LOCKING EXPRESSIONS
FOR INCREASED DATABASE CONCURRENCY

by

Anthony Klug

Computer Sciences Technical Report #400
October 1980
Locking Expressions
for Increased Database Concurrency

Anthony Klug
University of Wisconsin

Abstract

Access to a relation R in a relational database is sometimes based on how R joins with other relations rather than on what values appear in the domains of R. Using simple predicate locks forces the entire relation to be locked in these cases. In this paper a technique is presented which allows locking of the smallest possible set of tuples even when the selection is based on joins with other relations. The algorithms are based on a generalization of tableaux. The tableaux used here can represent relational algebra queries with the entire set of domain comparison operators '=' , '!=', '<', '<=', '>', '>='.

Keywords and Phrases: predicate lock, concurrency control, relational database, relational algebra, expression lock, tableau, transaction, well-formed, two-phased, legal history

CR Categories: 4.32, 4.33

Author's address: Computer Sciences Dept., University of Wisconsin-Madison, Madison, WI 53706
Contents

1 Introduction ... 1
1.1 Overview of Paper ... 4
2 Relational Definitions .. 4
3 Transactions and Schedules ... 7
4 Tableaux ... 18
5 Tableau Based Lock Algorithms 31
6 Extensions for the Update Operation 33
7 An Example ... 36
8 Summary and Conclusions ... 37
9 Appendix ... 38
1. Introduction

In any database management system allowing simultaneous access and modification by several users, a method must be provided for synchronizing these actions. Several approaches to this concurrency control problem are possible [BeGo2]. Locking is perhaps the most familiar.

Locking controls concurrency by limiting access to entities in the database by declaring them "locked". In the relational model, the natural unit of access, i.e. the locking entity, is a set of tuples. Since mathematical sets are specified by properties or formulas, it follows that locks on relations may be specified by properties or formulas. In the past, these properties were limited to referring only to the attributes of the relation being locked, and these were called "simple predicate locks" [EGLT], [WoEd]. In this paper, we generalize the properties allowed in locks, and we call them "expression locks".

To motivate the introduction of expression locks, we present a simple example.

Consider the relational schema of Figure 1. Suppose the following two transactions are run against this schema:

TR₁: Give employees whose hire date is less than 780630 (hired before June 30, 1978) a 10% raise.

```
dept(dno, dname, manager, budget)
key(dno)
employee(eno, ename, sal, hiredate, edno)
key(eno)
foreign key(dno)
```

Figure 1. Schema for Departments and Employees.
TR₂: Give employees whose hire date is greater than 800901 (hired after Sept. 1, 1980) a 5% pay cut.

The sets of employee tuples accessed by TR₁ and TR₂ can be defined with simple predicates¹:

\[E₁ = \{ e \in \text{employee} : e.\text{hiredate} < 780630 \}, \text{and} \]
\[E₂ = \{ e \in \text{employee} : e.\text{hiredate} > 800901 \}. \]

It is clear that these two sets are disjoint since the conditions (e.\text{hiredate} < 780630) and (e.\text{hiredate} > 800901) cannot both be satisfied by the same tuple. Thus TR₁ and TR₂ can be run concurrently without affecting the integrity of the database.

Next consider the following pair of transactions:

TR₃: Give every employee in departments with a budget exceeding $1 million a 10% raise.

TR₄: Give every employee in departments with a budget below $500,000 a 5% pay cut.

Intuitively, we can see that this pair of transactions also can be run concurrently since the set of all employees in "low budget" departments is disjoint from the set of all employees in "high budget" departments. (Note that this reasoning makes implicit use of the fact that dno is the key of the dept relation.) For this pair of transactions, the sets of employee tuples accessed are not defined by simple predicates:

\[E₃ = \{ e \in \text{employee} : (\exists d \in \text{dept})(d.\text{dno}=e.\text{dno} \& d.\text{budget}>1000000) \} \text{ and} \]
\[E₄ = \{ e \in \text{employee} : (\exists d \in \text{dept})(d.\text{dno}=e.\text{dno} \& d.\text{budget}<900000) \}

¹ A simple predicate as defined in [EGLT] is a boolean combination of terms of the form \(a₁ \theta a₂\) or \(a₁ \theta c\), where \(a₁\) and \(a₂\) are attributes of a single relation, \(\theta\) is '=' ', '<', etc., and \(c\) is a constant.
In order to lock these two sets, it is suggested in [EGLT] that two simple predicates be found which "cover" the two defining formulas. In this case, there are no restriction or selection terms on employee attributes, and so the smallest covering simple predicate in both cases selects the entire employee relation. Hence if we use only simple predicates, transactions TR_3 and TR_4 must be run serially.

Now let us consider how we might remedy this situation. Proving that the two sets E_3 and E_4 are disjoint as long as the key constraint for the dept relation are satisfied, is equivalent to proving that the two defining formulas are not mutually satisfiable as long as the key of the dept relation is satisfied. Thus we must prove the inconsistency of the formula:

$$(\forall d_1,d_2 \epsilon \text{dept})(d_1.dno=d_2.dno \Rightarrow d_1.budget=d_2.budget) \& \exists e \epsilon \text{employee}(d.dno=e.dno \& d.budget>1000000 \& d'.dno=e.dno \& d'.budget<500000))$$

This formula happens to be equivalent to a Π_2-formula2, and so there is a decision procedure [Acke] for determining its satisfiability. Unfortunately, the algorithm is superexponential in the number of universally quantified variables (which is actually eight in the above example, one for each attribute of the two dept tuples), and it seems desirable to look elsewhere for a more efficient and intuitive solution. In this paper, we study the use of tableaux for this problem.

Tableaux have been used by a number of authors to solve important problems in the relational database model. For example, they have been used to optimize relational expressions [ASU1], to test dependency statements [MaMS] and to check correctness of views [KlPr]. The

2Put in prenex normal form, all universal quantifiers precede all existential quantifiers.
tableaux used in these works can only represent relational expressions which contain only equality comparisons among domains and between domains and constants. We need tableaux which can model queries with the comparison operators "less-than", "greater-than-or-equal", etc. Such tableaux could be used in the above locking problem. In this paper we introduce the notion of "inequality tableaux", tabular representations of relational algebra expressions which do just this. We prove some basic properties of inequality tableaux and then we then use them for representing "expression locks".

1.1. Overview of Paper

Our goal is to give algorithms for locking which can be used to allow concurrent execution of transactions such as TR₃ and TR₄ given above. Before we do this we present the necessary relational terminology (Section 2). Then in Section 3 we define our notions of expression locks, well-formed two-phased transactions, and legal histories. The main theorem is that legal histories of well-formed two-phased transactions are serializable. In Section 4 we introduce the notion of inequality tableau, and we prove some useful theorems for them. Then in Section 5 we show how the tableau algorithm can be applied for our expression locking scheme. We close with a discussion of the update operation and an example.

2. Relational Definitions

The formal model we use does not make the universal instance assumption. A relation scheme is a pair <R,k>. R is a symbol (the relation name), and k is a positive integer (R's degree) which is denoted deg(R). If <R,k> is a relation scheme, the domains of R, doms(R), is the set {1,2,...,k} of natural numbers. A functional
dependency (FD) is a triple \(<R_i,Z,A> \), also written \(R_i:Z \rightarrow A \), where \(R \) is a relation of degree \(k \), \(Z \subseteq \{1,2,\ldots,k\} \), \(A \subseteq \{1,2,\ldots,k\} \) and \(A \not\subseteq Z \). A schema is a pair \(<S,C> \), where \(S \) is a sequence \(\langle \langle R_1,k_1 \rangle,\ldots,\langle R_N,k_N \rangle \rangle \) of relation schemes which is sometimes written simply \(\langle R_1,\ldots,R_N \rangle \), and where \(C \) is a set of FDs on the relations given. Throughout this paper, one fixed schema \(\langle R_1,\ldots,R_N \rangle \) is assumed. An instance \(I \) of schema \(\langle \langle R_1,\ldots,R_N \rangle \rangle \), \(C \) is an \(N+2 \)-tuple \(\langle D,0,I_1,\ldots,I_N \rangle \), where \(D \) is the domain of values, \(0 \) is a partial, asymmetric, transitive order\(^3\), and for each \(i=1,\ldots,N \), \(I_i \subseteq D^{\deg(R_i)} \). Domains of all relations are taken without loss of generality to range over the set \(D \), and \(D^m \) is the set of all \(m \)-tuples over \(D \). For convenience, we will assume that the set \(\mathbb{N} \) of natural numbers is embedded in \(D \) and that the less-than relation on natural numbers is consistent with the order on \(D \). We denote the class of all instances by \(I \). An FD \(R_i:Z \rightarrow A \) is true in instance \(I \) if for all tuples \(t_1,t_2 \) in \(I_i \), if \(t_1[Z]=t_2[Z] \), then \(t_1[A]=t_2[A] \). Brackets '[' and ']' denote project on the listed domains. A state \(S \) of schema \(\langle \langle R_1,\ldots,R_N \rangle \rangle \), \(C \) is an instance in which all constraints in \(C \) are true.

