SIMPAS User Manual

R. M. Bryant

Computer Sciences Department
and
Madison Academic Computing Center
University of Wisconsin-Madison
Madison, Wisconsin

SUMMARY

SIMPAS is a portable, strongly-typed, event-oriented,

discrete system simulation language based on PASCAL. Facil-
ities for event declaration and scheduling, creation and
deletion of temporary entities, declaration and maintenance
of linked lists (queues) of entities, and observation of
simulation statistics are all provided as natural extensions
to PASCAL. In addition, SIMPAS provides a substantial
library of support routines that includes random number gen-
erators for all of the most common distributions.
" This manual describes the SIMPAS extensions to PASCAL
and discusses their implementation. Examples of the use of
these extensions are given. Directions for transporting
SIMPAS to a new computer system are also provided.

Introducti
Overview

=
e

® e 0 s 0000 00

Notation
The Libr
tatement ...
Event Decl

Events .

Event Sc

.

Cancel
chedule ..
Reschedu
Pseudorand
Queues (Li
1l Queue De
l.1 Restri
2
i

1
2
3
4 Event No
5
s
6

¢« D e

Standard
butes
3 Entity C
4 Queue Ma
.5 Forall L
.6
Statistics
A Sample S

Executio
Acknowledg
Appendix A:

A.l: The Ev
Control Routi

A.2: Event

A.3: Event

A.4: Queue
tions .seeeeee

A.5: Insert

A.6: Remove

A.7: Forall

A.8: Libfil
Appendix B:
tionNS ceeeees

B.l: Reserv

B.2: Implem
Appendix C:

mq\)mmmmmnmmmm'zg.bw;uwwwwwwmwt—-g—-.
L]
bt n

Table of Contents

On L I I N IR TN I B R B NN IR IR I IR IR IEE R BN DN DK DN BN RN I NN N 3
of the SIMPAS Preprocessor

v
®@ 8 8 2 0 6 8 08 059 S5 P OB L e eSO e 00 s O e e e

2 Executing a SIMPAS Program .sceceeccsssse
3

ary File and the 1Include
aration and Scheduling ..eece..

6 5 5 8 0 8 8 5 6 09 0L L LS EN s LT

hedUling ® 6 4 5 9 00688000088 0c a0 000

Start Simulation and Event Main ..ccec.e

tice Utility Functions ...eeeee
’ Destroy, Delete and
le and Current ..ceeecececscasecs
om Number Generation in SIM-
nked Lists) in SIMPAS ..ceevoes
ClarationNsS ceveeececeaccansocnns
ctions ® ® & % 8 @ 5 & 6 5 5 8 0 8" 0 s 09 s s 0 00
Queue and Queue Member At-
reation and Disposal .c.ivieeeces
nipulation ...eceecassscascscas

Oops ® 8 0 ¢ S 0L G L e s e e s 000 es 0

Forall Loops and the Event Set

Collection in SIMPAS teeesvoee
IMPAS Program eesesessscccccsas
N OUtPUL (e veeecsnccncccnncss
EMENES teeveenscsascsssssascaanse
SIMPAS Implementation Notes
ent Set and the Simulation
NE seesessscssseansssasossssscsss
Set StruCtUre ..eeveeecesvsvans
Notices and Event Scheduling
and Queue Member Declara-

S 8 5 2 9 5 400 0 2 B0 8 e L8 e 060w

e Organization ...eeeeeceonccse
Reserved Words and Restric-

€d WOrdS eeeeceecsscvsscccncscene
entation Restrictions ..cececoes
Transporting SIMPAS ...cecceeces

w NN

3Oy b s W

= 0

11
14
14
16

18
19

22
23
24
26
29
29

39

39
30

31
32
34
36
37
39

39
49

Distribution Format

Program Termination

TOOQOOO000

>
o
D o

® % o0 8 0 s 0 s e e e e

: PASCAL Compiler Requirements .ceeesse
Character Set Differences ..eeesssens
Usedispose and No Disposeececese

® 8 % 8 008 0800880 s e

: Random Number GeneratorS ceeeeesceass
: Source Input and OULPUL ...eeesncanse
dix D: SIMPAS Reference Guide .c.eeecee

D.1l: SIMPAS Statement SUMMArY eocesecsssocas

D.2: Identifier Glossary

References ® 6 8 ¢ 2 B & 8 S S OB S B S B OO NSRS e S LEEs e

Update to the SIMPAS USER MANUAL

ooooooooooooooooooooo

43
43
44
46
47
47
47
49
49
50

55

1. Introduction

SIMPAS is an event-oriented, discrete system simulation
language based on PASCAL. It is implemented as a preproces-—
sor that accepts an extended version of PASCAL as input and
produces a standard PASCAL program as output. The prepro-
cessor itself 1s written in standard PASCAL, and the
language has been designed so that it depends only on the
features of standard PASCAL. Thus SIMPAS is extremely port-—
able since it can run on any system which supports standard
PASCAL.

Aside from portability, the choice of PASCAL as the
target language makes SIMPAS a strongly typed simulation
language. SIMPAS is similar in this respect to SIMULA
[DAHL69] [FRAN77], although the latter is a process oriented
simulation language. Strong typing allows many of the more
common programming errors 1in simulation languages such as
SIMSCRIPT I1I.5 [KIVI74], ASPOL [MACD73], or SIMPL/I [IBM72]
to be detected at compilation time when the simulation is
written in SIMPAS. (See [BRYA8#] for a further comparison
of SIMPAS and SIMSCRIPT II.5).

This manual describes the SIMPAS extensions to PASCAL
and discusses how to use these language extensions to write
powerful and reliable simulation programs. We assume that
the reader 1is familiar with PASCAL; if not, we recommend
reading either [JENS74], [WILS79] or some other introductory
textbook about PASCAL before reading the rest of this
manual. We also assume that the reader is familiar with the
concepts fundamental to event-oriented simulation such as
"event routine", the "event set", and "event notices".
(See, for example, [FISH78] or Section A.l of this manual).

In discussing use of SIMPAS, we will wuse lower case
letters and the character "_" in identifiers. Since some
PASCAL compilers do not support lower case or " " as a legal
identifier character, SIMPAS can easily be reconfigured to
use upper case only, and the underbar character can be
translated to some other character. (For example, in the
UNIX implementation " " is translated into "@" during
preprocessing) .

This manual is divided into eight major sections and
four appendices. The rest of this section gives scme gen-
eral information about SIMPAS. Section 2 discusses the SIM-
PAS symbolic library and its use. Section 3 discusses event
declaration and scheduling and the type declarations and
routines provided to deal with the simulation event set.
Section 4 discusses the random-number generation routines
provided with SIMPAS and describes their use. Section 5
discusses queue memebrs and queue declarations. Section 6
discusses the statistics collection features of SIMPAS.

SIMPAS User Manual

Section 7 contains an example SIMPAS program. Appendix A
describes the SIMPAS implementation and describes the
expanded PASCAL code generated by each SIMPAS declaration or
statement. Appendix B contains a list of reserved words and
restrictions imposed by the SIMPAS implementation.
Appendix C discusses the changes that need to be made in
moving SIMPAS to a new computer system. Appendix D contains
a quick reference guide to SIMPAS,

l.1. Overview of the SIMPAS Preprocessor

SIMPAS consists of a large PASCAL program (about 4,000

lines) and a small file of run-time routines written in PAS-
CAL (the "library" file).

SIMPAS is organized as a two—-pass processor. On the
first pass, the input program is examined for occurrences of
SIMPAS statements; when one is found it 1is expanded into
PASCAL statements. During this pass the output PASCAL is
placed in a temporary file. The preprocessor also stores
information from the SIMPAS statement for later use. For
example, when expanding an event declaration, the preproces-
sor saves the event name and the names and types of the for-
mal arguments for use in building the event-set declara-
tions.

During pass two, the intermediate code from the tem-
porary file is read and the final output PASCAL is produced.
The declarations for the event set are constructed and
placed in the global type and variable declaration parts of
the program. Support routines are read from the library
file and placed at the top of the procedure declaration part
of the program. The simulation control routine 1is <created
and inserted at the appropriate point, and initialization
code for the -event set and other global variables |is
inserted at the start of the main procedure. Other than
these insertions, the second pass of the preprocessor merely
copies the temporary file to the output.

1l.2. Executing a SIMPAS Program

To compile and execute a SIMPAS program requires three
steps: (1) Expansion: The SIMPAS preprocessor is invoked and
reads your SIMPAS program, producing a PASCAL program as
output. (2) Compilation: The PASCAL compiler is called to
compile the generated PASCAL program. (3) Execution: The
PASCAL program is executed, perhaps after a link edit step
to resolve external references.

Errors can occur during any one of these steps. Error
messages during the expansion phase refer directly to a
SIMPAS statement. Error messages issued during compilation
can be traced back to a SIMPAS source line using the line

Introduction

numbers inserted in the output PASCAL by the preprocessor.
(These 1line numbers appear as comments at the beginning of
each PASCAL source line and give the SIMPAS source line
number which caused the generation of that line of PASCAL.)
Errors during execution are either those «caught by SIMPAS
run-time routines or by PASCAL run-time routines. The first
class of errors indicate directly in which SIMPAS statement
the error occurred. The second class of errors can be
traced back to the SIMPAS source code by first determining
in which PASCAL output 1line the error occurred, and then
using the line number encoded there to £find the SIMPAS
statement where the error ocurred.

1l.3. Notation

Throughout our discussion, we will wunderline keywords
and enclose variable names in quotes. We will use angle-
brackets ("<" and ">") to represent portions of SIMPAS
statements that are to be replaced by appropriate user con-
structs. Thus the notation <identifier> indicates that the
user 1s to insert an identifier at this location. We will
use square brackets to indicate an optional portion of a
statement. We will wuse braces ("{" and "}") to enclose a
list of alternatives separated by vertical bars ("[|"). One
of the alternatives in the list must be chosen in order to
create a syntactically valid statement. Since statements in
PASCAL can extend across card boundaries, we will split SIM-
PAS statements across lines in order to make them more read-
able. The statements need not be split across lines as we
have indicated.

2. The Library File and the Include Statement

Besides the default routines, which are always
included, support routines are loaded from the library file
on the user's request. For example, the random-number gen-
eration routines that the user needs are loaded. The user
specifies which support routines to load using the include
statement:

include <name-1> [,<name-2>] . . . ;

The include statement must follow the global var part of the
program and precede the first procedure, function , or event
declaration of the program. Typically, each <name-i> in the
include statement causes a single procedure to be included.
The include mechanism can also bring in global constants,
variables, or types required by the procedures. (Appendix A
contains a description of the library file implementation.)

The library file and the include statement implement a
symbolic library of support routines for SIMPAS programs. A
symbolic library is necessary because external compilation

SIMPAS User Manual

is not part of standard PASCAL. If the host PASCAL compiler
supports some type of external compilation, much of the
library file <can be separately compiled. Doing this will
reduce the execution time of the preprocessor and will also
reduce compile times of the output PASCAL since the library
file routines will not have to be repeatedly recompiled.

