EQUIVALENCE OF RELATIONAL ALGEBRA AND
RELATIONAL CALCULUS QUERY LANGUAGES
HAVING AGGREGATE FUNCTIONS

by

Anthony Klug

Computer Sciences Technical Report #389

June 1980
Equivalence of Relational Algebra and Relational Calculus

Query Languages Having Aggregate Functions

Anthony Klug
University of Wisconsin

Abstract

Aggregate functions in relational query languages allow intricate reports to be written. In this paper aggregate functions are precisely defined. The definition does not use the notion of “duplicates”. Relational algebra and relational calculus are extended in a general and natural fashion to include aggregate functions. It is shown that the languages so extended have equivalent expressive power.

Keywords and Phrases: aggregate function, relational algebra, relational calculus, query equivalent, relational model

CR Categories: 4.33, 5.21

Author's address: Anthony Klug, Computer Sciences Department, University of Wisconsin-Madison, Madison, WI 53706
This work was supported in part through contract NB79SBCA0191 with the National Bureau of Standards.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 An Example</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Purpose of Paper</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Outline of Paper</td>
<td>3</td>
</tr>
<tr>
<td>2 Formal Definitions</td>
<td>4</td>
</tr>
<tr>
<td>2.1 The Relational Model</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Aggregate Functions</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Relational Algebra</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Relational Calculus</td>
<td>9</td>
</tr>
<tr>
<td>2.5 Interpretations of Alphas</td>
<td>11</td>
</tr>
<tr>
<td>2.6 Comments and Comparisons</td>
<td>13</td>
</tr>
<tr>
<td>3 Translating Algebra to Calculus</td>
<td>18</td>
</tr>
<tr>
<td>4 Translating Calculus to Algebra</td>
<td>19</td>
</tr>
<tr>
<td>5 Summary and Future Work</td>
<td>31</td>
</tr>
<tr>
<td>5.1 Future Work</td>
<td>32</td>
</tr>
<tr>
<td>6 Appendix -- Details of Calculus-to-Algebra Proof</td>
<td>32</td>
</tr>
<tr>
<td>7 References</td>
<td>36</td>
</tr>
</tbody>
</table>
Some Symbols Used in This Paper

<table>
<thead>
<tr>
<th>symbol</th>
<th>name</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>English U</td>
<td>set union, union operator</td>
</tr>
<tr>
<td>v</td>
<td>English v</td>
<td>logical OR</td>
</tr>
<tr>
<td>(\cap)</td>
<td>intersect</td>
<td>set intersection</td>
</tr>
<tr>
<td>(\exists)</td>
<td>backwards E</td>
<td>existential quantifier</td>
</tr>
<tr>
<td>(\mathbb{N})</td>
<td>bold N</td>
<td>natural numbers</td>
</tr>
<tr>
<td>(\mathbb{V})</td>
<td>bold V</td>
<td>set of variables</td>
</tr>
<tr>
<td>(\mathbb{T})</td>
<td>bold T</td>
<td>set of terms</td>
</tr>
<tr>
<td>(\mathbb{F})</td>
<td>bold F</td>
<td>set of formulas</td>
</tr>
<tr>
<td>(\mathbb{A})</td>
<td>bold A</td>
<td>set of alpha expressions</td>
</tr>
<tr>
<td>(\mathbb{E})</td>
<td>bold E</td>
<td>set of algebra expressions</td>
</tr>
<tr>
<td>(\mathbb{I})</td>
<td>bold I</td>
<td>set of instances</td>
</tr>
<tr>
<td>(\in)</td>
<td>small epsilon</td>
<td>set membership</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>small alpha</td>
<td>calculus expressions</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>small psi</td>
<td>a formula</td>
</tr>
<tr>
<td>(\pi)</td>
<td>small pi</td>
<td>a formula</td>
</tr>
<tr>
<td>(\rho)</td>
<td>small rho</td>
<td>a restriction or join</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>small sigma</td>
<td>a selection</td>
</tr>
<tr>
<td>(\times)</td>
<td>cross</td>
<td>Cartesian product</td>
</tr>
<tr>
<td>(\equiv)</td>
<td>four bars</td>
<td>equi-selection</td>
</tr>
<tr>
<td>(\equiv)</td>
<td>three bars</td>
<td>equi-restriction</td>
</tr>
<tr>
<td>(\mathbb{{} \mathbb{}})</td>
<td>bold { }</td>
<td>restriction/selection operator</td>
</tr>
</tbody>
</table>
1. Introduction

Report writing, generating what is colloquially known as "IBM printouts", is an important function of database systems. A report is generated by the application of aggregate or statistical functions such as sum, average, minimum, etc. to data files or database relations. While relational database theory has provided a sound mathematical basis for studying many database problems, the use of aggregate functions in relational query languages is not well understood. Precise and general definitions are lacking, and their embedding into query languages is not well defined.

1.1. An Example

Consider the relational schema of Figure 1 describing a university database. A typical query, in English, involving aggregate functions would be:

For every department in the Letters & Science college, compute the total grad student support for each of the department's faculty members and print the department name and the average support for the department.

```
department(name, head, college)
faculty(name, dname)
grad(name, majorprof, grantamt)
```

Figure 1. Example Schema
1.2. **Purpose of Paper**

The purposes of this paper are:

- We give precise definitions for aggregate functions.
- We extend relational calculus to include aggregate functions in a natural manner.
- We extend relational algebra to include aggregate functions in a natural manner.
- We prove that the algebra and calculus so extended have the same expressive power.

There are several reasons the above work is needed:

As stated, report writers are an important part of real-life database applications. A theoretical foundation is needed for these systems. With such a foundation, system specifications can be made much more precise, and new languages can more easily be defined.

Previous treatments of aggregate functions in relational languages have not been general and have not been well defined. Two examples are System-R ([ABCE], [CAEG], [ChBo]) and Ingres ([HeSW], [SWKH]). These formulations do not apply to more general languages, for example, to languages having explicit quantifiers. Their definitions of aggregate functions also unnecessarily rely on sets of tuples having duplicate members (a contradiction). This goes completely outside the set-theoretic definition of the relational model. A precise definition is therefore needed which does
not use the notion of "duplicate". In this paper we give definitions of aggregate functions for the calculus and the algebra which are natural, general and precise.

Having extended the calculus and algebra to include aggregate functions, it is important to know if they have equivalent expressive power. This will allow designers to base new languages on either the calculus or the algebra without fear of losing expressive power.

The proof by Codd [Codd72a] that relational calculus and relational algebra (without aggregate functions) are equivalent is incorrect. (See Section 4.) The literature should record a correct proof.

1.3. Outline of Paper
In the next section we formally define relations, aggregate functions, relational algebra and relational calculus. Some comparisons between the two languages are made. In Section 3 an algorithm is given showing that every algebra query can be expressed as a calculus expression. In Section 4 we show that every calculus query has an equivalent algebra expression. Finally, in Section 5 we provide a summary and some directions for future work.
2. Formal Definitions

The relational model is first defined. We follow Codd ([Codd70], [Codd72a], [Codd72b]) in treating all data domains as integers and in referring to attributes by column number. This simplifies the treatment although some arithmetic computations on column numbers is then necessary.

2.1. The Relational Model

A relation scheme is a pair \(<R, k>\). \(R\) is a symbol (the relation name), and \(k\) is a positive integer (\(R\)'s degree) which is denoted \(\text{deg}(R)\). If \(<R, k>\) is a relation scheme, the domains of \(R\), \(\text{doms}(R)\), is the set \(\{1, 2, \ldots, k\}\) of natural numbers.