The set \(E \) of expressions over our fixed schema and the associated functions \(\deg \) (degree) and \(\doms \) (domains) for expressions are defined as follows:

If \(e \in E \) has degree \(k \), then \(\doms(e) = \{1,\ldots,k\} \).

1. Base Relations: \(R_i \in E \) for each \(R_i \) in the schema, and \(\deg(R_i) \) is

\(^3\) For all \(x,y \), if \(xBy \) then not \(yBx \), and for all \(x,y,z \), if \(xBy \) and \(yBz \), then \(xBz \). For example, the '<' relation on numbers is asymmetric and transitive (and total).

\(^4\) What we really want is the kind of instances (interpretations) which appear in mathematical logic in which the formal languages have constant symbols and the interpretations have interpretations of constant symbols. To simplify matters for those not familiar with models in logic, we use the natural numbers both as constant symbols in our language (relational algebra) and as their own interpretations in the instances.
already defined.

(2) Literals: If \(c \in \mathbb{N} \), then \(\{c\} \in \mathbb{E} \), and \(\text{deg}(\{c\}) = 1 \).

(3) Projection: If \(e \in \mathbb{E} \), then \(e[X] \in \mathbb{E} \) where \(X \) is a sublist of \(\text{doms}(e) \), and \(\text{deg}(e[X]) = \text{length of } X \).

(4) Cross Product: If \(e_1, e_2 \in \mathbb{E} \) and \(\text{deg}(e_1) = d_1 \), \(\text{deg}(e_2) = d_2 \), then \((e_1 \times e_2) \in \mathbb{E} \), and \(\text{deg}(e_1 \times e_2) = d_1 + d_2 \).

(5) Restriction: If \(e \in \mathbb{E} \), \(X, Y \in \text{doms}(e) \) and \(\Theta \) is '=' or '<', then \(e[\Theta Y] \in \mathbb{E} \) and \(\text{deg}(e[\Theta Y]) = \text{deg}(e) \).

(5) Union: If \(e_1, e_2 \in \mathbb{E} \) and \(\text{deg}(e_1) = \text{deg}(e_2) \), then \((e_1 \cup e_2) \in \mathbb{E} \), and \(\text{deg}(e_1 \cup e_2) = \text{deg}(e_1) \).

With these operators we can also define selections, joins and intersections:

Selection: \(e[\Theta Y] \) is \((e \times \{V\})[\Theta X'] \{1, \ldots, \text{deg}(e)\} \)
where \(X' \) is \(\text{deg}(e)+1 \).

Join: \(e_1[\Theta Y] e_2 \) is \((e_1 \times e_2)[\Theta Y'] \)
where \(Y' \) is \(\text{deg}(e_1)+Y \).

Intersection: \(e_1 \cap e_2 \) is \((e_1[D_1=D_2] e_2)[D_1] \)
where \(D_1 \) is \(\langle 1, \ldots, \text{deg}(e_1) \rangle \) and \(D_2 \) is \(\langle 1, \ldots, \text{deg}(e_2) \rangle \).

The operators '<' and '≠' can be defined in terms of '=' and union. Generalized restrictions \(e[\Psi] \), where \(\Psi \) is a boolean combination of selections and restrictions, can also be defined using repeated restrictions, selections and unions. In certain cases we will also allow the Set Difference operator, '-'. Its formation rules are the same as for union, and the set of expressions including set difference will be denoted \(\mathbb{E}^- \). Unless stated otherwise, by "expression" we mean an element of \(\mathbb{E} \).
For each \(e \in E^{-} \) of degree \(k \) and for each \(I \in I \), the value of \(e \) on \(I \), denoted \(e(I) \), is a subset of \(D^{k} \). The formal definition, which is omitted, gives the usual semantics for relational algebra operators.

An expression \(e \) is universally empty (u.e.), written \(e = \emptyset \), if \(e(S) = \emptyset \) for all states \(S \).

We wish to consider two concepts of "contained in" for expressions. We will write \(e_{1} \subseteq e_{2} \), if \(e_{1}(I) \subseteq e_{2}(I) \) for all instances \(I \). We will write \(e_{1} \ll e_{2} \) if \(e_{1}(S) \subseteq e_{2}(S) \) for all states \(S \). If the set \(C \) of schema FDs is empty, "\(\subseteq \)" is the same as "\(\ll \)".

An operation is a statement of the form

\[
\text{insert } R \ e, \text{ or} \\
\text{delete } R \ e.
\]

Here, \(R \) is a schema relation, and \(e \) is an expression of the same degree as \(R \). We give these operations semantics by considering them to be functions on instances with values given by the rules:

- If \(I' = (\text{insert } R \ e)(I) \), then
 \[
 I'_{i} = I_{i} \cup e(I) \text{ and } I'_{j} = I_{j}, \text{ for } j \neq i.
 \]
- If \(I' = (\text{delete } R \ e)(I) \), then
 \[
 I'_{i} = I_{i} - e(I) \text{ and } I'_{j} = I_{j}, \text{ for } j \neq i.
 \]

3. Transactions and Schedules

In Section 1 we saw how simple predicate locks would not allow some kinds of transactions to be run concurrently even though this was theoretically possible. In this section we introduce "expression locks". This is a generalization of the notion of predicate lock. We develop corresponding concepts of transactions, history, well-formed
transactions and legal histories using the notion of expression locks. The main result of the section is the theorem that legal histories of two-phased well-formed transactions are serializable (preserve consistency).

An **expression lock**, or simply, **lock**, is a statement of the form:

\[
\text{lock } M R e
\]

Here, \(M \) is the mode of the lock (\(S = \text{share}, X = \text{exclusive} \)); \(R \) is a schema relation, and \(e \) is an expression of the same degree as \(R \). (We will often use \('M' \) to denote either \('S' \) or \('X' \).) Intuitively, a lock statement requests a lock on the set of \(R \)-tuples which do or might appear in \(e \).

We also have corresponding **unlock** statements of the form:

\[
\text{unlock } M R e
\]

Intuitively, an unlock statement says to release the \(R \)-tuples which do or might appear in \(e \).

A **transaction** is a (finite) sequence of operations, lock statements and unlock statements. A transaction \(TR = <s_1, ..., s_m> \) can be considered a function on instances by defining:

\[
TR(I) = s_m(... s_2(s_1(I)) ...)
\]

where \(s_i(I) = I \) if \(s_i \) is a lock or an unlock statement. We assume that all statements in a transaction preserve the FDs in the schema. Although some treatments on locks allow a transaction to violate a schema constraint temporarily, (for example, a transaction which transfers money from one account to another) this is not acceptable for functional dependencies. Hence, we assume that every step of a
transaction preserves the schema FDs. In other words, if \(S \) is a state, then \(s_i(S) \) is a state.

Sets of tuples, like any mathematical set, behave differently as locking entities than objects which are indivisible. If a set \(A \) of tuples is locked, it makes perfect sense to unlock some proper subset \(B \) of \(A \), still leaving \(A-B \) locked. Thus we should not require of a transaction \(TR \), that if \(TR \) accesses a set \(A \) of tuples at step \(i \), then \(TR \) must have some lock preceding step \(i \) which explicitly locks exactly set \(A \). It is really only necessary that the aggregate of all locks (minus all unlocks) includes \(A \). Thus to record the locks and unlocks which have appeared in a transaction, we define the following function:

\[
\text{lock} : TR \times \{S,X\} \times \mathbb{N} \times \{R_1, \ldots, R_m\} \rightarrow \mathbb{E}^-
\]

Here, \(TR \) is the set of all transactions; \(\{S,X\} \) are the locking modes (share, exclusive); the third argument is the index of a statement in the first argument, and the last argument is the set of schema relations. The values of this function are defined as follows, where we assume \(TR \) has the form \(<s_1, \ldots, s_m> \):

\[
\begin{align*}
\text{lock}(TR, S, 0, R_j) &= \emptyset \text{ for } j=1, \ldots, N \\
\text{lock}(TR, X, 0, R_j) &= \emptyset \text{ for } j=1, \ldots, N \\
\text{If } s_i \text{ is } "\text{lock } M \ R_i \ e" \text{ (} M = S \text{ or } X) \\
\text{lock}(TR, M, i, R_j) &= \text{lock}(TR, M, i-1, R_j) \cup e \\
\text{If } s_i \text{ is } "\text{unlock } M \ R_j \ e" \\
\text{lock}(TR, M, i, R_j) &= \text{lock}(TR, M, i-1, R_j) \setminus e \\
\text{Otherwise} \\
\text{lock}(TR, M, i, R_j) &= \text{lock}(TR, M, i-1, R_j)
\end{align*}
\]
Next, we want to specify when a transaction is well-formed. Intuitively, any part of a relation which is read, i.e., which is used in the second operand of an operation, must be locked in S mode5, and any part of a relation which will be updated must be locked in X mode. That is, to execute an operation "\textit{op R e}" on I, TR must first "read" e(I) and then modify R. To read e(I), a set r\textsubscript{i} of tuples is read from I\textsubscript{i} \((i=1,\ldots,N)\). These are the tuples that "participate" in forming e(I). The sequence \(r_1,\ldots,r_N\) has the property that the value of e on I is the same as the value of e on \(<D,0,r_1,\ldots,r_N>\) since each tuple of each \(r_i\) "participates" in forming the value of e, and only these tuples participate. This concept is similar to the semi-join of [BeGol], but here we are not restricted to how we get read sets. The read set of an expression \(e \in \mathbb{E}\) can be obtained as follows:

First assume \(e\) contains no unions. We may then write \(e\) as an ordered cross product followed by some restrictions and selections followed by a projection [Ullm]:

\[
(R_1 \times \cdots \times R_1 \times \cdots \times R_N \times \cdots \times R_N)[\sigma][Z]
\]

Here, each \(R_i\) appears zero or more times, and \(\sigma\) represents the conjunction of all restrictions and selections. For each \(i=1,\ldots,N\), we let \(RS_i\) be the union over every occurrence of \(R_i\) of all expressions of the form:

\[
(R_1 \times \cdots \times R_1 \times \cdots \times R_N \times \cdots \times R_N)[\sigma][D_{ik}]
\]

where \(D_{ik}\) projects on the \(k\)-th occurrence of \(R_i\). The read set of \(e\) is then the \(N\)-tuple of expressions \(<RS_1,\ldots,RS_N>\).

