3
cmpl
jleg
movl
ret
clrl
ret
ret
subl2
jbr

jbr
movl
movl
movl
incl
cmpl
jleg
pushl
calls
movl
tstl
jeql
pushl
calls
ret
jbr

Lle6

$19,-8(£fp)

“'8(fp) :"4(fp) Irg
$2,r0

rg,rll

_item[rl1],4(ap)

L21

$1,rll,r@

rd,-4(£fp)

_item[rl1l],4(ap)

L22

$1,rll,r@

rgr"'s(fp)

L2g

$1,-4(fp),ro

rd,~-8(fp)

L23

rll,r9

rd

$8,.sp

L1l7

L26

$1, index
index, r9d

“index, item[r@]

“index

:index,$lﬂ

L39

$5

$§1, b searc

rg, result
result

L31

_result

$1,_printd

L27

77 .

code

78

After the optimization pass (-0 flag), the code is:

1 b searc:

2 subl2 $8,sp

3 movl $1,-4(f£fp)

4 mov1l $19,-8(£fp)

5 L2g: add1l3 -8(fp),-4(fp),rQ
6 divl3 $2,r0,rl1

7 cmpl _item[rll],4(ap)
8 jlss L21

9 addl3 $1,r1ll1l,-4(£p)
19 L21: cmpl _item[rll],4(ap)
11 jgtr Li9

12 subl3 $1,r11,-8(fp)
13 L19: cmpl -4 (fp),-8(fp)
14 jieq L2@

15 addl3 §1,-4(fp),ro
16 cmpl rd,-8(£p)
17 jleg L23

18 movl rll,r@

19 ret

28 L23: clrl rd

21 ret

22 main:

23 movl $1, index
24 L39: movl index,r®

25 mov1l 0, item[r@]
26 aobleq $10, index,L39
27 pushl $5

28 calls $1, b searc
29 mov 1 rd, result

3¢ tstl rg

31 jeql L31

32 pushl rd

33 calls $1, printd
34 L31: ret -

The unoptimized version cf code generated by the C compiler
occupies 37% more space than that produced by Cg. A two-
address 'divl2' followed by a 'movl' is used instead of a
three-address divide (lines 6 and 7). A three-address
'addl3' into ry followed by a 'movl' of ry into '-4(fp)' is

used instead of a more optimal ‘addl3' into '-4(£p)' (lines

79

18 and 11). Similarly in lines 14 and 15, the 'subl3' in-
struction is followed by a 'movl'. The index addressing
mode on the VAX has been used to avoid generating code for
subscript calculations (lines 8, 12 and 32). However, the
‘aobleq' instruction is not used to optimize an increment-
compare-branch sequence. Furthermore, all branch instruc-—
tions are of unresolved length. The C compiler relies on
the assembler to resoclve long/short forms of branch in-

structions.

The optimized code uses three-address instructions optimal-
ly (lines 5, 9, 12 and 15). Furthermore, the special case
'aocbleq' is recognized (line 26). After the optimization
pass, the C compiler's code occupies 14% more space than
that produced by Cg. Cg gets this advantage by remembering
register contents, using the auto-increment addressing
mode, and using short forms of branch instructions. The
time taken by these programs is not large enough to be sig-
nificantly compared (8.0 seconds). The difference in
speeds cannot be resolved by using the built-in clock.
Iceally, a comparison could be made using instruction exe-
cution times published by the manufacturer but these fig=-
ures are not released by Digital Equipment Corporation.
Furthermore, issues such as cache usage may obscure such a
compariscn. Cg produced the following PDP-11/78 code for

the binary search program:

WO UpwN -

b search:
- jsr
sub
mov
mov
mov
mov
add
asr
mov
asl
add
cmp
blt
mov
inc
cmp
bgt
mov
dec
cmp
ble
mov
inc
cmp
ble
mov
br
1.23: clr
proced_end:
jmp

L2G:

L21:

L19:

main:

mev
mov
add
mov
inc
cmp
ble
mov
jsr
mov
beg
mov
jsr
jmp

L3g:

80

/ octal constants
/ begin level 1
/ begin level 2
r5, csv
$4, sp
$1, -10(r5) / = low 1
$12, -12(xr5) / := high 10
$item, rl / := adritem #item
~-19(r5), r2
-12(r5), r2
r2 / := middle r2
r2, r3
r3 / * middle SIZE
rl, r3 / + adritem r3
(r3), 4(r5)
L21
r2, -10(r5)
-16(r5) / + middle 1
(r3), 4(r5)
Lig
r2, -12(rs5)
-12(r5) / - middle 1
-19(r5), -12(r5) / cmp low high
L2g
-19(r5), r4
r4 / + low 1
r4, ~-12(r5)
1.23
r2, r@ / := bsrch middle
proced_end
r9 / := bsrch 9@
cret / end level 2
$1, index / := index 1
Sitem, rg
$2, r@ / + #item SIZE
index, (r@)+ / repeat scope
index / increment
index, S$12 / test
L309
$5, (sp) / arg for bsrch
pc, *$b_search
rg, result / := result proc
L31
result, (sp) / arg for print
pc, *$_printd
cret /end level 1

The C compiler on the PDP-11/7@ produced:

OO~ UTLD WM

_b searc:jsr

L2:

L6:

L7:

L8:L4:

L5:

L9:

L3:
Ll:

_main:

Lll:
L15:

Ll3:

Ll4:

jbr
mov
mov
mov
add
sxt
div
mov
mov
asl
cmp
jgt
mov
inc
mov
mov
asl
cmp
jlt
mov
dec
mov
cmp
jge
mov
inc
cmp
jge
mov
jbr
clr
jbr
jmp
sub
Jjbr
jsr
ibr
mov
mov
asl
mov
inc
cmp
jge
mov
jsr
mov

r5,csv

Ll

$1,-lﬂ(r5)
$12,-12(r5)
-16(r5),rl
-12(r5),rl

rd

$2,r@

rgd,r4

r4,rd

rg

4(r5), item(r@)
L7 -

r4,r@

rg

rd,~-19(r5)

r4, r9

rg
4(r5),_item(r@)
L8

rd,rg
rd
rg,-12(r5)

-12(r5),-18(r5)
L6
-10(r5),r@
rd
-12(r5),r9
L9
r4,r0
L3
rg
L3
cret
$4,sp
L2
r5,csv
L19
$1, index
_index,r@
rd
index, item(rg@g)
“index

$12, index
L15
$5, (sp)

pc,*$_b searc
@, result

/ could use shift
/ redundant move
/ redundant move

81 -

82

49 tst result / redundant test
50 jeq L16

51 mov _result, (sp)

52 jsr pc,*$_printd

53 L16:L12:jmp cret

54 L10@: ibr L1l

The C compiler's code for the PDP-11/78 occupies 38% more
space than that produced by Cg. Cg uses an arithmetic
shift instruction in line 11 whereas the C compiler pro-
duced a divide instruction (line 8). Furthermore, lines 9
and 10 are redundant move instructions and line 49 is a
redundant test produced by the C compiler. Cg did not pro-~
duce these redundant instructions and was also able to em-
Ploy an auto-increment in line 38. The code produced by
the C compiler after its optimization pass is given on the
next page. Once again, the arithmetic shift is not used
instead of division by two, and the redundant move instruc-—
tions are still present. However, the redundant test is
removed. The C compiler's code now occupies 15% more space

than that produced by Cg.

C compiler's code after optimization pass:

1 b searc:jsr r5,csv
2 - sub $4,sp
3 mov $1,-10(r5)
4 mov $12,-12(r5)
5 L6: mov -18(r5),rl
6 add ~-12(r5),rl
7 sxt rd
8 div $2,r@ / could use shift
9 mov rd, ré4 / redundant move
19 mov rd, rd / redundant move
11 asl rg
12 cmp 4(r5), item(r@)
13 jgt L7 -
14 mov r4,r9
15 inc rd
16 mov rd,~10(r5)
17 L7: mov r4,r@d
18 asl rd
i9 cmp 4(r5), _item(rg)
20 i1t L4
21 mov r4,x9d
22 dec rg
23 mov rg,-12(r5)
24 L4: cmp ~12(r5),-18(r5)
25 jge L6)
26 mov ~10(r5),r@
27 inc rd
28 cmp -12(r5),r9
29 jge L9
39 mov r4d,r9
31 L3: jmp cret
32 L9: clr rg
33 jbr L3
34 main: Jjsr r5,csv
35 mov $1, index
36 L15: mov _index, @
37 asl rd
38 mov _index, item(rg@)
32 inc index
40 cmp $12, index
41 jge L15 ~
42 mov $5,(sp)
43 jsr pc,*$_b searc
44 mov rf, result
45 jeq Li2
46 mov rﬁ, (SP)
47 jsr pc,*§_printd

48 L12: jmp cret

We now compare the code produced for the

program of Section

chosen as a case in which

highly

11/780

WO~ U D W

optimized
code:

main:s
- movl
cmpl
bleg
movl
cmpb
bneg
cmpb
bneqg
pushl
pushl
pushl
calls
tstl
bneq
pushl
calls
L3: L2: L15:
pushl
calls
ret
strncmp:
mevi
movl
movl
clrl
brb.
clrb
cmpb
bneg
incb
tstb
bneq
movl
brb
incl
cmpl
blss
clrl
ret

L2@91:

L99@g:

L23:

L25:

L13:

2.4.

code.

84

string-comparison
This program was intentionally
the C

compiler could produce

Cg produced the following VAX-
begin level 1
8(ap), rl # argv in a reg
4(ap), §2 # cmp argc 2
L15
4(rl), ro # arg < argv+4
(r@), $45 # ascii '=
L2
1(rg), $112 # ascii 'p'
L2
$8 # last parameter first
12(rl) # second parameter
8(rl) # first parameter
$3, strncmp # proc call
rd
L3
$1 # parameter for exit
$1, exit
$9 # parameter for exit
$1l, exit
end level 1
begin level 1
12(ap), r5 # register pref
8(ap), r4
4(ap), r3
rl ¥ =10
L25
r2 # explicit Boolean result
(r3)+, (r4)+)
LO9Gg9
r2
r2
L23
$1, r@ # := strncmp 1
Ll3
ri # := i+ i1
rl, r5 # cmp i len
L2001
rg # := strncmp 9

end level 1

85

Cg used indexing (i.e. 1(rg)) instead of addition by 1
(line 8) and auto-increments, i.e., cmpb (r3)+, (r4)+ (line
29). However, because of the IR for 'if(*strl++ I=
*str2++)', r2 is used to store the result of the comparis-
on. After optimization, the C compiler produced the fol-

lowing VAX-11/780 code:

1 _main:
2 movl 8(ap),rll
3 cmpl 4(ap),s$2
4 jleg L15
5 movl 4(rll),rlo
6 cmpb (r1@),s45
7 jneq L15
8 cmpb 1(rlg),s112
9 jneq L15
19 pushl $8
11 pushl 12(rll1)
12 pushl 8(rll)
13 calls $3, strncmp
14 tstl rg
15 jnegq L15
16 pushl $1
17 calls $1, exit
18 L15: pushl $g
i9 calls $1, exit
20 ret -
21 _strncmp:
22 movl 4(ap),rll
23 movl 8(ap),rlo
24 movl 12(ap),xr9
25 clrl r8
26 jbr L25
27 L260601: cmpb (ri1l)+,(r19)+
28 jeql L23
29 movl $1,r@
39 ret
31 L23: incl r8
32 L2&: cmpl r8,r9
33 jlss L20@21
34 clrl rg

3 ret

The C compiler's code after optimization occupies 10%

space

structions).