A schema is a sequence \(<<R_1, k_1>, \ldots, <R_s, k_s>>\) of relation schemes. It is generally written simply \(<R_1, \ldots, R_s>\). Throughout this paper, one fixed schema \(<R_1, \ldots, R_s>\) is assumed.

An instance \(I\) of schema \(<R_1, \ldots, R_s>\) is a sequence \(<I_1, \ldots, I_s>\) where for each \(i=1, \ldots, s\), \(I_i \subseteq \mathbb{N}^{\text{deg}(R_i)}\). All domains are taken without loss of generality to range over the set \(\mathbb{N}\) of natural numbers, and \(\mathbb{M}^m\) is the set of all \(m\)-tuples over \(\mathbb{M}\). We let \(I\) be the set of all instances over our fixed schema of \(s\) relations.
2.2. Aggregate Functions

The concept of an aggregate function is quite simple. An aggregate function takes a set of tuples as an argument and produces a single simple value as a result.

Both SOL ([ABCE], [CAEG], [ChBo]) and QUEL ([HeSW], [SWKH]), the query languages of System-R and Ingres, respectively, require that aggregate functions be able to accept arguments with duplicates. For example, to sum the salaries in an employee relation, the relation would be projected on the salary column, duplicates would be retained, and the projection would be sent to the sum function. Besides being unnecessary as we will see, the notion of "duplicates" is not well defined\(^1\). For example, the number of duplicate tuples in an expression:

\[
R[X] \cup S[Y]
\]

could depend on the order in which the system chooses to perform the projections and union.

Instead of providing one sum function (or average, max etc.), we provide a family of sum functions:

\[
\text{sum}_1, \text{sum}_2, \text{sum}_3, \ldots, \text{sum}_i, \ldots
\]

The function \(\text{sum}_i\) sums the numbers in the \(i\)-th column of its

\(^1\) Although bags have been formally defined [RoLe], they do not solve the problem.
input. Now there is no need for the vague notion of "duplicates". For example to determine the total of column 3 (salaries) in the tuple set:

\[
\begin{array}{ccc}
\hline
\text{Joe} & 25 & 12000 \\
\text{Nancy} & 21 & 13000 \\
\text{Sue} & 28 & 13000 \\
\text{Pete} & 35 & 14000 \\
\text{John} & 30 & 12000 \\
\hline
\end{array}
\]

we would write \(\text{sum}_3(R) \), not \(\text{sum}'(R[3]) \), where \(\text{sum}' \) is somehow supposed to tell its input not to be a set but a bag!

Formally, we hypothesize a countable set

\[F = \{ f_1, f_2, f_3, \ldots \} \]

of aggregate function symbols. For each \(f_i \in F \), the meaning of \(f_i \) is a function

\[f_i : \bigcup_i \text{Fin}(\mathbb{N}^i) \to \mathbb{N}. \]

(\(\bigcup_i \) denotes the union over \(i \in \mathbb{N} \); \(\text{Fin} \) denotes the finite subset operator.) That is, it is a function whose range is the natural numbers (our universe) and whose domain is the set of all finite homogeneous tuple sets.\(^2\)

\[^2\text{We do not bother to define the meaning of a function symbol for each database instance as is the case for function symbols in logic; all we need is one standard interpretation for each symbol. We also do not consider details of which kinds of} \]
The set \(F \) cannot be completely arbitrary. It must have the following uniformness property: For every \(f \in F \) and tuple set \(S \), if \(S' \) is a "constant expansion" of \(S \), i.e., if there is a projection \(X \) such that \(S'[X] = S \) and \(S[^X] \) contains just one tuple, then there is an \(f' \in F \) such that \(f(S) = f'(S') \). \(S \) and \(S' \) are always isomorphic, and we will not even distinguish between \(f \) and \(f' \). All normal sets of aggregate functions have this property. A more concise statement of this property will be given when we have defined the relational algebra.

2.3. Relational Algebra

The set \(E \) of relational algebra expressions over our fixed schema and the associated functions \(\text{deg} \) (degree) and \(\text{doms} \) (domains) for expressions are defined inductively as follows:

If \(e \in E \) has degree \(k \), then \(\text{doms}(e) = \{1, \ldots, k\} \).

(\(\emptyset \)) Literals: For any constant \(c \in \mathbb{N} \), \(\{c}\) \(\in E \) and has degree 1.

(1) Base Relations: \(R_i \in E \) for each \(R_i \) in the schema, and \(\text{deg}(R_i) \) is as defined in the schema.

(2) Projection: If \(e \in E \) and \(\text{deg}(e) = k \), then \(e[X] \in E \) where \(X \) is a sublist of \(\text{doms}(e) \), and \(\text{deg}(e[X]) = \text{number of elements in } X \).

(3) Cross Product: If \(e_1, e_2 \in E \) and \(\text{deg}(e_1) = d_1 \), \(\text{deg}(e_2) \) tuple sets aggregate functions might not be defined on.
= d₂, then (e₁×e₂) ∈ E, and deg(e₁×e₂) = d₁ + d₂.

(4) Restriction: If e ∈ E and X,Y ∈ doms(e), then e[X\overline{Y}] ∈ E, where \overline{Y} is \in, > or <, and deg(e[X\overline{Y}]) = deg(e).

(5) Union, Difference: If e₁ and e₂ are in E and both have degree n, then e₁ \cup e₂ and e₁ - e₂ are in E and have degree n.

(6) Aggregate Formation: If e ∈ E and X is a sublist of doms(e), then e<X,f> ∈ E, and has degree \text{len}(X) + 1.

Other traditional operators can be defined in terms of the above operators. The most common are the following:

(7) Selection: If e ∈ E, V ∈ \mathbb{N}, and X ∈ doms(e), then e[X\overline{V}] is (e × \{V\})\{X\\overline{0k}\}[doms(e)], where k = deg(e)+1. We will write e[X\overline{V}] as e[X\overline{V}]V.

(8) Restriction Lists: If e ∈ E and X₁,...,Xₖ,Y₁,...,Yₖ are in doms(e), then e[X₁,...,Xₖ\overline{Y₁,...,Yₖ}] is e[X₁\overline{Y₁}\overline{X₂\overline{Y₂}}...\overline{Xₖ\overline{Yₖ}}].

(9) Join: If e₁, e₂ are in E, X is a domain list of e₁ of length k, and Y is a domain list of e₂ of length k, then e₁[X\overline{Y}]e₂ is (e₁×e₂)[X\overline{Y}], where Y' is Y+deg(e₁).

(10) Intersection: If e₁, e₂ are in E and have the same degree, then e₁∩e₂ is (e₁×e₂)[D₁\overline{D₂}][D₁], where D₁ is 1,...,deg(e₁) and D₂ is 1+deg(e₁),...,deg(e₂)+deg(e₁).

(11) Division: If e₁, e₂ are in E, X is a domain list of e₁ of length k, and Y is a domain list of e₂ of length k, then e₁[X\overline{Y}]e₂ is e₁[\overline{X}] - ((e₁X×e₂[Y])e₁)\overline{X}, where \overline{X} are the domains of e₁ not in X.
For each $e \in E$ of degree k and for each $I \in I$, the value of e on I, denoted $e(I)$, is a subset of \mathbb{N}^k. The formal definition is as follows:

1. $\{c\}(I) = \{c\}$.
2. $R_I(I) = I^I$.
3. $e[X](I) = \{t : \exists t' \in e(I) \ t'[X] = t\}$, where $t'[X]$ is the tuple whose i-th component is the j-th component of t', where j is the i-th element of X.
4. $(e_1 \times e_2)(I) = \{t_1 \cdot t_2 : t_1 \in e_1(I) \land t_2 \in e_2(I)\}$, where \cdot denotes concatenation.
5. $e[(X \cup Y)](I) = \{t : t \in e(I) \land t[X] \in t[Y]\}$.
6. $(e_1 \cup e_2)(I) = \{t : t \in e_1(I) \lor t \in e_2(I)\}$
 $(e_1 - e_2)(I) = \{t : t \in e_1(I) \land t \notin e_2(I)\}$.
7. $e <X,f>(I) = \{t[X]^y : t \in e(I) \land y = f([t' : t' \in e(I) \land t'[X] = t[X]])\}$.

