LOCKING EXPRESSIONS
FOR INCREASED DATABASE CONCURRENCY

by
Anthony Klug

Computer Sciences Technical Report #400

October 1980



Locking Expressions

for Increased Database Concurrency

Anthony Klug

University of Wisconsin

Abstract

Access to a relation R in a relational database is sometimes
based on how R joins with other relations rather than on what
values appear in the domains of R. Using simple predicate
locks forces the entire relation to be locked in these cases.
In this paper a technique is presented which allows locking of
the smallest possible set of tuples even when the selection is
based on joins with other relations. The algorithms are based
on a generalization of tableaux. The tableaux used here can
represent relational algebra queries with the entire set of
domain comparison operators '=', '#', '<', <, Y, >,
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1. Introduction

In any database management system allowing simultaneous access
and modification by several users, a method must be provided for syn=-

chronizing these actions. Several approaches to this concurrency con-

trol ©problem are possible [BeGo2]. Locking is perhaps the most fami-
liar.

Locking controls concurrency by limiting access to entities in
the database by declaring them "locked". 1In the relational model, the
natural unit of access, i.e. the locking entity, is a set of tuples.
Since mathematical sets are specified by properties or formulas, it
follows that locks on relations may be specified by properties or for-
mulas. In the past, these properties were limited to referring only
to the attributes of the relation being locked, and these were called
"simple predicate locks" [EGLT], [WoEd]l. In this paper, we generalize

the properties allowed in locks, and we call them "expression locks".

To motivate the introduction of expression locks, we present a

simple—examples

Consider the relational schema of Figure 1. Suppose the fol-

lowing two transactions are run against this schema:

TRy: Give employees whose hire date is less than 788630 (hired before

June 3@, 1978) a 10% raise.

dept (dno, dname, manager, budget)
key (dno)

employee(eno, ename, sal, hiredate, edno)
key (eno)
foreign key(dno)

Figure 1. Schema for Departments and Employees,
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TR,: Give employees whose hire date 1is greater than 88@9A1 (hired

after Sept. 1, 198¢) a 5% pay cut.

The sets of employee tuples accessed by TR and TR, can be defined
with simple predicatesl:

Eq
By

{e € employee : e.hiredate < 788630}, and
{e € employee : e.hiredate > 800901}.

It is clear that these two sets are disjoint since the conditions
(e.hiredate < 780630) and (e.hiredate > 8#79#1) cannot both be satis-
fied by the same tuple. Thus TR; and TR, can be run concurrently

without affecting the integrity of the database.
Next consider the following pair of transactions:

TR3: Give every employee in departments with a budget exceeding

$1 million a 10% raise.

TRy: Give every employee in departments with a budget below S50%,000 a

5% pay cut.

Intuitively, we can see that this pair of transactions also can be run
concurrently since the set of all employees in "low budget" depart-
ments is disjoint from the set of all employees in "high budget"
departments. (Note that this reasoning makes implicit use of the fact
that dno is the key of the dept relation.) For this pair of transac-
tions, the sets of employee tuples accessed are not defined by simple
predicates:

E3 = {e € employee : (Zldedept) (d.dno=e.dno & d.budget>1000000} and
E, = {e € employee : (=ldedept) (d.dno=e.dno & d.budget<o00a0@}

Ia simple predicate as defined in [EGLT] is a boolean combination
of terms of the form (a, © a2) or (al 8 c), where ay and a, are attri-
butes of a single relation, & is '=', '<', etc., and ¢ is a constant.
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In order to lock these two sets, it is suggested in [EGLT] that two
simple predicates be found which "cover" the two defining formulas.
In this case, there are no restriction or selection terms on employee
attributes, and so the smallest <covering simple predicate in both
cases selects the entire employee relation. Hence if we use only sim-

ple predicates, transactions TR3 and TR, must be run serially.

Now let us consider how we might remedy this situation. Proving
that the two sets E3 and E, are disjoint as long as the key constraint
for the dept relation are satisfied, is equivalent to proving that the
two defining formulas are not mutually satisfiable as long as the key
of the dept relation is satisfied. Thus we must prove the incon-
sistency of the formula:

(le,dzedept)(dl.dno=d2.dno => dl.budget=d2,budget) &
(zle€employee) (

(Jld € dept) (d.dno=e.dno & d.budget>l000000 &
(=ld' € dept) (d'.dno=e.dno & d'.budget<500007))

This formula happens to be equivalent to a nz-formulaz, and so there

is a decision procedure [Acke] for determining its satisfiability.
Unfortunately, the algorithm is superexponential in the number of
universally quantified variables (which is actually eight in the above
example, one for each attribute of the two dept tuples), and it seems
desirable to look elsewhere for a more efficient and intuitive solu-

tion. In this paper, we study the use of tableaux for this problem.

Tableaux have been used by a number of authors to solve important
problems in the relational database model. For example, they have
been used to optimize relational expressions [ASUl], to test depen-

dency statements [MaMS] and to check correctness of views [K1Pr]. The

2 put in prenex normal form, all universal quantifiers precede all
existential quantifiers,
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tableaux used in these works can only represent relational expressions
which contain only equality comparisons among domains and between

domains and constants. We need tableaux which can model queries with

the comparison operators "less-than", "greater-than-or-equal", etc.
Such tableaux could be used in the above locking problem. In this
paper we introduce the notion of "inequality tableaux", tabular

representations of relational algebra expressions which do just this.
We prove some basic properties of inequality tableaux and then we then

use them for representing "expression locks".

l.1. Overview of Paper

Our goal is to give algorithms for locking which can be wused to
allow concurrent execution of transactions such as TR3 and TRy given
above. Before we do this we present the necessary relational termi-
nology (Section 2). Then 1in Section 3 we define our notions of
expression locks, well-formed two-phased transactions, and legal his-

tories. The main theorem is that legal histories of well-formed two-

phased transactions are serializable. 1In Section 4 we introduce the
notion of inequality tableau, and we prove some useful theorems for
them. Then in Section 5 we show how the tableau algorithm c¢an be
applied for our expression locking scheme. We close with a discussion

of the update operation and an example.

2. Relational Definitions

The formal model we use does not make the universal instance

assumption. A relation scheme is a pair <R,k>. R is a symbol (the

relation name), and k is a positive integer (R's degree) which 1is
denoted deg(R). If <R,k> 1is a relation scheme, the domains of R,

doms(R), is the set {1,2,...,k} of natural numbers. A functional
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dependency (FD) is a triple <Rj,Z,A>, also written Rj:Z—>A, where R is

a relation of degree k, z C {1,2,...,k}, A € {1,2,...,k} and A g Z. A
schema is a pair <S,C>, where S is a sequence <<R1'kl>""'<RN'kN>> of
relation schemes which is sometimes written simply <R1,...,RN>, and

where C is a set of FDs on the relations given. Throughout this

paper, one fixed schema <R1""'RN> is assumed. An instance I of

schema <<Rj,...,Ry>,C> is an N+2-tuple <D,0,I;,...,Iy>, where D is the

domain of values, O is a partial, asymmetric, transitive order3, and

for each i=1,...,N, I; C pde9d(R;) | pomains of all relations are taken
without loss of generality to range over the set D, and D™ is the set
of all m-tuples over D. For convenience, we will assume that the set
™M of natural numbers is embedded in D and that the less—than relation
on natural numbers is consistent with the order on p?. wWe denote the
class of all instances by I. An FD R;:Z—>A is true in instance I if
for all tuples tq,t, in I;, if tl[Z]=t2[Z], then tl[A]=t2[A]. Brack-

ets '[', 17" denote project on the listed domains. A state S of

schema <<Rj,...,Ry>,C> is an instance in which all constraints in C

are true,

The set E of expressions over our fixed schema and the associated

functions deg (degree) and doms (domains) for expressions are defined
as follows:
If e € B has degree k, then doms(e) = {1,...,k}.