WONOUT D WN -

than

main:

L3: L2:

strncmp:

L26@1:

L9624 :

L23:

L25:

L13:

jsr
mov
cmp
ble
mov
cmpb
bne
cmpb
bne
mov
mov
mov
jsr
cmp
tst
bne
mov
jsr
L15:
clr
jsr
jmp

jsr
mov
mov
mov
clr
br
clrb
cmpb
bne
incb
tstb
bne
mov
br
inc
cmp
blt
clr
jmp

/
r5, csv
6(r5), rl
4(r5), $2
L15
2(rl),
(rg),
L2
1(x@),
L2
$19, (sp)
6(rl), -(sp)
4(rl), -(sp)
pc, *$strncmp
(sp)+, (sp)+
rg
L3
$1,
pc,

rd
$55

$169

~ e e N

S~

(sp)
*Sexit

(sp)

pc,
cret

*Sexit

r5, csv
19(r5),
6(r5), r4

4(r5), r3

rl /
L25

r2
(r3)+,
L9gad4
r2
r2
L23
$1,
L1l3
rl
rl, (sp)
L20a1

rd

cret

~ ~ ~

(sp)

{r4)+

rgd

S

NN N

86

more

that produced by Cg (mainly due to branch in-

Cg produced the following PDP-11/78 code:

begin level 1

argv in a reg
cmp argce 2

arg < arg+4
ascii '~
t i

ascii 'p

last parameter
second parameter
first parameter

reset stack top

parameter, exit

parameter, exit

end level 1
begin level 1

register pref

/ explicit Boolean result

:= strncmp 1

:= 1+ 11
cmp i len

:= strncmp &
end level 1

87 -

The C compiler produced the following PDP-11/78 code (after

optimization pass):

1 main:

2 jsr r5,csv

3 mov 6(r5),r4

4 cmp $2,4(r5)

5 jge L4

6 mov 2(r4),r3

7 cmpb $55,(r3)

8 jne L4

9 cmpb $160,1(r3)
19 jne L4

11 mov $149, (sp)
12 mov 6(rd),-(sp)
13 mov 4(rd4),-(sp)
14 jsr pc,*$_strncmp
i cmp (sp)+, (sp)+
16 tst rg

17 jne L4

18 mov $1, (sp)
19 jsr pc,*$_exit
20 L4: clr (sp)
21 jsr pc,*$_exit
22 jmp cret

23 strncmp:

24 jsr r5,csv
25 mov 4(r5),r4
26 mov 6(r5),r3

27 mov 19(r5),r2
28 tst -(sp)
29 clr ~19(r5)

30 jbr L18

31 L20801: cmpb (r3)+,(r4)+
32 jeq Li2

33 mov $1,rg

34 L9: jmp cret

35 Ll2: inc -186(xr5)

36 L1@: cmp r2,-19(r5)
37 igt L200601

38 clr rg

39 jbr Lo

Even though the C compiler uses two passes, its output oc-
cupies 11% more space than that produced by Cg. 1In most

other respects, the two programs are almost identical.

88

Chapter l: Conclusion

Language development tools on the Unix system [Johnson 80]
have been used to process attribute grammars for purposes
of automating compiler code generation. The avallability
of attribute-grammar parsers could have considerably eased
and hastened this implementation. Nevertheless, YACC and
LEX were very useful. Without these tools, it would have
been harder and more time-consuming to implement the code

generator.

Earlier research done by Glanville has been extended by ad-
ding attributes to instruction-set descriptions. The
resulting code generator has demonstrated a definite im-
provement in code guality over Glanville's code generator.
Machine-dependent optimizations such as using specialized
instructions, complex addressing modes (e.g. auto-
increment/decrement), span-dependent branch optimizations
and peephole optimizations over a very wide window have
been incorporated within the attributed parsing framework
of code generation. Such optimizations have defied au-
tomatic code-generators of the past. Furthermore, all
these optimizations are essentially obtained in a single-
pass code generation scheme. In most cases, the results
reveal better code than that produced by the C compiler us-

ing its additional pass of peephole optimization. The time

89

taken by Cg to produce code is roughly the same as that
taken by the entire C compiler. This observation suggests
that when Cg is used with a compiler front end, the total
time taken will be more than that of the C compiler. How-
ever, experimental results suggest that the front end need
not take more than a few seconds to produce the IR required
by Cg on reasonably large programs. Moreover, it is far
easier to interface front ends with Cg than with the C
compiler's code generator. It required less than ten hours
to produce attributed prefix IR from a Modula front end,
whereas it took months to interface a Pascal front end with

the Portable C compiler's code generator.

The code-optimization results are very encouraging. Cg
produces code comparable to hand-written assembler code for
user programs. It produces code far superior to the unop-
timizing C compiler on both the PDP-11/76¢ and the VAX-
11/7806. In most cases, Cg produces code that uses 35-50%
less space than the code produced by the C compilers prior
to "-0" optimization. This space reduction in object code
is mainly due to optimization of redundant loads and
stores, using auto-increment/decrement addressing modes,
using specialized instructions and short forms of branch
instructions wherever possible. In the examples used for
comparison, C was given the advantage of explicit register

preference declarations. If such explicit declarations are

99 -

omitted, the C compiler makes no attempt to retain vari-
ables or results in registers. In contrast, Cg attempts to
retain temporary results and variables in registers within
basic bloéks; This optimization is another reason for Cg's
object code efficiency when compared with the C compiler.
Even with the peephole optimization performed by the C com-
piler, the code produced by Cg is usually 5-19% smaller.
The string-comparison example was chosen to illustrate a
special case where the C compiler produces auto-increment
addressing modes. The C compiler specifically looks for
the auto-increment operator ('++') in a user program and
never uses auto-increment otherwise. Therefore, if the C
compiler's code generator is used with a Pascal front end,
for example, it can never utilize the auto-increment ad-
dressing mode. In contrast, Cg recognizes general con-
structs amenable to auto-increment and auto-decrement.
Most of its optimization power 1is derived from keeping
results in registers, remembering equivalent locations and
last usages of registers. It never emits redundant loads
and stores, which are common even in the C compiler's op-
timized code. The C compiler always produces long-form
branch op-codes. Resolution of long/short-address branch
op-codes 1is left to the assembler. If the assembler does
not perform span~dependent optimization, the code produced

may be significantly larger.

91

An amazingly wide variety of code-generation optimizations
can be realized in a highly modular manner. Almost all op-
timizations can be realized by addition of new attribute
grammar productions. Furthermore, when the code genefator
is retargeted to a new machine, most of the basic (non-
specialized) productions can be retained. In particular, a
simple (but un-optimized) code generator can be implemented
for a machine easily and rapidly. As time permits and the
need arises, improvements can be included by adding new
rules to the machine description and automatically re-
generating the code geﬁerator. The chief difference
between an optimized and an unoptimized code generator is
how carefully and thoroughly the production rules reflect

the details and complexities of the target machine.

We have retained the speed of Glanville's code generator by

using a one-pass, linear parsing technique. It is faster

than those impiemented by Fraser and Cattell and is expect-

ed to be much faster than that proposed by Ripken. Furth-

ermore, all properties established by Glanville hold for

our implementation:

(1) correctness of the code generation algorithm,

(2) detection of syntactic errors in the IR, and

(3) detection cf incomplete instruction-set specification
by Dblocking (instead of infinitely looping or generat-

ing incorrect code).

92

"Even though the code generator requires substantial data
structures for optimization, its size is very reasonable.
It can run on computers with a limited address space such

as the PDP-11/78.

Unlike Glanville and Cattell, we have viewed storage bind-
ing as part of the issue of portable code generation. Our
design has attempted to isolate almost all machine-
dependent aspects of compiler code generation to a single
software package. In our code generator, it is very easy
to alter activation record formats on the run-time stack,
whereas in conventional compilers, this change may affect
several sections of code. The intermediate representation
designed here is at a higher level than that proposed by
Glanville. Furthermore, use of attributes in the IR helps
convey information from machine-independent global optimiz-
ers to the code generator. This design, therefore, pro-
vides a better interface with the machine-independent parts
of a compiler and significantly simplifies retargeting all

aspects of code generation to new machines.

Apart from its use in portable compilers, the code genera-
tor may be used in research to provide an easy technique
for experimenting with various optimizations. Such experi-
ments usually only require modification of the attribute

grammar specification for the target machine.

93

This research has successfully demonstrated:

(1) the design of an IR for portable code generation,

(2) the use of attributes to interface machine~independent
aspects of a compiler with the machine-dependent parts,

{3) the use of attribute grammars to describe the details
and complexities of the target machine for purposes of
code generation and

(4) the incorporation of machine~dependent and peephcle op-
timizations in a routine, cheap and reliable manner

within an attributed parsing framework of code genera-

tion.

There is considerable scope for improving the current im-
plementation and for extending this research. The size of
the code generator can be reduced to some extent by com-
pacting the transition tables produced by LEX (which occupy
39K bytes). The source code can be further optimized (by

hand) to reduce the size of the code generator.

The IR specification provides considerable flexibiiity in
the form of attributes. As an extension, dynamic arrays,
dope-vector specification, records, Simula classes and
Modula processes can be added to our design. Records and
structure fields can be specified by the front end (as
"« R f', where 'R' is the name of the structure (record),

'£' is its field name and '.' is a qualification operator) .

94

Instead of freeing all registers at the end of a basic
block, the code generator can be guided by global analysis
of variables that are live or dead upon exit from a basic
block. In the binary search program, the last 'pushl' in-
struction could use less space if 'rf' were used instead of
‘result'. Before exiting the basic block that ends with
'begl L31', the code generator could have retained the
value of ‘'result' in 'rg' (with some guidance from the

front end).

All these extensions can be easily incorporated using the
data structures and routines existing in our implementa-
tion. Our implementation turned out to be modularly divid-
ed into the storage binding phase (done by LEX) and the in-
struction selection phase (done by YACC). The extensions
proposed above are restricted to the LEX part of this im-

plementation.

We have experimented with the code generator as part of a
real compiler 1in only a few test runs. More experiments
are necessary to test the code generator in real compiler
environments. Although we have experimented only with the
VAX-11/78¢ and the PDP-11/79, it should be fairly easy to
retarget the code generator to the IBM-~370 by adding attri-
butes to Glanville's existing instruction-set specification

for the IBM-379. However, more experiments with attribute

95

grammar specifications are needed for other machines, in-
cluding special purpose computers such as the Burroughs
B-55¢00, CDC-Star, Cray-1l, data-flow architectures and

capability-based machines (Intel-iAPX 432).

The reader familiar with optimization literature will no-
tice dozens of machine~dependent optimizations that are not
mentioned in this dissertation. Our intention has not been
to incorporate all possible optimizations, but rather to
shew how certain difficult ones can be easily incorporated
in our code generation scheme. Some optimizations are
dependent on others and can be applied iteratively. Thus,
they suggest more than a single pass over the generated
code. Time-varying attributes [Skedzeleski 78] can easily
specify iterative algorithms in a non-procedural manner and
efficiently implement them. Future research in iterative
optimizations can therefore proceed in two directions:

(2) hiding iterations within attribute action-symbols, or

(b) introducing an attribute-evaluator iterator.

Such an iterative evaluation must be performed by travers-
ing parse trees, but the order of evaluation of attributes
can be calculated at evaluator-generation (code-generator
generation) time rather than at code-generation time. The
drawback of such an iterative approach may very well be the

amount of time taken to achieve the optimizations. More

926

research is necessary to determine if the time taken justi-

fies the extra optimizations gained.

Optimization of object code to increase execution speed has
not received much attention so far in code-optimization
research. The use of disambiguating predicates (like the
predicate TimeOpt in Chapter 5) with a separate ordering of
these productions for time optimization could be a starting

point for this research.

In this dissertation, we have investigated the use of at-
tribute grammars in automating software (i.e. a code gen~
erator). By augmenting our attribute grammar specifica-
tions with more details (such as bit-level specifications)
of the target architecture, they may become useful tools in
hardware design and synthesis as an improvement to ISPL

[Barbacci 76].

Bibliography

[Aho 73]

[Aho 75]

[Aho 76]

[Aho 77]

[Allen 72]

[Ammann 77]

[Barbacci 76]

[Barbacci 77]

[Bell 71]

[Chu 74]

97

A.V. Aho and J.D. Ullman, "The Theory of
Parsing, Translation and Compiling", Vols.
1l and 2, Prentice-Hall, Inc., 1973.