2.4. Relational Calculus

Six classes of objects are used to define calculus expressions: variables, terms, formulas, range formulas, alpha expressions (called simply alphas) and closed alpha expressions.

The set W of variables is $\{v_1, v_2, v_3, \ldots \}$.

The set T of terms is defined as follows: Every element of \mathbb{N} is in T. (These are the constants.) For every variable v_j and column number A, $v_j[A]$ is a term. If α is an alpha,
and \(f \in F \), then \(f(\alpha) \) is a term.

The set \(F \) of formulas is defined as follows: If \(\alpha \) is an alpha and \(v_1 \in V \), then \(\alpha(v_1) \in F \). If \(t_1, t_2 \in T \), and \(\theta \) is '3, If \(\Psi, \pi \in F \), then so are \(\neg \Psi \) and \(\Psi \land \pi \). If \(\Psi \in F \), \(v_1 \in V \) and \(r \) is a range formula, then \((\exists v_1) \Psi \in F \).

The set \(R_F \) of range formulas is defined as follows: If \(\alpha_1, \ldots, \alpha_k \) are closed (defined below) alphas, and \(v_1 \in V \), then

\[
\alpha_1(v_1) \land \ldots \land \alpha_k(v_1)
\]

is in \(R_F \) and is called a range formula for \(v_1 \). If \(r \) is a range formula for \(v_1 \), we will often write \(r(v_1) \).

The set \(\mathcal{A} \) of alphas is defined as follows: If \(R_i \) is in the schema, then \(R_i \) is an alpha of degree \(\deg(R_i) \). If \(t_1, \ldots, t_n \in T \), if \(r_1, \ldots, r_m \) are range formulas for \(v_{i_1}, \ldots, v_{i_m} \), if the free variables (defined below) of \(t_1, \ldots, t_n \) are \(v_{i_1}, \ldots, v_{i_m} \), and if \(\Psi \in F \), then

\[
(t_1, \ldots, t_n) : r_1, \ldots, r_m : \Psi
\]

is an alpha of degree \(n \).

3 We have tried in this paper to keep multiple usages of symbols to a minimum. Thus '3' denotes the formal equality symbol, while '=' denotes real set equality. Some symbols such as 'U' still serve double purposes.

4 For completeness, we only need to have \(\exists \)-quantified variables coupled to simple alpha expressions, but allowing range formulas makes the proofs less cumbersome.
Free variables, bound variables and closed objects (terms, formulas, alphas) are now defined. An occurrence of a variable \(v_i \) is free if it is not within the scope of a \(v_i \)-quantifier. Otherwise, the occurrence is bound. A \(v_i \)-quantifier is a fragment \(\exists v_i \) of a formula or the range fragment \(r_1, \ldots, r_j(v_i), \ldots, r_m \) of an alpha. In the following, \(X \) and \(Y \) denote (possibly empty) strings. The scope of \(\exists v_i \) in \(X(\exists v_i)\Psi Y \) is \(\Psi \). The scope of \(r_1, \ldots, r_m \) in \(X(t_1, \ldots, t_n):r_1, \ldots, r_m;\Psi Y \) is \((t_1, \ldots, t_n) \) and \(\Psi \). An object (term, formula, alpha) is closed if it has no free occurrences of any variable.

2.5. Interpretations of Alphas

In order to define the value of an alpha on an instance, we must, as in Predicate Calculus, define valuations which give values to free variables. Since a variable may occur in an alpha in several scopes with different ranges, it simplifies matters to rename variables so that each one occurs in only one scope. That this can be done follows from the same arguments as for the analogous property in Predicate Calculus ([Shoe], [BeS1]). We will assume this renaming has been done.

If \(\alpha \) is atomic, say \(R_i \), then no valuation is needed and we simply define \(\alpha(I) \) to be \(I_i \).

Let \(\alpha \) be an alpha with variables \(v_1, \ldots, v_n \) whose respective ranges are \(r_1, \ldots, r_n \). Let \(I \in I \). If \(r_i \) has the form
\[d_1(v_1) \lor \ldots \lor d_k(v_1), \]

then the range of \(v_1 \) in \(I \) is \(r_i(I) = d_1(I) \lor \ldots \lor d_k(I) \) which is defined by induction. A valuation for \(d \) on \(I \) is a partial function

\[x : \{1, \ldots, n\} \rightarrow \bigcup_j r_j(I) \]

(a sequence with "holes") such that for each \(i \), \(x_i \in r_i(I) \).

Given a valuation \(x \), \(x[i/a] \) denotes the valuation which is identical to \(x \) except that \(x_i \) is always defined and \(x_i = a \).

Given instance \(I \) and valuation \(x \) for \(d \) on \(I \), we define interpretations of the terms, formulas and alphas in \(d \), and \(d \) itself as follows:

Interpretations of terms: If \(c \in \mathbb{N} \) is a constant, \(c(I, x) = c \) (itself). If \(x \) is defined on \(v_i \) (on \(i \) to be precise), then \(v_i[A](I, x) \) is defined and equals \(x_i[A] \) (the \(A \)-th component of \(x_i \)). If \(d(I, x) \) is defined, then \(f(d)(I, x) \) is defined and equals \(\overline{f}(d(I, x)) \).

Interpretations of formulas: For an atomic formula of the form \(\alpha'(v_i) \), we have \(\alpha'(I) \) defined by induction. Then \(\alpha'(v_i)(I, x) \) is defined if \(x_i \) is, and \(\alpha'(v_i)(I, x) = 1 \) if \(x_i \in \alpha'(I) \) and is otherwise \(\emptyset \). For terms \(t_1 \) and \(t_2 \), if \(t_1(I, x) \) and \(t_2(I, x) \) are defined, then \((t_1 \Theta t_2)(I, x) \) is defined and equals \(1 \) if \(t_1(I, x) = 0 \) to \(t_2(I, x) \), and otherwise equals \(\emptyset \). If \(\Psi(I, x) \) is defined, then \(\overline{\Psi}(I, x) \) is defined and equals \(1 \) if \(\Psi(I, x) = \emptyset \), and otherwise equals \(\emptyset \).
If $\Psi(I,x)$ and $\pi(I,x)$ are defined, then $(\Psi \lor \pi)(I,x)$ is defined and equals the maximum of $\Psi(I,x)$ and $\pi(I,x)$. If for some $a \in r_i(I)$, $\Psi(I,x[i/a])$ is defined and equals 1, then $(\exists r_i \forall i)\Psi(I,x)$ is defined and equals 1. Otherwise $(\exists r_i \forall i)\Psi(I,x)$ equals 0.

Interpretations of alphas: $R_i(I,x)$ is always defined and equals I_i. If d' is $(t_1, \ldots, t_n): r_{j_1}, \ldots, r_{j_m} : \Psi$, then $d'(I,x)$ is defined and empty if some $r_{j_i}(I)$ is empty. Otherwise it is defined and equal to the set of all tuples $(t_1(I,x'), \ldots, t_n(I,x'))$ such that x' is a valuation of the form $x[j_1/a_1][j_2/a_2] \ldots [j_m/a_m]$ for some $a_i \in r_i(I)$, and such that each $t_i(I,x')$ is defined and $\Psi(I,x')$ equals 1.