(1) Base Relations: R; € E for each Rj in the schema, and deg(Rj;) 1is

3 For all x,y, if xBy then not yBx, and for all x,y,z, if xBy and
yBz, then xBz. For example, the '<' relation on numbers is asymmetric
and transitive (and total).

What we really want is the kind of instances (interpretations)
which appear in mathematical logic in which the formal languages have
constant symbols and the interpretations have interpretations of con-
stant symbols. To simplify matters for those not familiar with models
in logic, we use the natural numbers both as constant symbols in our
language (relational algebra) and as their own interpretations in the
instances.



already defined.

(2) Literals: If c € N, then {c} € E, and deg({c}) = 1.

(3) Projection: 1If e € W, then e[X] € E where X is a sublist of
doms(e), and deg(e[X]) = length of X.

(4) Cross Product: 1If e;, ey € E and deg(ey) = dp, deg(ey) = dop,
then (e1Xe2) € E, and deg(elXeZ) = dl + d2.

(5) Restriction: If e € E, X,Y € doms(e) and & is '=' or '<', then
e[X8Y] € E and deg(e(X8Y]) = deg(e).

{(5) Union: If CIRAD) € E and deq(el) = deq(ez), then (el U e2) e R,

and deg(el U e2) = deg(el).

With these operators we can also define selections, joins and inter—-

sections:

Selection: e[X6V] is (e X {V})[xex'1[l,...,deg(e)]
where X' is deg(e)+1l.

Join: el[XeY]ez is (e; X e2)[X9Y']
where Y' is deg(e;)+Y.

Intersection: ej Il e, is (e;[D;=Dyle,) [D,]
where Dj is < ,...,deg(el) and
D, is <l,...,deg(e2)>
The operators '<' and '#' can be defined in terms of '=', '<' and
union. Generalized restrictions e[U], where U is a boolean combina-
tion of selections and restrictions, can also be defined using
repeated restrictions, selections and wunions. 1In certain cases we
will also allow the Set Difference operator, '-'. 1Its formation rules
are the same as for union, and the set of expressions including set
difference will be denoted E~. Unless stated otherwise, by "expres-

sion" we mean an element of E.
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For each e € E- of degree k and for each I € I, the value of e on
I, denoted e(I), is a subset of Dk. The formal definition, which is

omitted, gives the usual semantics for relational algebra operators.

An expression e is universally empty (u.e.), written e =z g, 1if
e(S) = g for all states S.

We wish to consider two concepts of "contained in" for expres-—
sions. We will write e; C ey, if el(I) C eZ(I) for all instances I.

We will write ey < ey if el(S) C eZ(S) for all states S. 1If the set C

of schema FDs is empty, 'C' is the same as K,
An operation is a statement of the form

insert R e, or
delete R e,

Here, R is a schema relation, and e 1is an expression of the same
degree as R. We give these operations semantics by considering them

to be functions on instances with values given by the rules:

If I' = (insert Ry e) (1), then

I'i = Ii U e(I) and I'j = Ij, for j#i.
If I' = (delete Ry e) (I), then

Ili = Ii - e(I) and I'j = Ij, for j#i.

3. Transactions and Schedules

In Section 1 we saw how simple predicate locks would not allow
some kinds of transactions to be run concurrently even though this was
theoretically possible. 1In this section we introduce "expression
locks". This is a generalization of the notion of predicate lock. We

develop corresponding concepts of transactions, history, well-formed
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transactions and legal histories using the notion of expression locks.
The main result of the section is the theorem that legal histories of
two-phased well-formed transactions are serializable (preserve con-

sistency) .

An expression lock, or simply, lock, is a statement of the form:

lock M R e

Here, M is the mode of the lock (S = share, X = exclusive); R is a
schema relation, and e is an expression of the same degree as R. (We
will often use 'M' to denote either 'S' or 'X'.) Intuitively, a lock
statement requests a lock on the set of R-tuples which do or might

appear in e.
We also have corresponding unlock statements of the form:
unlock M R e

Intuitively, an unlock statement says to release the R-tuples which do

or might appear in e.

A transaction is a (finite) sequence of operations, lock state-

ments and unlock statements. A transaction TR = <sl,...,sm> can be

considered a function on instances by defining:
TR(I) = sp( «o. Sp(57(I)) .o. )

where s;(I) =1 if s; is a lock or an unlock statement. We assume
that all statements in a transaction preserve the FDs in the schema.
Although some treatments on locks allow a transaction to violate a
schema constraint temporarily, (for example, a transaction which

transfers money from one account to another) this 1is not acceptable

for functional dependencies. Hence, we assume that every step of a
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transaction preserves the schema FDs. In other words, if S 1is a

state, then s;(S) is a state.

Sets of tuples, like any mathematical set, behave differently as
locking entities than objects which are indivisible. 1If a set A of
tuples is locked, it makes perfect sense to unlock some proper subset
B of A, still 1leaving A-B locked. Thus we should not require of a
transaction TR, that if TR accesses a set A of tuples at step i, then
TR must have some lock preceding step i which explicitly locks exactly
set A, It is really only necessary that the aggregate of all locks
(minus all unlocks) includes A. Thus to record the locks and unlocks
which have appeared in a transaction, we define the following func-

tion:

lock : TR X {S,X} X ™ X {Ry,...,Ry} => E

Here, TR is the set of all transactions; {S,X} are the 1locking modes
(share, exclusive); the third argument is the index of a statement in

the first argument, and the last argument is the set of schema rela-

tions. The values of this function are defined as follows, where we

assume TR has the form <sl,...,sm>:

lock(TR,S,@,Rj) 4 for j=1,...,N

lock(TR,X,ﬂ,Rj) g for j=1,...,N

If S3 is "lock M R; e" (M = S or X)
lock(TR,M,i,Rs) = lock (TR,M,i-1,R5) U e
If s; is "unlock M Rj e"
lock (TR,M,i,R:) = lock(TR,M,i-1,R:) — e

J J

Otherwise

lock (TR,M,1,R3) = lock(TR,M,i-1,Ry)