3. Event Declaration and Scheduling

Events may be declared and scheduled by a set of
natural extensions to PASCAL. Facilities are provided to
declare a particular event, to create an event notice and
schedule 1t, to reschedule a previously created event
notice, and to cancel and/or destroy a particular event
notice.

3.1. Events

An event is declared exactly like a PASCAL procedure,
except that the keyword procedure is replaced by the word
event. An event must be accessible in the main program; an
event cannot be declared within a procedure. An event may
not have any var parameters; all parameters must be passed
by wvalue. This is because the event is called with values
of the actual parameters saved in an event notice, and hence
all parameters are effectively passed by value.

As an example, the declaration

event arrival(machine_id : integer);
begin

end;

could be used to declare an event called "arrival" which has
a single integer-valued argument.

An event whose name is <event> 1is translated into a
procedure whose name is r <event>. Thus if the host PASCAL
compiler only distinguishes identifier names that differ in
the first n characters, then event names must be distinct in
the first n-2 characters.

3.2. Event Scheduling

An event is scheduled to occur at a particular simu-
lated time by a statement of the form:

schedule <event>[(<actual argument list>)]
at <time-expression>

One can specify that an event is to occur after an 1interval
of simulated time by using the keyword delay instead of at.

Event Declaration and Scheduling

Thus the following statements are equivalent:

schedule arrival(3) at time + 10.9;
. schedule arrival(3) delay 10.9;

An event must be declared before it can be scheduled,
just as PASCAL procedures must be declared before they can
be called. An event can be forwarded exactly like a PASCAL
procedure; the body of the event is replaced by the word
forward. The formal arguments of the event must be speci-
fied when the event is forwarded; the body of the event is
given after the event heading is repeated without the formal
arguments.

The keyword now indicates that the event 1is to occur

next, before any other events scheduled for the current
Simulated time. The two statements

schedule arrival(3) delay 4;
schedule arrival(4) now;

are not quite equivalent since the arrival(3) event will
occur after any other event also scheduled for the current
simulated time; the event arrival(4) will occur before any
other event scheduled for the current simulated time. If
several events are scheduled by now phrases at the same
simulated time, then the last event to be scheduled is exe-~
cuted first.

A particular event notice can be identified by using
the named clause:

schedule <event>{(. . .)] named <evptr> . . .

<evptr> must be a simple or qualified wvariable or expres-
sion[*] of type "ptr event". (The type "ptr event" |is
defined by the SIMPAS preprocessor.) One can use this name
to cancel, reschedule, delete or destroy the event notice
created by this schedule statement.

Given a name for an event, another event can be
scheduled to occur at the same simulated time as the named
event by using a before or after clause:

schedule arrival(3) after <evptr>;
schedule arrival(4) before <evptr>;

[*]The version 2 implementation limits the complexity of
this expression. See Appendix B for details.

SIMPAS User Manual

In each case, the arrival event will occur at the same simu-
lated time as the event described by the event notice
pointed to by <evptr>, but in the first case the <evptr>
event occurs first while 1in the second case the arrival
event occurs first. Once again <evptr> must be a simple or
qualified variable of type "ptr event" or expression of type
"ptr_ event". -

It is an error to try to schedule an event before or
after an event that 1s not scheduled.

The event notice of the currently executing event |is

named Ycurrent". However, before the event is executed,
"current" is removed from the event set, and therefore
"current" is not considered to be scheduled while the event

is executing. This removal allows the automatic reclamation
of the event notice if the notice is not rescheduled during
the event routine. Thus one can not normally say

schedule arrival(4) after current;

However, see Section 3.6.

If an event notice is created using a schedule state-
ment with a named clause, it is assumed that the user will
explicitly dispose of - the -event notice. Otherwise the
pointer to the event notice may be invalid when it is used.
Therefore, if a notice is created by a schedule statement
with a named clause, the automatic reclamation of the event
notice is inhibited, and the wuser must use the destro
statement (see Section 3.5) to dispose of the event notice
when it is no longer needed.

3.3. Start Simulation and Event Main

The start simulation statement is used to begin execut-
ing scheduled events. 1Its form is:

start simulation{<status>)

While events are being executed, the global variable "time"
gives the current simulation time.

The statement after start simulation is executed only
if the event set becomes empty or an event notice for the
event main reaches the front of the event set. <status> |is
an integer variable whose value can be inspected to deter-
mine why the simulation stopped.

If the event set is empty when start simulation is exe-
cuted, the control routine will return immediately. Thus
the proper way to start a simulation is to schedule at least
one event Dbefore executing the start simulation statement.

Event Declaration and Scheduling

This event will then occur immediately and it (presumably)
will schedule other events in order to maintain the simula-
tion process.

The event main is predeclared as if it looked like:

event main(flag : integer);

When event main occurs, execution resumes after the most
recently executed start simulation statement. The value of
the <status> variable in the start simulation statement 1is
set to the wvalue of the argument to main specified in the
schedule main statement. This status variable can be used
to flag why the simulation stopped. For example, one can
terminate a simulation at time 194.0 and return a status of 3
to the main program by saying

schedule main(3) at 10.9;

If the event set becomes empty, a schedule main(g) now
statement is automatically executed. That is, program exe-
cution will resume after the most recently executed start
simulation statement, and the status variable will be set to
zZero.

3.4. Event Notice Utility Functions

Some utility routines have been predefined to simplify
inspecting the contents of event notices. In most cases,
these routines may be included using the include statement;
certain of the routines are always included. These routines
return information about the event notice given a pointer to

the notice. The same information is available by direct
reference to a field of the event notice (if the pointer is
not nil). The advantage of the predefined routine is that

it checks to make sure the pointer is not nil.

The first utility function is "scheduled". Scheduled
is a boolean function that returns true if the event notice
pointed to by its argument is scheduled; it returns false if
the notice is not scheduled or if the pointer is nil. It is
declared as: T

function scheduled({name : ptr_event) : boolean;
and is defined in every SIMPAS program.
The function "etime" returns the time of the event
described by the -event notice, or -1.0 if its argument is

nil. YEtime" is declared as:

function etime(name : ptr_event) : real;

SIMPAS User Manual

"Etime" must be explicitly included by the include state-
ment.

The function "etype" returns the type of the event
described by the event notice, or the value "no_event" if
its argument is nil. "Etype" is declared as:

function etype(name : ptr_event) : t_ev_1;

Here "t_ev_1" is an enumeration type defined by the prepro-
cessor. It contains the names of the events defined in the
SIMPAS program and the identifiers "no event" and "main".
For example, if you have an event "departure" you may check
to see 1f a particular event notice describes a departure
event by saying:

if etype(evptr) = departure then . . .
Also, the following two statements are equivalent:

if evptr = nil then . . .
if etype(evptr) = no_event then . . .

The function "etype" must be explicitly included wvia the
include statement.

3.5. Cancel, Destroy, Delete and Reschedule

If an event has been scheduled with a named clause, the
event notice may be removed from the event set by using the
cancel statement:

cancel <evptr>

Here <evptr> must be a simple or qualified variable or
expression of type "ptr_event".

Cancel does not destroy the event notice. The destroy
statement disposes of a previously canceled event notice:

destroy <evptr>

It is an error to try to destroy an event notice that is
still scheduled. To destroy a scheduled event notice use
delete instead of destroy. Delete first cancels then des-
troys the event notice.

Reschedule can be used to put an event notice back into
the event set. Reschedule has the same form as schedule
except that one specifies a pointer to an event notice
rather than the name of an event. The event pointer must
have been set by a previously executed schedule statement
with a named clause. The actual arguments of the event

Event Declaration and Scheduling

remain the same as those on the schedule statement. IE
necessary, the actual arguments can be accessed and modi-
fied, but this action requires knowledge of the event notice
structure. (See Appendix A for details.)

The reschedule statement has the form:

reschedule <evptr> { at <time-expression> |
delay <time-expression> |
now |
after <evptr-1> |
before <evptr-1> }

Here <evptr> and <evptr-1> must be simple or qualified vari-
ables or expressions of type ptr_event.

It is an error to try to reschedule an event that is
currently scheduled. To change the time of an event, first
cancel and then reschedule the event.

Without examining the event set directly, it is impos-
sible to cancel, delete, destroy or reschedule an event
unless it has been given a name through the named clause on
a schedule statement. However, one can use a forall state-
ment to scan the event set and obtain pointers to arbitrary

event notices. In this way arbitrary event notices can be
canceled, deleted, destroyed or rescheduled. (See Sec—~
tion 5.5.)

Care must be taken not to change the status of an event
notice that can be referenced by another event pointer. For
example:

var eventl, event2 : ptr_event;
schedule arrival(3) named eventl delay 10.0;
event2 := eventl;

delete eventl;

reschedule event2 delay 20.0;

In this case, when reschedule is executed it is likely that
event2 does not point to the event notice for the arrival(3)
event that was originally scheduled. In fact, depending on
the PASCAL implementation, event2 may still be a valid
pointer, but it may point to a different arrival event than
the arrival(3) originally scheduled. Needless to say, this
can cause unexpected results.

This aliasing problem is especially severe when the
PASCAL procedure "dispose" 1is not implemented and SIMPAS
must maintain available lists of event notices, since in

SIMPAS User Manual

this case the pointers are always valid,. (A pointer to a
disposed event notice points to an event notice on an avail=-
able list for that type of event. When this event notice is
reused, then the old pointer can point to an event notice
for a new event!) To avoid this problem in general, try to
not to have more than one copy of a pointer to an event
notice. When that event notice is destroyed, the destroy
procedure can set the pointer to nil to indicate this fact
and this "dangling" pointer problem cannot occur.

é.g. Reschedule and Current

Before the current event is called, a pointer to its
event notice 1is placed 1in the global variable "current".
The notice named "current" is removed from the event set
before the event routine is called; thus "current" is not
scheduled when the event is started. If when the event ter-
minates, "current" is still not scheduled, the event notice
will be destroyed.

If you wish the present event to be rescheduled at a
later time (using the same event notice), you can say

reschedule current . . .

where . . . represents any of the 1legal forms for
reschedule. By doing so, you will have scheduled "current"
and the event notice will not be destroyed.

After having rescheduled current, you may now say some-
thing like

schedule <event> after current;

However it is likely that this statement does not have ' the
effect you want. It appears that this statement should be
the same as

schedule <event> now;
or
schedule <event> delay #;
But it is not. If you execute the statements:

reschedule current at 10.0;
schedule arrival(3) after current;

then the last statement is equivalent to

schedule arrival(3) at 14.9;

19

Event Declaration and Scheduling

since "current" has been scheduled at time 18.86 and the
after clause will schedule "arrival" to the same time as
"current".

4. Pseudorandom Number Generation in SIMPAS

All (pseudo) random—-number generators in SIMPAS depend
on the basic uniform (2,1) random-~number generator
"u_random":

function u random(stream: integer): real;

The argument to "u_random" is the stream identifier which
indicates which element of the array "seed v" is to be used
to as a seed to generate the random number. The absolute
value of "stream"” must be between 1 and "n_seed" respec-
tively. (In the distributed version of SIMPAS, n seed=10).
If "stream" is positive it directly indicates which element
of the array is to be wused; 1if stream 1is negative then
"seed v[abs(stream)]" is used, but then the antithetic vari-
ate (one minus the generated value) is returned as the value
of u_random. Antithetic variates are sometimes useful in
variance reduction techniques for the analysis of simulation
experiments [KLEI74].