A.V. Aho, S.C. Johnson and J.D. Ullman,
"Deterministic Parsing of Ambiguous Gram-
mars", CACM Vol.1l8 No. 8, 1975.

A.V. Aho and S.C. Johnson, "Optimal Code
Generation for Expression Trees", JACM Vol.
23 No. 3 pp. 488-581, 1976.

A.V. Aho and J.D. Ullman, "Principles of
Compiler Design", Addison-Wesley publishing
Co., 1977. '

F.E. Allen and J. Cocke, "A Catalogue of
Optimizing Transformations", in Design and
Automation of Compilers, R. Rustin, ed.,

Prentice-~Hall, Englewood Cliffs, N.J.,
1972.

U. Ammann, "On Code Generation in a Pascal
Compiler", Software~Practice and
Experience,Vol. 7 No. 3 pPP. 391-423,

June/July 1977.

M.R. Barbacci, "The ISPL Compiler and Simu-
lator User's Manual", Tech. Report, Comput-
er Science Dept., Carnegie-Mellon Universi-
ty, 1976.

M.R. Barbacci, G.E. Barnes, R.G. Cattell,
D.P. Siewiorek, "The ISPS Computer Descrip-
tion Language", Tech. Report, Dept. of Com-
puter Science, Carnegie-~Mellon University,
1977.

C.G. Bell and A. Newell, "“Computer Struc-
tures: Readings and Examples", McGraw Hill,
1971.

Y. Chu, "Why Do We Need Computer Hardware
Description Languages?", IEEE Computer,
Vol. 7, No. 12, 1974.

[Coleman 73]

[Cattell 78]

[Cattell 79]

[Cattell 86]

LDietmeyer 68]

[(Dietmeyer 74]

[Dietmeyer 78]

[Dijkstra 60]

[Donegan 73]

[Donegan 79]

[Elson 70]

[Feustal 73]

98 -

S.8. Coleman, P.C. Poole and W.M. Waite,
"The Mobile Programming System: Janus",
National Tech. Infor. Center PB22¢322, U.S.
Dept. of Commerce, Springfield, Va., 1973.

R.G.G. Cattell, "Formalization and Automat-
ic Derivation of Code Generators", PhD
thesis, Carnegie Mellon University 1978.

R.G.G. Cattell, J.M. Newcomer and B.W.
Leverett, "Code Generation in a Machine-
Independent Compiler", ACM Sigplan Symp.
Compiler Construction, Boulder, Colo., Aug.
1979.

R.G.G. Cattell, "Automatic Derivation of
Code Generators from Machine Descriptions",
ACM Trans. Prcgramming Languages and Sys-
tems, Vol. 2 No. 2 pp. 173-19¢, April 1984.

D.L. Dietmeyer and J.R. Duley, "A Digital
System Design Language (DDL)", IEEE Tran-
sactions on Computers, C-~17, 9, 1968.

D.L. Dietmeyer, "Introducing DDL", IEEE
Computer, Vol. 7, No. 12, 1974.

D.L. Dietmeyer, "Logic Design of Digital
Systems", Allyn and Bacon, 1978.

E.W. Dijkstra, "Algol 68 Translation", Sup-
plement, Algol 64 Bulletin 10, 196@.

M.K. Donegan, “An Approach to the Automatic
Generation of Code Generators", PhD thesis,
Rice University, Houston, Texas, 1973.

M.K. Donegan et al., "A Code Generator
Language"”, ACM Sigplan Symp. Compiler Con-
struction, Boulder, Colo., Aug. 1979.

M. Elson and S.T. Rake, "Code Generation
Technique for Large Language Compilers",
I.B.M. Systems Journal Vol. 9 No. 3 pp.
l66-188, 19740.

E.A. Feustal, "On the Advantages of Tagged
Architecture", IEEETC, Vol. C-22 No. 7,
July 1973.

[Fischer 80]

[Frailey 70]

[Fraser 77]

[Fraser 79]

[Fraser 8@]

[Ganapathi 8@]

[Glanville 77]

[Glanville 78]

[Graham 79]

[Graham 84]

[Gries 71]

99 -

C.N. Fischer, D.R. Milton and S.B. Quiring,
"Efficient LL(1) Error Correction and
Recovery Using only Insertions", Acta In-
formatica Vol. 13, 1980.

D. Frailey, "Expression Optimization Using
Unary Complement Operators", ACM Sigplan
Notices, 5, 1974d.

C.W. Fraser, "Automatic Generation of Code
Generators", PhD thesis, Computer Science
Dept., Yale University, New Haven, Conn.,
1977.

C.W. Fraser, "A Compact Machine Independent
Peephole Optimizer", Principles Of Program-
ming Languages, 1979.

C.W. Fraser and J.W. Davidson, "The Design
and Application of a Retargetable Peephole
Optimizer", ACM Transactions on Programming
Languages and Systems, Vol. 2 No. 2, 1989.

M. Ganapathi and C.N. Fischer, "A Review of
Automatic Code Generation Techniques",
Tech. Report #406, University of Wisconsin
- Madison, 1984.

R.S. Glanville, "A Machine Independent Al-
gorithm for Code Generation and its Use in
Retargetable Compilers", PhD thesis,
University of California, Berkeley, Dec.
1977.

R.S. Glanville and S.L. Graham, "A New
Method for Compiler Code Generation", Conf.
Record Fifth ACM Symp. Principles of Pro-
gramming Languages, Jan. 1978.

S.L. Graham, "Practical LR Error Recovery",
ACM Sigplan Symp. Compiler Construction,
Boulder, Colo., Aug. 1979.

S.L. Graham, "Table-Driven Code Genera-
tien"”, IEEE Computer, Vol. 13 No. 8 pp.
25-34, Aug. 198g0.

D. Gries, "Compiler Construction for Digi-
tal Computers", John Wiley & Sons, 1971.

[Hill 74]

{Johnson 75]

[Johnson 77]

[Johnson 78]

[Johnson 8@]

[Johnsson 75]

[Kennedy 71]

[Kildall 73]

[Knuth 68]

[Koster 74]

[Lesk 79]

[Lewis 76]

199 -

F.J. Hill, "Introducing AHPL", IEEE Comput-
er, Vol. 7, No. 12, 1974.

S.C. Johnson "YACC - Yet Another Compiler
Compiler", C.S. Tech Report #32, Bell Tele-
phone Laboratories, Murray Hill, New Jer-
sey, 1975.

S.C. Johnson, "A Tour through the Portable

C Compiler", Bell Telephone Laboratories,
1977.

S.C. Johnson, "A Portable Compiler: Theory
and Practice", Proc. 5th ACM Symp. Princi-
ples of Programming Languages, pp. 97-104,
Jan 1978.

§.C. Johnson, "Language Development Tools
on the Unix System", IEEE Computer Vol. 13
NO- 8 pp- 16-21, Aug- .1.98@.

R.K. Johnsson, "An Approach to Global Re-
gister Allocation”, PhD dissertation,
Carnegie-Mellon University, 1975.

K. Kennedy, "A Global Flow Analysis Algo-
rithm", 1Intl. J. Computer Math., Vol. 3,
1971.

G.A. Kildall, "A Unified Approach to Global
Program Optimization", Proc. ACM Symp.
Principles of Programming Languages, 1973.

D.E. Knuth, "Semantics of Context-free
Languages", Math. Systems Theory, Vol. 2
No. 2 pp. 127-145, June 1968.

C.H.A. Koster, "Using the CDL Compiler-
Compiler", in Compiler Construction: An Ad-
vanced Course, F.L. Bauer and J. Eickel,
eds., Springer-Verlag, pp. 366-426, Berlin
1974.

M.E. Lesk, "Lex - A Lexical Analyzer Gen-
erator", UNIX Programmer's Manual 2, Sec-
tion 20, 1979.

P.M. Lewis, II, D.J. Rosenkrantz and R.E.
Stearns, Compiler Design Theory, Addison-
Wesley, Reading, Mass., 1976.

[McKeeman 65]

[Miller 71]

[Milton 77]

Milton 79]

[{Newcomer 75]

[Newell 69]

[Oakley 79]

[Raiha 8¢]

[Richards 71]

[(Ripken 77]

[Ritchie 78]

1lgl .

W.M. McKeeman, "Peephole Optimization",
CACM, Vol 8. No. 7, 1965.

P.L. Miller, "Automatic Creation of a Code
Generator from a Machine Description",
M.I.T. Tech Report MAC TR-85, 1971.

D.R. Milton, "Syntactic Specification and
Analysis with Attribute Grammars", PhD
thesis, University of Wisconsin-Madison,
1977.

D.R. Milton et al., "An ALL(l) Compiler
Generator", ACM Sigplan Symp. Compiler Con-
struction, Boulder, Colo., Aug. 1979.

J.M. Newcomer, "Machine Independent Genera-
tion of Optimized Local Code", PhD thesis,
Computer Science Dept., Carnegie Mellon
University, 1975.

A. Newell and G.W. Ernst, "GPS: A Case
Study in Generality and Problem Solving",
Academic Press, 1969.

J.D. Oakley, "Symbolic Execution of Formal
Machine Descriptions", PhD thesis, Computer
Science Dept., Carnegie-Mellon University,
1979.

K.J. Raiha, "Bibliography on Attribute
Grammars", ACM Sigplan Notices, Vol. 15 No.
3 pp. 35-44, Mar 19849.

M. Richards, "The Portability of the BCPL
Compiler"”, Software Practice and Experi-
ence, 1, pp. 135-146, 1971.

K. Ripken, "Formale Beschreibun von
Maschinen, Implementierungen und Op~-
timierender Maschinen-codeerzeugung aus At-
tributierten Programmgraphe", Technische
Univer. Munchen, Munich, Germany, July
1977.

D.M. Ritchie and B.W. Kernighan, "The C
Programming Language", Prentice-Hall, En-
glewood Cliffs, New Jersey, 1978.

[Robertson 77]

[Ssethi 78]

[Skedzeleski78]
[Snyder 751
[Standish 76]
[Steel 61]
[Strong 58]
[Szymanski 78]
[Szymanski 80]

[Ullman 75]

[wWatt 74]

192 -

E.L. Robertson, "Code Generation for
Short/Long Address Machines", Tech. Report,
Computer Sciences Dept., University of

Wisconsin-Madison, 1977.

R. Sethi and J.D. Ullman, "“The Generation
of Optimal Code for Arithmetic Expres-
sions", JACM Vol. 17 No. 4, 197@.

S5.K. Skedzeleski, "Definition and Use of
Attribute Reevaluation in Attribute Gram-
mars", PhD thesis, University of
Wisconsin-Madison, 1978.

A. Snyder, "A Portable Compiler for the
Language C", master's thesis, MIT, Cam-
bridge, Mass., May 1975.

T.A. Standish, D.C. Harriman, D.F. Kibler

and J.M. Neighbors, "“The Irvine Program
Transformation Catalogue", University of
California, Irvine, Dept. of Information

and Computer Science, 1976.

T.B. Steel, Jr., "A First Version of UN-
COL", Proceedings WJCC, 19, pp. 371-378,
1961.

J. Strong et al., "The Problem of Program-
ming Communication with Changing Machines:
A Proposed Solution", CACM Vol.l No. 8 pp.
12-18, 1958.

T.G. Szymanski, "Assembling Code for
Machines with Span-Dependent Instructions",
CACM, Vol. 21 No. 4 pp. 300-308, April
1978.

T.G. Szymanski and B. Leverett, "Chaining
Span-Dependent Jump Instructions", ACM
Transactions on Programming Languages and
Systems, Vol. 2 No. 3, 1984.

J.D. Ullman, "Data Flow Analysis", Proc.
2nd USA-Jdapan Computer Conf., AFIPS Press,
Montvale, N.J., 1975.