If \(e\) contains unions, it may be written as:

5 It is possible to generalize this condition to be "in S or X mode" if corresponding changes are made to subsequent definitions and theorems.
\[e_1 \cup \cdots \cup e_n \]

where each \(e_i \) contains no unions. The \(i \)-th component of the read set of \(e \) is then

\[RS_{i1} \cup \cdots \cup RS_{in}, \]

where \(RS_{ij} \) is the \(i \)-th component of the read set of \(e_j \). Read sets have three important properties stated in the following theorem. Its proof is delayed until we have developed tableaux.

Theorem 1. Let \(e \) be an expression; let \(RS = <RS_1, \ldots, RS_N> \) be its read set.

1. For all instances \(I \), \(RS_i(I) \subseteq I_i \) (\(i = 1, \ldots, N \)) and \(e(I) = e(RS(I)) \). That is, applying the read set does not change the value of \(e \).

2. If \(e \) is optimized [ASU1] and if \(F = <F_1, \ldots, F_N> \) is an \(N \)-tuple of expressions with the properties that for all \(I \), \(F_i(I) \subseteq I_i \) (\(i = 1, \ldots, N \)) and \(e(I) = e(F(I)) \), then \(RS_i \subseteq F_i \), \(i = 1, \ldots, N \). That is, the read set is the smallest set of expressions with property (1).

3. Let \(e' \) be an expression of degree \(\deg(R_j) \). For any instance \(I \), if \(RS_j(I) \cap e'(I) = \emptyset \), then for each \(i = 1, \ldots, N \), \(RS_i(I') = RS_i(I'') = RS_i(I) \), where \(I' \) and \(I'' \) are defined by \(I'_j = I_j \cup e'(I) \) and \(I''_j = I_j - e'(I) \) and \(I'_k = I''_k = I_k \) for \(k \neq j \).

In property (3), the case for set difference can be derived from properties (1) and (2). The case for union can be rephrased as follows: Since we always have \(RS_i(I) \subseteq I_i \), the condition on \(e' \) can be written \(RS_i(I) \cap (I_i \cap e'(I)) = \emptyset \). Thus when the part of \(e'(I) \) in \(I_i \) does not intersect \(RS_i(I) \), none of the tuples in \((e'(I) - I_i) \) (the part of
e'(I) not in I₁) will join with any tuple in the read set of e. This property can be compared with the property of unions contained in other unions found in [SaYa].

We therefore define a transaction \(TR = <s₁, s₂, ..., sₘ> \) to be **well-formed** if for each step \(sᵢ \), if \(sᵢ \) is "op \(R_j \) e", then the following two conditions hold:

1. If the read set of e is \(<RS₁, ..., RSₙ> \), then for each \(k=1, ..., N \), \(RS_k \ll \text{lock}(TR, S, i, R_k) \).

2. \(e \ll \text{lock}(TR, X, i, R_j) \).

A transaction \(<s₁, ..., sₘ> \) is **two-phased** if there is some step \(sᵢ \) such that \(sᵢ \) is an unlock statement, and for no \(j, m > j > i \), is \(s_j \) a lock statement.

A **history** \(h \) for transactions \(TR₁, ..., TRₙ \) is a sequence of statements such that for each \(i \), every statement of \(TRᵢ \) appears in \(h \) exactly once along with the index \(i \) of \(TRᵢ \). (Formally, \(h \) is a sequence of pairs \(<i, sᵢ> \).), and if \(s_k \) precedes \(s_j \) in \(TRᵢ \), then \(<i, s_k> \) precedes \(<i, s_j> \) in \(h \).

A history \(h = <s₁, ..., sₙ> \) defines a function on instances by the composition of the functions associated with the operations in \(h \).

We next a "Lock" function which is analogous to the lock function for transactions (It has one additional argument for the history):
Lock(h, TR_k, M, i, R_j) = ∅ for j = 1, ..., N

If s_i is <k, lock M R_i e>
 Lock(h, TR_k, M, i, R_j) = Lock(h, TR_k, M, i-1, R_j) U e
If s_i is <k, unlock M R_j e>
 Lock(h, TR_k, M, i, R_j) = Lock(h, TR_k, M, i-1, R_j) - e
Otherwise
 Lock(h, TR_k, M, i, R_j) = Lock(h, TR_k, M, i-1, R_j)

A history h for TR_1, ..., TR_n is **serial** if there is some permutation <p_1, ..., p_n> of {1, ..., n} such all statements of TR_{p_i} appear in h before those of TR_{p_{i+1}}, for i = 1, ..., k-1. Two histories h_1, h_2 are **equivalent** if they have the same value on every state. A history h is **serializable** if it is equivalent to a serial history. It is the serializable histories which are "correct" [Papa], [BeGo2]. Although histories always preserve the schema FDs, unserializable histories may violate other database constraints (for example, the sum of one set of attributes equals the sum of another).

A history h = <s_1, ..., s_m> for transactions TR_1, ..., TR_n is **legal** if for each k, k' = 1, ..., n, with k ≠ k', each i = 1, ..., m and each j = 1, ..., N, we have:

\[
Lock(h, TR_k, X, i, R_j) \cap \\
(Lock(h, TR_{k'}, S, i, R_j) \cup Lock(h, TR_k, X, i, R_j)) = ∅
\]

Legal histories can also be determined by the following equivalent property:

For every lock statement <k, lock M R_j e> (at step i) in h and every TR_{k'} ≠ TR_k:
(1) If \(M = S \), then \(e \cap \text{Lock}(h, TR_k, X, i, R_j) \equiv \emptyset \).

(2) If \(M = X \), then \(e \cap \text{Lock}(h, TR_k, X, i, R_j) \equiv \emptyset \) and
\(e \cap \text{Lock}(h, TR_k, S, i, R_j) \equiv \emptyset \).

The main theorem of this section shows that our definitions have the desired properties:

Theorem 2. Legal histories of two-phased well-formed transactions are serializable.

Proof. Let \(h \) be a history for \(TR_1, \ldots, TR_n \). We assume that the first unlock in \(h \) belongs to \(TR_1 \). We will show that \(h \) is equivalent to the history \(TR_1 h' \), where \(h' \) is obtained from \(h \) by deleting all of \(TR_1 \)'s statements. The theorem will then follow by induction on the number of transactions. To show that we can move \(TR_1 \)'s statements to the front, it is sufficient to show that if a portion of \(h \) has the form:

\[
\cdots <p, \text{stmt}_p> <l, \text{stmt}_l> \cdots \\
\text{step m-}
\]

then the history obtained by exchanging these two statements is equivalent to the original. We consider the following cases:

1. \(TR_p \) locks or unlocks \(R_j \) and \(TR_1 \) refers to a different relation \(R_i \):

\[
\cdots <k, \text{un/lock} M R_j e'> <l, \text{op/un/lock} M R_i e> \cdots
\]

2. \(TR_1 \) locks or unlocks \(R_i \) and \(TR_p \) refers to a different relation \(R_j \):

\[
\cdots <k, \text{op/un/lock} R_j e'> <l, \text{un/lock} M R_i e> \cdots
\]

3. Both \(TR_p \) and \(TR_1 \) put locks on the same relation:

\[
\cdots <k, \text{lock} M R_i e'> <l, \text{lock} M R_i e> \cdots
\]

4. \(TR_p \) locks part of \(R_i \), and \(TR_1 \) unlocks part of \(R_i \):
... \(<k, \text{lock} M R_i e'> <l, \text{unlock} M R_i e> \) ...

(5) \(T_R^p \) unlocks part of \(R_i \), and \(T_{R_1} \) locks part of \(R_i \):

... \(<k, \text{unlock} M R_i e'> <l, \text{lock} M R_i e> \) ...