"u random", in turn, calls a machine-dependent random
number generator named "r_random":

function r_random(var seed: integer): real;

In the distributed versions of SIMPAS, "r_random" is imple-
mented in a more or less machine-independent way using the
mod function of PASCAL. The distributed version will not
work properly on machines with word sizes smaller than 32
bits. 1In any case, "r random" can be replaced by a more
efficient, machine-dependent version as necessary. In gen-
eral we would recommend that you replace "r_random" with a
uniform (8,1) pseudo-random number generator in common use
at your computer facility or one that has passed a set of
statistical tests such as those described in [KNUTH71].

The routines mentioned above ("u_random" and
"r_random") are automatically included in every SIMPAS pro-
gram. The following random number generation routines are
included by requesting them in the "include" statement. The
"stream" argument always determines which random number
stream is used to generate the results:

function expo(lambda: real; stream: integer): real;
generates an exponentially distributed random variable
with parameter "lambda". This procedure uses the
inverse transform method.

11

SIMPAS User Manual

function poisson(lambda: real; stream: integer): integer;
generates an integer random variable from the Polsson
distribution with parameter "lambda". This procedure
uses Algorithm Pl, page 449 from [FISH78].

function binomial(r:integer; p:real; stream:integer):integer;
generates a binomial random variable. "r" is the
number of trials; "p" is the probability of success on
any given trial.

function udisc(a, b, stream: integer): integer;
generates a uniform discrete random variable whose
value is an integer in the range "a" to "Db"
(inclusive).

function normal(mu, sigma: real; stream: integer): real;
generates a normally distributed random variable with
mean "mu" and variance “sigma”". The acceptance-
rejection method given as Algorithm N3B on page 414 of
[FISH78] is used to generate the random variable.

function lognormal(mu, sigma: real; stream: integer): real;
generates a lognormal random variable. This function
uses function "normal" so if "lognormal® is requested,
the user must request "normal" as well.

function gamma(alpha, beta: real; stream: integer): real;
generates a random variable whose density is given by:

A-1 = B4 .«
X< £ X 20
'ﬁ,\(’x) - M(a)

"Alpha" need not be an integer. Algorithm G3A page 425
of [FISH78] is used. This procedure is not optimal for
large values of alpha; instead one should probably use
Algorithm G3B page 426.

function erlang(alpha:integer; beta:real; stream:integer):real;
generates an Erlangian random variable as the sum of
"alpha" exponential random variables. The resulting
random variable has mean 1/"beta". The method is that
of Algorithm G1lB page 421 of [FISH78].

function beta(a, b: real; stream: integer): real;
generates a random variable with the beta distribution;
here "a"-1 1is the exponent of x and "b"-l is the
exponent of (l-x). Algorithm Bel, page 430 of [FISH78]
is used.

12

Pseudorandom Number Generation

function unif(a,b : real; stream : integer):real;
generates a continuous uniform random number in the
range (llall’llbll) .

function choose(a : real; stream : integer) : boolean;
returns true with probability "a"

function hyper(alpha,mul,mu2:real; stream:integer):real;
generates a random variable with the two-stage hyperex-—
ponential distribution:

EG = % (1= ™)1 (1-2) (1- €™%) xz0

The obvious composition method is used.

gdisc

While not a pseudorandom generation procedure itself,
putting this name in the include list causes a collec~
tion of general discrete random variable setup and gen-
eration routines to be included. To define a general
discrete random variable, one declares it to be of type
"gdiscvar". The variable is then initialized using one
of the two routines "r_gdiscsetup" or "i_gdiscsetup"
depending on whether you want to generate real- or
integer-valued random variables. The calling sequences
for the setup routines are:

procedure r_gdiscsetup(var head_rand : gdiscvar;
first: boolean;
tprob, tvalue : real);

procedure i_gdiscsetup(var head_rand : gdiscvar;
first: boolean;
tprob : real; tvalue : integer);

where:

"head _rand" is the name of the random variable,
and must be declared as type
"gdiscvar".

"first" is true on the first call to the
setup routine,

"tprob" is the probability to be assigned
to "tvalue".

"tvalue” is the value (real or integer as appro-

priate).

To generate a random variable with the general distri-

bution, one calls the general discrete generation rou-
tines:

13

SIMPAS User Manual
function r_gdisc(head_rand : gdiscvar;
stream : integer) : real;

function i_gdisc(head_rand : gdiscvar;
stream : integer) : integer;

A run-time error will occur if when either "r_gdisc" or
"i gdisc" is called for the first time with a particu-
lar argument, the random variable is found to be defec-
tive, that 1is, if the "tprob" values saved during the
setup process do not add up to one.

The inverse transformation method 1is used, and the
values are stored as a linear linked list. For general

discrete random variables with large numbers of values
a binary search tree would be more efficient.

5. Queues (Linked Lists) in SIMPAS

SIMPAS provides facilities for the declaration, mainte-
nance and inspection of linked lists or queues of temporary
entities (queue members). Summary statistics about the
number of elements in a queue are also maintained.

5.1. Queue Declarations

A queue declaration consists of two parts. The first
part, which is found in the global type declaration section
of the program, specifies the type identifiers for the queue
members and the queues. Queue and queue member variables
are then declared in var parts of the program.

The queue member type declaration is of the form:

<entity> = queue member
Cattribute-1> : <type~1>;
<attribute-2> : <type-2>;

<attribute-n> : <type-n>;
end;

There need be no user defined attributes; however 1in this
case the end keyword must still be present.

To declare a queue type, one uses a declaration of the
form:

{queue-type> = queue of <entity>;

Queue and queue-member variables can be declared using
declarations of the form:

14

Queues

var
{queue-name> : <gqueue-typed>;
<queue-member> : “<entity>;

One also can declare variables of type <entity>, but since
the queue handling statements require a variable of type
“<entity>, a variable of type <entity> would be impossible
to insert or remove from a queue.

Note that certain PASCAL implementations use a stronger
notion of type equivalence than that of standard PASCAL. 1In
standard PASCAL two types are equivalent if they have the
same structure. Thus if one declares two variables a and b
as follows:

var

a : record i,3 : integer end;
b : record i,j : integer end;

then a and b are of the same type and the statement a:=b |is
legal. Some PASCAL compilers use a stronger notion of type
equivalence called "name equivalence"; the Berkeley PASCAL
available on UNIX is an example. Under Berkeley PASCAL, two
variables are of the same type only 1if they have been
declared wusing the same type identifier. 1In particular,
unnamed types such as given in the last example are unique
to the wvariables declared with them. Thus a and b are not
considered to be of the same type under Berkeley PASCAL and
hence they are not assignable to one another. To get around
this, one must either declare all such variables at the same
time or declare a type identifier and then declare a and b
with the same type name:

type
rec = record i,j : integer end;
var
a : rec;
b : rec;
or:

a,b : record i,j : integer end;

Now a and b are of the same type and b is assignable to a so
that a:=b is legal.

The point of this discussion is that 1if your PASCAL
compiler uses name equivalence to determine type
equivalence, it will not work to declare variables as
“<entity>, wunless all such variables are declared at the
same time. For example, if we say:

var

15

SIMPAS User Manual
a : “<entity>;
b : “<Kentity>;

Then a and b are not assignable! However, if we declare a
and b like this:

a,b : “<entity>;
Then a and b are assignable.

To simplify declaration of entity pointers, the prepro-
cessor creates the type name "ptr <entity>" for “<entity>.

One can therefore declare a and b as follows:

var
a
b

: ptr_<entity>;
: ptr_<entity>;
This declaration will work regardless of whether not the

host PASCAL compiler uses name equivalence to determine type
equivalence,

For example, to declare a queue of Jjobs called
"cpu_queue" and a variable called "Jjobptr" to access members
of the queue, one would use the following declarations:

type (* global type declarations ¥*)
job = queue member
arrival time:real;
cpu time:real;
memory size:integer;

end;

job_queue = gueue of job;

var (* global or local var declarations ¥*)
cpu_queue:job_queue;
jobptr : ptr_Jjob;

A variable of type gueue member cannot be in more than
one dqueue at a time. Furthermore, a gueue member must be
removed from one queue before it can be placed into another
queue. This 1is necessary to properly maintain the queue
occupancy statistics.

5.1.1. Restrictions Certain restrictions have been
imposed on the queue member and queue type declarations in
order to simplify the preprocessor:

(1) As mentioned above, the type descriptors gqueue member
and queue are only allowed in the global type

16

Queues

declaration part of the program. They -will not be
recognized anywhere else in the program. Their pres-
ence in other parts of the program will cause compila-
tion time errors.

Complex types which include the declaration dqueue or
queue member are not allowed. The preprocessor will

not recognize a queue or queue member type declaration
unless the keyword queue immediately follows the equals
sign in the type declaration. Thus if one wishes to
have an array of queues or to include a queue as a
field of a record, one must first assign a type iden-
tifier to the queue and then include the type identif-
ier in the array declaration. Hence instead of saying

type
job = queue member . . . end;
job queues = array [1..5] of queue of job;
- array of dJueue of

one must say

type
job = gueue member . . . end;
job_queue = gueue of job;
job_queues = array [1..5] of job_queue;

Similarly, one may not directly use a queue declaration
as a type in a record.

Similar restrictions apply to the type gqueue member.
However, since one normally needs to have access to the
queue member through a pointer variable, declaring a
variable to be an array of queue members is not nor-
mally useful.

Before a queue member can be placed in a queue, it 1is
necessary to initialize the queue. The SIMPAS prepro-
cessor automatically creates an initialization routine
for each type of queue. For a queue of type <queued
the initialization routine 1is named "i_<queue>." To
initialize a particular queue variable, call the ini-
tialization routine for that type of queue with the
queue variable as the argument. For example:

type

job = queue member . . . end;
joblist = gueue of job;

var
job _lists : array [1..5] of joblist;

(* to initialize job_lists[5] one would say: *)

17

SIMPAS User Manual

i joblist(job_lists([51]);

(* to initialize all of job lists one would say
something like: ¥*)

for i:=1 to 5 do i_joblist(job_lists[il]);

The purpose of the initialization routine is to set the
queue head pointer properly and to initialize the queue
statistics variable. An attempt to insert a member
into a queue which has not been initialized will usu-
ally cause a run time error; it 1is impossible to
guarantee this across all PASCAL implementations.

5.2. ©Standard Queue and Queue Member Attributes

Every queue member has a standard 1list of attributes
defined by the preprocessor. These attributes can be
referred to wherever the queue-member variable 1is accessi-
ble. The user may not declare an attribute of the same name
as the standard attributes. Doing so will cause a compila-
tion time error. One refers to the attributes using the dot
notation of PASCAL; thus to refer to the attribute "size" of
queue "job queue", one would say "job queue.size". The
standard queue member attributes are: -

next- This attribute is of type ptr_ <entity> and points
to the next member of the queue or to the gqueue
head if this is the last member of the queue.

prev- This attribute is of type ptr_ <entity> and points
to the previous member of the queue or to the
queue head if this is the first member of the
queue.,

inqueue- This boolean attribute i1s true if the queue member
is in a queue.

ghead- This attribute is of type ptr_<entity> and points
to the head node of the queue, or is nil if the
<entity> is not in any queue. Thus one can deter-
mine if an <entity> is in <queue> by using an if
statement of the form:

if <entity>”".ghead = <queue>.head then
(* yes it is *) ., . .
else
(* no it isn't *) . . .