10
Next, we want to specify when a transaction is well-formed.
Intuitively, any part of a relation which is read, i.e., which is used
in the second operand of an operation, must be locked in S mode5, and
any part of a relation which will be updated must be locked in X mode.
That is, to execute an operation "op R e" on I, TR must first "read"
e(T) and then modify R. To read e(Il), a set r of tuples is read from
I; (i=1,...,N). These are the tuples that ‘“participate" 1in forming
e(I). The sequence <rj,...,ry> has the property that the value of e
on I is the same as the value of e on <D,0,ry,...,y> since each tuple
of each ry "participates" in forming the value of e, and only these
tuples participate. This concept 1is similar to the semi-join of
[BeGol], but here we are not restricted to how we get read sets. The
read set of an expression e € E can be obtained as follows:
First assume e contains no unions. We may then write e as an
ordered cross product followed by some restrictions and selections

followed by a projection [Ullml:

(RyX =** XRyX *** XRyX *** XRy)[o][Z]

Here, each R; appears zero or more times, and & represents the con-
junction of all restrictions and selections. For each i=1,...,N, we

let RS; be the union over every occurrence of R; of all expressions of

the form:

(RyX *** XRyX *** XRyX *°* XRy) [01[Djy]
eve Dix proges ontie kKAn occurrence £ R; - The

read set of e is then the N-tuple of expressions <RS7p,...,RSy>.

If e contains unions, it may be written as:

5 1t is possible to generalize this condition to be "in S or X
mode" 1if corresponding changes are made to subsequent definitions and
theorems.
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eq U = U en

where each ej contains no unions. The i-th component of the read set

of e is then

RS;7 U *°° U RSip»

where Rsij is the i-th component of the read set of ej.

have three important properties stated in the following theorem. Its

Read sets

proof is delayed until we have developed tableaux.

Theorem 1. Let e be an expression; let RS = <RSy,...,R5> be its read

set.

(1) For all instances I, RSi(I) Cc Iy (i=1,...,N) and e(I) = e(RS(I)).

That is, applying the read set does not change the value of e.

(2) If e is optimized [ASUl] and if F = <Fy,...,Fy> is an N-tuple of
expressions with the properties that for all I, F;(I) C I;

(i=1,...,N) and e(I) = e(F(I)), then RS; C F i=1,...,N. That

i

o §o GO @RG-S 15 the—smallest-set-of-expressions-with-property

(1).

(3) Let e' be an expression of degree deg(Rj). For any instance I,

if RSj(I) M e'(1) = 4, then for each i=1,...,N, RS;(I') = RS;(I")

RSi(I), where I' and I" are defined by I'j = Ij U e'(I) and I"j

Ij - e'(I) and I') = I", = I, for k #F J.

In property (3), the case for set difference can be derived from pro-
perties (1) and (2). The case for union can be rephrased as follows:
Since we always have RSi(I) C I, the condition on e' can be written

RS;(I) M (I; M e'(I)) = g. Thus when the part of e'(I) in I; does not

1

intersect RS;(I), none of the tuples in (e'(I) - Ij) (the part of
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e'(I) not in Ij) will join with any tuple in the read set of e. This
property can be compared with the property of unions contained in
other unions found in [SaYal.

We therefore define a transaction TR = <Sl'82""'sm> to be

P

well-formed if for each step s;, if sy is "op Rj e", then the follow-

ing two conditions hold:

(1) If the read set of e is <RSjy,...,R5y>, then for each k=1,...,N,

RS, < lock(TR,S,i,Ry).
(2) e K lock(TR,X,i,Rj).

A transaction <sj,...,Sp> is two-phased if there is some step s;

such that s; is an unlock statement, and for no j, m >j>i, is sy @

lock statement.

A history h for transactions TRj,...,TRp is a sequence of state-
ments such that for each i, every statement of TR; appears in h

1 | = PITE I  y 3
exacory—once—aro +h i-nde

g—with—the lex—i—e-f—TPR (Formally,—h-is-a -seguence

of pairs <i,s>.), and if s, precedes si in TR then <i,sy> precedes

> in h.

<i,sJ

A history h = <sy,...,85,> defines a function on instances by the

composition of the functions associated with the operations in h.

We next a "Lock" function which is analogous to the lock function

for transactions (It has one additional argument for the history):
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Lock (h, TRy ,M,d,R = g for j=1,...,N

j)
If s; is <k, lock M R; e>

Lock (h,TRy ,M,i,Rs) = Lock(h,TR,,M,i-1,R5) U e

J 1)

If s; is <k, unlock M Rj e>

Lock (h, TRy ,M,i,Ry) = Lock(h,TRk,M,i—l,Rj) - e
Otherwise

Lock (h, TRy ,M,1,R5) = Lock(h,TRy ,M,i-1,R5)

j)

A history h for TRyse..,TRp is serial if there is some permuta-

tion <p1,...,pn> of {1,...,n} such all statements of TR appear in h

Pji

before those of TR for =1,...,k=-1. Two histories hl' h2 are

Pit+1’
equivalent if they have the same value on every state. A history h is

serializable if it is equivalent to a serial history. It is the seri-

alizable histories which are "correct" [Papal], [BeGo2]. Although his-
tories always preserve the schema FDs, unserializable histories may
violate other database constraints (for example, the sum of one set of

attributes equals the sum of another).

A history h = <Syre..,5> for transactions TRy,...,TR, is legal if for
each k,k'=l,...,n, with k#k', each i=1,...,m and each j=1,...,N, we

have:

Lock (h, TRy ,X,1i,Ry) Tl

(Lock (h,TRy+,S,1,R U Lock(h,TRku,X,i,Rj)) = 4

j)

Legal histories can also be determined by the following

equivalent property:

For every lock statement <k, lock M Rj e> (at step i) in h and every

TRk ] #TRk H
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(1) If mMm =8, then el Lock(h,TRk.,X,i,Rj) = 4.

(2) If M = X, then e [ Lock(h,TRk.,X,i,Rj) =g and

) = 4.

e I Lock(h,TRkn,S,i,R3

The main theorem of this section shows that our definitions have

the desired properties:

Theorem 2. Legal histories of two-phased well-formed transactions are

serializable.