As in Predicate Calculus, it is easy to show that for any alpha d', the value of $d(I,x)$ depends only on the components of x corresponding to free variables of d. In particular, if d' is closed, $d(I,x)$ is always defined and is independent of x, and in this case we simply write $d(I)$.

2.6. Comments and Comparisons

In this section we illustrate the different features of the algebra and the calculus.

The syntactic (and semantic) structures of the two languages are quite different. The algebra has one syntactic class: expressions. The calculus has six: variables, terms, formulas, range formulas, alphas and closed alphas, the last
being the only one corresponding to expressions. In Figure 2 we depict the syntactic structures of the algebra and the calculus where arrows \rightarrow to denote the relation "is used to define". Any equivalence proof must reconcile these very different structures.

Among the tradeoffs in using the two languages are the following two: The algebra has a much simpler structure. This could be useful in theoretical work where, for example, inductive proofs are used. On the other hand, the calculus allows queries to be expressed more naturally (see below), and this may be useful, not only for end-user purposes, but also to make language specifications by translations to the calculus simpler.

Some examples are now given

Given a student relation scheme:

Figure 2. Recursive Structure.
student(name, yr, gpa),

we want to know, for each student year (1, 2, 3, 4), the average gpa for students in that year. In the calculus we can write:

\[(v_1[2], \text{ave}_3((v_2[1], v_2[2], v_2[3]): \text{student}(v_2): v_2[2] = v_1[2])) : \text{student}(v_1) : -\]

In the algebra we could write:

\[\text{student}\langle 2, \text{ave}_3 \rangle\]

Now suppose we wanted for each student year the average of students in that year or in a greater year. In the calculus one change to the previous query will suffice:

\[(v_1[2], \text{ave}_3((v_2[1], v_2[2], v_2[3]): \text{student}(v_2): v_2[2] > v_1[2])) : \text{student}(v_1) : -\]

However, in the algebra, aggregate functions are applied only to "equi-partitions"; there is no such thing as a "greater-than-partition\(^5\). The algebra expression must first greater-than-join student with itself before applying the aggregate function:

\[(\text{student}\langle 2 > 2 | \text{student} \rangle\langle 5, \text{ave}_3 \rangle)\]

\(^5\) One, of course, could be defined, but the resulting set of operators would not be independent.
Next consider the example query in Section 1:

For every department in the Letters & Science college, compute the total grad student support for each of the department's faculty members and print the average for the department.

In the calculus we can write:

\[(v_1[l], \text{ave}_2(v_2[l],
 \text{sum}_2(v_3[l], v_3[3] : \text{grad}(v_3) : v_3[2]=v_2[l])
 : \text{faculty}(v_2) : v_2[2]=v_1[l]))
 : \text{dept}(v_1) : v_1[3]='L&S'\]

It would seem that to express this query in the algebra, we would only have to partition the grad relation by fname and sum gradamt, join this with the faculty relation, partition the result by the dept column and average the sum column. Finally, we would join with the dept relation, do the college selection and project out name and the average. The actual expression would be:

\[(((\text{grad}<2,\text{sum}_3>)\|l\equiv l\|\text{faculty}<4,\text{ave}_2>)
\|l\equiv l\|(\text{dept}\|3\equiv'\text{L&S}'\|))[1,2]\]

This is incorrect, however, because faculty with no students will not be counted in the average whereas they should appear with a zero sum. To properly express this query, and any similar query, we must generate sum tuples with zeros for those faculty having no students. To correct the above
query we should replace grad<2,sum_3 by the expression:

$$\text{grad<2,sum}_3 \cup (\text{faculty}[1] - \text{grad}[2]) \times \{0\}.$$

Range formulas in Codd's definition of the calculus were combinations of base relations. In the calculus with aggregate functions, we need range formulas built from combinations of alpha expressions. That this is necessary can be seen by considering the following algebra expression:

$$R^{<X,f>} \cup S^{<X,g>}$$

Without our general range clause, there is no way to write a calculus expression which can generate a set of tuples whose second column is sometimes an f-value and sometimes a g-value.

Literal relations are needed in the algebra because the calculus can put in the target list constants which actually occur nowhere in an instance.

The uniformness property for the set of aggregate functions can be expressed as follows: Define an aggregate formation operator of three variables by:

$$e^{<X,Z,f>(I)} = \{t[X]': y : t \in e(I) \& y = f(\{t'[Z] : t'[Z] \in e(I) \& t'[X] = t[X]\})\}.$$

This operator partitions, projects and then applies the function. The set F has the uniformness property if for
every e, X, Z and f there is an f' such that

\[e_{X,Z,f}(I) = e_{XUZ}^{f'}(X,f')(I), \text{ for all } I. \]

The three argument aggregate formation operator closely corresponds to applying an aggregate function to a calculus expression. The Z represents the domains in the target list of the alpha.

3. Translating Algebra to Calculus

In this section, we want show that for every algebra expression \(e \in \mathcal{E} \) there is an alpha \(\alpha \) with \(e(I) = \alpha(I) \) for all \(I \in \mathcal{I} \). This is done recursively as follows:

(Ø) A literal \(\{c\} \) corresponds to the alpha \((c):-:-(\text{empty range and predicate}). \)

(1) For a schema relation \(R_i \), the corresponding alpha is simply \(R_i \).

For the next three steps, assume \(e \) has a corresponding alpha of the form \((t_1, \ldots , t_n): r_1(v_1), \ldots , r_m(v_m): \Psi \). The target list will be abbreviated \(t \). In (2)-(7) we will also abbreviate other target lists.

(2) To translate the projection \(e[X] \), assume for notational convenience that the free variables in \(t[X] \) are \(v_1, \ldots , v_h \). Then with \(e[X] \) we associate the alpha

\[t[X] : r_1(v_1), \ldots , r_h(v_h) : (\exists r_{h+1} v_{h+1}) \ldots (\exists r_m v_m) \Psi. \]

(3) With \(e[X\theta Y] \) we associate \(t : r_1, \ldots , r_m : \Psi \& t[X] \theta t[Y] \).

(4) With \(e_{X,f} \) we associate
For the next three steps assume e_1 and e_2 are associated with d_1 and d_2, respectively.

(5) With $e_1 \times e_2$ associate $v_1, v_2 : d_1(v_1) : d_2(v_2)$.

(6) With $e_1 \cup e_2$ associate $v_1 : d_1(v_1) \lor d_2(v_1) : -$.

(7) With $e_1 - e_2$ associate $v_1 : d_1(v_1) : \neg d_2(v_1)$.

All steps excluding possibly (2) should be clear.

For step (2), suppose $a \in e[X](I)$. There is an $a' \in e(I)$ with $a'[X] = a$. By induction, $a' \in d(I)$, so for some valuation x defined on v_1, \ldots, v_h, $a' = (t_1(I,x), \ldots, t_n(I,x))$ and $\Psi(I,x) = 1$. From this we get $a = t[X](I,x)$ and $(\exists r_{h+1}v_{h+1}) \ldots (\exists r_m v_m) \Psi(I,x) = 1$.

For the converse, suppose $a \in t[X] : r_1(v_1), \ldots, r_h(v_h) : (\exists r_{h+1}v_{h+1}) \ldots (\exists r_m v_m) \Psi(I)$. For some valuation x we have $a = t[X](I,x)$, and $(\exists r_{h+1}v_{h+1}) \ldots (\exists r_m v_m) \Psi(I) = 1$. From this we can get a valuation x' such that $\Psi(I,x') = 1$. Let $a' = t(I,x')$. By induction, $a' \in e(I)$, and we see that $a'[X] = a$; hence $a \in e[X](I)$.