The standard queue attributes are:

18

Queues

empty=- This boolean attribute is true if the queue 1is
empty.
size- This integer attribute gives the number of members

in the queue.

head- This attribute is of type ptr_<entity> and points
to the head node of the 1linked 1list which
represents the queue. This attribute is set when
the queue is initialized.

stat- This attribute is of type "statistic" and is used
to «collect statistics about queue occupancy. The
user can restart collection of these statistics by
calling the routine clear:

clear (<queue>.stat,accumulate).

Statistics about queue occupancy are available
through the statistics attributes. Thus the mean
number of customers in a queue is given by
<queue>.stat.mean. See Section 6 £for further
details on the type "statistic", its use, the pro-
cedure clear and other procedures associated with
statistics collection.

5.3. Entity Creation and Disposal

To create a new queue member one wuses the procedure
call:

c_<entity> (<entity-pointer>);
where <entity-pointer> is of type ptr <entity>. Similarly,
to dispose of an existing queue member one uses the pro-
cedure call

d_<entity>(<entity-pointer>)

Thus the following can be used to create a new "job":

type

job=queue member . . . end;
var
T Jjobptr : ptr_job;

© . .

end;
c_Jjob(jobptr);
And to dispose of a "job" one can say:

d_job(jobptr);

19

SIMPAS User Manual

Of course, one can always use the PASCAL procedures
"new" and "dispose" to do the same thing. Recall, however,
that dispose need not be a working procedure in an implemen-
tation of standard PASCAL. Instead it may be a dummy pro-
cedure which has no real function. To insure portability, a
SIMPAS program cannot depend on procedure "dispose". By

using the procedures ¢ <entity> and d <entity> to create and
destroy queue members, a simulation program will be tran-
sportable to other implementations of SIMPAS, regardless of
whether or not "dispose" 1is a working procedure in that
implementation.

An additional advantage of using c_<entity> is that the
standard queue member attributes will be properly initial-
ized when the <entity> 1is created. (Initialization of
fields of records created by "new" statements is not speci-
fied in standard PASCAL.)

5.4. Queue Manipulation

SIMPAS provides a variety of queue manipulation state-
ments. The simplest forms are the statements:

insert <e ptr> in <queue>;
remove the first <e ptr> from <queued;

In the first statement the entity is inserted 1last 1in the
queue; while 1iIn the second statement the entity removed is
the first entity in the queue. Thus these simple statements
enable a straightforward implementation of a FCFS queue.

In these statements, <e_ptr> must be a simple or quali-
fied wvariable of type "ptr <entity>" and <queue> must be a
simple or qualified variable of type queue of <entity>.
Attempts to insert or remove an entity of the wrong type in
a queue will result in type clash errors at compile time.

Other variations of the insert statement are:

insert <e_ptr> first in <queue>;

insert <e _ptr> last in <queue>~
insert <e _ptr-1> fter <e_ptr-2> in <queue>;

The second case is equivalent to the same phrase with the
word "last" omitted. 1In the third case, <e_ptr-2> must be
in the gqueue <queue>; 1if it is not, then a run-time error
will occur.

The following variations on the remove statement are
supported:

remove the first <e_ptr> from <queue>;
remove the last <e ptr> from {queue>;

20

Queues

remove <e_ ptr> from <queue>;

The second statement is the opposite of the remove the first

statement. The effect of the third statement 1s to remove
the particular entity pointed at by <e _ptr> from the
<gueue>. In this case the remove statement does not modify

the <e_ptr> while in the other cases the remove statement
assigns to <e_ptr> a pointer to the entity which was
removed. The keyword the in these statements is optional.

To continue our cpu_queue example, one would normally
use the following declarations and statements to insert and
remove jobs from the "cpu_queue":

var

cpu_qgueue:job_queue;

event departure; forward;

event arrival;

var job_pointer : ptr_job;
begin
(* create a job *)
c_job(Jjob_pointer);

(* assign a cpu time to job_pointer”.cpu_time *)

(* we will assume that the job at the head of the
queue 1is executing *)
if cpu_queue.empty then
(* start cpu

schedule departure delay job_pointer”.cpu_time
else

insert job_pointer in cpu_queue;

(* we will assume that inter_arrival_time has
been defined *)
reschedule current delay inter_arrival_time;
end; (* arrival *)

event departure;
var job _pointer:ptr_job;
begin

remove the first job_pointer from cpu_ gqueue;

if not cpu_queue.empty then
reschedule current dela
cpu_queue.first”.cpu_time;

(* dispose of the job *)
c_job(job_pointer);

21

SIMPAS User Manual

end;

5.5. Forall Loops

To simplify searching queues, SIMPAS provides two types
of loop statements:

forall <e_ptr> in <queue> do S;
forall <e_ptr> in <queue> in reverse do S;

As before <e_ptr> must be a simple or qualified variable of
type "ptr <entity>"; <gueue> must be a simple or qualified
variable of type gueue of <entity>. Attempts to use a vari-
able of type ptr_<entityl> as a loop index in a forall loop
where the queue is of type queue of <entity2> will result in
type clash errors at compile time.

In the current implementation (version 2), S must be a
compound statement. This restriction is made to simplify
the preprocessor and we expect that it will be 1lifted in
later versions of SIMPAS.

If <queue> is empty then S is not executed.

The statement S must not include a remove <e ptr> from

<queue> statement. Otherwise the 1link structure used to
implement the loop could be destroyed while the loop is exe-
cuting. To remove all members from a queue, one cannot use

a forall loop but instead must say:

while not <queue>.empty do
remove <entity> from <queued>;

In a forall loop, the loop variable must be declared as
a type "ptr <entity>", and not of type <entity>. This means
that specific fields of the <entity> must be referred to
using the dereferenced name: <e_ptr>~. For example, to
average all of the cpu times of the queue of Jjobs 1in the
cpu_queue we declared above, one could use the following
declarations and code:

var
avg_cpu : real;
job_pointer : ptr_job;
Cpu_gueue : job_gqueue;
begin

avg_cpu:=0.0;

22

Queues

forall job pointer in cpu_gueue do
begin
avg_cpu:=avg_cput+job_pointer”.cpu time;
end;

if not cpu_queue.empty then
avg_cpu:=avg_cpu/cpu_queue.size
else

avg_cpu:=0.9;
end.

Alternatively, one could use a PASCAL with statement to make
the fields accessible:

forall job_pointer in cpu_gqueue do
begin
with job_pointer”™ do
avg cpu=avg cput+cpu time;
end; B - -

5.6. Forall Loops and the Event Set

To simplify scanning the event set, the event set |is
declared as follows:

type
event_notice = queue member
(* standard event attributes *)

end;

EV:queue : queue of event notice;
var -

ev_set : ev_queue;

The event set is thus a queue of event notice's and is named
ev set; the only difference between the declaration of
ev set and that of a queue of events is that no statistics
attribute is defined for ev_set. The result of this is that
one can use a forall statement to scan the event set:

var
ev_ptr : ptr_event;
begin

forall ev_ptr in ev_set do

begin

case etype(ev_ptr) of

no_event : begin . T . end;
main : begin . . . end;

23

SIMPAS User Manual

end; (* case *)
end;

end.

However, since the event set is a queue ordered by
event time, the user is prohibited from inserting and remov-
ing event notices from the event set using the insert and
remove statements. Instead, to insert an event notice in
the event set, use a reschedule statement; to delete an
event notice from the event set, use a cancel or delete
statement.

6. Statistics Collection in SIMPAS

At present, SIMPAS does not provide the automatic
statistics <collection features of SIMSCRIPT II.5. However,
SIMPAS does provide a statistic collection type and a set of
observation routines which significantly simplify statistics
collection. To include the statistics routines one places
the section name "statistics"™ in the include list. Since
statistics about queue membership are automatically main-
tained, the statistics routines are always automatically
included whenever a queue type is declared.

To allocate a variable for statistic collection, one
declares a variable of type "statistic." For example:

var
nsys : integer;
nsys_stat : statistic;

tsys : real;
tsys_stat : statistic;

A statistic can be either time~ or event-averaged. This
selection is made when the statistics variable is initial-
ized with the "clear" routine:

clear(nsys_stat, accumulate); (* time averaged ¥*)
clear(tsys_stat, tally); (* event averaged *)

The procedure call clear(. . ., accum) is a shortened form
of the first statement given above. A statistics variable
must be cleared before it is used to save observed data.
The routine "clear" can also be used to reset statistic col-
lection during a run,

To observe a value of a variable, one calls an observa-

tion routine of the appropriate type. The observation rou-
tines are:

24

Statistics Collection

r_observe(value, stat_variable); (* for real values *)
i _observe(value, stat_variable); (* for integer values *)
b _observe(value, stat_variable); (* for boolean values *)

As an example, to observe the values of nsys and tsys, one
would say:

(* nsys is integer, so call i_observe ¥*)
i_observe(nsys, nsys_stat);

(* tsys is real, so call r_observe *)
r_observe(tsys, tsys_stat);

The standard statistics attributes are

max max value observed
min min value observed
total sum of values observed
mean mean of values observed

variance variance of values observed
Other attributes can easily be added.

These quantities are always available through the stan-
dard statistic attributes. That is, at any time the mean
and variance of an observed variable (up to the wvalue
recorded by the last observation routine call for the vari-
able) are given by the mean and variance attributes of the
associated statistics variable. To 1include the current
value in a statistics attribute, one must call the observa-
tion routine,

Some example attribute references are:

nsys_stat.mean is the time average mean of nsys
tsys_stat.variance is the event averaged variance of tsys
nsys_stat.max is the maximum of nsys

tsys_stat.min is the minimum of tsys

The observation routine uses the algorithm of [WEST79]
to stably update the mean and variance.

A subtle point with respect to time-averaged observa-
tions 1is that the observation routines expect to be called
immediately before the value of the observed variable has
changed. (This seems more natural than having to call the
observation routine after the value changes, since 1in that
case one must make an artificial observation at time zero to
initialize the statistics variable.) 1If the wvalue of the
observed variable at the end of the simulation is to be

25

SIMPAS User Manual

included, the user must make an extra observation routine
call when the simulation completes. In most cases, this
extra observation will not significantly change the statis-
tics, but it can be significant if the observed variable has
not changed value for a non-trivial fraction of the simula-
tion run time.