Proof. Let h be a history for TRy,...,TR,. We assume that the first
unlock in h belongs to TRj. We will show that h is equivalent to the
history TR;h', where h' is obtained from h by deleting all of TRy's
statements. The theorem will then follow by induction on the number
of transactions. To show that we can move TR;'s statements to the

front, it is sufficient to show that if a portion of h has the form:

* * *° <p, stmtp> <1, stmty> = ° °
-step m-

then the history obtained by exchanging these two statements is
equivalent to the original. We consider the following cases:

(1) TRp locks or unlocks Rj and TRy refers to a different relation

Ri:

*** <k, un/lock M Ry e'> <1, op/un/lock M R; e> *°°

]

(2) TR; locks or unlocks R; and TRp refers to a different relation

Rj:

*** <k, op/un/lock Rj e'> <1, un/lock M R; e> -

(3) Both TRp and TR; put locks on the same relation:

*** <k, lock M Ry e'> <1, lock M R; e> °*°°

(4) TRp locks part of Rj v and TRy unlocks part of Ry:
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*** <k, lock M R; e'> <1, unlock M R; e> =°*°
(5) TR, unlocks part of R;, and TR, locks part of Rj:
**° <k, unlock M Rj e'> <1, lock M R; e> °°°
(6) TR, unlocks part of Rj, and TRy unlocks part of Rj:
*** <k, unlock M R; e'> <1, unlock M R; e> °*°
(7) TR, locks or unlocks part of Rj, and TR, does an operation on Rj:
*** <k, un/lock M Rj e'> <1, op R; e> °*°°
(8) TR, does an operation on Rj, and TRy locks or unlocks part of Rj:
*** <k, op' R; e'> <1, un/lock M R; e> ***
(9) Both TRp and TR; do operations (on not necessarily the same rela-
tion):

*+* <k, op' Rj e'> <1, op Ry e> *°°°

When at most one operation is involved, we must show that the
result of reversing the two statements will still be a legal history
since it is clear that the function defined by the history will not
change. When two operations are involved, we must show that they do

not "interfere" with each other,

The first eight cases will be argued intuitively:

Case 1l: The lock or unlock of TRp will still be legal when its posi-

tion is switched since the lock expressions for R will not change.
Case 2: The argument is the same as in case 1.

Case 3: Since the empty intersection property holds after both locks

are made, it will also hold after any one of them is made.

Case 4: 1If we do TRl's unlock before TR,.'s lock, we cannot violate

p

the empty intersection property of the history since the lock expres-

sions when TRp requests its lock will only be smaller.
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Case 5: This case canhot occur since TRy has the first wunlock in h

and because TR, is two-phased.

Case 6: Unlocks can only make lock expressions smaller. The empty
intersection property cannot be violated by reversing the order of two

unlock statements.

Case 7: The effect of the operation cannot change, and the lock or

unlock of TRp will still be legal since the operation of TRy does not

change lock expressions.
Case 8: The argument is the same as in case 7.

Case 9: Let Iy be the result of <sjy,...,sp_»> on instance I. Define:

I; = (op' Ry e') (Ip)
I, = (op R e)(Ip)
I3 = (op' Ry e')(Iy)
I, = (op Ry e)(I;)

What we want to show is that I5 = I,. We first show that e(Iy) =
e(Il) °
Let RS be the read set of e. It is sufficient to show that

RS(I@) = RS(Il). Because we have:

e' € Lock(h,TR X,m,Rj),

p’

RSj < Lock(h,TRl,S,m,Rj) and

Lock(h,TRp,X,m,Rj) n Lock(h,TRl,S,m,Pj) = 8,

we have RSj [l e* = 4. By property (3) of Theorem 1, we then have

RS(Ig) = RS(Il), and so e(Ig) = e(Il).
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By an analogous argument, we can show that e'(I@) = e'(IZ).

Now if i # j, we have the following, where 'x' denotes either set
union or set difference, depending on which particular operations op

and op' are:

= Ip; e(lyp)
= Ioi
= I34
Other components have not changed, hence I3 = I,.
IF 1 = 9, we have LOCk(h,THp,x,m,i) A Tockthy TRy 7Xmyi)—= B There

fore, e(I@) N e' (Iy) = 4, and we have:

I3 = Ip5 = e'(I))
= (Igg £ e(Ig)) £ e'(Ip)
= (Ig; £ e(Ig)) = e'(Ip)
= (Igy £ e'(Ig)) & e(Iy)
= (Ig; = e'(Igy)) £ e(Iy)

= I;; = e(Ip)

= Igi-

Hence we also have 1in this case I3 = I4.

3
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4. Tableaux

In the last section we defined a general framework for a lock-
based concurrency control which we called expression locking. We
guarantee consistency of the database by ensuring that transactions
are well-formed and two-phased and that histories are legal. The con-
ditions for well-formed transactions and for legal histories require
that we be able to determine when an expression is universally empty
and when one expression is contained in another. 1In this section we

develop algorithms for these problems using the tableau technique.

Tableaux (e.g., [K1Pr]l, [ASuU2], [ChMe]l, [SaYal) are a shorthand
notation for relational expressions. Previous definitions of tableaux
have modeled only projections, equi-selections and natural Joins on
universal instances [ASU2] or projections, equi-selection and equi-
restriction and cross product [K1Pr] [ChMe] on arbitrary instances.
Here however, we need a more general concept of tableau which can
represent relational algebra operators in which restrictions may have

the "less~than" operator. To motivate the definition, we start by

considering the conjunctive queries of Chandra and Merlin. (For more

details on the tableaux presented here, see [Klugl.)

A conjunctive query is a first-order predicate calculus formula

of the form:

(Xl’ e o ,Xk) .Elxk_'_l. . .Xm.Al&. . .&Ar,

where each Ai is an atomic formula Rj(tl,...,tp

a variable or a constant. The tableau for such a gquery is obtained by

), where each term t is

collecting, for each relation R:, the arguments of each atomic formula

for Rj into a table. We could generalize the set of formulas con-

sidered conjunctive queries by extending the allowable atomic formu-
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las: Allow atomic formulas of the form (tl < t2), again where the t's
are variables or constants. We can collect the o0ld atomic formulas
into tables as before, and the new ones we can collect into a boolean
matrix which has a row and a column for each variable and constant
appearing in the query. The formal definitions follow. (See the

appendix for a discussion of these definitions.)

The transitive closure of a binary relation R (in the mathemati-

cal sense), denoted R*, is defined by the rules:

*
R CR

The set V of Xgriables is the set {al, as, ay, eee } of sub-
scripted "a"s. The set Y of symbols is W U N. We associate a natural
ordering on ¥ as follows: N has its usual ordering; V is ordered by
index wvalue, and every element of N is less than every element of V.

A tableal

1
ot

h

T 0O dedaree m.1ic an N4+&2—F+unle CB.G. T Ty such that
g regree—m—1-5 an A d="—TD-1 Byt I

s € ¥Y", for each i=1,...,N, T; C ¥ , every variable in S appears
in some T;, and B is a bhoolean function on the symbols in Tp,...,Ty.
S 1is ~called the summary. We call B the Ez—matrix (less—~than matrix)
because it is intended to represent the "less-than" relations between
variables and since it can be considered to be a boolean matrix. We
will treat B as a matrix, a boolean function or a binary relation as
needed, and will often use the equivalent notation "B(x,y)=1" or "xBy"

or "(x,y) € B". We consider the empty tableau, <#g,...,8>, to be a

tableau of any degree.

A tableau set of degree m is a finite set of tableaux of degree
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If X is a tuple, a tuple set, a tableau or a tableau set, we let

¥ (X) denote the set of symbols occurring in X.

A valuation r for tableau T and instance I = <D,0,Ij,...,Iy? is a
function ¥(T)-=>D which 1is the identity on N C ¥. Valuations can be
extended to functions on tuples and functions on sets of tuples by

component-wise and element-wise extension.