(6) \(T_R^p \) unlocks part of \(R_i \), and \(T_{R_1} \) unlocks part of \(R_i \):

... \(<k, \text{unlock} M R_i e'> <l, \text{unlock} M R_i e> \) ...

(7) \(T_R^p \) locks or unlocks part of \(R_i \), and \(T_{R_1} \) does an operation on \(R_i \):

... \(<k, \text{un/lock} M R_i e'> <l, \text{op} R_i e> \) ...

(8) \(T_R^p \) does an operation on \(R_i \), and \(T_{R_1} \) locks or unlocks part of \(R_i \):

... \(<k, \text{op}' R_i e'> <l, \text{un/lock} M R_i e> \) ...

(9) Both \(T_R^p \) and \(T_{R_1} \) do operations (on not necessarily the same relation):

... \(<k, \text{op}' R_j e'> <l, \text{op} R_i e> \) ...

When at most one operation is involved, we must show that the result of reversing the two statements will still be a legal history since it is clear that the function defined by the history will not change. When two operations are involved, we must show that they do not "interfere" with each other.

The first eight cases will be argued intuitively:

Case 1: The lock or unlock of \(T_R^p \) will still be legal when its position is switched since the lock expressions for \(R_j \) will not change.

Case 2: The argument is the same as in case 1.

Case 3: Since the empty intersection property holds after both locks are made, it will also hold after any one of them is made.

Case 4: If we do \(T_{R_1} \)'s unlock before \(T_R^p \)'s lock, we cannot violate the empty intersection property of the history since the lock expressions when \(T_R^p \) requests its lock will only be smaller.
Case 5: This case cannot occur since TR₁ has the first unlock in h and because TR₁ is two-phased.

Case 6: Unlocks can only make lock expressions smaller. The empty intersection property cannot be violated by reversing the order of two unlock statements.

Case 7: The effect of the operation cannot change, and the lock or unlock of TRₚ will still be legal since the operation of TR₁ does not change lock expressions.

Case 8: The argument is the same as in case 7.

Case 9: Let I₀ be the result of <s₁,...,sₘ₋₂> on instance I. Define:

\[I₁ = (\text{op}' R_j e')(I₀) \]
\[I₂ = (\text{op} R₁ e)(I₀) \]
\[I₃ = (\text{op}' R_j e')(I₂) \]
\[I₄ = (\text{op} R₁ e)(I₁) \]

What we want to show is that I₃ = I₄. We first show that e(I₀) = e(I₁).

Let RS be the read set of e. It is sufficient to show that RS(I₀) = RS(I₁). Because we have:

\[e' \ll \text{Lock}(h, TR_p, X, m, R_j), \]
\[RS_j \ll \text{Lock}(h, TR₁, S, m, R_j) \text{ and } \]
\[\text{Lock}(h, TR_p, X, m, R_j) \cap \text{Lock}(h, TR₁, S, m, R_j) \equiv \emptyset, \]

we have RS_j \cap e' \equiv \emptyset. By property (3) of Theorem 1, we then have RS(I₀) = RS(I₁), and so e(I₀) = e(I₁).
By an analogous argument, we can show that $e'(I \emptyset) = e'(I_2)$.

Now if $i \neq j$, we have the following, where \pm' denotes either set union or set difference, depending on which particular operations op and op' are:

$$I_{3j} = I_{2j} \pm e'(I_2)$$
$$= I_{0j} \pm e'(I_2)$$
$$= I_{0j} \pm e'(I \emptyset)$$
$$= I_{1j}$$
$$= I_{4j},$$

and

$$I_{4i} = I_{1i} \pm e(I_1)$$
$$= I_{0i} \pm e(I_1)$$
$$= I_{0i} e(I \emptyset)$$
$$= I_{2i}$$
$$= I_{3i}$$

Other components have not changed, hence $I_3 = I_4$.

If $i = j$, we have $\text{Lock}(h, TR_p, X, m, i) \cap \text{Lock}(h, TR_1, X, m, i) = \emptyset$. Therefore, $e(I \emptyset) \cap e'(I \emptyset) = \emptyset$, and we have:

$$I_{3i} = I_{2i} \pm e'(I_2)$$
$$= (I_{0i} \pm e(I \emptyset)) \pm e'(I_2)$$
$$= (I_{0i} \pm e(I \emptyset)) \pm e'(I \emptyset)$$
$$= (I_{0i} \pm e'(I \emptyset)) \pm e(I \emptyset)$$
$$= (I_{0i} \pm e'(I \emptyset)) \pm e(I_1)$$
$$= I_{1i} \pm e(I_1)$$
$$= I_{4i}.$$

Hence we also have in this case $I_3 = I_4$.

\Box
4. Tableaux

In the last section we defined a general framework for a lock-based concurrency control which we called expression locking. We guarantee consistency of the database by ensuring that transactions are well-formed and two-phased and that histories are legal. The conditions for well-formed transactions and for legal histories require that we be able to determine when an expression is universally empty and when one expression is contained in another. In this section we develop algorithms for these problems using the tableau technique.

Tableaux (e.g., [KlPr], [ASU2], [ChMe], [SaYa]) are a shorthand notation for relational expressions. Previous definitions of tableaux have modeled only projections, equi-selections and natural joins on universal instances [ASU2] or projections, equi-selection and equi-restriction and cross product [KlPr] [ChMe] on arbitrary instances. Here however, we need a more general concept of tableau which can represent relational algebra operators in which restrictions may have the "less-than" operator. To motivate the definition, we start by considering the conjunctive queries of Chandra and Merlin. (For more details on the tableaux presented here, see [Klug].)

A conjunctive query is a first-order predicate calculus formula of the form:

\[(x_1, \ldots, x_k) : \exists x_{k+1} \ldots x_m. A_1 \land \ldots \land A_r,\]

where each \(A_i\) is an atomic formula \(R_j(t_1, \ldots, t_p)\), where each term \(t\) is a variable or a constant. The tableau for such a query is obtained by collecting, for each relation \(R_j\), the arguments of each atomic formula for \(R_j\) into a table. We could generalize the set of formulas considered conjunctive queries by extending the allowable atomic formu-
las: Allow atomic formulas of the form \((t_1 < t_2)\), again where the \(t\)'s are variables or constants. We can collect the old atomic formulas into tables as before, and the new ones we can collect into a boolean matrix which has a row and a column for each variable and constant appearing in the query. The formal definitions follow. (See the appendix for a discussion of these definitions.)

The **transitive closure** of a binary relation \(R\) (in the mathematical sense), denoted \(R^*\), is defined by the rules:

\[
\begin{align*}
R \subseteq R^* \\
R^* \circ R \subseteq R^*
\end{align*}
\]

The set \(V\) of **variables** is the set \(\{a_1, a_2, a_3, \ldots\}\) of subscripted "a"s. The set \(Y\) of **symbols** is \(W \cup N\). We associate a **natural ordering** on \(Y\) as follows: \(N\) has its usual ordering; \(W\) is ordered by index value, and every element of \(N\) is less than every element of \(W\).

A **tableau** \(T\) of **degree** \(m\) is an \(N+2\)-tuple \(<B, S, T_1, \ldots, T_N>\) such that \(S \in Y^m\), for each \(i=1, \ldots, N\), \(T_i \subseteq Y^{\deg(R_i)}\), every variable in \(S\) appears in some \(T_i\), and \(B\) is a boolean function on the symbols in \(T_1, \ldots, T_N\). \(S\) is called the **summary**. We call \(B\) the **LT-matrix** (less-than matrix) because it is intended to represent the "less-than" relations between variables and since it can be considered to be a boolean matrix. We will treat \(B\) as a matrix, a boolean function or a binary relation as needed, and will often use the equivalent notation "\(B(x, y) = 1\)" or "\(x \preceq y\)" or "\((x, y) \in B\)". We consider the empty tableau, \(<\emptyset, \ldots, \emptyset>\), to be a tableau of any degree.

A **tableau set** of degree \(m\) is a finite set of tableaux of degree \(m\).
If \(X \) is a tuple, a tuple set, a tableau or a tableau set, we let \(\mathbb{Y}(X) \) denote the set of symbols occurring in \(X \).

A valuation \(r \) for tableau \(T \) and instance \(I = \langle D, O, I_1, \ldots, I_N \rangle \) is a function \(\mathbb{Y}(T) \rightarrow D \) which is the identity on \(\mathbb{N} \subseteq \mathbb{Y} \). Valuations can be extended to functions on tuples and functions on sets of tuples by component-wise and element-wise extension.

Given a tableau \(T = \langle B, S, T_1, \ldots, T_N \rangle \), if \(B \) and \(\langle \mathbb{N} \rangle \) are union compatible, i.e., if \((B \cup \langle \mathbb{N} \rangle)^* \) is asymmetric, then \(T \) determines an instance \(I = \langle D, O, I_1, \ldots, I_N \rangle \) by defining \(D = \mathbb{N} \cup \mathbb{Y}(T) \), \(O = (B \cup \langle \mathbb{N} \rangle)^* \), and \(I_i = T_i, \ i=1,\ldots,N \). We will often simply consider \(T \) itself to be an instance.