7. A Sample SIMPAS Program

The following SIMPAS program simulates an M/M/1 queue-
ing system. Our discussion about this program is contained
in comments in the program text:

program example simulation(output);

(* the program reads no input because all parameters
prog
are declared as compile time constants *)

const
max_departures
arrival stream
service stream
arrival_rate
service rate
normalterm

5000;

Won
—
-

LI T

~e

o
RSN

- @

W

type
job

1

queue member
arrival _time : real;
end;

job_queue queue of job;

(* departures counts the number of departures *)
(* arrivals counts the number of arrivals *)
departures, arrivals : integer;

(* waiting_queue is the queue of waiting Jobs *)
waiting_queue : job_queue;

(* status is used in the "start simulation" statement ¥)

status : integer;
(* tsys_stat records the mean time in system etc *)
tsys_stat : statistic;

(* sys_busy records the amount of time the system is busy *)
sys_busy : statistic;

(* fetch exponential random number generator routine
from library ¥*)

26

A Sample SIMPAS Program

include expoj;

(* we could have declared event departure first,
but this shows how to forward an event *)
event departure; forward;

event arrival;

var

arriving_Jjob : ptr_job;

begin (* arrival *)
arrivals:= arrivals + 1;
c_job(arriving_job); (* create a new job *)

(* set the jobs arrival time *)
arriving_job”.arrival_time := time;

(* put the new arrival in the waiting_queue and
schedule a departure event if necessary *)
if waiting_queue.empty then
begin
(* record end of system idle period *)
b _observe(false, sys_busy);
insert arriving_job iﬁ waiting_queue;
schedule departure
delay expo(service_rate,servicg_stream);
end
else
insert arriving_job in waiting_gqueue;
(* set up next arrival *)
reschedule current
delay expo(arrival _rate, arrival_stream);

end; (* arrival *)

event departure;

var
departing_job : ptr_Jjob;

begin (* departure *)
departures:= departures + 1;

remove the first departing_job
from waiting_queue;

(* record this job's time in system ¥*)
r_observe(time - departing_job".arrival_time ,
tsys_stat);

27

SIMPAS User Manual

(* stop simulation if requested number Jjobs have
departed *)

if (departures >= max_departures) then

schedule main(normalterm) now;

(* otherwise dispose of this job and
reschedule departure *)
d_job(departing_job);

if waiting_queue.empty then
(* record end of system busy period *)
b observe(true, sys_busy)

else (* schedule next departure *)

schedule departure
delay expo(service_rate, service_stream);

end; (* departure *)

begin (* main procedure ¥*)

(* initialize waiting_queue *)
i_job_queue(waiting_queue);

(* initialize statistics *)
clear(tsys stat, tally);
clear(sysﬁBusy, accumulate);

(* set random number generator seeds ¥)
seed_vl(arrival_stream] := 87654 ;
seed_v[service_stream] := 67993;

(* schedule first arrival *)
schedule arrival now;

(* run the simulation *)
start simulation(status);

(* print results of run *)
writeln('Simulation Terminated at:', time:10);

writeln('End of run status :!', status:18);

(* flush out final busy/idle observation *)

b observe(waiting_queue.empty, sys busy) ;
writeln('Server utilization :
sys_busy. mean 10);

writeln('Number of jobs serviced :', departures:10);
writeln('Number of arrivals ', arrivals:19);

(* note that time average mean number of jobs in
waiting queue is the time average mean number
of jobs in system ~-- and this 1is recorded

automatically *)

28

A Sample SIMPAS Program

writeln('Mean number in system 2!,
waiting queue.stat.mean:10);

writeln('Max number in system ',
waiting_queue.stat.max:10);

writeln('Mean time in system :', tsys_stat.mean:19);
writeln('Max time in system :', tsys_stat.max:10);
end.

7.1l. Execution OQutput

simulation terminated at: 1.407e+04
end of run status : 1
server utilization : 8.564e-01
number of jobs serviced : 5000
number of arrivals : 5013
mean number in system : 7.946e+00
max number in system : 5.800e+01
mean time in system : 2.232e+91
max time in system : l.390e+g2

8. Acknowledgements

Mr. Mark Abbott was responsible for the implementation
of the SIMPAS preprocessor itself, and without his assis-
tance the project would never have been completed. This
project was supported in part by the Wisconsin Alumni
Research Foundation. I also would like to acknowledge the
support of the Madison Academic Computing Center, and in
particular the assistance provided by its director, Dr. Tad
B. Pinkerton. Finally, I would especially like to thank
Dr. Raphael Finkel for his assistance in debugging the early
versions of SIMPAS and his editorial assistance in writing
this manual.

29

SIMPAS User Manual

Appendix A

SIMPAS Implementation Notes

A.l: The Event Set and the Simulation Control Routine

Event routines are called and the simulation <clock 1is
advanced by the "simulation control routine™ in conjunction
with the "event set". The event set is a 1linked 1list of
records ("event notices"), each of which describes the exe-
cution of an event. An event notice contains the actual
arguments for the event, the simulation time when the event
is to be executed and a link to the next member of the event
set. To schedule an event, an event notice for the event is
created, the actual arguments of the event are stored in the
event notice, the time of the event is saved in the event
notice, and the event notice is inserted in the event set.
The event set is sorted by increasing simulation time; the
next event to occur is always described by the event notice
at the front of the event set.

The simulation control routine proceeds by (1) advanc-
ing the <clock to the time of the first event in the event
set, (2) removing that event notice from the event set, and
(3) calling the appropriate event routine. When the event
routine returns, this process is repeated.

The simulation control routine is itself called by the
start simulation statement. The control routine continues
to execute as described above until (1) the event set
becomes empty, or (2) an event notice for event "main"
reaches the head of the event set. 1In either of these cases
the control routine returns to its caller and the simulation
is stopped.

A.2: Event Set Structure

The event set is maintained as a doubly linked list
with head node. It thus has the same structure as a queue,
except that there is no statistics attribute for the event
set. The event set is declared as:

ev_set : record
head : ptr_event;
size : integer;
empty : boolean;
end;

These attributes have the same meaning as for Qqueues; see
Section 5.2 for more details. "ptr_event" is declared as

ptr_event = "event notice;

30

Appendix A -- SIMPAS Implementation

and an event notice is declared as a record with variants:

event notice = record

next, prev, ghead: ptr_event;
inqueue, named: boolean;
evtime: real;

case eventtype: t_ev_1 of

no_event : ()
<event> : (a_<event> : t_<eventd>);
main : (a_main : t_main);

end;

"next" and "prev" point to the next and previous event
notices 1in the event set; "ghead" points to the head of the

event set. "evtime" contains the time of the event and
"eventtype" gives the name of the event (e. g. arrival,
departure, etc.). "inqueue" is true as long as the event

notice 1is in any queue. The boolean variable "named" is
used to override the automatic reclamation of the event
notice after the event 1is executed when the notice was
created via a schedule statement with a named clause.

The type "t _ev_1" is an enumeration type each of whose
values 1is either the name of an event or the names
"no event" or "main". The preprocessor inserts one line in
this case statement for each event declared by the user. If
the event has arguments, the preprocessor declares a record
to hold them. The record is named "a <event>" and is of
type "t _<event>". The fields of "a <event>" are set to the
values of the actual arguments during the execution of a
schedule statement.

Some other global variables associated with the event
data structure are:

time : real;
g_notice: ptr_event;
current : ptr_event;

"time" contains the current simulation time. "g_notice" is
a global temporary used by the schedule statement code to
hold a pointer to the event notice being scheduled.
"Current" contains a pointer to the current event notice.
This is so the user can say reschedule current

A.3: Event Notices and Event Scheduling

The schedule statement

schedule arrival delay expo(lambda, 3);

31

SIMPAS User Manual

expands to

begin
c_notice(g notice, arrival);
g _notice”.evtime:= time + expo(lambda, 3);
e _insert(g_notice, <line-no>);
g notice:= nil;
end; —

The routine ¢ _notice creates an event notice of the speci-
fied type (in this case of type "arrival") and returns a
pointer to the new notice in the variable "g notice". The

"evtime" of "g notice" is then set and the routine e _insert
is called to insert the notice at the appropriate point in
the event set. The second argument of e insert is the SIM-
PAS line number of the schedule statement and is used for
reporting run—-time errors.

A somewhat more complicated case is the statement
schedule terminate(leastjob) named death delay run_time;
We will assume that terminate is declared as
event terminate(jobp : ptr_job);
This statement expands to:

begin
c_notice(g_ notlce, terminate);
w1th g_ notice” do begin

a_ terminate .jobp := leastjob ;

end;
Jeath:= g_notice;
g_notice”.named:= true;
g notice”.evtime:= time + run time ;
e_insert(g_notice, <line-no>);
g_notice:= nil;

end;

The primary differences between this and the last statement
are that the argument to the event is saved in the field
"jobp" of the record "a terminate" and that a pointer to the
generated event notice is saved in the user-declared vari-
able "death".

A.4: Queue and Queue Member Declarations

The queue-member type declaration is expanded into a
record type as follows:

<entity> = queue member
<attribute-1> : <type-1>;

32

Appendix A -- SIMPAS Implementation

<attribute-2> : <type-2>;

<attribute-3> : <type-n>;
end;

becomes:

ptr_<entity> = “<entity>;

<entity> = record
next, prev, ghead: ptr_<entity>;
inqueue : boolean;
attribute-1> : <type-1>;
{attribute~2> : <type-2>;
<attribute-3> : <type-n>;
end;

The three pointer fields are initialized to nil and
"inqueue" is initialized to false when the <entity> is
created. The ghead pointer is nil unless the <entity>.K is
currently 1in a queue, and otherwise the head pointer points
to the head node of the queue. This is used to check that
<entity> is indeed in a particular queue.

In the "no dispose" case (See Appendix C), for each
queue-member type declared, the preprocessor declares the
global variable "f <entity>" as type "ptr_<entity>". This
global variable is used to maintain an free list of entities
of this type. The procedures c <ent1ty> and d_<entity> wuse
this global variable. f <entity> is initialized to nil at
the start of the main procedure.

The <entity> creation and deletlon routines c¢_<entity>
and d_<entity> are inserted at the top of the program after
the global var part declarations. In the "no _dispose" case,
the procedure c_<entity> works by first looking to see if
£ <entity> is nil. If it is then c_<entity> uses "new" to
dynamically create another <entity>. Otherwise it unlinks
the next <entity> from the free list. d <entity> 1links the
<entity> pointed its argument onto the free list. In the
"usedispose" case, d_<entity> wuses "dispose" instead of
using the free list, and c _<entity> uses "new" to create a
new entity. Since "dispose" is not a working procedure in
all versions of PASCAL, the free list mechanism is provided
to allow dynamic entity creation and disposal in any SIMPAS
implementation.

The queue head type declaration
{queue-type> = queue of <entity>

is expanded to

33

SIMPAS User Manual

<gueue-type> = record
ead ptr_<entity>;
size integer;
empty : boolean;
stat : statistic;

end;

Note that the queues are maintained as doubly-linked 1lists
with head nodes. <queue-type>.head points at the head node
of the queue once the queue has been initialized. Thus, the
first member of the queue (assuming it is not empty) is
given by <queue-type>.head”.next; the last member is
<queue-type>.head” .prev.

For every queue type declared in the program, the
preprocessor creates and inserts an initialization pro-
cedure. For the queue type named <queue> the initialization
routine is named i <queue>. The initialization routine ini-
tializes the stat pointer and resets the statistics. The
size of the queue is set to zero and empty is set to true.
A new entity of type <entity> is generated by calling the
procedure c_<entity>; head is set to point at this entity.
The next and prev fields of head”™ are set to head to
represent an empty, doubly-linked list, head”.inqueue is set
to false and head” .ghead is set to nil. These special set-
tings of the fields of the head node are used in the remove
statements to detect attempts to remove a member from an
empty gqueue.