Given a tableau T = <BySyTyreeerTy>y if B and <y are union compa-

. . . * . . .
tible, i.e., if (B U <y) 1is asymmetric, then T determines an instance

I = <D,0,I7,...,Iy> by defining D = N U Y(T), 0 = (B U <) , and I; =

T i=l,...,N. We will often simply consider T itself to be an

instance.

A tableau T = <B,S5,Ty,...,T.> may also be considered to be a
1 n 4

function I->M989(T) by defining:

T(I) = {r(s) : r is a valuation for T, ¥i r(T;) C Ij,
r(B) C O}

It is easy to see that if T can be an instance, then S € T(T).

A tableau set Y = {Tl,...,Tk} may be considered to be a function

by defining:

Y(I) = T9(I) U ... U Ty (I).

As with expressions, we want to consider two versions of "con-
tained in" for tableaux and for tableau sets. We will write T; C T,
if Ty(I) C T,(I) for all instances I, We will write T; < T, Iif
Ti(8) C TZ(S) for all states S. The same notation will also be used

for tableau sets.
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If Ty C Ty and T, C Ty, we will write Ty = Ty, If T, €T, and

Ty € Ty, we will write Ty ¥ Ty

Next, we want to demonstrate that there is a one-to—-one

correspondence between elements of E and tableau sets.

If e is an expression and T a tableau set, we write e = T if e(I)
= T(I) for all instances I. We define a transformation t from expres-—
sions to tableau sets such that e = t(e) for all expressions e:

(1) For R; € E of degree m, T(R;) is {T}, where T 1is the tableau
whose LT-matrix is identically @, whose summary is <ajreserap>,
whose i~-th component is {<a1,...,am>} and whose other components
are empty.

(2) For {c} e E, t({c}) is {T}, where T 1is the tableau whose
LT-matrix is identically @, whose summary is <c>, and whose other
components are empty.

(3) For a projection, el[X], if <B,SyTyre..,Ty> € t(e), then
T € t(e[X]), where T has the form <B,S[X],Tl,...,TN>, i.e., the

summary is projected on the domains in X, and other components

are the same.

(4) For an equi-restriction, e[X=Y], if <B,S;Tyr+..,Ty> € t(e), where
S = <Sl'°"'5m>' then T € t(e[X=Y]), where T is obtained as fol-
lows: If Sy and sy are the same symbol, then T =
<BySyTiyeee,Ty>. If sy and sy are unequal constants, then T is
the empty tableau. Otherwise assume that the symbol Sy Precedes
the symbol Sy in the natural ordering. Then T is obtained by
replacing all occurrences of sy by Sy (If we consider B a
matrix this means OR-ing the Sy-row into the sy-row, OR-ing the
Sy-column into the Sy-column, and removing the sY-column and sy~
row.)

For a less—-than-restriction, e[X<Y], if
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<B,S,Tl,...,TN> € t(e), where S = <Sypreeersy>, T € t(elX<Y]),
where T is obtained as follows: If Sy and sy are distinct con-
stants, then T is the empty tableau. Otherwise the LT-matrix for
T is obtained from B by setting B(sy,sy) = 1. The other com-
ponents of T are S,Tl,...,TN, unchanged.

(5) For cross product, ey Xe,, suppose Ty = <Bllsl'T11"°"TlN> e
t(el) and T, = <B2,82,T21,...,T2N> e t(ez). Let v be the largest
variable subscript in Ty and let m be the smallest variable sub-
script in Ty Define the renaming function g:¥Y->Y by g(aj) =
aj+v+l—m' and g(n) = n for n € M. This maps variables of T, to
the set of variables with the smallest subscripts which is dis-
joint from the set of variables in T1. Let T' be the tableau

defined by:

w
|

Sl

Slﬂg(sz)

T'; = Ty3 U g(Tyy)

Here '"' denotes concatenation. Then T' € f(elXez).

(6) For union, f(el U ez) = t(el) U f(ez).

Lemma 1. For all e € B, e = *(e).

Proof. The proof is by induction on the number of operators in the
expression. See [Klugl. [

The existence of the reverse transformation 1is stated by the next

theorem.
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Theorem 3. For every tableau set Y there is an expression e € E such

that e = Y.

Proof. A very formal proof would require considerable notational

machinery, so we argue informally here.

If Yy = {Tl,...,Tk}, and we get expressions e; with e; =T

i ir

i=1,...,k, then we will have Y = e; U ... Uep. Hence we need only
consider a tableau T = <B,S;Tyree.,Ty>. We build up e in several
steps. First, we build a cross product ¢ which has a term R; for each
row in T; (i=1,...,N). Then we add an equi-restriction to c for every
pair of occurrences (excluding B and S) of the same variable such that
if if column A of the m-th row of T; and column B of the n-th row of
Tj are the same variable, then column A of the m-th occurrence of Rj
in ¢ is equated to column B of the n-th occurrence of Rj in c. For
every occurrence of a constant symbol 'k' in T (excluding B and S) we
add an equi-selection term to ¢ such that if 'k' occurs in column A of

the m-th row of T;, then the selection term refers to column A of the

m—-th occurrence of R; in ¢. For every pair of variables x,y in T such

that B(x,y) = 1 we add a less—than—-restriction term to c such that if
X occurs in column A of the m-th row of T; and y occurs in column B
of the n-th row of Tj, then the restriction refers to column A of the

m-th occurrence of R; in c and column B of the n-th occurrence of Rj
in ¢ (any one such pair of occurrences will do). 1If one of x,y is a
constant symbol, we construct a less-than-selection term similarly.
Finally, we add a projection corresponding to the summary of T. If
the summary contains a constant 'k', then we add a term {k} to the
cross product and add an element to the projection list for this term.
For every variable in the summary we add an element to the projection

list which is determined by finding any occurrence of this variable in

the T;'s and using the corresponding column of c. [
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We now have an equivalence between tableau sets and expressions

in E. To test for well-formed transactions and for legal histories,
we need some computational procedures for tableau sets. The concepts

of "chase" and of "containment mapping" will be the appropriate ones.

A chase consists of a seqguence of transformations on a tableau
set which preserves equivalence. 1In this paper, we consider transfor-
mations determined by schema FDs and ones which manipulate the

LT-matrix.

The rules for changing the LT-matrix need to infer all "“less-
than" relationships among symbols of a tableau. Since it is possible
to have, say, B(al,3)=1 and B(4,a2)=l, but B(3,4)=0, we need to
include the order on natural numbers in these rules. Let M(T) be the
constants 1in tableau T = <BySyTyreeesTy>y and let <M(T) be
< T (WM(T)XW(T)) . Then we will write BY for (B U <N(T))*‘ This is a

closure of B with the ordering on the constants taken into account.

The rules are first defined for tableaux.

F-Rules. For each schema FD R;:Z->A there 1is an F-rule which is
defined as follows: If T = <ByS,Tyr+..,Ty> and there are ty, typ € Ty
such that tl[z] = t,[2] and t1[A] # t2[A], then

(a) If t;[A] and t,[A] are unequal constants, replace T by the empty
tableau.