D.A. Watt, "L.R. Parsing of Affix Gram-
mars", PhD thesis, University of Glasgow,
Report #7, 1974.

[Watt 77]

[Weingart 73]

[Wick 75]

[Wilcox 71]

[Wulf 75]

[Wulf 79]

[Wulf 88a]

[wWulf 80b]

[Young 74]

183

D.A. Watt, "The Parsing Problem for Affix
Grammars", Acta Informatica, Springer Ver-
lag, 1977.

S.W. Weingart, "An Efficient and Systematic
Method of Compiler Code Generation", PhD
thesis, Computer Sciences Dept., Yale
University, 1973.

J.D. Wick, "Automatic Generation of Assem-
blers", PhD Dissertation, Yale University,
1975.

T.R. Wilcox, "Generating Machine Code for
High Level Programming Languages", Tech.
Report 71-183, PhD thesis, Dept. of Comput-
er Sciences, Cornell University, 1971.

W. Wulf et al. "The Design of an Optimizing
Compiler”, American Elsevier Publishing
Co., 1975.

W. Wulf et al., "An Overview of the Produc-
tion Quality Compiler-Compiler Project",
Tech. Report CMU-CS-79-105, Carnegie Mellon
University, Feb. 1979.

W. Wulf et al., "“TCOL : Revised Report on
An Intermediate Representation for the
Preliminary Ada language", Tech. Report
CMU-CS-80-195, Dept. of Computer Science,
Carnegie-Mellon University, Feb. 19849.

W. Wulf et al., "An Overview of the
Production-Quality Compiler-Compiler Pro-
ject", IEEE Computer Vol. 13 No. 8 pp. 38-
49, Aug. 19840.

R. Young, "The Coder: A Program Module for
Code Generation in High Level Language Com-

pilers", M.S. thesis, Computer Sciences
Dept., University of Illinois, 1974.

194

Appendix A: Intermediate Representation

The intermediate representation is composed of operators,

operands and attributes.

operators as well as operands.

Attributes are associated with

For succinctness, we have

taken some liberties with the usual attribute grammar for-

malism. Variable numbers of attributes may occur and their

order of occurrence is not important.

The obvious domain

rules apply (e.g. the variables global, local, display have

SCOPE as their domain,

TYPE as their domain).
ity and attributes.

Attribute Domains

Amount
Branch
Kind
Optkind
Order
Prefer
Return

Scope

Type

OEerands

SIZE (size of data type)
Real number

Unsigned integer
Identifier

Identifier (procedure/functicn name)

and character,

integer, real have

Each operator is given with its ar-

Attribute Values

positive integer
branch op-codes
procedure, function
time, space
obverse, reverse
register

character, integer,
long integer,
pointer, real
global, static,
local, chain,
display, external
character, integer,
long integer,
pointer, real

Attribute Domains

Type

Amount, Prefer,

Scope, Type
Kind, Order, Return

195 .

Operator arity Attributes Meaning
: 1 beginning of declaration
{ 7} opening of new scope
; 2 end of variable declaration
:= 2 Optkind assignment
@ 1 Type indirection
' 2 indexing
1 address of variable
goto 1 unconditional branch
} 2 end of current scope
call 1 procedure or function call
< 3 Branch less than
> 3 Branch greater than
= 3 Branch equals
<= 3 Branch less than or equal to
>= 3 Branch greater than or equal to
<> 3 Branch not equal to
g< 2 Branch greater than @
2> 2 Branch less than 0
= 2 Branch egquals @
g<= 2 Branch greater than or equal to 0
g>= 2 Branch less than or equal to @
g<> 2 Branch not equal to @
+ 2 Optkind addition
- 2 Optkind subtraction
* 2 Optkind multiplication
/ 2 Optkind division
& 2 Optkind boolean and
| 2 Optkind boolean or
! 2 Optkind exclusive or
~ 1 Optkind boolean not
- 1 Optkind unary negate
& 2 Optkind bitwise boolean and
~ 2 Optkind bitwise boolean or
=1 2 Optkind bitwise exclusive or
- 1 Optkind bitwise boolean not

196 _

Appendix B: Addressing-Mode Tables

Bits Meaning

@ (rightmost) and 1 g, 1, 2 or 3 levels of indirection
2 1 if base register is used

3 1l if displacement field is used

4 1 if index register field is used
5 and € @ auto-decrement

4l auto-increment
19 and 11 not used

To represent additional addressing-mode properties more
bits are required (e.g. to represent addressing modes of
architectures that support more than three levels of in-
direction). Entries are ordered according to the numerical
value of their bit specification. Some bit combinations
are not supported by the architecture (they are marked
"?2"). Along with eaéh entry, a factor (in bytes) is used
to indicate the addressing mode's contribution towards in-
struction size. “%d" represents an integer value and "$s"

represents a symbol string.

VAX—££/78@ combination format size factor
0009000 ?7? [}
2933091 ?? 2
0903180 22 4}
g0oa191 (red)+ 1
2003119 *(r3d)+ 1
d0810a1 22 g
20681190 ?7? g
29011431 ?? %}
2913000 ?2? 7]
2010091 ?2? [}
9919139 27 g
2910191 (regd)+[rgd] 2
9010119 *(rgd)+{ r%d] 2
2811001 ?? g
20911100 ?2? %}

8111091
2100063
2100001
9100100
0104191
2101906
0101001
01281100
0191101
0110000
2110001
0110100
2110101
g119119
9111601
2111109
£111191
1000000
16000601
1000100
1008101
10010290
1001091
1091109
1091101
1010000
1310001
1010199
1619191
1011000
1211901
1011109
1811191
1190009
1100901
110061090
1100191
1101900
1181001
1101109
1191191
1119000
1110901
1119109
11119000
11110091
1111108
1111191

?7?

??

?2?

?7

-(rgd)

?2?

??

?27?

?2?

?27?

27

??
~-(r%d)[red]
??

?27?

?2?

?2?

??

2?27

r3d

(red)

$gd

*$3d
gd(rsd)
*3d(rgd)
?2?

27

27
(rgd)[rzd]
$&dlrsd]
*$%dl rgd]
$d(rsd)[red]
*3d(rsd)[red]
s

*%s
$s(rgd)
*3s(rgd)
$s+3d
*§s+3d

22

??

gs[rgd]
*23s[rgd]
?7?

$s+3d[red]
*&s+3d[r3d]
?2?

?2?

&&ww@(.0()Jt\)NNNNN(\)NLUwwwNQQQNNNNHHQGQQQ&N&Q&&QG&H@Q&Q

187 .

Appendix C:

#define CONDITION CODE 4

>

g nunnan

B
C
N
R
T
g
1
I

VAX

198 -

Op-code Tables

/* 4 condition codes */

arithmetic operations and condition code setting
condition code set by both operands
op-code used only for condition-code setting

condition
condition
condition
condition
condition

opcode

code
code
code
code
code

size

not affected

set by any operand
only tested

set to zero

set to one

nstruction timings are not available from manufacturer.

Ja]
<
o

who sets cc use

In

addb2
addb3
addd2
addd3s
addf?2
addf3
addl2
addl3
addw2
addw3
aobleq
aoblss
ashl
beql
bgeq
bgtr
bisb2
bisb3
bisl2
bisl3
bisw2
bisw3
bitb
bitl
bitw
bleg
blss
bneg
brb
brw
calls
clrb
clrd
clrf
clrl

e e e L e e e e e N e N S U A TP U P

PRREEFIFOQQQOQCQAQPPEEEPOQQPP DB NBD DD DD

&&QQ&ZZZHH?JWNWFUNNWFUHGZNWWWWW%W?J'JUNFUPU
HEREERZZHZ2A0 00N O EaZHA U DY
&&QG&ZZZZZ&Q&&&&&&QZZZFUSU’,‘C!‘)UNNPU'}U';UWWPU‘FU
ZZZZGZZZZZZZZZZZZZZZZZQZZW’NWW&&G&WZ’
}-')—4i-‘0—‘&&QQQQQQQwNwNwMQ&QwNNWNwNWNNNwM

199 .

CLOUUVDUAAAACAAACLLAAdddddddadadaddadddaddd e @ et oL

_l.lG@gﬂ62222222222222222222222111232323232311162222

ZZMMMMNMMZ E A ZE R Z AR A B A A AR R R A AN R R R A A R R E BN g
ISR RS R A A A e A A s A A A s A o A Al s Al s s A A R A R A A A A A A SRR
i a2 N4 4 R o s O o Y ey el il Y A A i A A A A A R R A R A A A A AN A R

(SISt i st sl AR Ry L e R R s s A A A A A A A A A R R A R R R A A A A A

-4 —

YHAZ2QHA I AT IAQATH 3IOH QTHA N NN M L~ 2.0
oUrzagH~4200000d 0 dHHHHAAAA NN 2222 A0~2000TCHH A2 320~432 EEE D
UMY PP PP PP PP PL DD PO PP PP DU EESSEESSSV U0 O006 @
S~ EEBEEEEPDPDPOPPODIDDOLDLDODLOLODLLPDLDODD>PO000HAAAAAAAAASCSCEDLDDOD LS
VovovvurLtuvvLvoLVLULODOUUUDLULLOLUUDUULODOUDLUTDTYTVOVOTVOVOOTTTOTTTVHAAATNEEEGE

119 .

T e T o vl oS S R s s = = o R e gt G e

222222222222222223232323231111111112323232323

SRSEE g - R R AR WA A A R
SRSIEIR RS RN AR SRR SRR SRS RN R A SR S W Sl S S SR R A R R Rl
A A R A A A A A R R R R

S N N A A A A e A A N R A A A A R

lllllllllllllllllllllllllllllllll?.lllllllllll

QUHAHD3 o
YW~ 3 QHA D2 NN NN N d s d©d g eua43q43n43n43n43
gq;vga.aa‘aa.abguf1¢QWkubafachl1¢wWuuhh?nhhuhmaghfodgufcxl1$ww
POV OD>>D>O>O>D>D>DD>DD dd A A AV O NN BL20Q0000000.0.00
nnnnoooooooooooouuuuuuuuuuuuuuuuuoouuuuuuuuuu
EEEEEEEEEEEEEEEEEEEEEEEEE EQaoooauunoununnunnagnony

(ORCGRONONS

e~~~ o~

[(SESESRO RN

ISRSRSES RN

il s s A 1 4

S A e 4

o~ e

tstb
tstd
tstf
tstl
TsStw

111 -

Appendix D: VAX/780 Attribute Grammar

Addressing mode productions

Addressfa - DirectModesta
- IndirectModesla
IndirectModesla - @ DirectModes!b NotIndirect (¥b)
ADDR (v@ vb Ta)

- AnotherLevelta
DirectModesTa -» Datumfa
- # Datumlb NotAssign
T ADDR (V# ib ta)

- , Displb Basefc ADDR (¥b vc Ta)

- , , Displb Basefc Indexfd
ADDR (¥b¥cbdfa)

- Register

- Subsumptions

Basela - DirectModesla IsReg (+a)

- DirectModesib GETREG (¥'long' ta)
EMIT (V'movl' b Va)

= IndirectModesla IsReg (Va)

- IndirectModestb GETREG (¥'long' ta)

EMIT (¥'movl' +b ¥a)
AnotherLevella » @ IndirectModes!b
GETREG (¥'long' 1r)
EMIT (¥'movl' +b vr)
ADDR (¥@ ¥r fa)
Subsumptionsfa - @ + Bytelb Bytelc Iscons (+c) IsReg (¥b)
ADDR (v+¥bbcta)”
-~ @ + Bytelb Bytefc Iscons (¥b) IsReg (+c)
ADDR (¥+¥b¥cla)

-~ @ + Wordlb Wordfec Iscons (¥c) IsReg (¥b)
~ ADDR (v+vb¥cla)

= @ + Wordlb Wordfc Iscons (¥b) IsReg (vc)
ADDR (v+vbvcla)

- @ + Longlb Longfc Iscons (¥c) IsReg (¥b)
ADDR (Y+¥b¥cla)