Note that attempting to insert a member in an unini-
tialized queue will probably result in a reference through
an uninitialized pointer and a corresponding run—time error.

A.5: Insert

The statements

insert <entity> in <queue>

insert <entity> first in <queue>

insert <entity> last in <queue>

Insert <entity> before <entity-2> in <queue>

are all translated to an equivalent insert after statement,
and then the insert after statement is expanded. For exam-
ple,

insert <entity> first in <queue>
is translated to
insert <entity> after <queue>.head in <queue>

and then the later statement is expanded. Thus we need only

34

Appendix A -~ SIMPAS Implementation

describe the expanded PASCAL produced by an insert after
statement.

Statements of the form

insert <entity-1> after <entity-2> in <queue>

are expanded to

begin
if <entity-1>".inqueue then error_p(9,<line—no>);
Tf <entity-2>".qhead <> <queue>.head then

error_p(l@,<line-no>);

with <entity-1>" do

with <queue> do

begin
ghead := <entity-2>;
next := ghead” .next;
prev := ghead;
ghead” .next := <entity-1>;
next” .prev := <entity-2>;
inqueue := true;
ghead := head;
observe(size,stat,accumulate);
size := size + 1;
empty := false;

end;

end ~

If <entity~-l> is currently in a queue, then the error mes-

sage: "tried to insert a member already in a queue at line
nnn" is printed. If <entity-2> is not in the queue <queue>,
the error message: "tried to insert after a member not in

the queue at line nnn" will be printed. Note that the head
node 1s not considered to be in the queue. Thus attempting
to insert an entity first in a queue by a statement of the
form:

insert <entity> after <queue>.head in <queue>
will also cause this execution time error.

Note that each insert statement is expanded in-line to
several 1lines of PASCAL. An alternative approach would be
for the preprocessor to create an "insert" routine for each
queue type. This is not done in the version 2 preprocessor
because the preprocessor does not know the types of the
variables and hence if the insert statement were to be con-
verted to a subroutine cal the preprocessor could not
determine which insert subroutine should be called. Remove
statements are expanded in-line for exactly the same reason.
Thus 1f a program contains many insert and remove state-
ments, significant savings can be made by 1isolating these

35

SIMPAS User Manual

statements in subroutines and calling the subroutines
instead of using the insert and remove statements repeatedly
throughout the program.

A.6: Remove

The statement
remove <entity> from <queue>
is translated to

begin

with <queue> do

begin
1f <entity>.ghead <> head then

error p(err id, <line-nod>);

observe(size,stat,accumulate);
size:=size-1;
empty:=size=0;

end;

with <entity> do

begin
inqueue:=false;
ghead :=.ELZ;
prev” .next:=next;
next” .prev:=prev;

end;

end

Statements of the form

remove the first <entity> from <queue>
remove the last <entity> from <queue>

are implemented by first setting <entity> to
<queue>.head”.next or <queue>.head”.prev (respectively) and
then executing the above code. Attempting to remove the

first or last member from an empty queue will be caught
because <queue>.head”.next will then point at the queue head
node which has ghead set to nil. Thus attempting to either
remove a member from a queue it is not in, or attempting to
remove the first or last member from an empty queue causes
the same execution time error message: "tried to remove a
member from a queue it is not in or attempted to remove the

first or last member of an empty queue at line nnn."
A.7: Forall

Statements of the form

forall <entity-ptr> in <queue> do S

36

Appendix A -- SIMPAS Implementation

are translated to

begin
<entity=-ptr> := <queue>.head” .next;
while <entity-ptr> <> <queue>.head do
begin
S;
if <entity-ptr>~.qhead <> <queue>.head then
error(ll,<line-no>);
<entity-ptr> := <entity-ptr> .next;
end;
end

The test after the statement S is to ensure that <entity-

ptr> is still in the queue. The error message in this case

is: "user removed the loop variable in a forall loop."
Statements of the form

forall <entity-ptr> in <queue> in reverse do S

are translated similarly, except that "prev" is used instead
of "next".

A.8: Libfile Organization

The libfile consists of a header and five parts. The
header is a single line which identifies whether the libfile
is one which is designed to be used with a PASCAL compiler
which supports the procedure dispose or a libfile to be used
with a PASCAL compiler in which dispose 1is not a working
procedure. The header is checked to make sure the libfile
present matches the setting of the constant "usedispose" 1in
the preprocessor. (See Appendix C for details.)

The parts of the libfile are indicated by a line which
begins with a dollar sign and they correspond to the parts
of a PASCAL program:

$const insertions for the const part
$type insertions for the type part

Svar insertions for the var part
Sprocedures insertions for the procedure part
$main insertions for the start of the

main program (initialization code)

Within each of these parts of the libfile are the sec-
tions which the wuser requests on the "include" statement.
The start of a section is flagged by a 1line which begins
with an asterisk. The rest of the line gives the section
name. One section is always 1included; its name is
"(default)". The other sections are included only if the

37

SIMPAS User Manual

user requests them or, in the case of the statistics sec-
tion, if the user declares a dqueue.

The algorithm for including sections from the 1libfile
is the following. During the second pass of the preproces-
sor, the beginning of the global const, type, var, pro-
cedure, and main program parts of the SIMPAS program are
detected by recognizing flags put at the appropriate places
during the first pass. When the global const part of the
program is found, for example, the const part of the library
file 1is read. Every section whose name is on the include
list (created by the first pass) is inserted in the program.
This process is repeated for each of the other sections.

A section name normally appears in several parts of the
library file. For example, the section name "statistics"
appears in both the type part and the procedure part of the
library file. The statistics section in the type part con-
tains the declarations for the types stat type and statis-
tic. The statistics section in the procedure part of the
library file contains the procedures r_observe, i observe,
and b_observe. In this way the library file can be used to
include constants, types, and initialization code associated
with each procedure included from the library file. There
is no requirement that an included section appear 1in any
particular part of the library file. A preprocessor error
will occur if a requested section name is not found in any
part of the library file.

Each section of the library file 1is uninterpreted by
the preprocessor. When the appropriate section is found all
lines up to the end of the section are inserted in the out-
put program. Thus, while the most common case is for a sec-
tion to contain a single procedure, it may contain several.
If the wuser has access to the library file, he may easily
customize it to satisfy his own requirements.

38

Appendix B -~ Reserved Words and Restrictions

Appendix B

Reserved Words and Implementation Restrictions

E.i: Reserved Words

All of the reserved

words in PASCAL are clearly

reserved words in SIMPAS as well. 1In addition,; the follow-
ing words are reserved due to their use in SIMPAS extensions

to the language PASCAL:

after
at
before
cancel
delay
delete
destroy
event
first
forall
from
insert

last
member
named

now

of

queue
reschedule
remove
start
simulation
the

The following identifiers are reserved for use by

preprocessor:

accum
accumul ate
b observe
c_notice
current

d notice
e_insert
error_p
error_x
ev_set
event notice
f evnotice
g_notice

i i

i_ev
i_observe
main

n_seed

no event
no stat
r_observe
r random
s control
sched n
scheduled
seed_v
stat_type
statistic
t ev 1
t_main
tally
time
u_random

The user should also avoid using identifiers which are
same as names of routines in the libfile.

the

the

SIMPAS User Manual

Finally, the preprocessor defines some identifiers 1in
response to declarations made by the user:

For an event named <event> the following names are gen-
erated and used by the preprocessor:

r <event> is the event routine name

a_<event> used to hold actual arguments of event
t <event> is the type of a_<event>

For a queue member of type <entity> the following names
are generated and used by the preprocessor:

c_<entity> entity creation routine

d <entity> entity destruction routine

f <entity> head of free list or entities

- (only used in "no dispose" case)
ptr_<entity> pointer type for name equivalence

For a queue named <queue> the name i_<queue> gives the
name of the queue initialization routine.

B.2: Implementation Restrictions

To simplify preprocessor Iimplementation, we enforce
certain restrictions on a SIMPAS program:

All identifiers are truncated to 12 characters during
expansion. This is controlled by the compile~time constants
"maxidlength" and "maxreslength" and can be changed to some
other length if necessary. If these constants are redefined
then several string constants and literals in the preproces-—
sor must be changed to have the appropriate length.

No string literal in the SIMPAS program can be longer
than 88 characters. If necessary, this can be increased by
changing the wvalue of the compile-time constant "max-
litlength".

No numeric constant in the SIMPAS program can contain
more than 20 digits. This can be increased by changing the
value of the compile-time constant "maxnumlength".

There can be at most 49 names in the include statement
list. The constant "maxincl" can be increased to overcome
this if necessary. The name " (default)" is always 1in the
include list and consumes one of the slots allocated by this
constant.

If the host PASCAL compiler supports both wupper and
lower case, the entire program is translated to one of these

40

Appendix B —- Reserved Words and Restrictions

cases to simplify 1identifier comparisons. The procedure
"getchar" in the preprocessor is responsible for this trans-
lation. Since this procedure must usually be modified in
the process of transporting SIMPAS (See Appendix C), the
choice of which case to wuse as the "standard" case can
easily be made at that time.

Names generated by the preprocessor must be unique.
Thus if the host PASCAL only distinguishes between identif-
iers which differ in the first 8 <characters, declaring
events with names "aaaaaaaa" and "aaaaaabb" will cause com-
pile time errors. The reason 1is that these events will
become procedures named "r_aaaaaaaa" and "r_aaaaaabb" and
the compiler regards these two names as identical. This
problem 1is most critical with queue members, since the
ptr <event> type generated as part of the queue member
declaration allows only four characters to uniquely describe
a queue member. Since most PASCAL compilers distinguish

identifiers in more than 8 characters, this is not as bad a
problem as it may appear.

Qualified variables or expressions which evaluate to
ptr_<entity>, ptr_event, or <queue> in schedule, reschedule,
cancel, delete, destroy, insert, remove, or forall state-
ments can not be arbitrarily complicated. A maximum of
twenty "tokens" is allowed in each expression. Each 1iden-
tifier, string constant, or special character counts as one
token. This limit can be changed by increasing the value of
the compile time constant "maxexprlength" at the expense of
some wasted storage.

An event may not have var arguments.
Events with names "main" or "no_event" are not allowed.

A schedule or reschedule statement uses the d¢lobal
variable "g notice" to hold a pointer to the event notice
being scheduled. Therefore 1f during a schedule or
reschedule statement a user—-defined procedure or function is
called, that procedure or function cannot itself contain or
cause the execution of another schedule or reschedule state-
ment.

In the version 2 preprocessor, the body of a forall
loop must be a begin-end, case-end, or repeat-until state-
ment. If it is not, the error message "block expected to
begin here" will be issued.

The loop variable must not be removed from the <queue>
in a forall <entity> in <queue> statement. In most cases
this will cause an execution time error, but the error can
not always be detected.

41

SIMPAS User Manual

A maximum of ten gueue member types and ten gueue types
may be declared in any one SIMPAS program. These lImits can
be overcome by increasing the . values of the compile-time
constants "maxmembers"” and "maxqueues".