A tableau \(T = \langle B, S, T_1, \ldots, T_N \rangle \) may also be considered to be a function \(\mathbb{I} \rightarrow \mathbb{N}^{\text{deg}(T)} \) by defining:

\[
T(I) = \{ r(S) : r \text{ is a valuation for } T, \forall i \ r(T_i) \subseteq I_i, \ r(B) \subseteq O \}
\]

It is easy to see that if \(T \) can be an instance, then \(S \in T(T) \).

A tableau set \(Y = \{ T_1, \ldots, T_k \} \) may be considered to be a function by defining:

\[
Y(I) = T_1(I) \cup \ldots \cup T_k(I).
\]

As with expressions, we want to consider two versions of "contained in" for tableaux and for tableau sets. We will write \(T_1 \subseteq T_2 \) if \(T_1(I) \subseteq T_2(I) \) for all instances \(I \). We will write \(T_1 \ll T_2 \) if \(T_1(S) \subseteq T_2(S) \) for all states \(S \). The same notation will also be used for tableau sets.
If \(T_1 \subseteq T_2 \) and \(T_2 \subseteq T_1 \), we will write \(T_1 \equiv T_2 \). If \(T_1 \ll T_2 \) and \(T_2 \ll T_1 \), we will write \(T_1 \asymp T_2 \).

Next, we want to demonstrate that there is a one-to-one correspondence between elements of \(E \) and tableau sets.

If \(e \) is an expression and \(T \) a tableau set, we write \(e \equiv T \) if \(e(I) = T(I) \) for all instances \(I \). We define a transformation \(\tau \) from expressions to tableau sets such that \(e \equiv \tau(e) \) for all expressions \(e \):

1. For \(R_i \in E \) of degree \(m \), \(\tau(R_i) = \{T\} \), where \(T \) is the tableau whose LT-matrix is identically \(0 \), whose summary is \(\langle a_1, \ldots, a_m \rangle \), whose \(i \)-th component is \(\{\langle a_1, \ldots, a_m \rangle\} \) and whose other components are empty.

2. For \(\{c\} \in E \), \(\tau(\{c\}) = \{T\} \), where \(T \) is the tableau whose LT-matrix is identically \(0 \), whose summary is \(\langle c \rangle \), and whose other components are empty.

3. For a projection, \(e[X] \), if \(\langle B, S, T_1, \ldots, T_N \rangle \in \tau(e) \), then \(T \in \tau(e[X]) \), where \(T \) has the form \(\langle B, S[X], T_1, \ldots, T_N \rangle \), i.e., the summary is projected on the domains in \(X \), and other components are the same.

4. For an equi-restriction, \(e[X=Y] \), if \(\langle B, S, T_1, \ldots, T_N \rangle \in \tau(e) \), where \(S = \langle s_1, \ldots, s_m \rangle \), then \(T \in \tau(e[X=Y]) \), where \(T \) is obtained as follows: If \(s_X \) and \(s_Y \) are the same symbol, then \(T = \langle B, S, T_1, \ldots, T_N \rangle \). If \(s_X \) and \(s_Y \) are unequal constants, then \(T \) is the empty tableau. Otherwise assume that the symbol \(s_X \) precedes the symbol \(s_Y \) in the natural ordering. Then \(T \) is obtained by replacing all occurrences of \(s_Y \) by \(s_X \). (If we consider \(B \) a matrix this means OR-ing the \(s_Y \)-row into the \(s_X \)-row, OR-ing the \(s_Y \)-column into the \(s_X \)-column, and removing the \(s_Y \)-column and \(s_Y \)-row.)

For a less-than-restriction, \(e[X<Y] \), if
\(<B, S, T_1, \ldots, T_N> \in \tau(e), \) where \(S = \langle s_1, \ldots, s_m \rangle, \) \(T \in \tau(e[X<Y]),\)
where \(T\) is obtained as follows: If \(s_X\) and \(s_Y\) are distinct constants, then \(T\) is the empty tableau. Otherwise the LT-matrix for \(T\) is obtained from \(B\) by setting \(B(s_X, s_Y) = 1.\) The other components of \(T\) are \(S, T_1, \ldots, T_N,\) unchanged.

(5) For cross product, \(e_1 \times e_2,\) suppose \(T_1 = \langle B_1, S_1, T_{11}, \ldots, T_{1N} \rangle \in \tau(e_1)\) and \(T_2 = \langle B_2, S_2, T_{21}, \ldots, T_{2N} \rangle \in \tau(e_2).\) Let \(v\) be the largest variable subscript in \(T_1\) and let \(m\) be the smallest variable subscript in \(T_2.\) Define the renaming function \(g: V \rightarrow V\) by \(g(a_j) = a_{j+v+1-m},\) and \(g(n) = n\) for \(n \in \mathbb{N}.\) This maps variables of \(T_2\) to the set of variables with the smallest subscripts which is disjoint from the set of variables in \(T_1.\) Let \(T'\) be the tableau defined by:

\[
B' = B_1 \cup g(B_2) \\
S' = S_1 \cup g(S_2) \\
T' = T_{1i} \cup g(T_{2i})
\]

Here '\(^{\cup}\)' denotes concatenation. Then \(T' \in \tau(e_1 \times e_2).\)

(6) For union, \(\tau(e_1 \cup e_2) = \tau(e_1) \cup \tau(e_2).\)

Lemma 1. For all \(e \in E,\) \(e \equiv \tau(e).\)

Proof. The proof is by induction on the number of operators in the expression. See [Klug]. □

The existence of the reverse transformation is stated by the next theorem.
Theorem 3. For every tableau set Y there is an expression $e \in E$ such that $e \equiv Y$.

Proof. A very formal proof would require considerable notational machinery, so we argue informally here.

If $Y = \{T_1, \ldots, T_k\}$, and we get expressions e_i with $e_1 \equiv T_i$, $i=1, \ldots, k$, then we will have $Y \equiv e_1 \cup \ldots \cup e_k$. Hence we need only consider a tableau $T = <B, S, T_1, \ldots, T_N>$. We build up e in several steps. First, we build a cross product c which has a term R_i for each row in T_i ($i=1, \ldots, N$). Then we add an equi-restriction to c for every pair of occurrences (excluding B and S) of the same variable such that if if column A of the m-th row of T_i and column B of the n-th row of T_j are the same variable, then column A of the m-th occurrence of R_i in c is equated to column B of the n-th occurrence of R_j in c. For every occurrence of a constant symbol 'k' in T (excluding B and S) we add an equi-selection term to c such that if 'k' occurs in column A of the m-th row of T_i, then the selection term refers to column A of the m-th occurrence of R_j in c. For every pair of variables x, y in T such that $B(x, y) = 1$ we add a less-than-restriction term to c such that if x occurs in column A of the m-th row of T_i and y occurs in column B of the n-th row of T_j, then the restriction refers to column A of the m-th occurrence of R_i in c and column B of the n-th occurrence of R_j in c (any one such pair of occurrences will do). If one of x, y is a constant symbol, we construct a less-than-selection term similarly.

Finally, we add a projection corresponding to the summary of T. If the summary contains a constant 'k', then we add a term $\{k\}$ to the cross product and add an element to the projection list for this term.

For every variable in the summary we add an element to the projection list which is determined by finding any occurrence of this variable in the T_i's and using the corresponding column of c. □
We now have an equivalence between tableau sets and expressions in E. To test for well-formed transactions and for legal histories, we need some computational procedures for tableau sets. The concepts of "chase" and of "containment mapping" will be the appropriate ones.

A chase consists of a sequence of transformations on a tableau set which preserves equivalence. In this paper, we consider transformations determined by schema FDs and ones which manipulate the LT-matrix.

The rules for changing the LT-matrix need to infer all "less-than" relationships among symbols of a tableau. Since it is possible to have, say, $B(a_1,3)=1$ and $B(4,a_2)=1$, but $B(3,4)=\emptyset$, we need to include the order on natural numbers in these rules. Let $\mathbb{N}(T)$ be the constants in tableau $T = \langle B, S, T_1, \ldots, T_N \rangle$, and let $<_{\mathbb{N}(T)}$ be $\prod \langle \mathbb{N}(T) \times \mathbb{N}(T) \rangle$. Then we will write B^+ for $(B \cup <_{\mathbb{N}(T)})^*$. This is a closure of B with the ordering on the constants taken into account.

The rules are first defined for tableaux.

F-Rules. For each schema FD $R_i: Z \rightarrow A$ there is an F-rule which is defined as follows: If $T = \langle B, S, T_1, \ldots, T_N \rangle$ and there are $t_1, t_2 \in T_i$ such that $t_1[Z] = t_2[Z]$ and $t_1[A] \neq t_2[A]$, then

(a) If $t_1[A]$ and $t_2[A]$ are unequal constants, replace T by the empty tableau.