- @ + Longfb LongfTc Iscons (4b) IsReg (¥c)
ADDR (¥+{pjcta)

- @ - Bytelb Bytefc Iscons (¥c) IsReg (¥b)

ADDR (v-¥btcra)

- @ - Wordlb Wordfc Iscons (¥c) IsReg (¥b)
ADDR (Y-¥bvcla)

- @ - LongTb Longlc Iscons (¥c) IsReg (¥b)
ADDR (v-¥b¥cla)

112 -

Instruction selection productions

Bytefa - Addressfla
Wordfa - Addressla
Longfa - Addressfa
Floatla -» Addressta
DoublefTa» Addressla
Quadla - Addressta

IsByte (Ya)
IsWord (+va)

IsLong (va)
IsFloat (Ya)
IsDouble (+a)

IsQuad (Ya)

Data transfer instructions

Assignment - := Bytela Bytelb IszZero (Vb) EMIT (¥'clrb'va)
Bytefa Bytelb DELAY {¢'movb'<{bva)
Wordla Wordlb IsZero (vb) EMIT (¥'clrw'va)-
Wordfa Wordlb DELAY (V'movw'<¥bva)
Longfa Longf{b IsStack (¥a) EMIT (¥'pushl'¥b)
Longla Longlb IsZero (¥b) EMIT (¥'clrl'va)
:= Longla Longthb DELAY (¥'movl'¥bta)
:= Quadla Quadlb IsZero (¥b) EMIT (¥'clrg'¥a)
Quadfta Quadlb DELAY (¥'movq'¥bia)

s es ae

Longla
Longla
LongTa
Longla
Longta
Longfa
Leongta
Longfa
Longla
Longfa
Longfla

LTI

LU T I O N O T T T OO T T

A2 20 20 20 Z I J0 T R 20 N 20 P PR A A A A A A A A

4
Il

:= Longfla

Special instructions

Floatla Floatlb IsZero (¥b) EMIT (¥'clrf'+a)
Floatfa Floatlb DELAY (¥'movf'vbda)
Doublela Doublelb IsZero (¥b) EMIT (¥'clrd'va)
Doublefa Doublelb DELAY (v'movd'+bia)

#Bytelb IsStack (¥a) EMIT (¥'pushab'vb)
Bytelb EMIT (¥'movab'+bia)

#Wordlb IsStack (¥a) EMIT ({'pushaw'+b)
Wordtb EMIT (¥'movaw'dbva)

#LongTb IsStack (Ya) EMIT (4'pushal'¥b)
Longltb EMIT ({'moval'vbva)
#FloatTb IsStack (Ya) EMIT(¢'pushaf'yb)
Floatlb EMIT (¥'movaf'vbia)

#Quadlb IsStack (¥a) EMIT(3' ushaqg' ¥b)
Quadfb EMIT (¥'movaq'Vb¥a)

Doublelb IsStack (+a)

EMIT (¥'pushad'¥b)
Doublefb EMIT (¢'movad'<vbva)

Special - := Longld

- := Longld

- Longla Longfb @<= Longlc Labeltn
IsOne (¥b) SobOk (vdtadcyn)
T EMIT (¥ ' sobgeq'v¥d¥n)

- Longla Longlb @< Longlc Labelfn
IsOne (¥b) SobOk (¥dvatetn)

EMIT (¥ sobgtr'Ydvn)

113 -

:= Longfd - Longla Longfb
greloplbr Longlc Labelfn IsOne (¥b)
AUTODEC (¥ 7decl'¥d)
EMIT (¥'tstl'Yc)
EMIT (Ybr +n)
:= Longtd + Longla Longfb
<= Longle Longlf Labelfn IsOne ({b)
AobOk (¥dbatevn) EMIT (¥'aobleq'vfdin)
:= Longld + Longta Longfb
<= Longle Longlf Labelfn IsOne ({a)
AobOk (%d%b%ein) EMIT (¥'aobleq'¥f¥din)
:= Longld + Longla Longlb
>= Longle Longlf Labelln IsOne (¢b)
AobOk (¥dbatf¥n) EMIT (V'aoblss'veddin)
:= Longld + Longlta Longfb
>= Longle Longlf Labelln IsOne (4a)
AobOk (&dbbfn) EMIT (¥'aoblss'vevdyn)
:= Longld + Longfla Longlb
< Longle Longlf Labelln IsOne ({b)
AobCk ({d¥ate¥n) EMIT (4" aoblss'VEydvn)
:= Longld + Longta Longlb
< Longle Longlf Labelln IsOne (Ya)
AobOk (Vd¥bbe¥n) EMIT (V' aoblss'¥fbdin)
= Longld + Longla Longfb
> Longle Longlf Labelfn IsOne (+b)
AobOk (V¥dbatf¥n) EMIT (V7 aobleq'veddin)
:= Longld + Longla Longlb
> Longie Longlf Labelln IsOne (va)
AobOk (¥d¥b¥f¥n) EMIT (V" aobleq'+vebdin)
Longfd + Longfa Longfb @reloplbr Longlc Labelfn
IsOne (¥b)
T AUTOINC (¥'incl'¥d)
EMIT (¥'tstl'dc)
EMIT (¥br +n)
LongTd + Longla LongTb @reloplbr Longlc Labelfln
IsOne (+da)
AUTOINC (¥'incl'¥d)
EMIT (¥'tstl'Yc)
EMIT (Ybr +n)
Longfd + Longla Long!b
relop{br LongTe Longlf Labelln IsOne (¥b)
AUTOINC (¥'incl™¥d).
EMIT (+'cmpl'Yelf)
EMIT($br ¥n)
Longfd + Longla Longlb
relopTbr Longle LongTf Labelln IsOne ({a)
AUTOINC (¥'incl’vd)
EMIT (¥'cmpl'YeVf)
EMIT(Vvor ¥n)

.

114 .

Arithmetic and Boolean instructions

Bytelr

-

iy
+ +

~~ Bytela GETTEMP (¢'byte' fr)

Bytela
Bytefa B
Bytela
Bytelr
Bytela
Byteflr
Bytefa
Bytefr
Bytefa

Bytefla
Bytefla

Bytelr
Bytela

Bytela
Byteflr

Byteflr
Bytelr
Bytefa

Bytefa
Bytelr

Bytela B

Bytefa
Bytelr

Bytefa

EMIT (¢¥'mnegb'vavr)

GETTEMP (¢'byte’' {r) EMIT (v'mcomb'vavr)

Bytefb
Bytelr

Bytela
Bytelr
Bytela
Bytelr
Bytela
Bytelb

Bytelb
Bytefr

Bytefa
Bytelb

Bytefb
Bytela

Bytefa
Bytela
Bytelb
Bytelb
Bytefla
vtelb
Bytefr Tw
Bytela

Bytelb

IsCons (Yatvb) KFOLD (V+vatblr)

IsOne (va) IsTemp (¥r)

~ AUTOINC incb'+¥r)

IsOne (Va) IsTemp (vr)
AUTOINC (¥ incb'$r)

TwoFourEight (+da) IsTem (%r)

AUTOINC ($ addb2'%a r)
TwoFourEight (¥a) IsTem

AUTOINC (4' add52”§a$r)
TwoOp (¥+vadr)

EMIT (4'addb2'datr)
TwoOp (v+¥atr)

EMIT (¥ addp2 ’ Yvavr)
GETTEMP (¢ Tr)

EMIT (i addb3 'Yavbir)
IsCons (¥atb) KFOLD (V*vatblr)
TwoOp (¥*$atr)

EMIT (¥'mulb2'vadr)
TwoOp (¥*datr)

EMIT (4' mulb2’ Yatr)
GETTEMP (¢'Db tx)

EMIT (i 'mulb3’yatvbir)
IsCons (¥avb) KFOLD (¥-vatblr)
IsOne (va) IsTem (%r)

AUTODEC 'decb‘ o)
TwoFourEight IsTem (vr

AUTODEC ($ subb2'§a vr)
TwoOp (v-vyrva)

EMIT (¢'subb2'vavr)
GETTEMP (¢'b te' tr)

EMIT (¥'subb3'Yatbir)
IsCons (¥atb) KFOLD ($/$a$bfr)
IsTemp (¥x) EMIT (¥'divb2 'vatr)
GETTEMP (¢'b tr)

EMIT (I 'divb3 'Yavbir)

TwoOp (¥]|+¥at r)

EMIT (v'bisb2'dabr)
TwOOp (ia$r)

EMIT (' blst vavr)
GETTEMP (4'b tx)

EMIT (i ‘bisb3 'Yavbir)

Wordtr

->

v

115 -

~- Wordla GETTEMP (4'word' tr)

~

e
+

+

+

WordTa
Wordta
Wordta
Wordtr
Wordta
Wordtr
WordTa
Wordtr
Wordta

Wordta
Wordta

Wordftr
Wordta

Wordta
Wordlr

Wordtr
Wordlr
Wordta
Wordta
Wordfr
wWordta
wWordta

Word?lr

Wordta

EMIT ($‘mnegw' ayr)

GETTEMP (¢'word' 1r) EMIT (¢'mcomw'<$adr)

wWordTo
Wordftr

Wordla
Wordlr
Wordta
Wordlr
Wordfla
Wordtb

Wordtb
Wordtr

Wordta
word b

Wordth
Wordta

Wordfta
Wordta
Wordtb
Wordtb
Wordta
Wordtb
Wordftr
Wordta

Word b

IsCons (Ja¥b) KFOLD (¢+dadblr)
IsOne (+a) IsTemp (¥r)

AUTOINC (¥ 'incw'<r)
IsOne (+Ya) IsTemp (¢r)

AUTOINC { Tinew'$r) '
TwoFourEight (¥a) IsTemp (vr)

AUTOINC i&‘addwz'%a$i)
TwoFourEight ($a) IsTemp (wr)

AUTOINC ($'addw2'§a$r)
TwoOp ($+dadr)

EMIT (¢'addw2'Jadr)
TwoOp (y+dadr)

EMIT (¢'addw2'dadr)
GETTEMP (¢'word' tr)

EMIT (¢'addw3'dadbir)
IsCons (Yadb) KFOLD (¢*yayblr)
TwoOp (¥*VYadr)

EMIT (4'mulw?2'dadr)
TwoOp (¥*yadr)

EMIT (&'mule'&a&r)
GETTEMP (¢'word' 1r)

EMIT (¢'mulw3'dadbdr)
IsCons (¥ayb) KFOLD (J-Jdadblr)
IsOne (va) IsTemp (¥r)

AUTODEC i$'decw'$r) .
TwoFourEight (wa) IsTemp {(vr)

AUTODEC ($'subw2'§a$r)
TwoOp ($—-drda)

EMIT (%'subw2'ar)
GETTEMP (¥'word' fr)

EMIT (J'subw3'$adbir)
IsCons (Jdadb) KFOLD (4/+dadblr)
IsTemp (wr) EMIT (&‘divw2'ar)
GETTEMP (J'word' 1r)

EMIT (¥'divw3'$adbir)
TwoOp (+]dadr)

EMIT (4'bisw2'dadr)
TwoOp (v|¥adr)

EMIT ($‘bisw2'$a$r)
GETTEMP (¢'word' 1r)

EMIT (¢'bisw3'Yadbir)

Longlr

-

LK 2R %

v

SN

v

116 .