The queue member and queue declarations may only appear
in the global type declaration part of the SIMPAS program.
See also the restrictions given in Section 4.1.1.

Extremely long input lines in a SIMPAS program can
cause lines of output to be created which cannot be com-
piled. Without discussing specific systems, it is difficult
to quantify the maximum length an input line can have;
extremely long expressions with few blanks per line are the
most common culprit. Blanks are squeezed from the source
input before expansion so that blanks are not significant
when discussing line length.

42

Appendix C -- Transporting SIMPAS

Appendix C

Transporting SIMPAS

This Appendix gives those details of the implementation
which are machine specific and which must be modified when
transporting SIMPAS to another machine.

C.l: Distribution Format

SIMPAS is distributed as a 9-track, 1640 bpi, unla-
beled, £fixed-block, ASCII tape. Each record on the tape
consists of 808 characters and contains 10 card images. The
blocks contain no control information and no special charac-
ters are used to compress out blanks.

There are four files on the tape; the files are
separated by hardware end-of-file marks. The first file
contains the SIMPAS preprocessor. The second and third
files contain two different versions of the library file:
one for the "usedispose" case and one for the "no dispose"
case. The last file contains a copy of the example program
described in Section 7.

The program as distributed is entirely in 1lower case
and assumes that the character " " (underbar) is a legal

identifier character in PASCAL. The circumflex """ charac-
ter is used as the PASCAL pointer dereference operator.

C.2: PASCAL Compiler Requirements

While we have implemented the SIMPAS preprocessor using
only the features of standard PASCAL, the implementor of a
"standard" PASCAL compiler may enforce size 1limitations
which make it impossible to compile the SIMPAS preprocessor.
For example, the maximum size of a set in PASCAL can be as
small as the number of bits in one machine word, although
most implementations allow sets much larger than this. The
SIMPAS preprocessor depends on being able to construct sets
of "tokens"; there are 60 elements in this set. PASCAL com-
pilers which enforce smaller maximum size limitations on
sets will not be able to compile the SIMPAS preprocessor.
Another, 1less important set (fatalerrors) has about 88
members; this set can be eliminated if necessary.

Proper execution of the SIMPAS preprocessor does not
depend on the following features of PASCAL. These features,
while part of the standard, are often not implemented:

43

SIMPAS User Manual

(1) Global goto's.
(2) Procedures as parameters to functions and procedures.
(3) A working version of "dispose".

C.3: Character Set Differences

Since character sets differ from machine to machine,
some adjustment of the PASCAL code will be necessary in
order to run SIMPAS on your system. The most complicated
case occurs if your computer system only supports upper case
since you will have difficulty even reading the distribution
tape. We will assume that somehow you get the entire thing
translated to upper case and read into a disk file on your
system. You can then do the rest of the changes described
below using a text editor.

The most common character set problems deal with the
characters "_", """, and "horizontal-tab". "_" is special
so let's discuss it first. We will assume for the moment
that " " is part of the character set supported by your sys-
tem, but that your PASCAL compiler does not allow " " as a
character in identifiers. (If this is not the case, then
you will have to translate this character to something else
when you read the distribution tape.) Using your text edi-
tor, translate every occurrence of " " in the preprocessor
and the appropriate library file to some character which is
legal in identifiers ("@" is a common choice). If you don't
mind using names like ptrfevent instead of ptr_event you can
skip the next step and do this same change on the test pro-
gram as well, We have found the " " character to be very
useful for readability of SIMPAS programs so the next step

is to configure the preprocessor to translate the underbar
character for you.

To configure the preprocessor, get back into your text
editor and look for the identifier "underbar" in the prepro-
cessor source code (it should be at about line 38). If vyou
changed all occurrences of " " to "@" you will have found a
line that looks like -

underbar = 'g';

This is clearly silly, so change the "@" back to "_" on this
line only. Now look for "procedure getchar". The word pro-
cedure starts in column 1 if that will help you find it. It
should be around 1line 70@¢. All the source program input
comes in through this procedure so we are going to translate
" " to something else here. At about line 738 there is a
comment describing what needs to be done; you need to insert
a line like:

44

Appendix C -~ Transporting SIMPAS

if inchar=underbar then inchar:='9"';

Getchar also is responsible for translating the input

program to lower case. You can change this if you wish as
follows. Use your editor to find a line containing

begin (* proc getchar *)

This is the first line of the body of getchar (the "begin"
is in column 1). A few lines later is the statement:

if inchar in ['A' .. 'Z'] then
inchar := chr(ord(inchar) - ord('A') + ord('a'"));

This translates the input to lower case. If you want to
translate the input to upper case replace this with:

if inchar in ['a' .. 'z'] then

inchar := chr(ord(inchar) - ord('a') + ord('A'));
You must do the case translation one way or the other.

Another difficulty with character sets is the
"horizontal~tab" character, hereafter known as "HT". On
some systems (UNIX for example), HT's are stored 1in the
source and interpreted by the terminal or the terminal
driver when the source is listed. This is fine, except that
the preprocessor will then see the HT's and try to classify
them as "miscellaneous-symbol tokens" which usually results
in puzzling preprocessor error messages. To get around this
define a character constant whose value is HT:

tab = 'HT'; (* put your HT character in there! *)

Now at about line 748, in procedure getchar, is the follow-
ing case statement:

case inchar of

lparen: kind:= lparensym;
rparen: kind:= rparensym;
lcurl: kind:= lcurlsym;
quote: kind:= quotesym;
comma: kind:= commasym;
semic: kind:= semicsym;
period: kind:= periodsym;
colon: kind:= colonsym;
space: kind:= blanksym;
equals: kind:= equalssym;
lsquare: kind:= lsquaresym;
rsquare: kind:= rsquaresym;

end; (* case *)

45

SIMPAS User Manual

Insert the following case in this statement:
tab: kind:= blanksym;

This will make all of the tab characters look like blanks to
the preprocessor.

One last comment about character sets deals with the
pointer dereference operator """. On some systems this is
represented by the two character graphic "->". Whatever the
character is on your system, go through and change all
occurrences of """ to the appropriate symbol throughout all
of the necessary SIMPAS files.

C.4: Usedispose and No Dispose

One of the stickiest problems of writing portable PAS-
CAL software deals with the procedure "dispose”. The pro-
cedure "new" is part of standard PASCAL, but dispose need
not be a working procedure 1in standard PASCAL. Since
dynamic creation and destruction of entities is an 1integral
part of a discrete system simulation, SIMPAS has to provide
some type of dynamic storage allocation facilities even 1if
dispose is not a working procedure. This is done by isolat-
ing the user from the actual entity creation and destruction
mechanism (the wuser is supposed to call c_<entity> and
d_<entity>).- In the case where dispose works (we will call
this the "usedispose" case), d_<entity> and d _notice call
dispose to destroy <entity>'s and event notices. In the
case where dispose doesn't work (this is the "no dispose"
case), d _<entity> and d_notice maintain free 1lists of
<entity>'s and event notices respectively, and the pro-
cedures c_<entity> and c_notice first look to see 1If they
can use a member of these lists to satisfy their request.

If not then they call "new" to generate a new <entity> or
notice.

Two things control which type of code 1is generated.
The first 1is the boolean constant "usedispose" in the
preprocessor. If this is set to true, then the preprocessor
will generate code that uses dispose. If usedispose is set
to false, then the code to handle the free-list case is gen-
erated. The second thing which controls the type of code
that is generated is the 1library file which 1is present.
Needless to say, setting usedispose to true and then using
the "no dispose" case library file is not going to work.
This 1is why the first line of the library file is a header
which is either "usedispose" or "no dispose". Attempting to
use a library file which does not match the setting of
usedispose in the preprocessor results in a preprocessor
error message.

46

Appendix C -- Transporting SIMPAS

The distributed version of SIMPAS has
"usedispose=true;". This constant should be changed as is
appropriate for your system. It is defined at about line 890
of the preprocessor.

C.5: Program Termination

Another problem with standard PASCAL is that there 1is
no standard way to terminate program execution. Some PASCAL
compilers require every program to terminate by falling off
the end of the main program; this usually means using a glo-
bal goto in order to terminate a program from inside of an

arbitrary procedure. Most PASCAL compilers supply a routine
named "halt" or "abort" which causes program termination.

These variations are handled in the SIMPAS preprocessor
and run-time by calling the procedures terminate and error_X
respectively. Procedure terminate is part of the preproces-

sor and is called when a catastrophic error is encountered.
Fix this procedure to do whatever 1s necessary to terminate
a PASCAL program on your system. Error_x is the error rou-
tine inserted in the output PASCAL produced by the prepro-
cessor. It is declared in the library file. Change this
procedure the same way you changed procedure terminate.

C.6: Random Number Generators

As discussed in Section 4, all random number generators
depend on the basic random number generator r random.

r_random is contained in the "(default)" section ~of the
$procedure part of the library file. (See Appendix A for a
discussion of the organization of the 1library £file.) The

distributed version of SIMPAS contains an r_random which
should work on any computer system with a word size of 29
bits or larger. For other systems you will have to supply a
suitable r_random. Even if the standard r_random will work
on your system, you may wish to replace the default r random
with a procedure tailored to your machine. In general we
would recommend that you replace r_random with a uniform
[8,1) pseudo-random number generator which is in common use
at vyour computer facility or which has passed a set of sta-
tistical tests such as those described in [KNUTH71].

C.7: Source Input and OQutput

The distributed version SIMPAS reads the input source
program from the standard input and directs the output
source program to the file whose internal name is "outfile".
If you wish the input to come from a file you should declare
a new text file as appropriate and then <change the state-
ments:

inchar := input”;

47

SIMPAS User Manual

get{input);

in procedure getchar to reference the appropriate input file

name. You also should insert a "reset" statement for the
file in procedure passlinit.

The expanded PASCAL output by the preprocessor will be
placed in the file which corresponds to the internal file
name "outfile". Since the method of establishing this
correspondence 1s system dependent, we will not discuss it
here. We will point out, however, that convenient places

for establishing this correspondence (assuming this can be
done from inside of a PASCAL program) can be found in the
procedures passlinit and pass2init. This is where the input
files, the temporary output file used by pass one, and the
final output file are reset and rewritten.

48

Appendix D -- SIMPAS Reference Guide

Appendix D

SIMPAS Reference Guide

D.l: SIMPAS Statement Summary

include <name-1> [,<name-2>] . . .;

start simulation(<status>);

event <event-name> [<formal parameter list>];
<label=-part>
<type-part>
{var-part>
<procedure and function decl part>
begin
<{statement-list>
end;

schedule <event-name> [<actual parameters>]
[named <ev_ptr>]
{ now |
at <time-expression> |
delay <time-expression> |
before <ev_ptr> |
after <ev_ptr> }

cancel <ev_ptr>

destroy <ev_ptr>
delete <evptr>

reschedule <ev_ptr> { at <time-expression> |
delay <time-expression> |
before <ev_ptr> |
after <ev_ptr> |
now }
<entity> = queue member
<attribute-1> : <type-1>;
<attribute-2> : <type-2>;

end;

{queue-type> = queue of <entity>;

insert <e_ptr> [{first | last |
before <e ptr> |
after <e_ptr> }]
in <queue>

49

SIMPAS User Manual

remove [the] [{first | last}]
<e_ptr> from <queue>

forall <e ptr> in <queue> [in reverse] do

begin
<statement list>
end

D.2: Identifier Glossary

a <event>

accum

accumulate

b _observe

A record of type t_<event> used in
event notice to hold the actual parameters for
event <event>.

short form of "accumulate"

Used in calling sequence to procedure clear to
indicate that this statistic 1is to a time-
averaged statistic.