(b) Otherwise, if they are unequal symbols s_1, s_2, and s_1 is less than s_2 in the natural ordering, replace all the occurrences in T of s_2 by occurrences of s_1 where B is considered to be a set of ordered pairs. (If we consider B a matrix this means OR-ing the s_2-row into the s_1-row, OR-ing the s_2-column into the s_1-column, and removing the s_2-column and s_2-row.)
LT-Rules. If $T = \langle B, S, T_1, \ldots, T_N \rangle$, replace T by the empty tableau if B^+ has a non-zero diagonal. Otherwise replace T by $\langle B^+, S, T_1, \ldots, T_N \rangle$.

For a tableau set Y, apply the above rules to the elements of Y.

The transformations derived from these rules have the following properties:

Lemma 2. Let T' be the result of applying an F-rule or an LT-rule to T. Then $T \preceq T'$.

Lemma 3. A given set of F-rules can be applied to a tableau only a finite number of times.

Lemma 4. If U and V are tableaux obtained from T by application of F-rules and LT-rules such that no rule can be applied to U or V, then U and V are identical.

These lemmas (Proofs are in [Klug].) mean that the following chase function is well-defined:

chase(T) is the final tableau obtained from T by applying all possible F-rules and LT-rules to T. Chase(Y) is the final tableau set obtained from Y by applying all possible F-rules and LT-rules to members of Y.

Some basic properties of the chase function are the following (proofs in [Klug]):

Theorem 4. Let $T' = \text{chase}(T)$. Then, T', as an instance, is a state.
Theorem 5. \(T \preceq \text{chase}(T) \).

It has been shown in [ASU2] and in [ChMe] that the 'C' relation for "equality tableaux" and "equality tableau" sets can be determined by certain row-preserving functions on symbols. We next generalize this result to inequality tableaux.

A containment mapping \(f \) from tableau \(T_1 \) to tableau \(T_2 \) is a function \(\mathbb{Y}(T_1) \rightarrow \mathbb{Y}(T_2) \) which is one-to-one from the summary of \(T_1 \) onto the summary of \(T_2 \), which is the identity on constants in \(T_1 \), and which has the properties that \(f(B_1) \subseteq B_2^+ \) and \(f(T_{1i}) \subseteq T_{2i} \) for \(i=1,\ldots,N \).

Note that there are only a finite number of possible containment mappings from one tableau to another.

Theorem 6. Let \(T_1, T_2 \) be tableaux not equivalent to the empty tableau.

Then

1. \(T_1 \subseteq T_2 \) iff there is a containment mapping \(f: T_2 \rightarrow T_1 \).

2. If \(T_1 \) is a state (considered as an instance), then \(T_1 \preceq T_2 \) iff there is a containment mapping \(f: T_2 \rightarrow T_1 \).

Proof. (1) Suppose a containment mapping \(f: T_2 \rightarrow T_1 \) exists. Let \(I \) be an instance and suppose \(t \in T_1(I) \). There is a valuation \(r: \mathbb{Y}(T_1) \rightarrow \mathbb{D} \) with \(t = r(S_1) \), \(r(T_{1i}) \subseteq I_i \) (\(i=1,\ldots,N \)), and \(r(B_1) \subseteq O \). The valuation \(r^f \) for \(T_2 \) is such that \((r^f)(S_2) = r(S_1) = t \), \((r^f)(T_{2i}) \subseteq r(T_{1i}) \subseteq I_i \), and \((r^f)(B_2) \subseteq r(B_1^+) \subseteq O \). \(r(B_1) \subseteq O \) implies \(r(B_1^+) \subseteq O \). Thus \(t \in T_2(I) \), and \(T_1 \subseteq T_2 \).

Suppose \(T_1 \subseteq T_2 \). Then with \(T_1 \) as an instance, \(S_1 \in T_1(T_1) \), and so \(S_1 \in T_2(T_1) \). There is then a valuation \(r \) such that \(S_1 = r(S_2) \),
\[r(T_{21}) \subseteq T_{11}, \text{ and } r(B_2) \subseteq (B_1 \cup \mathbb{M})^*. \] The last property can, in fact, be written \[r(B_2) \subseteq B_1^+. \] Thus \(r \) is a containment mapping from \(T_2 \) to \(T_1 \).

(2) From part (1), we know that existence of a containment mapping \(f: T_2 \rightarrow T_1 \) implies \(T_1 \supseteq T_2 \), and \(T_1 \ll T_2 \) always follows. If \(T_1 \) is a state and \(T_1 \ll T_2 \), then \(S_1 \in T_1(T_1) \) implies \(S_1 \in T_2(T_1) \). We proceed as above to get the containment mapping. \(\Box \)

Corollary. For any tableaux \(T_1, T_2 \), \(T_1 \ll T_2 \) iff there is a containment mapping \(f: T_2 \rightarrow \text{chase}(T_1) \).

Theorem 7. Let \(Y_1 \) and \(Y_2 \) be tableau sets.

(1) \(Y_1 \subseteq Y_2 \) iff there is a containment mapping from each element of \(Y_2 \) to some element of \(Y_1 \).

(2) \(Y_1 \ll Y_2 \) iff there is a containment mapping from each element of \(Y_2 \) to the chase of some element of \(Y_1 \).

Theorem 8. Let \(Y \) be a tableau set, and let \(Y' = \text{chase}(Y) \). Then \(Y \equiv \emptyset \) if and only if \(Y' \) consists of the empty tableau.

Proof. If \(Y' \) contains only the empty tableau, then \(Y \equiv \emptyset \) since \(Y(S) = Y'(S) = \emptyset \) for all states. If \(Y' \) contains a nonempty tableau \(T \), then \(Y \) is not u.e. since \(\emptyset \neq T(T) \subseteq Y'(T) \), and \(T \) as an instance is a state. \(\Box \)

In defining transactions and locking in the previous section, we needed to derive expressions which pick out the "read set" of an operation. We now give the definition of read set in terms of tableaux and we give the proof of Theorem 1.
Let \(T = \langle B, S, T_1, \ldots, T_N \rangle \) be a tableau, and write \(T_{ij} \) for the \(j \)-th row of \(T_i \) (in some arbitrary ordering of the rows). For each \(i=1, \ldots, N \) and for each \(j=1, \ldots, \# \text{rows of } T_i \), let \(RS_{ij} \) be the tableau \(\langle B, T_{ij}, T_1, \ldots, T_N \rangle \). Then \(RS_i \) is the tableau set \(\{ RS_{ij} : j=1, \ldots, \# \text{rows of } T_i \} \). The read set for \(T \), \(RS(T) \), is the \(N \)-tuple \(\langle RS_1, \ldots, RS_N \rangle \). If \(Y \) is a tableau set \(\{ T_1, \ldots, T_n \} \), we define \(RS(Y) \) to be the componentwise union of \(\{ RS(T_1), \ldots, RS(T_n) \} \).

It is not hard to see that the definition of read set for tableaux is equivalent to the one given for expressions.

The two important properties of read sets that justify its use in our locking scheme are that a read set for a tableau set \(Y \) can be applied to an instance without changing the value of \(Y \) on that instance, and that the read set is the "smallest" function on instances which has this property (if \(Y \) itself is optimal). The formal statements are now given.

A tableau \(T \) is optimal if every containment mapping \(f:T \rightarrow T \) is one-to-one and onto. (See [ASU1] and [ChMe] for justification of this definition.) A tableau set \(Y \) is optimal if each element of \(Y \) is optimal and if \(Y \neq Y-\{T\} \) for every \(T \) in \(Y \).

Lemma 5. Let \(T = \langle B, S, T_1, \ldots, T_N \rangle \) be a tableau with read set \(\langle RS_1, \ldots, RS_N \rangle \). Then for all instances \(I \) and \(j=1, \ldots, N \),

\[
RS_j(I) = U \left\{ r(T_j) : r \text{ is a valuation, } r(T_i) \subseteq I_i, \ i=1, \ldots, N, \ r(B) \subseteq 0 \right\}
\]

Proof. Left to the reader.
Theorem 9. Let T be a tableau with read set $<RS_1, \ldots, RS_N>$.

(1) For all instances I, $T(I) = T(RS(I))$.

(2) Let $F = <F_1, \ldots, F_N>$ be an N-tuple of tableau sets with the properties that $F_i(I) \subseteq I_i$ (i=1,...,N) for all instances I, and $T(F(I)) = T(I)$ for all instances I. If T is optimal, then $RS_i \subseteq F_i$, i=1,...,N.

(3) If T' is a tableau of degree $\deg(R_j)$ then for all instances I, if $RS_j(I) \cap T'(I) = \emptyset$, then for i=1,...,N, $RS_i(I') = RS_i(I'') = RS_i(I)$, where I', I'' are such that $I'_j = I_j \cup T'(I)$, $I''_j = I_j - T'(I)$, and $I'_k = I''_k = I_k$ for $k \neq j$.

Proof. (1) By the previous lemma, it is easy to see that $RS_i(I) \subseteq I_i$, i=1,...,N. Hence $T(RS(I)) \subseteq T(I)$. Now suppose $t \in T(I)$. There is a valuation r such that $t = r(S)$, $r(T_i) \subseteq I_i$ and $r(B) \subseteq B'_i$. Then we also have $t \in T(I')$, where $I' = <D, O, r(T_1), \ldots, r(T_N)>$. Now $I' \subseteq RS(I)$ by the lemma, so $T(I') \subseteq T(RS(I))$ and $t \in T(RS(I))$.