~- Longta GETTEMP (¥'long' fr)

EMIT (4 'mnegl'‘avr)
Longla GETTEMP (¥'long' fr) EMIT (¥'mcoml'Yatvr)
Longla Longlb IsCons (¥aVb) KFOLD (¥+vavblr)
Longla Longfr IsOne (Vva) DontTryAob (+a)
IsTemp (Yr) AUTOINC (¥ incl ¥r)
LongTr Longla IsOne (Va) DontTryAob (¥a)
IsTemp (¥r) AUTOINC (¥ incl ' vr)
LongTa Longlr TwoFourEight (¥a) IsTemp (¥r)
AUTOINC (&‘add12'§a$r)
Longfr Longta TwoFourEight (Ya) IsTemp (¥r)
AUTOINC (4'addiz vavr)
Longfa Longfr TwoOp (YV+va¥r)
EMIT (¥'addl2'Yavr)
Longfr Longla TwoOp (¥+Va¥r)
EMIT (¥'addl2'dadr)
LongfTa Longlb GETTEMP (¢'long' fr)
EMIT (¥'addl3'vavbir)
Longla Longtb IsCons (Vatb) KFOLD (+*¥avblr)
Longla Longly IsTemp (vr)
TimeOpt ($'ashl'$'mu112') PowerTwo (¥a)
LOG2 (¥alp) EMIT (¥'ashl'ypbrir)
Longfr Longla IsTemp (¥r)
TimeOpt (¥ ashl'vmull2') PowerTwo (va)
LOG2 (Valp) EMIT (¥'ashl'¥pvrvr
Longfa Longfr TwoOp (V*vatr)
EMIT ($'mull2'Vadr)
Longlr Longfa TwoOp (V*tVatvr)
EMIT (¥'mull2'Yatr)
Longla Longib PowerTwo (¥a) LOG2 (Valp)
GETTEMP (V" long' 1r) EMIT (+¥'ashl'<pibir)
Longla LongTb PowerTwo (¥b) LOG2 (¥blp)
GETTEMP (4" long' Tri EMIT ({'ashl'+pvatdr)
Longta Longlb GETTEMP ('long' Tr)
EMIT (¥'mull3’'Yavbir)
LongfTa Longfb IsCons (¥aVb) KFOLD (¥-va¥blr)
Longlr Longla 1IsOne (+va) DontTrySob (¥a)
IsTemp ($r) AUTODEC (¥'decl vr)
LongTr Longfa TwoFourEight (Vva) IsTem (¥r)
AUTODEC (¢'sub12'§a+r)
Longlr Longla TwoOp (¥-Yria)
EMIT (¥'subl2’vatr)
LongTa Longfb GETTEMP (¢'long' 1r)
EMIT (¢'subl3'davbir)
Longla Longlb IsCons ($a¥b) KFOLD (¥/Vvavbtr)
Longfr Longta IsTemp (4r) PowerTwo (¥a)
MINUSLOG2 (vwalp) EMIT (¥'ashl’¥pbrir)
Longir Longfa Istemp (¥r) EMIT (¥'divl2'Yatdr)
Longla Longfb PowerTwo (¥b) MINUSLOG2 (¥bfp)
GETTEMP (47 iong' Tr) EMIT (¥'ashl'vpvayr)

Floatlr

i ¥

NN

117 -

/ Longla Longfb GETTEMP (¢'long' 1r)

EMIT (+4'div13'Yavbir)

| LonglTa Longlr TwoOp (¥|+adr)

EMIT (¥'bisl2'vatvr)

| Longlr Longfa TwoOp (¥|+atr)

EMIT (¥'bisl2'Yadr)

| Longfa Longfb GETTEMP ({'long' 1r)

~~ Floatla GETTEMP (¥'float'

+ +

-+

*» %

*

*

Floatfla
FloatfTa

Floatfr
Floatfa
Floatlr
Floatla

Floatfa
Floatfla

Floatlr
Floatfa

Floatfa
Floatfr

Floatlr
Floatla
Floatfla

Floatlr
FloatTa

Floatlb
Floatlr

Floatfla
Floatlr
Floatla
Floatlb

Floatlb
Floatfr

Floatfa
Floatlb

Floatlb
Floatfa

Floatfa
Floatlb
Floatlb

Floatfa
Floatlb

EMIT (&;bisl3'ab$r)
r)

EMIT (¢¥'mnegf'Vavr)
IsCons (¥avb) EFOLD ($+$a+$fr)
TwoFourEight (va) IsTemp (wvr)

AUTOINC ($iaddf§7$é%r)+
TwoFourEight (va) IsTemp (+¥r)

AUTOINC (+'addf2'$a§r)
TwoOp (¥+¥avr)

EMIT (+'addf2'datr)

TwoOp (¥+vatdr)

EMIT (¥'addf2'vavr)
GETTEMP (¢'float' fr)

EMIT (¥'addf3'vavbir)
IsCons (Vvavb) KFOLD (v*¥avblr)
TwoOp (v*vatdr)

EMIi i*imule’&a&r)

TwoOp (v*vavr)

EMIT (¢'mulf2'Yatr)
GETTEMP (¢'float' Tri

EMIT (¥'mulf3'Yavbir)
IsCons (Yavb) KFOLD (¢-datblr)
TwoFourEight ($a) IsTemp (Y1)

AUT?DC($'subf2' avr)
TwoOp (v~vrva)

EMIT (+'subf2'datr)
GETTEMP (¢'float' Trl

EMIT (v'subf3'¥avbir)
IsCons (Yavb) KFOLD (¥/Vadblir)
IsTemp (vr) EMIT (¥'divf2'vatr)
GETTEMP (+'float’ Trl

EMIT (+'div£3'vavbyr)

Doublel
>

-

-~ Doublela GETTEMP

~NON N

/* Quadword

Doublefa
Doublela
Doublefr
Doublefa
Doublelr
Doublefa
Doublefa
Doublefla
Doublelr
Doublefla
Doublefa

Doublelr

IsTem

Doublela Doublefb GETTEMP (+

Doublefb
Doublelr
Doublefa
Doublefr
Doublefa
Doublefb
Doublefb
Doublefr
Doublefa
Doublelb
Doublefb

Doublefa

118 .-

(¥'double' 1r)
EMIT (¥'mnegd’'vdavr)
IsCons (vatb)
T KFOLD (Y+vatblr)
TwoFourEight (¥a) IsTemp (¥r)
AUTOINC (v'addd2 vavr)
TwoFourEight (¥a) IsTemp (¥r)
AUTOINC (v¥'addd2 ¥avr
TwoOp (V+¥adr)
EMIT i%iaiddZ'&a%r)
TwoOp (v+vavr)
EMIT (¢4'addd2'vadr)
GETTEMP (¢'double' 1r)
EMIT (¥'addd3'vavbir)
IsCons (+at{b)
KFOLD (v*Yavblr)
TwoOp (¥*davr)
EMIT (¥'muld2'Yatbr)

TwoOp (¥*¥air)
EMIT (¥'muld2'davr)
GETTEMP (+¢'double' fr)
EMIT (¥'muld3'Yavbir)
IsCons (+vavb)

KFOLD (¥-¥albfr)
TwoFourEight (va)

(¥r) AUTODEC (¥ ' subd2'va¥r)
Doublelr Doublefa TwoOp (¥-¥r¥a)

EMIT (¢'subd2'vatr)
‘double' Tr)
EMIT ($‘subd3'$abr)

Doublela Doubleflb IsCons (Ya¥b)

Doublefr Doublefa IsTemp (¥

Doublefa Doublelb GETTEMP (¢

T KFOLD (v/Vvadblr)

r)
EMIT(¥'divd2 'Vavr)
'double' 1r)
EMIT (¥'divd3'Yadbir)

specification similar to above data types */

Control instructions

Control - Ccfbr Labelln EMIT (Ybrin)
- goto Labelfn EMIT(¢'brb brw jmp' ¥n)
CeTbr - @reloplbr Bytefla EMIT (¥'tstb'va)
- @relopfbr wWordfla EMIT (¥'tstw'va)
- @grelopfbr Longta EMIT (¥'tstl'va)
-+ Prelopfbr Floatfa EMIT (¥'tstf'va)
-~ @reloplbr Doublela EMIT (¥'tstd'va)
- Relopfbr Bytefa Byteflb
EMIT (¥'cmpb'$adb)
- Reloplbr Wordla wordfb
EMIT (¥'cmpw'vavb)
- Relopfbr Longfta Long!b
EMIT (¥'cmpl'vatb)
- Reloplbr Floatfa Floatflb
EMIT (¥'cmpf'datbb)
- Relopfbr Doublefa Doublelb
EMIT (&'cmpd'$aib)
- AndlTbr Bytefa Bytelb EMIT (¢'bitb'<vayb)
- Andfbr Wordfa Wordlb EMIT (¥'bitw'<daib)
-+ Andfbr Longla Longtb EMIT (4'bitl'vavb)
- Orfbr Bytela Bytelb GETTEMP (¥'byte' 1r)
EMIT (¥'bisb3'vVavbir)
FREETEMP (1)
- Orlbr Wordfa Wordfb GETTEMP (¥'word' 1r)

- Orfbr Long

Prelopl'beqgl bneqg'
@relop!'bneqg beql'
grelopl'blss bgeq'
grelopl'bleq bgtr'
@relopl'bgtr bleq'
@relopfl'bgeq blss'
Relopf'begl bneq' -
Relopf'bneqg beql'
Relop!'blss bgeq'
Relopl'bleqg bgtr'
Relopl'bgtr bleq'
Relopf'bgeq blss'
Andl'bneq beql'

OrT'bneq beql'

A28 25 2K 2% 2% 2 "

—_— v v

Procedure call instr

L2 20 2K 2R 2R A

EMIT ($'bisw3'$abr)

FREETEMP (¢r)

ta Longfb GETTEMP (¥'long' 1r)
EMIT ($'bis13'3a+

FREETEMP (4r)

A=
B<>
2>
g>=
@<
g<=

<>
<
<=

uction

Pcall - CALL Namela EMIT (J'calls'da)

byr)

119 -

120

Transfer productions

BooleanBytelr - ConvToByte GETTEMP (¥'byte’ fr)
EMIT (¥'clrb' ¥r)
BooleanWordfr - ConvToWord GETTEMP (¥'word' fr)
EMIT (¥'clrw' v¥r)
BooleanLonglr - ConvTolLong GETTEMP (+‘long' 1x)
EMIT (¥'clrl’ +r)
Bytelr - Wordfa ConvToByte (¥a) GETTEMP (¥'byte'fr)
EMIT (4'cvtwb'dadr)
- Longla ConvToByte (¥Ya) GETTEMP (+'byte'fr)
EMIT (¥'cvtlb'vadr)
- FloatTa ConvToByte (¥a) GETTEMP (¥'byte'tr)
EMIT (¥'cvtfb'vavr)
- Doublefa ConvToByte (Va) GETTEMP (+'byte'fr)
EMIT (¥'cvtdb'vatr)
- BooleanBytefa CcTbr GETLABR (1n)

EMIT (¥br ¥n)

EMIT (¥'incb' da)

EMIT (v¥n)
Wordlr - Bytefa ConvToWord (¥a) GETTEMP (¥'word'fr)
EMIT (¥'cvtbw'Vatvr)
- LonglTa ConvToWord (Ya) GETTEMP (¢ 'word'?lr)
EMIT (¥'cvtlw'vadr)
- Floatla ConvToWord (va) GETTEMP (¥'word' r)
, EMIT (¥'cvtfw'dabr)
-~ Doublefla ConvToWord {(¥a) GETTEMP (¥'word'flr)
EMIT (J'cvtdw'vavr)

- BooleanWordfTa Ccfbr GETLAB (1n)

EMIT (¥br ¥n)

EMIT (¥'incw' +a)

EMIT (¥n)
LonglTr -+ Bytefa ConvToLong (VYa) GETTEMP (4'long’fr)
EMIT (¥'cvtbl'Yadr)
- Wordla ConvTolong (¥a) GETTEMP (+'long'fr)
EMIT (¥'cvtwl'Vabr)
-+ Floatla ConvTolong (¥a) GETTEMP (¥'long'lr)
EMIT (¥'cvtfl'Yaly)

- Doublela ConvToLong (¥a) GETTEMP (%’long'fr)
EMIT (¥'cvtdl'Yavr)
- BooleanLongfa Cclbr GETLAB (fTn)

EMIT (Ybr Vn)

EMIT ($'incl' Ja)

EMIT (¥n)

Floatlr »
-
-
-
Doublefr>
-
-

-

Action Symbol

121 .