4. Translating Calculus to Algebra

The goal of this section is to prove that every closed alpha has an equivalent algebra expression. Formally, for every $d \in CA$, there is an $e \in E$ such that $d(I) = e(I)$ for all $I \in \Pi$.
Our approach is necessarily different from Codd's. The latter approach\(^6\) sought to form a cross product from all range expressions and use restriction, projection and division to extract the answer from this cross product. With aggregate functions, new columns are created, and forming cross products will not work. We attack alpha expressions directly: For all terms, formulas and alphas, we seek to produce "equivalent" algebra expressions. These are then combined recursively. The algebraic representation for a term should evaluate to a set containing a single 1-tuple which is the interpretation of the term. The algebraic representation for a formula should evaluate to an empty set if the interpretation of the formula is false and to a nonempty set if it is true. The algebraic representation of an alpha should evaluate to a set of tuples which equals the interpretation of that alpha.

Clearly, the problem with this approach is the presence of free variables. How do we represent free variables

\(^6\) Codd's proof seems to be in error: The first step in his reduction, putting the qualification into prenex normal form, is impossible with range-coupled quantifiers. For example, the formula:

\[p \lor (\exists r\textsubscript{i}v\textsubscript{i})q, \]

where \(v\textsubscript{i}\) is not free in \(p\), would be transformed to the formula:

\[(\exists r\textsubscript{i}v\textsubscript{i})(p \lor q). \]

These formulas are not equivalent, however, because the second can never be true in an instance \(I\) if \(r\textsubscript{i}(I)\) is empty while the first can be.
in an algebraic expression? The answer is that we represent calculus objects not by just an algebra expression, but by an algebra expression plus a restriction clause. The function of the restriction clause is to represent the free variables of the calculus object.

We form an algebraic expression \(D \) representing all possible valuations. The interpretation of a calculus object in instance \(I \) with valuation \(x \) will then correspond to the value of the algebraic expression \((D \| \sigma_x \| \{ \rho \} \epsilon)[Z] \) on \(I \), where \(\sigma_x \) is a selection clause corresponding to valuation \(x \), and \(\rho \) and \(\epsilon \) are the join clause and algebraic expression representing the calculus object. The projection \(Z \) serves to remove \(D \) and other unneeded factors.

Let \(\alpha \) have unique scopes for all of it variables \(v_1, \ldots, v_n \), and assume the theorem is true for all alphas smaller than \(\alpha \). Thus, there are algebraic expressions \(D_1, \ldots, D_n \) such that \(r_i(I) = D_i(I) \) for all \(I \in I \). For each \(i \), we let \(D_i^* \) be \((\{1\} - (\{1\} \times D_i)[1]) \times \{1\}^{n-1} \cup D_i \), where \(n \) is the degree of \(D_i \). With this formula, \(D_i^* \) is never empty, and \(D_i^*(I) = D_i(I) \neq \emptyset \). Let \(D \) be \(D_1^* \times \ldots \times D_n^* \).

For notational convenience we define:

\[
K = \text{deg}(D),
\]
\[
K_i = \text{deg}(D_1^* \times \ldots \times D_{i-1}^*)
\]
\[
d_i = K_i + 1, \ldots, K_i + \text{deg}(D_i)
\]
For every valuation \(x \) there is a corresponding selection clause \(\sigma_x \) such that

\[
D \models \sigma_x \downarrow [d_i] = \{x_i\}, \text{ if } x \text{ is defined on } i.
\]

We let \(D_x \) denote \(D \models \sigma_x \downarrow \). In the appendix we show that an expression of the form \((D_x \downarrow \rho \downarrow e)[Z_e] \), where \(Z_e \) refers to domains of \(E \), is equivalent to \(e \downarrow \rho \downarrow x \downarrow [Z_e] \), where \(\rho_x \) is a selection derived from \(D_x \) and \(\rho \).

The translation to the algebra is done in three steps:

(a) For every term \(t \) we define an expression \(e \), a join clause \(\rho \) and a projection list \(Z \) such that for all \(I \) and \(x \), if \(t(I,x) \) is defined, then

\[
(D_x \downarrow \rho \downarrow e)[Z](I) = \{t(I,x)\}.
\]

(b) For every formula \(\Psi \) we define an expression \(e \), a join clause \(\rho \) and a formula \(E \) such that for all \(I \) and \(x \), if \(\Psi(I,x) \) is defined, then

\[
(D_x \downarrow \rho \downarrow E)(I) \neq \emptyset,
\]

\[
(D_x \downarrow \rho \downarrow e)(I) = (D_x \downarrow \rho \downarrow E)(I), \text{ if } \Psi(I,x) = 1,
\]

\[
(D_x \downarrow \rho \downarrow e)(I) = \emptyset, \text{ if } \Psi(I,x) = 0.
\]

The expression \(E \) will be used for negations.

(c) For every alpha \(d' \) contained in \(d \) we define an expression \(e \), a join clause \(\rho \) and a projection list \(Z \) such that for all \(I \) and \(x \), if \(d'(I,x) \) is defined, then
\((D_x \uparrow p \uparrow e)[Z](I) = d'(I,x).\)

In every case it will be seen that the join clause \(p\) will join a part of \(e\) to \(D_1^*\) iff \(v_1\) is free in the corresponding calculus object.

Note that once we prove property (c) we are almost done since for a closed alpha \(d\) we can (and will) easily show that \(d(I) = e[Z](I)\).

First we give the details of these constructions, and then we prove the stated properties.

To keep the notation manageable, we do not derive new selection, restriction and projection clauses when rearranging expressions. For example, to be precise, the rule that restrictions commute with projections as long as the domains are in the projection is precisely written as:

\[e\{X\theta Y\}[Z] \equiv e[Z]\{X'\theta Y'\}, \]

where \(X'\) is the position in \(Z\) at which \(X\) occurred, and \(Y'\) is the position in \(Z\) at which \(Y\) occurred. However, we will simply write:

\[e\{X\theta Y\}[Z] \equiv e[Z]\{X\theta Y\}, \]

and this should not cause any confusion.

As another notational convenience, we use projections with possibly empty projection lists. An empty projection is
defined as follows:

\[e[] \equiv ([1] \times e)[1]. \]

The essential property of \(e[] \) is:

\[e[](I) = \emptyset \iff e(I) = \emptyset. \]

(a) Terms: For a constant term \(c \), let \(e \) be \([c]\); let \(\rho \) be the empty clause, and let \(Z \) be \(K+1 \).

For a term \(v_i[A] \), let \(e \) be \(D_i[A] \); let \(\rho \) be \(K_i+A\equiv 1 \), and let \(Z \) be \(K+1 \).

For an aggregate term \(f(\alpha) \) where the translation of \(\alpha \) has yielded \(e_{\alpha}, \rho_{\alpha} \) and \(Z_{\alpha} \), write \(\rho_{\alpha} \) as \(d_1, d_2, \ldots, d_k \equiv a_1, a_2, \ldots, a_k \), where the \(d \)'s refer to domains of \(D \). Then let \(e \) be \(e_{\alpha}[(a_1, \ldots, a_k), Z_{\alpha}]<(1, \ldots, k), f> \). Let \(\rho \) be \(d_1 d_2 \ldots d_k \equiv 1, 2, \ldots, k \), and let \(Z \) be \(K+k+1 \).