(2) Each RS_i is a tableau set, and it is sufficient to show that $RS_{ij} \subseteq F_i$ for every member tableau RS_{ij} of RS_i. We will verify this by finding a containment mapping $f:F' \rightarrow RS_{ij}$ where is F' is some member tableau of F_i.

Considering T as an instance, we have $F_j(T) \subseteq T_j$ for j=1,...,N. Also, since $S \in T(T) = T(F(T))$, we have a valuation r such that $S = r(S)$, $r(T_j) \subseteq F_j(T)$ (j=1,...,N) and $r(B) \subseteq B^+$. Combining, we get $r(T_j) \subseteq T_j$ for j=1,...,N, so r is a containment mapping $T \rightarrow T$. Since T is optimal, r must be onto: $r(T_j) \rightarrow T_j$. Then $T_j = r(T_j) \subseteq F_j(T) \subseteq T_j$, so $F_j(T) = T_j$. In particular, $T_{ij} \in F_i(T)$. There is tableau F' in F_i with $T_{ij} \in F'(T)$. As we have seen before, this means there is a containment mapping $F' \rightarrow RS_{ij}$ since T_{ij} is the summary of
\[\text{RS}_{1j} \]

(3) We have the following formulas from the lemma:

\[
\begin{align*}
\text{RS}_{j}^i(\text{I}) &= \{ r(T_i) : r(T_i) \subseteq I_i, i=1, \ldots, N, r(B) \subseteq O \} \\
\text{RS}_{j}^i(\text{I'}) &= \{ r(T_i) : r(T_i) \subseteq I_i', i=1, \ldots, N, r(B) \subseteq O \} \\
\text{RS}_{j}^i(\text{I''}) &= \{ r(T_i) : r(T_i) \subseteq I_i'', i=1, \ldots, N, r(B) \subseteq O \}
\end{align*}
\]

Hence, to show that \(\text{RS}_j \) has the same value on \(\text{I}, \text{I}' \) and \(\text{I}'' \), it sufficient to show that for any valuation \(r \) and any \(i=1, \ldots, N \), \(r(T_i) \subseteq I_i \) iff \(r(T_i) \subseteq I_i' \) iff \(r(T_i) \subseteq I_i'' \). For \(i \neq j \), this is clear. If \(r(T_j) \subseteq I_j \), then \(r(T_j) \cap T'(I) = \emptyset \). Therefore, \(r(T_j) \subseteq I_j \cup T'(I) \) and \(r(T_j) \subseteq I_j - T'(I) \). If \(r(T_j) \subseteq I_j - T'(I) \), then, clearly, \(r(T_j) \subseteq I_j \). If \(r(T_j) \subseteq I_j \cup T'(I) \), we must have \(r(T_j) \subseteq I_j \) since \(r(T_j) \cap T'(I) \subseteq \text{RS}_j(I) \cap T'(I) = \emptyset \). \(\square \)

Theorem 10. Let \(Y \) a tableau set with read set \(<\text{RS}_1, \ldots, \text{RS}_N> \).

(1) Then for all instances \(I \), \(Y(I) = Y(\text{RS}(I)) \).

(2) Let \(F = <F_1, \ldots, F_N> \) be an \(N \)-tuple of tableau sets with the properties that \(F_i(I) \subseteq I_i \) \((i=1, \ldots, N) \) for all instances \(I \), and \(Y(F(I)) = Y(I) \) for all instances \(I \). If \(Y \) is optimal, then for each \(i=1, \ldots, N \), \(\text{RS}_i \subseteq F_i \).

(3) If \(T' \) is a tableau of degree \(\text{deg}(R_j) \) then for all instances \(I \), if \(\text{RS}_j(I) \cap e'(I) = \emptyset \), then \(\text{RS}_i(I') = \text{RS}_i(I'') = \text{RS}_i(I) \), where \(I', I'' \) are such that \(I'_j = I_j \cup T'(I), I''_j = I_j - T'(I), \) and \(I'_{k} = I''_{k} = I_k \) for \(k \neq j \).

Proof. (1) This follows from part (1) of the last theorem.

(2) Let \(Y = \{T_1, \ldots, T_k\} \). The condition \(Y(F(I)) = Y(I) \) we may write as \(T_1(F(I)) \cup \ldots \cup T_k(F(I)) = T_1(I) \cup \ldots \cup T_k(I) \). In particular, this holds for \(T_i \) as an instance. Then \(S_i \subseteq T_i(T_i) \subseteq T_1(F(T_i)) \cup \ldots \)
U T_k(F(T_l)) so there is some j with S_i \in T_j(F(T_l)). But with T_j(F(T_l)) \subseteq T_j(T_l) we have S_i \in T_j(T_l). As before, this means T_l \subseteq T_j. This contradicts the optimality of Y unless i = j. Thus S_i \in T_i(F(T_l)). We may proceed as in the previous theorem to get RST_l \subseteq F_j, j = 1, \ldots, N. The union gives RS_j \subseteq F_j.

(3) The read sets for the tableaux in Y will satisfy the conditions of the last theorem. □

5. Tableau Based Lock Algorithms

In Section 3 we formulated a locking scheme using expressions rather than simple predicates. We allowed the effects of successive locks and unlocks to accumulate with the "lock" and "Lock" functions. We showed that a history is serializable if the transactions are well-formed and two-phased and if the history is legal. The two-phased property can be determined trivially. To test for the well-formed property, we must be able to determine the '\equiv' relation between an expression to be accessed and a locking expression. To test for the legal property, we must be able to determine the '\equiv \emptyset' property for the intersection of an expression to be locked and a lock expression. Without any restrictions on the transactions, the values of the lock function will be arbitrary expressions in the set \(\mathbb{E}^- \), and the '\equiv \emptyset' and '\ll' relations will be undecidable [Solo]. However, when the transactions are two-phased, these relations can be determined (using tableaux). From Section 4 we know how to determine if \(e \equiv \emptyset \) or if \(e_1 \ll e_2 \) when \(e, e_1 \) and \(e_2 \) are members of \(\mathbb{E} \). We now extend these procedures to some simple cases involving the set difference operator. These will be the cases encountered if the transactions are two-phased.
Theorem 11. If TR is two-phased, then \(\text{lock}(\text{TR}, M, i, R_j) \) is equivalent to an expression of the form \(e_1 - e_2 \), for some \(e_1, e_2 \in E \).

Proof. Before the first unlock of TR, \(\text{lock}(\text{TR}, M, i, R_j) \) is itself a member of \(E \). After the first unlock of TR, there are no more locks, so \(\text{lock}(\text{TR}, M, i, R_j) \) has the form:

\[
(\cdots (((e_1 \cup \cdots \cup e_k) - e'_1) - e'_2) - \cdots - e'_m)
\]

where \(e_i \) and \(e'_i \) are in \(E \). This expression is equivalent to the expression:

\[
(e_1 \cup \cdots \cup e_k) - (e'_1 \cup \cdots \cup e'_m)
\]

\(\square \)

Theorem 12. Given \(e_1, e_2, e_3 \in E \), \(e_1 \ll e_2 - e_3 \) iff \(e_1 \ll e_2 \), and \(e_1 \cap e_3 \neq \emptyset \).

Proof. We have the following equivalent statements:

\(e_1 \ll (e_2 - e_3) \) is not valid \(\iff \)

\(\exists \text{ state } S, e_1(S) \not\subset (e_2(S)-e_3(S)) \) \(\iff \)

\(\exists \text{ state } S, \exists \text{ tuple } t, \\
\quad t \in e_1(S) \text{ and } t \not\in (e_2(S)-e_3(S)) \) \(\iff \)

\(\exists \text{ state } S, \exists \text{ tuple } t, \\
\quad t \in e_1(S) \text{ and } [t \not\in e_2(S) \text{ or } t \in e_3(S)] \) \(\iff \)

\(\exists \text{ state } S, \exists \text{ tuple } t, \\
\quad [t \in e_1(S) \text{ and } t \not\in e_2(S)] \text{ or } [t \in e_1(S) \text{ and } t \in e_3(S)] \) \(\iff \)

\(\exists \text{ state } S, \\
\quad e_1(S) \not\subset e_2(S) \text{ or } e_1(S) \cap e_3(S) \neq \emptyset \) \(\iff \)

\(e_1 \ll e_2 \) is not valid or \(e_1 \cap e_3 \) is not u.e.
\[\square \]

Theorem 13. Given \(e_1, e_2, e_3 \in \mathbb{E} \), \(e_1 \cap (e_2 - e_3) \equiv \emptyset \) iff \(e_1 \cap e_2 \sqsubseteq e_3 \).