(b) Otherwise, if they are unequal symbols S1s SS9, and s,y is less than
S5 in the natural orering, replace all the occurrences in T of S,
by occurrences of sy where B is considered to be a set of ordered
pairs. (If we consider B a matrix this means OR-ing the Sp=row
into the sy—row, OR-ing the sp—column into the sy-column, and

removing the Sp—column and s,-row.)
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LT-Rules. If T = <B,S,Tyre..,Ty>, replace T by the empty tableau if

B has a non-zero diagonal. Otherwise replace T by <B+,S,Tl,...,TN>.
For a tableau set Y, apply the above rules to the elements of Y.

The transformations derived from these rules have the following pro-

perties:

Lemma 2. Let T' be the result of applying an F-rule or an LT-rule to

T. Then T ¥ T'.

Lemma 3. A given set of F-rules can be applied to a tableau only a

finite number of times.

Lemma 4. If U and V are tableaux obtained from T by application of
F-rules and LT-rules such that no rule can be applied to U or V, then

U and V are identical.

These lemmas (Proofs are in [Klug].) mean that the following chase

function is well-defined:

chase(T) is the final tableau obtained from T by applying all possible
F-rules and LT~rules to T. Chase(Y) is the final tableau set obtained

from Y by applying all possible F-rules and LT-rules to members of VY.

Some basic properties of the chase function are the following (proofs

in [Klugl):

Theorem 4. Let T' = chase(T). Then, T', as an instance, is a state.
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Theorem 5. T X chase(T).

It has been shown in [ASU2] and in [ChMe] that the 'C' relation
for "equality tableaux" and "equality tableau" sets can be determined
by certain row-preserving functions on symbols. We next dgeneralize

this result to inequality tableaux.

A containment mapping f from tableau T, to tableau T, is a func-
tion Y(Tl)—>Y(T2) which is one-to-one from the summary of Ty onto the
summary of T,, which is the identity on constants in Ty, and which has

the properties that £(By) C B2+ and f£(Ty;) C Typ; for i=1,...,N.

Note that there are only a finite number of possible containment map-

pings from one tableau to another.

Theorem /. Let Ty, Ty be tableaux not equivalent to the empty tableau.

Then

Iy T; C T2 1ff there 1s a containment mapping f:T2—>Tl.

(2) 1If Ty is a state (considered as an instance), then T, €T, iff

there is a containment mapping £:TH=>T;.

Proof. (1) Suppose a containment mapping f:T2—>Tl exists. Let I be an
instance and suppose t € T1(I). There is a valuation r:Y(T;)—>D with
t = r(Sl), r(Ty;) ¢ 13 (i=l,...,N), and r(By) € 0. The valuation rof
for T, is such that (rof) (s,) = r(Sl) = t, (rof)(T,;) C r(Ty;3) C I,
and (rof)(Bz) o r(B{) C o. (r(By) ¢ O implies r(B{) c 0). Thus
t € T2(I), and Ty C T2.

Suppose Ty C T,. Then with T; as an instance, S; € T1(Ty),

and so S, € T2(Tl). There is then a valuation r such that S, = r(Sz),
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r(TZi) C Ty;, and r(By) C (By U <M)*° The last property can, in fact,
be written r(BZ) C Bl+' Thus r is a containment mapping from T, to
Tl‘

(2) From part (1), we know that existence of a <containment mapping
f:T,->T; implies Ty C T,, and T; € T, always follows. If T, is a state
and Ty < T,, Then Sy € T;(Ty) implies S1 € To(Ty). We proceed as

above to get the containment mapping. []

Corollary. For any tableaux Ty, Ty, T7 € T, 1ff there is a contain-
ment mapping £:To—>chase(T,) .

Theorem 7. Let Y; and Y, be tableau sets.

(1) Yy C Y, iff there is a containment mapping from each element of

Y2 to some element of Yl“

(2) Yl Y Y, iff there is a containment mapping from each element of

Y2 to the chase of some element of Yl'

]
=

Theorem 8. Let Y be a tableau set, and let Y' = chase(Y). Then Y

if and only if Y' consists of the empty tableau.

i

Proof. If Y' contains only the empty tableau, then Y = 4 since Y(S)
Y'(S) = @4 for all states. 1If Y' contains a nonempty tableau T, then Y
is not u.e. since g # T(T) C Y'(T), and T as an instance is a state.

O

In defining transactions and locking in the previous section, we
needed to derive expressions which pick out the "read set" of an
operation. We now give the definition of read set in terms of

tableaux and we give the proof of Theorem 1.
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Let T = <B,S,Ty,...,Ty> be a tableau, and write T;; for the j-th

J

row of T; (in some arbitrary ordering of the rows). For each

i=1,...,N and for each j=1,...,#rows of T;, let Rsij be the tableau

<B,Tij,T1,...,TN>. Then RS : is the tableau set

1

{Rsij : Jj=1,...,% rows of Ti}' The read set for T, RS(T), is the

N-tuple <RSj;,...,RSy>. If Y is a tableau set {T;,...,T,}, we define

RS(Y) to be the componentwise union of {RS(Tl),...,RS(Tn)}.

It is not hard to see that the definition of read set for

tableaux is equivalent to the one given for expressions.

The two important properties of read sets that justify its use in
our locking scheme are that a read set for a tableau set Y can be
applied to an instance without changing the wvalue of Y on that
instance, and that the read set 1is the "smallest" function on
instances which has this property (if Y itself is optimal). The for-

mal statements are now given.

A tableau T is optimal if every containment mapping f:T->T 1is

one~to—-one and onto. (See [ASUl] and [ChMe] for justification of this
definition.) A tableau set Y is optimal if each element of Y is

optimal and if Y Z Y-{T} for every T in Y.

Lemma 5. Let T = <B,S,Ty,...,Ty> be a tableau with read set

<RS;,...,R8y>. Then for all instances I and j=1,...,N,
RSj(I) =y {r(Tj) : r is a valuation, r(T;) C I;, i=1,...,N,
r(B) C 0}

Proof. Left to the reader.
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Thegggg 9. Let T be a tableau with read set <RSl,...,RSN>.
(1) For all instances I, T(I) = T{(RS(I)})).

(2) Let F = <Fj,...,Fy> be an N-tuple of tableau sets with the pro-
perties that Fi(I) ¢rI1; (i=1,...,N) for all instances I, and
T(F(I)) = T(I) for all instances 1I. If T 1is optimal, then

RSi _C_ Fi, i=l,-Q-’N-

(3 If T' is a tableau of degree deg(Rj) then for all instances I, if
st(I) nrt'(x)y = ¢, then for i=1,...,N, RS;(I') = RS;(I") =
RSi(I), where I', I" are such that I'j = Ij u T'(1), I"j = Ij -

I"k = Ik for k # j-

T'(I), and I'j

Proof. (1) By the previous lemma, it 1is easy to see that
R5;(I) C I i=l,...,N. Hence T(RS(I)) C T(I). Now suppose t € T(I).
There is a valuation r such that t = r(s), r(Ti) C I; and r(B) C O.