(b) Formulas: For an atomic formula \(t_1 \theta t_2 \), suppose we already have \(e_1 \), \(\rho_1 \), \(Z_1 \) and \(e_2 \), \(\rho_2 \), \(Z_2 \) for \(t_1 \), \(t_2 \), respectively. Write \(\rho_1 \), \(\rho_2 \), respectively, as \(d_1 \equiv w_1 \) and \(d_2 \equiv w_2 \). Let \(e \) be \((e_1 \times Z_1 \Theta Z_2 \times e_2)[w_1, w_2] \). Let \(\rho \) be \((\rho_1, \rho_2) \). Let \(E \) be \((e_1 \times e_2)[w_1, w_2] \).

For an atomic formula \(\alpha'(v_i) \), suppose the translation for \(\alpha' \) has yielded \(e' \). (\(\alpha' \) is closed, so \(\rho \) is empty.) Let \(e \) be \(e' \); let \(\rho \) be \(d_i \equiv \alpha' \), where \(\alpha \) is \(1, \ldots, \deg(e') \). Let \(E \) be \(D_i \ast \).
For a negation $\neg \Psi$, suppose the algebraic parts for Ψ are e_Ψ, ρ_Ψ and E_Ψ. Let e be $E_\Psi \setminus e_\Psi$; let ρ be ρ_Ψ; let E be E_Ψ.

For a disjunction $(\Psi \lor \Phi)$, suppose we have obtained e_Ψ, ρ_Ψ, E_Ψ and e_Φ, ρ_Φ and E_Φ. Let e be $(E_\Psi \times E_\Phi) \cup (e_\Psi \times E_\Phi)$. Let ρ be (ρ_Ψ, ρ_Φ). Let E be $E_\Psi \times E_\Phi$.

For a quantification $(\exists t_1 \forall t_1) \Psi$, suppose e_Ψ, ρ_Ψ and E_Ψ have been defined. Write ρ_Ψ as $(d\equiv w, \rho^-)$, where $d\equiv w$ are the join terms referring to D_i^*. Let e be $((D \downarrow d \equiv w \mid e_\Psi)[\neg w] \times D_1)[\neg w]$, where $\neg w$ refers to the domains of e not in w. (The D_1 term makes sure that if the range D_1 is empty, then $(D_1 \uparrow \rho \downarrow e)(I)$ is always empty.) Let ρ be ρ^-, and let E be $E_\Psi[\neg w]$.

(c) Alphas: For an atomic alpha R_1, let e be R_1; let ρ be empty, and let Z be $K + 1, \ldots, K + \deg(R_1)$.

Suppose d' is $(t_1, \ldots, t_n) : r_1, \ldots, r_m : \Psi$. (We assume the D's are renumbered for notational convenience.) Assume the translation has yielded e_i, ρ_i and Z_i for each t_i and e_Ψ and ρ_Ψ for Ψ. Let e be

$$((D \times e_1 \times \ldots \times e_n \times e_\Psi) \mid \rho_1, \ldots, \rho_n, \rho_\Psi \uparrow \times D_1 \times \ldots \times D_m)[W],$$

where ρ_Ψ^+ are the clauses of ρ_Ψ referring to D_1, \ldots, D_m, and where W projects out $D_1 \times \ldots \times D_m$. (The $D_1 \times \ldots \times D_m$ term makes sure that no tuples go in the result when any of the free variable ranges is empty.) Let ρ be obtained from ρ_Ψ by deleting all terms referring to D_1, \ldots, D_m.
Let Z be Z_1, \ldots, Z_n.

Now we proceed to prove these properties. In every case the hypothesis is that the interpretation of the object being considered is defined at instance I and valuation x. The numbers in parentheses at the end of lines refer to items in the appendix justifying the step which derives the next line.

(a) For a constant term c, we have

$$\begin{align*}
(D_X \triangleright p \triangleright e)[Z](I) \\
= (D_X \times \{c\})[K](I) \\
= \{c\}(I) \\
= \{c\} \\
= \{c(I,x)\}.
\end{align*} \tag{1}$$

For a term $v_i[A]$, we have

$$\begin{align*}
(D_X \triangleright p \triangleright e)[Z](I) \\
= (D_X \triangleright K_i + A \equiv 1 \triangleright D_i[A])[K+1](I) \tag{1} \\
= D_i[A] \triangleright 1 \equiv x_i[A] \triangleright (I) \\
= \{x_i[A]\} \\
= \{v_i[A](I,x)\}.
\end{align*}$$

For a term $f(d)$, we have

$$\begin{align*}
(D_X \triangleright p \triangleright e)[Z](I) \\
= (D_X \triangleright d_1, \ldots, d_k \equiv 1, \ldots, k \triangleright (e_d[\{a_1, \ldots, a_k\}, Z_d] \\
\quad <(1, \ldots, k), f>))[K+k+1](I) \tag{1} \\
= e_d[\{a_1, \ldots, a_k\}, Z_d] <(1, \ldots, k), f> \triangleright [k+1](I) \tag{2} \\
= \overline{F}(e_d \triangleright p_X \triangleright [Z_d](I)) \tag{1}
\end{align*}$$
\[= \mathcal{T}((D_x \uparrow \rho \uparrow e_d)[Z_d](I)) \]
\[= \mathcal{T}(d(I,x)). \]

(b) In this section we make use of the fact that \((D_x \uparrow \rho \uparrow e_1)(I) = (D_x \uparrow \rho \uparrow e_2)(I) \iff (D_x \uparrow \rho \uparrow e_1)[Z_e](I) = (D_x \uparrow \rho \uparrow e_2)[Z_e](I)\), where \(Z_e\) consists of the domains of \(e_1\) (= domains of \(e_2\)).

For an atomic formula \(t_1 \theta t_2\) we have:

\[(D_x \uparrow \rho \uparrow e)[Z_e](I)\]
\[= (D_x \uparrow \rho_1 \uparrow \rho_2 \uparrow ((e_1 \uparrow Z_1 \uparrow Z_2 \uparrow e_2)[w_1, w_2])[Z_e](I)) \quad (3)\]
\[= (D_x \uparrow \rho_1 \uparrow \rho_2 \uparrow (e_1 \uparrow Z_1 \uparrow Z_2 \uparrow e_2))[w_1, w_2](I) \quad (1)\]
\[= (e_1 \uparrow Z_1 \uparrow Z_2 \uparrow e_2) \uparrow \rho_1 \uparrow \rho_2 \uparrow [w_1, w_2](I) \quad (4)\]
\[= ((e_1 \uparrow \rho_{1x} \uparrow Z_1 \uparrow Z_2 \uparrow e_2)[w_1, w_2](I)) \quad (1)\]
\[= ((D_x \uparrow \rho_1 \uparrow e_1) \uparrow Z_1 \uparrow Z_2 \uparrow (D_x \uparrow \rho_2 \uparrow e_2))[w_1, w_2](I) \quad (5)\]
\[\quad = ((D_x \uparrow \rho_1 \uparrow e_1) \times (D_x \uparrow \rho_2 \uparrow e_2))[w_1, w_2](I) \quad \text{if } t_1(I,x) \text{ is } \theta \text{ to } t_2(I,x);\]
\[= \emptyset \text{ if } t_1(I,x) \text{ is not } \theta \text{ to } t_2(I,x).\]

Also,

\[(D_x \uparrow \rho \uparrow E)[Z_e](I)\]
\[= (D_x \uparrow \rho_1 \uparrow \rho_2 \uparrow (e_1 \times e_2)[w_1, w_2])[Z_e](I) \quad \text{as above}\]
\[= ((D_x \uparrow \rho_1 \uparrow e_1) \times (D_x \uparrow \rho_2 \uparrow e_2))[w_1, w_2](I) \quad (6)\]
\[\neq \emptyset.\]