WordfTa ConvToFloat (Ya) GETTEMP (V' float'?tr)
EMIT (¥'cvtwf'dadr)
Longla ConvToFloat (¥a) GETTEMP (+'float'?lr)
EMIT (¥'cvtlf'davr)
Bytela ConvToFloat (¥a) GETTEMP (¢'float'fr)
EMIT (¢'cvtbf'vadr)
Doublefa ConvToFloat (¥a) GETTEMP (V' float'tr)
EMIT (¥'cvtdf'dadr)
Wordfa ConvToDouble (Ya) GETTEMP (¥'double'lr)
EMIT (¥'cvtwd'dadr)
LongTa ConvToDouble (¥a) GETTEMP (+¥'double'?lr)
EMIT (¥'cvtld'Yavr)
Bytefa ConvToDouble (Va) GETTEMP (¥'double’fr)
EMIT (¥'cvtbd’vadr)
Floatla ConvToDouble (¥a) GETTEMP (%'double'Tr)
EMIT (4'cvtfd'Ydadr)

function

ADDR
AUTODEC
AUTOINC
DELAY
EMIT
FREETEMP
GETLAB
GETREG
GETTEMP
KFOLD

LOG2
MINUSLOG2

compose address attribute

attempt auto-decrement optimization
attempt auto-increment optimization
delay assignment

emit assembler code

free attribute that is a temporary
obtain an internal label

obtain a free register

obtain a free temporary location
perform constant folding and then
return address attribute

return log2 of attribute's value
return negative log2 of value

Predicate

IsByte
IsWord
IsLong
IsFloat
IsDouble
IsQuad
IsStack
IsZero
IsOne
IsCons
IsReg
IsTemp
TwoFourEight
PowerTwo
TwoOp
AobOCk

DontTrySob
SobOk
TimeOpt
NotIndirect
NotAssign
ConvToByte
ConvToWord
ConvTolLong
ConvToFloat

ConvToDouble
ConvToQuad

122

Evaluates to true when

data type of attribute is a byte
data type of attribute is a word
data type of attribute is a long
data type of attribute is a float
data type of attribute is a double
data type of attribute is a quad

attribute is top of stack
attribute is constant zero
attribute is constant one
attributes are constants
attribute is a register location
attribute is a temporary
attribute is constant 2, 4, or 8
attribute is a power of 2
Two-address op-code must be used
Conditions for add-one-and-branch
are satisfied

Do not try for subtract-one-and-
branch

Conditions for subtract-one-and-
branch are satisfied

execution speed preferred over
object-code size optimization
attribute is not already an
indirect addressing mode

address operator is not immediately
used as RHS of assignment statement

convert
convert
convert
convert
convert
convert

attribute
attribute
attribute
attribute
attribute
attribute

to
to
to
to
to
to

byte data type
word data type
long data type
float type
double type
quad data type

123 -

Appendix E: PDP-11/7@ Attribute Grammar

Addressing mode productions

Addressfa - DirectModesta
- IndirectModesfa
IndirectModesfTa -+ @ DirectModes{b NotIndirect (¢b)
ADDR (v@ wb Ta)

- AnotherLevella
DirectModesfta - Datumfla

-+ # Datumlb ADDR (¥# vb fa)
- , Dispfb Basefc ADDR (¥b ¥vc Ta)
- Register
- Subsumptions

Basefa - DirectModesla IsReg (v¥a)
- DirectModeslTb GETREG (+'word' ta)

EMIT (¥'mov' ¥b Va)
IndirectModesla IsReg (+a)
IndirectModes?b GETREG (¥'word' ta)
EMIT (Y'mov' +b ¥a)
AnotherLevella - @ IndirectModeslb
GETREG (¥'word' 1r)
EMIT (¥v'mov' +b ¥r)
T T ?DDR (va ffa) .
Subsumptionsia -» @ + Bytelb Bytelc Iscons c) IsReg (vb)
. . ADD?Z+bcTa)$
- @ + Bytelb Bytelc Iscons b) IsReg (vc)
ADDR ($+$b$c%a)

v

- @ + Wordlb Wordflc Iscons (¥c) IsReg (¥b)
ADDR ($+$b$c?a)

- @ + Wordlb Wordfc Iscons (vb) IsReg (¥c)
ADDR (v+¥b¥cla)

- @ - Bytelb Bytefc Iscons (¥c) IsReg (¥vb)
ADDR (¥-¥bvcla)

-+ @ - Wordlb Wordfc Iscons (¥c) IsReg (¥b)
ADDR (¥-¥b¥cla)

Instruction selection productions

Bytefa - Addressfa IsByte (va)
Wordla - Addressla Isword (+a)
Floatfa -+ Addressfa IsFloat (+a)
Doublela+ Addressla IsDouble (+Va)

124 .

Data transfer instructions

Assignment - := Bytela Bytelb IsZero (¥b) EMIT (¥'clrb'va)
:= Bytela Bytelb DELAY (¥ movb'<+vb¥a)

Wordla Wordfb IsZero (¥b) EMIT (¥'clr'<a)

Wordla Wordlb DELAY (¥ 'mov’'¢bia)

Floatfa Floatlb IsReg (¥b) DELAY (¥'stf'¥bia)

Doublela Doublel!D IsReqg (¥b) DELAY(¥'std'Ybla)

B AR
RRRR

o e

Special instructions

Special » := Wordld - Wordfa Wordfb #<> Wordfc Labelfn
IsOne (¥b) IsReg (¥d) Sobok (vdvatcin)
- T EMIT (¥"sob'vdin)
Wordfd - Wordfa Wordfb
P@reloplbr Wordfc Labelfn IsOne (¥b)
AUTODEC (¥ dec'vd)
EMIT (¢'tst'¥c)
EMIT (vbr ¥n)

12
I

Arithmetic and Boolean instructions

Bytefr - ~- Bytefr Istemp (¥r) EMIT (4'negb' +r)
< “- Bytela GETTEMP (4'byte' ftr)
EMIT (¥'mov' ¥a ¥r)
EMIT (¥4'negb' ¥r)
Bytelr Istemp ({r) EMIT (¥'comb' ¥r)
Bytefa GETTEMP (V'byte' Tr) EMIT (¥'mov' Ya +r)
EMIT (¥'comb' ¥r)
Bytela Bytelb IsCons (¥a¥b) KFOLD (¥+vatblr)
+ Bytela Bytefr IsOne (va) IsTemp (¥r)
T . AiTOINC 'inib'$r)
- + Bytelr Bytela IsOne (va) IsTemp (+¥r)
AUTOINC (¥ incb'+¥r)
* Byte{a Bytegb IsCons (+avb) KFiLD (¥*Vaiblr)
Bytela Bytelr Two (va) IsTemp(¥r)
T EMIT (V'aslb' ¥r)
-+ * Bytelr Bytefa Two (¥a) IsTem (&E)
EMIT (¥ aslb' +r)

AR

v ¥
+

Vi
*

-+ - Bytela Bytelb IsCons (Yalb) KFOLD (v-vatblr)

- - Bytelr Bytefa IsOne (va) IsTemp (¥r)
AUTODEC (v 'decb'vr)

- /[Bytefla Bytelb IsCons (Yatb) KFOLD (¥/¥atblr)

- / Bytelr Bytela IsTemp (¥r) Two (Ya)

EMIT (¥ asrb'vyr)
-+ | Bytefa Bytelr IsTemp (¢r) EMIT (¥'bisb'$ayr)
Bytelr Bytela IsTemp (+4r) EMIT (4'bisb'vabr)
Bytela Byteflb GETTEMP (4'byte' Ir)
EMIT ({'movb'vadr)
EMIT (¥'bisb'+4bir)

R

Wordflr

-

"

R 2R

AR 2R "

vy

vy v i i

v i

"~ Wordlr Istemp (¥r) EMIT (¥'neg' ¥r)

- Wordfa

GETTEMP (¢'word' t1r)
EMIT (V'mov' va +r)
EMIT ($'neg' ¥r)

Wordlr Istemp (¥r) EMIT (¥'com' +r)

Wordfa
Wordfa
Wordla
Wordlr
Wordfa
Wordfr
Wordta

Wordflr
Wordta

Wordfa
Wordfa
Wordlr
Wordlr
Wordfa
Wordfa

Wordflr
Wordla

Wordfa
Wordfr
Wordftr

Wordftr
wWordfa

GETTEMP (+'word' 1r)
EMIT ({'mov' +a {Ir)
EMIT (¥'com' ¢r)
Wordlb IsCons (¥a¥b) KFOLD (v+datblr)
WordTr IsOne (Ya) IsTemp (¥r)
— AUTOINC (¥ inc'vr)
Wordfa IsOne (¥a) IsTemp (¥r)
AUTOINC (¥'inc'vr)
Wordfr TwoFour (¥a) IsTem ($ri
. AUTgINc ‘add‘ia r)
Wordla TwoFour (va) IsTemp (vr
AUTOINc“T$“add'$air)
Wordfr IsTemp (¥r) EMIT (¥'add'¥avr)
Wordfa IsTemp ($r) EMIT (¥'add'vadr)
WordTb GETTEMP (4'word' fr)
EMIT (¢'mov' +b Yr)
EMIT (¥'add' va ¥r)
Wordlb IsCons (Yatb) KFOLD (v*Yadblr)
WordTr Two (¥a) IsTemp (¥r)
EMIT (v 'asl' +r)
Wordla Two (¥a) IsTemp (¥r)
EMIT Tasl' ¥r)
Wordfa PowerTwo (Ya) LOG2 (¥a Tp)
IsTemp (¥r) EMIT (v'ash' ¥p ¥r)
Wordlxr PowerTwo (¥a) LOG2 (va 1p)
IsTemp (¥r) EMIT (¥'ash' + yr)
Wordlr IsTemp (Yr) EMIT (%'mul'ia$r)
Wordfa IsTemp (¥r) EMIT (4'mul’<$atvr)
Word!b GETTEMP (¢'word' fr)
EMIT (¥'mov' ¢b ¥r)
EMIT (v'mul' va vr)
Wordlb IsCons (Yavb) KFOLD (4-¢a¥blr)
WordTa IsOne (¥a) IsTemp (¥r)
AUTODEC (¥ 'dec'vr)
Wordla TwoFour (Ya) IsTem ($rl
AUTODEC sub' Yavr)
Wordfta IsTemp (¥r) EMIT (v'sub'vadr)
Word?!b GETTEMP (¥'word' fr)
EMIT ($'mov'$a$r)
EMIT (¥'sub’'db¥r)

125 .