Boolean variable observation routine.

c_<entity> This is the creation routine for queue members
of type <entity>.

c_notice An internal routine called to generate an
event notice.

clear This procedure resets a statistics variable
and sets 1its type to either accumulate or
tally.

current Contains a pointer to the current event
notice.,

d_<entity> This is the destruction routine for gqueue
members of type <entity>.

d notice An internal routine called to destroy an event
notice.

e insert An internal routine called to insert an event
notice in the event set.

error_p An internal routine called to print execution
time errors.

error_x Standard error exit routine.

ev_set the event set

50

event_notice

f <entity>

f_evnotice

g_notice

i_<queue>

i_observe

main

n_seed

no_event

no_stat

ptr_event
ptr_<entity>

r~<event>

r_observe

r_random

Appendix D -~ SIMPAS Reference Guide

A record type created by the
hold event notices.

preprocessor to

A pointer to an free list of queue members of

type <entity>. Used only in "no dispose"
case.

An array which holds pointers to the heads of
free lists of event notices. Only used in "no
dispose" case.

A global, temporary variable of type ptr_event
which 1is wused to hold a pointer to the event
notice being scheduled in the schedule or

reschedule statement.

This is the initialization routine for a queue
of type <queue)>.

An internal variable used initializa-
tion.

during

An internal variable used during initializa-
tion.

integer variable observation routine

A pseudo-event corresponding to the main pro-
gram.

The number of elements of seed_v. Normally
n_seed=10.

A dummy constant name in the enumeration type

t_ev_ 1. Returned by procedure etype if the
argument to etype is nil,.

A dummy constant name in the enumeration type
stat_type. Used to attempt to discover use of
uninitialized statistics variables.

A type name defined as "event_notice.

A type identifier defined as “<entity>.

The name of the event routine (proceudure) for
the event named <event>.

real variable observation routine

A machine dependent, uniform (d,1) random

number generator.

51

s_control

sched_n

scheduled

seed_v

stat_type

statistic

t ev 1

t_<event>

t_main

tally

time

u_random

SIMPAS User Manual

the simulation control routine

An internal procedure called during schedule
(or reschedule) before/after statements to
make sure the event notice being scheduled
before or after is itself scheduled.

Returns true 1f 1its ‘argument points to a
scheduled event notice.

seed v([i] contains the current seed for random
number stream "i". seed_v is declared as:
array [l..n_seed] of integer.

An enumeration type indicating what type of
statistic variable this is.

A record type defined in the library file and
included as part of the section "statistics".

Used to declare statistics observation vari-
ables.

An enumeration type containing the names of

all the events 1in the program as constant
values.

A type identifier used to declare the record
named a_<event> in the record event notice.

A record type used to declare the record which
holds the <status> variable for event main.
Needed for wuniform treatment of all event
arguments.

A possible value of a wvariable of type

stat type, this wvalue indicates that the
statistics variable is an event-averaged vari-
able,

The current simulation time. Time is a real
variable.

The basic uniform (@,1) random number genera-
tor. It knows about random number streams and
antithetics, while r_random does not.

52

[BRYA80]

[BRYA81]

(DAHL69]

[FISH78]

[FRAN77]

(IBM72]

[JENS74]

[KIVI74]

[KLEI74]

[KNUTH71]

[MACD73]

[WILS79]

References

References

Bryant, R. M. "SIMPAS -- A Simulation Language
Based on PASCAL." University of Wisconsin-Madison

Computer Sciences Department Technical Report
No. 394, June 1984.

Bryant, R. M. "Micro-SIMPAS: A Microprocessor
Based Simulation Language." To be presented at
the Fourteenth Annual Simulation Symposium,

Tampa, Florida, March 17-2¢, 1981.

Dahl, 0. J., K. Nygaard, and B. Myhrhaug. "The
Simula 67 Common Base Language." Pub §5-22,
Norwegian Computing Center, Oslo (1969).

Fishman, G. Principles of Discrete Event Simula-
tion. John Wiley and Sons, New York (1978).

Franta, W. R. The Process View of Simulation.
Elsevier North-Holland, Inc., New York (1977).

"SIMPL/1 (Simulation Language Based on PL/1l):
Program Reference Manual." SH19-5060-8, IBM Cor-

poration, Data Processing Division, White Plains,
New York (1972).

Jensen, K. and N. Wirth. PASCAL User Manual and
Report. Springer-Verlag, New York (1974).

Kiviat, P. J., R. Villanueva, H. M. Markowitz.
SIMSCRIPT II.5 Programming Language.
C. A. C. I., Inc, 12011 San Vicente Boulevard,
Los Angeles, California (1974).

Kleijnen, J. P. C. Statistical Techniques in
Simulation: Part I. Marcel Dekker, Inc. (1974) .

Knuth, D. E. The Art of Computer Programming
Vol. II : Seminumerical Algorithms. Addison-
Wesley Publishing Co. (1971).

MacDougal, M. H., MacAlpine, J. S., "Computer
System Simulation with Aspol," Proceedings Sympo-
sium on the Simulation of Computer Systems, June
19-2¢, 1973, pp. 92-103.

Wilson, I. R. and Addyman, A. M. A Practical
Introduction to PASCAL. Springer-Verlag, New

53

SIMPAS User Manual

York, (1979).

[WEST79] West, D. H. D. "Updating the Mean and Variance
Estimates: An Improved Method." Communications of

the ACM. Vol. 22, No. 9 (September 1979), pPP.
532-535.

54

Uvdate to the SIMPAS USER MANUAL
December 19, 1980

R. M. Brvant

This note decribes chanages to the SIMPAS preprocessor
which have Dbeen made since the user manual was written.
This note describes changes incorporated into version 4.2 of
the preprocessor.

Chanaes are keyed to the correspondina section of the
manual:

5.3. Entitv Creation and Disposal

On the last line of page 21, "c_job" should be changed
to "d_job."

6. Statistics Collection in SIMPAS

The standard statistics attributes have been extended
to include the number of observations:

nobs number of observations

6.1. Regenerative Simulation in SIMPAS

The observation routines and the statistics type have
been augmented to allow use of the regenerative simulation
approach [2,4] in SIMPAS. To use these features requires
twe statistics variables. One is used to record statistics
during each reaneration interval; the second statistic vari-
able summarizes the statistics gathered over each regenera-
tion interval.

To initialize the second statistics variable, one uses
the following vrocedure call:

clear(ci stat, interval):

The word interval signifies that this statistic will be used
to generate confidence intervals using the regenerative
simulation technique. At the end of each regeneration
interval, one wuses the routine c observe to transfer the
statistics gathered during the interval to the summary
statistic variable:

c_observe(stat, ci_stat);:

Here ‘"stat" is the per-regeneration-interval statistics
variable. The call to c_observe clears the "stat" variable
so that it mav be used to record statistics during the next
regeneration interval. The max and min attributes of the
"stat" variable give the max and min during the current
regeneration interval only: the max and min of "ci_stat"
give the true max and min.

55

R. M. Rrvant

To calculate confidence intervals, one uses the pro-
cedure call

c calc(ci stat, zalpha, mean, hwidth);

Zalrha is the critical point chosen from a normal distribu-
tion table. For a 1l@A(l-alpha)% confidence interval zalpha
should be chosen so that

Pr { 2 < zalpha } = 189(l-alpha/2)%

where 7 is a MN(%2,1) random variable. Mean is the midpoint
of the confidence interval and hwidth is the confidence
interval half-width. Thus the resulting confidence interval
is mean + hwidth. The classical confidence interval estima-
tors are used [3].

3.1: Reserved Words

The identifier "interval" should be added to the
reserved identifier list.

~.1: Distribution Format

SIMPAS can be distributed in any of the tape formats
snecified at the Dbottom of the MACC software order form.
For most non-UNIVAC systems, this means that SIMPAS will be
distributed as either an ASCII or EBCDIC card image tape.
For VAX UNIX we will write a UNIX compatible tape.

C.2: PASCAL Compiler Requirements

The name '"fatalerrors'" should be "fatalerrs', the set
"nonexerrs" should also be mentioned. These sets can bhe
eliminated or reduced in size without too much trouble.

C.3: Character Set Differences

The character set translation process has been moved
from procedure getchar to procedure handleletter. Roth the
case of translating upper to lower case (or vice-versa) and
the translation of underbar to some other character is done
there.

C.é: Random Number Generation

The current version of r_random is a portable version
of LLRANDOM [1] written in PASCAL which should work properly

on any machine with a word size of 32 bits or larger. We
also can supply a special version of LLRANDOM suitable for
use on a 16 bit machine. However, these routines can be

made much more efficient by rewriting them in assembly
language and the PASCAL version has bkeen included only for
portabilitv.

56

SIMPAS USER MANUAL UPDATE December 19, 19840

C.7: Source Input and OCutput

Some PASCAL compilers only accept input lines up to a
certain maximum lenath. Since SIMPAS generates lines of
varving lenath depending on the input, it 1is possible for
SIMPAS to generate a line that is too long to be compiled.
If this happens, the SIMPAS source must be split across
lines in such a wav as to shorten the output PASCAL. Since
comments and multiple hlanks are removed during the expan-
sion process, insertinag or removing comments or extra blanks
does not change the output line length.

Recause SIMPAS writes its output directlvy rather than
first wplacing the output in a PASCAL arrav of char, it is
imnossible to detect line overflow during pass one.
Instead, this is checked for during pass two. The constant
maxlinelength gives the maximum line length which should be
generated. It is set to 8@ in the distributed version. If
yvour PASCAL compiler does not enforce a maximum line length
limitation, set maxlinelength to 200 or so. There is an
array of char of dimension maxlinelength in prccedure move-
line, so it is unwise to set maxlinelength to infinity.

If a line longer than maxlinelength is detected durinag
the second pass, SIMPAS prints the 1line and gives an
appropriate error message. Note that during the second
pass, the preprocessor is reading the expanded PASCAL and
thus the error printed will refer to a PASCAL statement
which the preprocessor created. Use the SIMPAS source line
number (which is encoded in the output PASCAL as a comment
at the start of the line) to determine which SIMPAS source
line needs to be shortened.

REFERENCES

[1] Fishman, G., Principles of Discrete Event Simulation,,
John Wilev and Sons, NMew York (1978).

[2] Pranta, W. R., The Process View of Simulation, Elsevier
Morth-~Holland, Inc., New York (1977).

[3] Iglehart, D. L., "Simulating Stable Stochastic Systems,
V: Comparison of Ratio Estimators," Naval Research
Logistic Quarterly 22, 3, (September 1975).

(4] Lavenberg, S. S. and D. R. Slutz, "Introduction to
Regenerative Simulation," IBM Journal of Research and
Development, pp. 458-462 (Septermber 1975).

57