Proof. We have the following equivalent statements:

1. \(e_1 \cap (e_2 - e_3) \) is not u.e. iff \(\exists \) state \(S \), \(\exists \) tuple \(t \), \(t \in e_1(S) \cap (e_2(S) - e_3(S)) \) iff \(\exists \) state \(S \), \(\exists \) tuple \(t \),
 \[t \in e_1(S) \text{ and } t \notin e_2(S) \text{ and } t \notin e_3(S) \] iff \(\exists \) state \(S \), \(\exists \) tuple \(t \),
 \[t \in (e_1(S) \cap e_2(S)) \text{ and } t \notin e_3(S) \] iff \(\exists \) state \(S \), (\(e_1(S) \cap e_2(S) \)) \(\notin e_3(S) \) iff \(e_1 \cap e_2 \sqsubseteq e_3 \) is not valid.

\[\square \]

6. **Extensions for the Update Operation**

In the preceding sections we have developed the idea of expression locks for the operations of insert and delete. We now discuss how updates can be handled.

Updates are operations which change the values of certain domains of selected existing tuples. In our formal model, an **update** is an operation of the form:

\[\text{update } f \ R \ e \]

Here, \(R \) is a schema relation, \(e \) is an expression of the same degree as \(R \), and \(f \), the **update function**, is a unary function from tuples to tuples. For example, "multiply the sal domain by 1.10" is an update function. Intuitively, an such update statement says that all the tuples in \(R \) which are selected by \(e \) should have the update function \(f \)
applied to them. Formally, the semantics of the update operation are given by the rule:

If \(I' = (\text{update } f R e)(I) \),
then \(I'_j = (I_j - e(I)) \cup f(I_j \cap e(I)) \),
and \(I'_i = I_i \) for \(i \neq j \).

Although it is sometimes said that an update is equivalent to a delete followed by an insert, this is really only true for updates which access tuples by specifying the values of all domains:

\[
\text{update } f R_j \{t_1, \ldots, t_n\} \equiv \\
\text{delete } R_j \{t_1, \ldots, t_n\}; \\
\text{insert } R_j \{f(t_1), \ldots, f(t_n)\}
\]

(Assuming \(\{t_1, \ldots, t_n\} \subseteq I_j \).) If this is not the case, the insert operation cannot "find" the tuples anywhere once they are deleted. (We can't do the insert first because it could violate FDs.) Thus the update operation must be considered in its own right.

Without any specific information on the nature of the update functions, we cannot extend the algorithms for determining the well-formed property or the legal property. This is because tuples which may be properly locked before the update may not be after it. For example, consider the following transactions:

TR5: Give every employee whose salary is less than $15000 a 10% raise.

TR6: Give every employee whose salary is greater than $16000 a 5% pay cut.

If TR5 and TR6 set the respective locks:
lock X emp emp[sal<15000]
lock X emp emp[sal>16000],

then the locks are disjoint, but the update function for TR₅ can move tuples out of the lock for TR₅ into the lock set of TR₆. (Note, however, that the update function of TR₆ does not move tuples into the lock set of TR₅.) For updates, we therefore to know that the result of the update will still be locked. That is, given an update function f, we need a decision procedure for the relation \(\ll_f \) defined by:

\[
e_1 \ll_f e_2 \iff \text{for all states } S, f(e_1(S)) \subseteq e_2(S)
\]

Then we can extend the definition of well-formed with the rule:

If \(s_i \) is "update f Rⱼ e",
then \(RS_k \ll \text{lock}(TR,S,i,R_k), \ k=1, \ldots, N, \)
where \(RS \) is the read set of e,
\[
e \ll \text{lock}(TR,X,i,Rⱼ) \text{ and } e \ll_f \text{lock}(TR,X,i,Rⱼ).
\]

If \(f \) is a "constant" update function, i.e., one which can be specified by a rule:

\[A = c, \]

where \(A \) is a domain and \(c \) is a constant, then \(\ll_f \) can easily be determined:

\[
e_1 \ll_f e_2 \iff (e_1 \times \{c\})[Z_A] \ll e_2.
\]

Here \(Z_A \) is a projection list which includes all domains of \(e_1 \) except \(A \), for which it substitutes the domain of \(\{c\} \). Other update functions, such as the "linear" update functions giving pay raises and pay
cuts, would require another approach.

7. An Example

Let us show that the expressions in the introductory example are always disjoint, i.e., that they have an intersection which is u.e. The expression to check is:

\[(\text{employee} \times \text{dept})
\quad [\text{edno} = \text{dno} \& \text{budget} > 1000000]
\quad [\text{eno}, \text{ename}, \text{sal}, \text{hiredate}, \text{edno}]
\]
\[\cap
\quad (\text{employee} \times \text{dept})
\quad [\text{edno} = \text{dno} \& \text{budget} < 500000]
\quad [\text{eno}, \text{ename}, \text{sal}, \text{hiredate}, \text{edno}]
\]

The tableau for this intersection is given in Figure 2. (It can be derived from the definition of the intersection in terms of the basic operations.) By applying the FD rule for the dependency dno→budget, we will replace all occurrences of \(a_{12}\) by \(a_9\). Then taking the \(^+\)-closure of \(B\) will give \((a_9, a_9) \in B^+\), so the tableau will be replaced by the empty tableau.

\[
\begin{array}{|l|l|}
\hline
\text{B} & \text{S} \\
\hline
(1000000, a_9) & \langle a_1, a_2, a_3, a_4, a_5 \rangle \\
(a_{12}, 500000) & \\
\hline
\text{employee} & \text{dept} \\
\hline
\mid a_1 & \mid a_5 \\
\mid a_2 & \mid a_7 \\
\mid a_3 & \mid a_8 \\
\mid a_4 & \mid a_9 \\
\mid a_5 & \mid a_{10} \\
\mid a_1 & \mid a_{11} \\
\mid a_2 & \mid a_{12} \\
\hline
\end{array}
\]

Figure 2. Intersection Tableau
8. Summary and Conclusions

In this paper we have introduced the notion of expression lock. Expression locks are more general than simple predicate locks, and they can allow concurrent execution of transactions which would have to run serially if only simple predicate locks were used. The traditional notions of well-formed transaction and legal history were generalized to handle locks on expressions. Well-formed transactions lock in share mode the "read set" of the expression being read for deletion or insertion. The read set is the smallest possible set of tuples which give the desired set of tuples.

When transactions are two-phased, the relational algebra expressions representing the locks held have a simple form for which the necessary algorithms exist for determining well-formedness (of transactions) and legality (of histories). The algorithms use the tableau technique. To be able to represent a wide class of relational algebra expressions, we extended the notion of tableau by adding a matrix representing "less-than" relationships between variables and between variables and constants.

The algorithms presented offer a practical approach for a database concurrency control method. Although the algorithm for determining well-formed transactions is NP-complete [ASU2], the cost can be amortized over the life of the (canned) transaction. Legality of histories, which must be tested at run time, uses the chase procedure with functional dependency rules, and this can be done in polynomial time [MaMS].
9. Appendix

There are two possible lines in the development of inequality tableaux. The one we have given has the following properties:

(A) (1) The inequality relations in a tableau are given by an arbitrary boolean function on the symbols in the tableau.

(2) In the transformation from expressions to tableau sets, new LT-matrices are obtained by OR-ing rows and columns only.

(3) Containment mappings \(f: \mathcal{T}_1 \rightarrow \mathcal{T}_2 \) must have the property that \(f(B_1) \subseteq B_2^+ \).

(4) There is a separate chase rule for manipulation of the LT-matrices which consists of computing the "\(^+\)-closure".

Another possibility is to require that the LT-matrices be strict orders (asymmetric and transitive). This approach would have the following properties:

(B) (1) The LT-matrix of a tableau must always be an asymmetric transitive order.

(2) Any step in the transformation from expressions to tableau sets which alters the LT-matrix must compute the transitive closure and must replace the tableau by the empty tableau if the closure contains a non-zero diagonal.

(3) Containment mappings \(f: \mathcal{T}_1 \rightarrow \mathcal{T}_2 \) are homomorphisms in the traditional algebraic sense: The requirement on the LT-matrix is "\(xBY \) implies \(f(x)Bf(y) \)".

(4) There are no separate rules for LT-matrix manipulation in the chase procedure. Whenever a rule (in our case an F-rule) causes the LT-matrix to change, it must be replaced by the \(^+\)-closure, and the whole tableau must be replaced by the empty tableau if a non-zero diagonal element appears.
We chose approach (A) because it has the following advantages:

(1) Simplicity of the definition of tableau.

(2) Simplicity of the transformation from tableaux to expressions.

(3) Separate LT-rules. The \(^+\)-closure needs to be taken only once at the end of the chase.

We note, however, that there are some disadvantages:

(1) The definition of containment mapping does not correspond to the traditional notion of homomorphism.

(2) Nonempty tableaux may represent the empty function (if the \(^+\)-closure has a non-zero diagonal), and we cannot write "\(S \in T(T)\)" without qualifications.

References

Application to Predictive Pieces ACM Transactions on Database Systems, 2, 223-232 (1977)

Sagiv Y. and Yangnakaki M. "Equivalence Among Relational Database Updates" JACM 26, 631-653 (1979)

Maler D., Mendelson A.O. and Sagiv Y. "Testing Implications of Data Dependencies" ACM-TODS 4, 455-469 (1979)