Then we also have t € T(I'), where I' = <D,0,r(Ty)sece,r(Ty)>. Now

I S RS(I) by the lemma, so T(I'") §_ T(RS(I)) and t € T(RS(I)).
(2) Each RS; is a tableau set, and it 1is sufficient to show that

RSij C F; for every member tableau RS;s of RS;. We will verify this

3

by finding a containment mapping f:F'—>RSij where is F' is some member

tableau of Fi'

Considering T as an instance, we have Fj(T) c Tj for

j=1,...,N. Also, since S8 € T(T) = T(F(T)), we have a valuation r such

that S = r(8), r(Tj) C Fj

get r(Tj) C Tj for j=1,...,N, so r 1is a containment mapping T->T.

() (j=1,...,N) and r(B) C B, Combining, we

Since T is optimal, r must be onto: r(Tj) = Tj. Then Tj = r(Tj) C

Fj(T) C Ty, so Fj(T) = Tj. In particular,

tableau F' in F; with Tij € F'"(T). As we have seen before, this means

le e Fi(T)' There is

there 1is a containment mapping F'->RS;s since T;. 1s the summary of

j j
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Rsij'

(3) We have the following formulas from the lemma:

RSj(I) = U {r(Tj) : r(Ti) C Iy, i=l,...,N, r(B) EO}
RSj(I') = U {r(TJ) : r(Ti) _C I'i, i=l,...,N, r(B) _C_:_O}
RSj(I") = ] {r(Tj) : r(Ti) C I"i’ i=1,...,N, r(B) C 0}

Hence, to show that RSj has the same value on I, I' and I", it suffi-

cient to show that for any valuation r and any i=1,...,N, r(Ti) [ I;

iff r(T;) C I

C i iff r(T;) C I"i' For 1 # j, this is «clear. ITf

r(Tj) C Ij, then r(Tj) [T T'(1) = 4. Therefore, r(Tj) o Ij U T'(I) and
- » — ' . - Raud ' . 3

r(TJ) [ Ij T'(1). 1If r(T]) C IJ T'(I), then, clearly, r(T]) C Ij.

If r(Tj) [¢ Ij U T'(I), we must have r(Tj) o Ij since r(Tj) M T'(1) C

RS5(I) N T'(I) = 4. 0O

Theorem 1f. Let Y a tableau set with read set <RS7,...,REy>.

(1) Then for all instances I, Y(I) = Y(RS(I)).

(2) Let F = <Fy,...,Fy> be an N-tuple of tableau sets with the pro-

perties that Fi(I) C I (i=1,...,N) for all instances I, and
Y(F(I)) = Y(I) for all instances I. If Y is optimal, then for

each i=1l,...,N, RS; C Fy.

(3) If T' is a tableau of degree deg(R:) then for all instances I, if

J
RSj(I) rl e'(I) = ﬁ, then RSi(I') = RSi(I") = RSi(I), where I', I
are such that I'j = Ij u T'(1), I"j = Ij - T'(I), and I'k = I"k =

I for k # j.

Proof. (1) This follows from part (1) of the last theorem.
(2) Let Y = {Ty,...,T}. The condition Y(F(I)) = Y(I) we may write
as Ty(F(I)) U ... U T (F(I)) = Ty(I) U ... U Tk(I). In particular,

this holds for T; as an instance. Then S; € T;(T;) C T, (F(T;)) U ...
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U Tk(F(Ti)) so there 1is some j with S; € Tj(F(Ti)). But with

Tj(F(Ti)) C Tj(Ti) we have S; € Tj(Ti)° As before, this means

Ty C Ts.
S; € Ti(F(Ti))‘ We may proceed as in the previous theorem to get

This contradicts the optimality of Y unless i = j. Thus

RSTij C Fj, j=1,...,N. The union gives RS; C Fj.
(3) The read sets for the tableaux in Y will satisfy the conditions

of the last theorem. [

5. Tableau Based Lock Algorithms

In Section 3 we formulated a locking scheme using expressions
rather than simple predicates. We allowed the effects of successive
locks and unlocks to accumulate with the "lock" and "Lock" functions.
We showed that a history 1is serializable if the transactions are
well-formed and two-phased and if the history 1is 1legal. The two-
phased property can be determined trivially. To test for the well-
formed property, we must be able to determine the '€' relation between

an expression to be accessed and a locking expression. To test for

the legal property, we must be able to determine the 's= g' property
for the intersection of an expression to be locked and a lock expres-
sion. Without any restrictions on the transactions, the values of the
lock function will be arbitrary expressions in the set E~, and the
'= g' and '<' relations will be undecidable [Solo]. However, when the
transactions are two-phased, these relations can be determined (using
tableaux). From Section 4 we know how to determine if e = 4 or |if
e; € e; when e, e; and e, are members of E. We now extend these pro-
cedures to some simple cases involving the set difference operator.
These will be the <cases encountered if the transactions are two-

phased.
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Theorem 11. If TR is two-phased, then 1ock(TR,M,i,Rj) is equivalent to

an expression of the form e = €9, for some ey1,e9 € E.

Proof. Before the first unlock of TR, lock(TR,M,i,R.) is itself a

J
member of E. After the first unlock of TR, there are no more locks,

so 1ock(TR,M,i,Rj) has the form:
( o e (((el U ° o [] ek) — ell) — el2) — @ e elm)
where e; and e'; are in E. This expression 1is equivalent to the

expression:

(el Uu *°* U ek) - (e'l U *°** U e'm)

O

Theorem 12. Given e1,e9,63 € B, e; € e, - ey iff e € ey, and

elﬂe35¢.

Proof. We have the following equivalent statements:
ey < (e2 - e3) is not valid iff
=] state S, e1(S) £ (e,(8)-e3(8)) iff
I state S, I tuple t,
t € e;(8) and tg (eZ(S)—e3(S)) iff
-] state S, = tuple t,
t € e;(5) and [t £ e,(S) or t € e5g(S)] 1iff
-| state S, 4 tuple t,
[t € e;(S) and t € e,(S)] or
[t € e;(8) and t € ej3(S)] iff
=] state S,

ey (S) Z eZ(S) or e (S) N e3(8) #£ B iff

ey < e2 is not valid or e1 N e3 1s not u.e.
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O

Theorem 13. Given ej,ej,e3 € B, ey [l (ey - e3) = 4 iff (e; N ey) < ej.

Proof. We have the following equivalent statements:
ey N (ey = e3) is not u.e. iff
=l state S, = tuple t, t € e;(8) N (ey(S)-e3(S)) iff
-] state S, = tuple t,
t€ e, (S) and t€ e,(S) and t € e;(S) iff
=] state s, = tuple t,
t € (e)(8) 1 ey(8)) and t £ e5(S) iff
-l state S, (ey(s) I e5(8)) £ e3(8) iff
(e N e,) € ey is not valid.
O

6. Extensions for the Update Operation

In the preceding sections we have developed the idea of expres-

sion locks for the operations of insert and delete. We now discuss

how updates can be handled.