126 -

- / Wordla Wordlb IsCons (¥a¥yb) KFOLD (¥/Yatblr)
- / Woxdlr WordTa IsTemp (¥r) Two (va)
EMIT (V7 asr'vr)
/ Wordlr WordfTa PowerTwo (da) MINUSLOG2 (Ya Tp)
IsTemp (4r) EMIT (v'ash' ¥p ¥r)
/ WordTr wordfla IsTemp (¥r) EMIT (v'div'dabr)
/ Wordfa Wordfb GETTEMP (+'word' +'even' tr)
EMIT (¥'mov'¥avr)
’ EMIT (¥'div'¥bir)
| Wordta Wordfr IsTemp (¥r) EMIT (v'bis'vatr)
| Wordflr wordfa IsTemp (¥r) EMIT (¥'bis'Yadr)
| Wordla WordfTb GETTEMP (¢ 'word' Tr)
EMIT (¢4'mov'<Yadr)
EMIT (¥'bis'¥bér)

12

v

i Y

Floatlr » ~- Floatlr Istemp ($r) EMIT (Y'negf’ ¥r)
-+ "- Floatla GETTEMP (¢'float' fr)
EMIT (¥'1df' +a vr)
EMIT (¥'negf' ¢r)
- + Floatla Floatlb IsCons (Yavb) KFOLD (y+$avblr)
< + Floatla Floatlr TwoFour (va) IsTem (¥r)

. . AUTOI?C ('addf'$$$r)
- + Floatir Floatfa TwoFour (va) IsTem r)
AUTOINC ($'addf'ia$r)

+ Floatta Floatfr IsTemp (¥r) EMIT (v'addf'Yadr)
+ Floatfr Floatfta IsTemp ($r) EMIT (v'addf'Yatvr)
+ Floatla Floatlb GETTEMP (V' float' Trl

EMIT ({'1df' ¥b ¥r)

EMIT (¥'addf' va +r)
* Floatla Floatlb IsCons (Yyavb) KFOLD (v+*vavblr)
* Floatla Floatfr IsTemp (¥r) EMIT (%‘mulf'ar)
* Floatfr Floatfla IsTemp (¥r) EMIT (¥'mulf'davr)
* Floatla Floatlb GETTEMP (¥'float' 1r)

EMIT (4'ldf' ¥b vr)

EMIT (¥'mulf' Vb vr)

iy

L 28 2K 2x 7

- - Floatla Floatlb IsCons (¥avb) KFOLD (v-va¥blr)
» - Floatlr Floatfa TwoFour (¥a) IsTem l%r)
~AUTODEC (3T5GbE'{adr)
- - Floatlr Floatla IsTemp (4r) EMIT (¥'subf'vavr)
-+ - Floatfa Floatlb GETTEMP ({'float' f1r)
EMIT (4'1df'datvr)
EMIT (v'subf'¥b¥r)
-+ / Floatla Floatlb IsCons (vavb) KFOLD ($/+aibfr)
-+ / FleatfTr Floatfla IsTemp (¥r) EMIT (3'divf'vavr)
-+ / Floatfa Floatlb GETTEMP (¢'float' tr)

EMIT (¥'1df'datr)
EMIT ($'divf'$br)

Doublefl
-

->

"~ Doublefr Istemp

~- Doublefa GETTEMP (¢'double'’

<+
+
+

+

/
/

/

Doublefa
Doublefa
Doubleflr
Doublefa
Doublelr

Doubleta

Doubleta
Doubleta
Doublefr

Doublefa

Doublefla
Doublefr
Doublefr

Doublefa

Doubleta

Doublefr

! Doublefla

Doublefb
Doublefr
Doublela
Doublefr
Doublefa

Doublelb

Doublelb
Doublelr
Doublefa

Doublefb

Doublelb
Doublela
Doublefa

Doublelb

Doublefb
Doublefa

Doublelb

(¥r) EMIT (&Tnegd ¥r)
r

EMIT (+'1dd' +a ¥r)

EMIT (V'negd' +r)
IsCons (Yavb)

KFOLD (y+vavblr)

TwoFour (va) IsTemp (¥r)
AUTdTNc (¥ adda*ga r)
TwoFour (da) IsTem (¥r)
AUTOINC (v zaaaf§a vr)

IsTemp (vr)
EMIT (¢'addd'vadr)
IsTemp (¥r)

EMIT (v'addd'Yadr)

GETTEMP (% double' 1r)
EMIT (¥'1dd' ¢b ¥r)
EMIT (v'addd' Ya 4r)

IsCons (vavb)

KFOLD (Y*¥avblr)

IsTemp ($r)

EMIT (¢° muld’' vavr)

IsTemp (¥r)

EMIT (+'muld'Yavr)

GETTEMP (¥'double' 1r)
EMIT (¥'1dd' Vb bri
EMIT (¢'muld' ¥ba vr)

IsCons (vavb)

KFOLD ($ vavblr)

TwoFour (da) IsTem (¥r)
“—AOTOBEC (4'Sobd babr)
IsTemp (¥r)
EMIT (¢'subd'vavr)
GETTEMP (¢'double' 1r)
EMIT (¢'1dd'¥adr)
EMIT (¥'subd'vbir)
IsCons (vavb)
KFOLD(i%/%a%bTr)
IsTem r)
—“EET% (¥'divd'datvr)
GETTEMP (+'double' f1r)

EMIT (¥'1dd'Yavr)
EMIT (¥'divd'Vyb¥r)

127 .

128 .

Contreol instructions

Ccfbr Labelln EMIT (¥vbrvn)
goto Labelfn EMIT(4'br jmp' ¥n)
Preloplbr Bytefa EMIT (v'tstb'va)
@reloplbr Wordfta EMIT (¥'tst'Yda)
@reloplbr FloatlTa EMIT ({'tstf'va)
@relopfbr Doublefa EMIT (¢'tstd’'¥da)
Reloplbr Bytela Bytelb EMIT ({'cmpb'¥atb)
Reloplbr Wordfa Wordfb EMIT (+'cmp'valb)
Relopfbr Floatfa Float{b EMIT (4'cmpf'+avb
Reloplbr Doublefa Doublefb EMIT (¥'cmpd'¥atb)
Andlbr Bytela Bytelb EMIT (¢'bitb'vavb)
Andlbr Wordla Wordlb EMIT (¥'bit'‘datb)
OrTbr Bytela Bytelb GETTEMP (¥'byte' fIr)
EMIT ({'movb' +b {r)
EMIT (¥'bisb' $a vr)
OrTbr Wordfa Wordtb GETTEMP (4'word' 1r)
EMIT (Y'mov' ¢b ¥r)
EMIT (¥'bis' va vr)

Q
0
o]
ot
2]
0
 amd
A%

L2 25 2K % T F A PR P A P

Y

grelopl'beq bne' - g=
grelopfl'bne beq' -» g<>
grelopl'blt bge' - @>
grelopf'ble bgt' - @g>=
grelopfl 'bgt ble' - G«
grelopl'bge blt' - @<=
Relopl'beq bne' » =
Relopf'bne beq' - <>
Relopl 'blt bge' -» <
Relopf'ble bgt' =+ <=
Relopl'bgt ble' - >
Relopl'bge blt' - >=

Andf'bne beq' - &

Procedure call instruction

Pcall - CALL Namefa EMIT (¥'jsr' 4'FrameReg' va)

129

Transfer productions

BooleanBytelr -+ ConvToByte GETTEMP (+¥'byte' ftr)
EMIT (¥'clrb' +r)
BooleanWord {r - ConvToWord GETTEMP (¢'word' fr)
EMIT (¥'clr' +r)
Bytefr - Wordla ConvToByte (¥a) GETTEMP (+'byte'fr)
conversion code sequence
- Floatla ConvToByte (¥a) GETTEMP (+'byte'flr)
~ conversion code sequence
- Doublefa ConvToByte (Ya) GETTEMP (¥'byte'fr)
conversion code sequence
- BooleanBytefa Ccfbr GETLAB (fTn)
EMIT (¥br ¥n)
EMIT (¥'incb' +a)
EMIT (vn)
Wordfr - Bytela ConvToWord (¥a) GETTEMP (¢ 'word'tr)
conversion code sequence
- Floatla ConvToWord (¥a) GETTEMP (4'word'flr)
conversion code sequence
-~ Doublela ConvToWord (¥a) GETTEMP (¢'word'?lr)
conversion code sequence
- BooleanWordfa Ccflbr GETLAB (Tn)
EMIT (vbr ¥n)
EMIT (¥'inc' da)
EMIT (v¥n)
Floatfr - Wordfa ConvToFloat (¥a) GETTEMP (¥'float'?r)
conversion code sequence
- Bytefa ConvToFloat (¥a) GETTEMP (¥'float'tr)
conversion code sequence
- Doublela ConvToFloat (Ya) GETTEMP (¥'float'?lr)
EMIT (¥ndcdf Vva ¥r)
Doublelr> Wordfa ConvToDouble (Va) GETTEMP (+'double'?lr)
conversion code seguence
- Bytela ConvToDouble (Ya) GETTEMP (¥'double'?lr)
conversion code sequence
-+ Floatla ConvToDouble (¥a) GETTEMP (¥'double' tr)
EMIT (¥'ldcfd’' va dr)

139 .

Appendix F: Implementing Disambiguating Predicates in CFGs

Conflicts in bottom-up parsers (i.e. shift/reduce and
reduce/reduce conflicts) are normally resolved by parser
generators in favor of a fixed production (depending on
look ahead). YACC [Johnson 75] uses a look-ahead symbol to
resolve conflicts. If the look ahead does not suffice [Aho
751, shift/reduce conflicts are always resolved in favor of
a shift, and reduce/reduce conflicts are always resolved in
favor of the production that occurs lexically before the
others that conflict. The user can therefore place the

desired production before the others.

Often, as in this research, it becomes necessary to choose
different productions from a conflicting set under dif-
ferent contexts. Disambiguating predicates are used to
"dynamically" resolve conflicts. In a bottom-up parser,
disambiguating predicates are (in principle) associated
with every state and any configuration in the state. Upon
the occurrence of a conflict, all relevant disambiguating
predicates are evaluated, and the production for which the
predicate evaluates to true is selected. The disambiguat-
ing predicates are evaluated in the order in which the pro-
ductions are specified. Predicates are evaluated even if
there is no conflict. The first production all of whose

predicates evaluate to true is selected. This criterion

131 .

ensures that at most one production is selected at any
given time. 1In general, a hierarchy of disambiguating
predicates can be wused to select a production. In prac-

tice, a linear ordering seems to suffice.

The following discussion suggests a technique to incor-
porate disambiguating predicates within a context-free
bottom-up parsing framework such as YACC by suitable modif-

ication of the parser-driver.

Consider the following productions:

[Pl] a-> ¢

[sz b~ c

[PBJ d- e ab

[P4] d- eb a

A reduce/reduce conflict is caused by [Plj and [PZ]. To

disambiguate this conflict, we add a non-terminal 'V', a

disambiguating routine 'disamb' and tokens T, and T, as

follows:

[Plj a= c VT,

[P2] b= cV Ty,

[PSJ V> € dlsamb(Ta, Tb);

The decision to select [Plj or [P2] is made by disamb when
a reduction by [PSJ cccurs {(i.e., P; "triggers" the disam-

biguating predicate). It looks at the context (or uses any

132

conditions programmed by the user) and inserts either token
T, or T, in the parser's input stream as an indication of
its choice. The parser (if it uses look-ahead) may have
already read in the look-ahead token. 1In this case, the
disambiguating token must be inserted before any look-ahead
token. If the token inserted by disamb is consumed Dbefore
another similar insertion, then Buffer (explained in the
next page) need only be a single global location. In gen-
eral, for a k-token look-ahead parser, Buffer has to be a
stack of depth k so that all k parser look-aheads can Dbe
pushed onto the buffer-stack before "disamb" inserts a to=-

ken into the input stream. The following code 1illustrates

this process.

133.

PROCEDURE disamb(Tokenl, . ,Tokenn)

BEGIN

IF predicate, evaluates to true THEN

insert(Tdken,)
ELSE IF predicate, evaluates to true THEN
insert(Tokenz)
ELSE @ e evtnnens

END; (* procedure disamb *)

PROCEDURE insert(Token)
BEGIN (* check if parser look-ahead exists *)
IF parser look-ahead token exists THEN
save(look-aheads);
look-ahead := Token
END; (* procedure insert *)

PROCEDURE save(Tokens)
BEGIN (* save tokens in buffer *)
Buffers := Tokens
END; (* procedure save *)

The parser-driver is modified as follows:

SWITCH (Action) OF
CASE Shift:
IF no look-ahead token THEN
Symbol := Lexicalanalyzer()

ELSE Symbol := look-ahead;
State := Nextstate(State, Symbol):
restore(Symbol);

END; (* case shift *)

CASE Reduce: (* reduce by appropriate production *)
END; (* case reduce *)

CASE Accept: (* halt, accepting *)
END; (* case accept ¥*)

CASE Error: (* halt, rejecting *)
END; (* case error *)

PROCEDURE restore(Symbol)
BEGIN (* check if buffer is empty *)
IF Buffer <> Empty THEN

BEGIN
Symbol := Buffer;
Buffer := Empty
END

END; (* procedure restore *)