For an atomic formula \(\phi'(v_1)\), we have

\[(D_x \uparrow \rho \uparrow e)[Z_e](I)\]
\[= (D_x \downarrow d_1 = d \uparrow \phi'[e'])[Z_e](I) \quad (1)\]
\[= e'[d' \equiv x_1](I)\]
\[\{x_i\} = D_1^* \downarrow d' \exists x_i \downarrow (I) \text{ if } x_i \in e'(I)\]
\[= \emptyset \text{ if } x_i \not\in e'(I).\]

Also,
\[(D_x \downarrow \rho \downarrow E)[Z_e](I)\]
\[= (D_x \downarrow d_1 \downarrow d' \downarrow D_1^*)[Z_e](I)\]
\[= D_1^* \downarrow d' \exists x_i \downarrow (I)\]
\[= \{x_i\}\]
\[\neq \emptyset.\]

For a negation \(\neg \psi\) we have:
\[(D_x \downarrow \rho \downarrow \neg \psi)(I)\]
\[= (D_x \downarrow \rho \downarrow (E \psi - \neg \psi))(I)\]
\[= (D_x \downarrow \rho \downarrow E \psi)(I) - (D_x \downarrow \rho \downarrow \neg \psi)(I)\]
\[= (D_x \downarrow \rho \downarrow E \psi)(I) - (D_x \downarrow \rho \downarrow \neg \psi)(I) = \emptyset\]
\[\text{if } \neg \psi(I,x) = 0 \ (\psi(I,x) = 1),\]
\[= (D_x \downarrow \rho \downarrow E \psi)(I) - \emptyset = (D_x \downarrow \rho \downarrow E \psi)(I)\]
\[\text{if } \neg \psi(I,x) = 1 \ (\psi(I,x) = 0).\]

Also,
\[(D_x \downarrow \rho \downarrow E)(I)\]
\[\neq \emptyset.\]

For a disjunction \((\psi \lor \pi)\) we have:
\[(D_x \downarrow \rho \downarrow e)[Z_e](I)\]
\[= (D_x \downarrow \rho \downarrow \psi, \rho \downarrow \pi \downarrow (E \psi \times e \downarrow U \ e \psi \times E \pi))[Z_e](I)\]
\[= (D_x \downarrow \rho \downarrow \psi, \rho \downarrow \pi \downarrow (E \psi \times e \downarrow U \ e \psi \times E \pi))[Z_e](I)\]
\[= (D_x \downarrow \rho \downarrow \psi, \rho \downarrow \pi \downarrow (E \psi \times E \pi))[Z_e](I),\]
\[\text{if } \psi(I,x) = 1 \text{ or } \pi(I,x) = 1\]
\[= \emptyset \text{ if } \psi(I,x) = 0 \text{ and } \pi(I,x) = 0.\]
Also,

\[(D_x \uplus \rho \uplus E)(I) \neq \emptyset.\]

For a quantification \((\exists r_i v_i)\psi\) we have

If \(r_i(I) = (D_i(I)) = \emptyset\), then \((\exists r_i v_i)\psi(I, x) = \emptyset\), and by construction (because of the \(D_i\) cross product term in \(e\)),

\[(D_x \uplus \rho \uplus e)[Z_e](I) = \emptyset.\] Otherwise, we have

\[(D_x \uplus \rho \uplus e)[Z_e](I) \quad (10)\]

\[= (D_x \uplus \rho \uplus (D \uplus \rho \uplus e \uplus \psi)[\sim w])[Z_e](I) \quad (1)\]

\[= (D \uplus \rho \uplus e \uplus \psi)[\sim w] \uplus \rho_x \uplus (I) \quad (11)\]

\[= \uplus \text{ae}r_i(I) \quad (D_x[i/a] \uplus \rho \uplus e \uplus \psi)[\sim w](I)\]

\[= \uplus \text{ae}r_i(I) \quad (D_x[i/a] \uplus \rho \uplus E \uplus \psi)[\sim w](I) \quad (12)\]

\[\& \psi(I, x[i/a]) = 1\]

\[= \uplus \text{ae}r_i(I) \quad E \uplus \rho_x [i/a] \uplus [\sim w](I)\]

\[\& \psi(I, x[i/a]) = 1\]

\[= \emptyset \text{ (empty union) if there is no } a \in r_i(I)\]

\[\text{with } \psi(I, x[i/a]) = 1,\]

\[\text{i.e., if } (\exists r_i v_i)\psi(I, x) = \emptyset,\]

otherwise if there is some \(a \in r_i(I)\)

\[\text{with } \psi(I, x[i/a]) = 1 \quad (13)\]

\[= E \uplus [\sim w](I)\]

\[= E \uplus \rho_x \uplus [\sim w](I)\]

\[= (D_x \uplus \rho \uplus (E \uplus [\sim w]))[Z_e](I)\]

\[= (D_x \uplus \rho \uplus E)[Z_e](I).
\]

Also,

\[(D_x \uplus \rho \uplus E)(I)\]
\[\ldots = (D_x \oplus \rho \oplus \text{e}_\psi) [^w] (I) \neq \emptyset. \]

If \(^w\) happens to be empty, the equalities will all still hold. (In this case, \(\rho^-'\) is empty.)

(c) For an atomic alpha \(R_i\), we have
\[
(D_x \oplus \rho \oplus \text{e}) [Z] (I) = (D_x \times R_i) [d'] (I) = R_i (I) = R_i (I, x).
\]

Now consider nonatomic alpha \(d'\). If one of the ranges \(r_1 (I), \ldots, r_m (I)\) is empty, then \(d'(I, x) = \emptyset\), and we also have by construction \((D_x \oplus \rho \oplus \text{e}) [Z] (I) = \emptyset\). Otherwise we have:

\[
(D_x \oplus \rho \oplus \text{e}) [Z] (I) = (D_x \oplus \rho^-' \oplus (D_x \oplus \rho_1, \ldots, \rho_n, \rho^+ \text{e}_\psi) (e_1 \times \ldots \times e_n \times e_\psi)) [Z_1, \ldots, Z_n] (I) \quad (14)
\]

\[
= U_{j=1, \ldots, m} (D_x [j/a_j] \oplus \rho_1, \ldots, \rho_n, \rho^+ \text{e}_\psi) (e_1 \times \ldots \times e_n \times e_\psi)_{a_j \in R_j (I)} [Z_1, \ldots, Z_n] (I) \quad (15)
\]

\[
= U_{j=1, \ldots, m} (D_x [j/a_j] \oplus \rho_n \text{e}_n) [Z_n] (I)_{a_j \in R_j (I)}
\]

\[
\psi (I, x[j/a_j]) = 1 \quad \times \quad \ldots \quad \times \quad (D_x [j/a_j] \oplus \rho_n \text{e}_n) [Z_n] (I)
\]

\[
= U_{j=1, \ldots, m} \{ t_1 (I, x[j/a_j]) \times \ldots \times t_n (I, x[j/a_j]) \}_{a_j \in R_j (I)}
\]

\[
\psi (I, x[j/a_j]) = 1
\]
= \alpha'(I,x).

Given any \alpha \in \mathfrak{A} we now have the identity:

\[(D_x \upharpoonright \rho \upharpoonright e)[Z](I) = \alpha(I,x).\]

If \alpha is closed, then \rho is empty and we have:

\[\eta_x \upharpoonright \rho \upharpoonright e)[Z](I) =
 \quad (D_x \times e)[Z](I) =
 \quad e[Z](I).