Updates are operations which change the values of certain domains
of selected existing tuples. In our formal model, an update is an

operation of the form:
update f R e

Here, R is a schema relation, e is an expression of the same degree as

R, and £, the wupdate function, is a unary function from tuples to

tuples. For example, "multiply the sal domain by 1.18" is an update
function. Intuitively, an such update statement says that all the

tuples in R which are selected by e should have the update function f
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applied to them. Formally, the semantics of the update operation are

given by the rule:

If I' = (update £ R e) (1),
then I'j = (Ij - e(I)) U f(Ij ne(ry)),
and I'; = I; for i # j.

Although it is sometimes said that an update is equivalent to a
delete followed by an insert, this is really only true for updates

which access tuples by specifying the values of all domains:

update f Rj {tyreerty}l =

delete Rj

insert R {£(t) reeerE(ED Y

{tlyo..,tn};

(Assuming {tl,...tn} C I..) If this 1is not the case, the insert

jo
operation <cannot "find" the tuples anywhere once they are deleted.

(We can't do the insert first because could violate FDs.) Thus the

update operation must be considered in its own right.

Without any specific information on the nature of the update
functions, we cannot extend the algorithms for determining the well-
formed property or the legal property. This is because tuples which
may be ©properly locked before the update may not be after it. For

example, consider the following transactions:
TRg: Give every employee whose salary is less than $15000 a 10% raise.

TRg: Give every employee whose salary is greater than $16060 a 5% pay

cut.

If TRy and TRg set the respective locks:
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lock X emp empl[sal<l5800]

lock X emp emplsal>legaa],

then the locks are disjoint, but the update function for TRg can move
tuples out of the lock for TRy into the lock set of TRgz. (Note, how-
ever, that the update function of TR, does not move tuples 1into the
lock set of TRg.) For updates, we therefore to know that the result of
the update will still be locked. That is, given an update function f,

we need a decision procedure for the relation '<f' defined by:
e; <f ey iff for all states S, f(el(S)) C e2(S)
Then we can extend the definition of well~formed with the rule:

If S; is "update £ Rj e,
then RS, < 1ock(TR,S,i,Rk), k=1,...,N,
where RS is the read set of e,

e £ lock(TR,X,i,Rj) and

e ¢ lock(TR,X,i,Rﬁ).

If £ is a "constant" update function, 1i.e., one which <can be

specified by a rule:
A = ¢,

where A is a domain and c¢ is a constant, then <¢ can easily be deter-

mined:
e] <¢ ey iff (e; X {c})[ZA] < ejgey

Here Z, is a projection list which includes all domains of e; except
A, for which it substitutes the domain of {c}. Other update func-

tions, such as the "linear" update functions giving pay raises and pay
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cuts, would require another approach.

7. An Example

Let us show that the expressions in the introductory example are

always disjoint, 1i.e., that they have an intersection which is u.e.

The expression to check is:

(employee X dept)
[edno = dno & budget > 10000008]
[eno,ename,sal,hiredate,edno]

M
(employee X dept)
[edno = dno & budget < 500080]
[eno,ename,sal,hiredate,edno]
The tableau for this intersection is given in Figure 2. (It can be
derived from the definition of the intersection in terms of the basic
operations.) By applying the FD rule for the dependency dno->budget, we

will replace all occurrences of a;, by ag. Then taking the t_closure

of B will give (a9,a9) e B+, so the tableau will be replaced by the

empty tableau.

B S

(lﬂ@ﬂ@@@,ag) <a1 ap ag ay a5>
(alz,Sﬂﬂﬂﬁﬂ)

! employee | | dept I
e ! | —mmmm o ;
|al a2 a3 a4 asl 'ag a7 a8 a9 ’

|-===Soeeemee ! lag ayq 273 a12:
| e e

Figure 2. Intersection Tableau
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8. Summary and Conclusions

In this paper we have introduced the notion of expression lock.
Expression 1locks are more dgeneral than simple predicate locks, and
they can allow concurrent execution of transactions which would have
to run serially if only simple predicate locks were used. The tradi-
tional notions of well-formed transaction and legal history were gen-
eralized to handle locks on expressions. Well-formed transactions
lock in share mode the "read set" of the expression being read for
deletion or insertion. The read set is the smallest possible set of

tuples which give the desired set of tuples.

When transactions are two~phased, the relational algebra expres-
sions representing the 1locks held have a simple form for which the
necessary algorithms exist for determining well-formedness (of tran-
sactions) and legality (of histories). The algorithms use the tableau
technique. To be able to represent a wide class of relational algebra

expressions, we extended the notion of tableau by adding a matrix

representing "less—than" relationships between variables and between

variables and constants.

The algorithms presented offer a practical approach for a data-
base concurrency control method. Although the algorithm for determin-
ing well-formed transactions is NP-complete [ASU2], the cost <can be
amortized over the life of the (canned) transaction. Legality of his-
tories, which must be tested at run time, uses the chase procedure
with functional dependency rules, and this can be done in polynomial

time [MaMS].
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Appendix

There are two possible lines in the development of inequality

tableaux. The one we have given has the following properties:

(A)

(1)

(2)

(3)

(4)

The inequality relations in a tableau are given by an arbi-
trary boolean function on the symbols in the tableau.

In the transformation from expressions to tableau sets, new
LT-matrices are ohtained by OR-ing rows and columns only.

Containment mappings f:Ty->T, must have the property that

There is a separate chase rule for manipulation of the

nt

LT-matrices which consists of computing the -closure™.

Another possibility is to require that the LT-matrices be strict

orders

(asymmetric and transitive). This approach would have the fol-

lowing properties:

(B)

(1)

The LT-matrix of a tableau must always be an asymmetric tran-

(2)

(3)

(4)

sitive order.

Any step in the transformation from expressions to tableau
sets which alters the LT-matrix must compute the transitive
closure and must replace the tableau by the empty tableau if
the closure contains a non-zero diagonal.

Containment mappings f:Tl—>T2 are homomorphisms in the tradi-
tional algebraic sense: The requirement on the LT-matrix is
"xBY implies f(x)Bf(y)".

There are no separate rules for LT-matrix manipulation in the
chase procedure. Whenever a rule (in our case an F-rule)
causes the LT-matrix to change, it must be replaced by the
+—closure, and the whole tableau must be replaced by the empty

tableau if a non-zero diagonal element appears.
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We chose approach (A) because it has the following advantages:
(1) Simplicity of the definition of tableau.
(2) Simplicity of the transformation from tableaux to expressions.

(3) Separate LT-rules. The t-closure needs to be taken only once at

the end of the chase.
We note, however, that there are some disadvantages:

(1) The definition of containment mapping does not correspond to the

traditional notion of homomorphism.

(2) Nonempty tableaux may represent the empty function (if the
*_closure has a non-zero diagonal), and we cannot write
"S € T(T)" without qualifications.
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