Thus, for all I \in \mathfrak{I}, \alpha(I) = e[Z'](I), and \alpha is equivalent to an algebra expression.

5. **Summary and Future Work**

Report writers may be thought of as query languages having aggregate functions. Within the framework of the relational model we have formally defined aggregate functions so that the imprecise notion of "duplicates are not removed" is not needed.

Relational algebra was extended to include an aggregate formation operator. It partitions its operand by specified columns and applies the aggregate function to each member of the partition.

Relational calculus was extended so that a term, which may appear in a target list or in a qualification, can be formed
by applying an aggregate function to a calculus expression. Linking of outer terms to terms within an aggregate term is accomplished by using free variables. It was necessary to allow variables to range over alpha expressions rather than simply over unions and projections of base relations.

We showed that the set of queries expressible in the algebra is the same as the set of queries expressible in the calculus.

5.1. Future Work
The results reported here can form a foundation for more work in the following directions:

- Develop algorithms for logical optimization of expressions involving aggregate functions.
- Develop algorithms for deciding the equivalence of expressions involving aggregate functions.
- Extend the languages to include additional types of operations such as arithmetic operators on terms.
- Investigate the complexity of the calculus-to-algebra translation. Our examples have indicated that it might have a high complexity.

6. Appendix -- Details of Calculus-to-Algebra Proof

(1) \((D_{x} \equiv \exists w \equiv e)[Z](I) = e \equiv w \equiv x_{d}[Z](I); Z\) consists of domains of \(e\), \(x_{d}\) is the subsequence of \(x\) formed from \(d\), and \(x\)
is defined at all places referenced by \(d \).

If \(t \in (D_X \# d \# w \# e)[Z](I) \), then there are tuples \(t_x \in D_X(I) \) and \(t_e \in e(I) \) with \(t_x[d] = t_e[w] \) and \(t_e[Z] = t \).

But by definition \(t_x[d] = x^d, \) so \(t_e \in e \# w \# x^d \# e[Z](I) \), and \(t \in e \# w \# x^d \# [Z](I) \). The converse is similar.

(2) \(e[Y,Z]^{<k,f \# [k \# c]}>^k+1(I) = \overline{f}(e[Y \# c \# [Z]])(I) \), where \(k = \text{len}(Y) \) and \(\overline{k} = (1, \ldots, k) \).

The hypothesis on the family \(F \) of aggregate functions says that \(e[Y,Z]^{<k,f \# [k \# c]>}(I) = e[Y,Z,f \# (I) = \{t[Y]^y : t \in e(I) \& y = \overline{f}({t'[Z] : t'[Y] = t[Y])})} \}. Hence,

\[
e[Y,Z]^{<k,f \# [k \# c]>}[k+1](I) \\
= \overline{f}(\{t'[Z] : t'[Y] = t[Y] = c}) \\
= \overline{f}(e[Y \# c \# [Z](I))
\]

(3) Projections distribute through cross products and unions, and they commute with restrictions (if all restricted domains are retained) and combine with themselves. See \([Ullm]\).

(4) Restrictions commute with other restrictions and with cross products \([Ullm]\).

(5) If \(t_1(I,x) \) is \(\emptyset \) to \(t_2(I,x) \), then if \(s_1 \# s_2 \) \(\in ((D_X \# p_1 \# e_1) \times (D_X \# p_2 \# e_2))(I) \), then \(s_1[Z_1] = t_1(I,x) \) and \(s_2[Z_2] = t_2(I,x) \). Hence \(s_1[Z_1] \) is \(\emptyset \) to \(s_2[Z_2] \), and \(s_1 \# s_2 \) \(\in ((D_X \# p_1 \# e_1) \# Z_1 \# Z_2) \) \((D_X \# p_2 \# e_2))(I) \).

(6) Since \(t_1(I,x) \) and \(t_2(I,x) \) are defined,
(D_x △ ρ_1 △ e_1)[Z_1](I) and (D_x △ ρ_2 △ e_2)[Z_2](I) are nonempty.

(7) Restrictions distribute through set differences.

(8) Restrictions distribute through unions.

(9) This follows by using rule (1) and the above distributive and commutative rules.

(10) With D_i(I) ≠ ϕ, we use rule (1) to eliminate the D_i term.

(11) We want to show that

\[(D \triangle d \triangle w \triangle e_\psi)[\neg w] \triangle \rho_x^{-1}(I)\]

= \[U_{a \in E_i(I)} e_\psi \triangle w \triangle a_d \triangle [\neg w] \triangle \rho_x^{-1}(I)\].

Since \(d \in d \triangle w\) refers only to \(D_i\), we can write

\[(D \triangle d \triangle w \triangle e_\psi)[\neg w] = (D_i \triangle d \triangle w \triangle e_\psi)[\neg w].\]

Now \(D_i(I) = U_{a \in E_i(I)} \{a\}(I)\). Since (set theoretic) union commutes with cross product and restriction (and hence join), we have

\[(D_i \triangle d \triangle w \triangle e_\psi)[\neg w] \triangle \rho_x^{-1}(I)\]

= \[U_{a \in E_i(I)} e_\psi \triangle w \triangle a_d \triangle [\neg w] \triangle \rho_x^{-1}(I)\]

= \[U_{a \in E_i(I)} e_\psi \triangle w \triangle a_d \triangle \rho_x^{-1}(I)\],

where \(a_d\) are the components of a referred to by \(d\). But

\((w \triangle a_d, \rho_x^{-1})\) is just \(\rho_x[i/a]\), and we have

\[(D_i \triangle d \triangle w \triangle e_\psi)[\neg w] \triangle \rho_x^{-1}(I)\]

= \[U_{a \in E_i(I)} e_\psi \triangle \rho_x[i/a] \triangle [\neg w](I)\]

= \[U_{a \in E_i(I)} (D_x \triangle \rho_\psi \triangle e_\psi)[\neg w](I)\].

(12) We use induction and restrict the union to the cases
where $\Psi(I, x[i/a]) = 1$.

(13) For any E associated with a formula, any restrictions ρ_1 and ρ_2 and any projection Z which does not include any domains of ρ_1, $E \parallel \rho_1 \parallel \rho_2 \parallel [Z](I) = E \parallel \rho_2 \parallel [Z](I)$. This follows because E is equivalent to an expression having only cross products and projections. That E is so equivalent should be clear from the construction noting that in the case of atomic formulas of the form $t_1 \theta t_2$, the associated E has the form:

$$(e_1 <x_1, f_1> \times e_2 <x_2, f_2>)[x_1, x_2],$$

where e_1 and e_2 have only cross products and projections. It is easy to see that this expression is equivalent to

$$e_1[x_1] \times e_2[x_2].$$

(14) The proof is as in (11). We must only generalize to more that one quantified variable. The notation $x[j/a_j]$ is short for

$$x[1/a_1][2/a_2]...[m/a_m].$$

(15) This follows from rule (1) and the induction hypothesis for Ψ.
7. References

[ChBo] Chamberlin D.D., Boyce R.F. "SEQUEL: A Structured English Query Language" ACM SIGMOD Workshop on Data Description, Access and Control, 1974

[Codd70] Codd E.F. "A Relational Model of Data for Large Shared Data Banks" CACM, 13, pp.377-387, 1970

[Codd72a] Codd E.F. "Relational Completeness of Data Base Sublanguages" Data Base Systems, R. Rustin (ed.), Prentice Hall, 1972

[HeSW] Held G.D., Stonebraker M.R. and Wong E. "INGRES -- A Relational Data Base System", NCC 1975

