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Abstract

The tableaux of Aho, Sagiv and Ullman and the chase
computation method of Maier, Mendelzon and Sagiv are
generalized. Given a set C of schema constraints
consisting of functional and join dependencies and a
relational algebra expression composed of projec-
tion, restriction, selection and <cross product
(without the universal instance assumption) the
functional § join dependencies on the expression im-
plied by C are determined. The idea of the method
is to generate a tableau for the expression whose
summary violates the test constraint in a "canoni-
cal" way.
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some symbols used in this paper

symbol name meaning
n intersect set intersection
E bold E set of expressions
I bold I set of instances
Y inverted A universal quantifier
M| box end of proof
C subset set inclusion
3 backwards E existential quantifier
™ bold N natural numbers
X join natural join
T bold T set of tableaux
v bold Vv set of variables
Y bold Y set of variables plus natural numbers
e greek epsilon set membership
o circle function composition
t greek tau expression->tableau transform

Cross Cartesian product



1. Introduction

In a relational database system, constraints of various
types may be known to hold over the relations in the system,
The most common constraint types which have been studied are
functional dependencies, multivalued dependencies and Jjoin
dependencies (see [4], for example). An explicitly speci-
fied set of constraints may imply more valid constraints on
the given relations, and a computation method called the
chase [8] has been presented to test for these valid implied
dependencies on schema relations. An algorithm for depen-
dencies on schema relations representable as Horn clauses

[6] has also been reported [5].

It is also important to know what constraints hold on views

ovér the given relations. This problem is important for a
number of reasons: The logic of application programs bound
to the view may depend on the validity of certain view con-
straints. When we bind the view to the base schema, we need
to wverify that the view constraints will always be valid.
Second, consider the problem of embedding relation data
types in a programming language, for instance, in Pascal-R
[9] . Pascal is a strongly typed language, and the type of
relational objects includes key specifications. For the
compiler to be able to type-check an expression involving
relational operators, it must be able to determine which

domains in an expression of type relation are a key.



The problem of determining dependencies over views is decid-
able for many classes of views ([7] and [2]). 1In [2], the
decidability of ¥o-sentences is used. This method, however,
is computationally difficult. In this paper we present a
method which is more intuitive than ¥d-decidability and more
amenable to optimization. For functional dependencies, the
method will run in polynomial time. We have, in fact,
implemented the algorithm to calculate functional dependen-

cies on expressions.

The method is a generalization of the chase method of [8],
and we get a chase computation which determines valid func-
tional dependencies and join dependencies on a general class

of relational algebra expressions.

The next section provides the basic relational definitions
from which we work. In section 3, the definitions for
tableaux are given. Section 4 defines the chase computa-
tion, and ©proves 1its basic properties. 1In section 5, we
develop the machinery for using chase computations for test-
ing expression constraints, and in section 6 we give some

examples and some extensions to the method.

2. Relational Model Definitions

The formal model we use does not make the universal instance
assumption. This assumption has been criticized in the past

(e.g., [3]), and it is important to avoid it whenever possi-



ble. In addition, the relational algebra we define is not
restricted to natural joins of at most one occurrence of
each relation as in [17. We can, for example, form a
repeated join of a family tree relation to get information

on great grandparents.

A relation scheme is a pair <R,k>. R is a symbol (the rela-
tion name), and k is a positive integer (R's degree) which
is denoted deg(R). 1If <KR,k> is a relation scheme, the

domains of R, doms(R), 1is the set {1,2,...,k} of natural

numbers.

A schema is a sequence <<R1'kl>""'<Rn'kn>> of relation

schemes. It 1is sometimes written simply <RyseeesRp>e
Throughout this paper, one fixed schema <Ryseee/Rpy> 1is
assumed.

An instance I of schema <Ry seeesRp> is an n-tuple

<Iy,...,1,> where for each i=1,...,n, I; C mied(Ri) | a11
domains are taken without loss of generality to range over
the set N of natural numbers, and N™ is the set of all m-
tuples over W. We let I be the set of all instances over

our fixed schema of n relations.

A functional dependency (FD) for degree k is a pair <Z,A>,

also written Z->A, where Z C {1,2,...,k}, A € {1,2,...,k} and

A g Z.

A join dependency (JD) for degree k is a seguence




<J1""'Jm>' also written [Jl,...,Jm], in which each Ji is a
sublist of {1,...,k} and where U J; = {1,2,...,k}. A sub-
list of a set X is a nonrepeating sequence whose entries are

taken from X.

A constraint is either an FD or a JD.

A schema FD is a pair <R;,Z>R>, also written R;:Z->A, where

R; 1s a schema relation and Z->A is an FD for degree deg (Rj) .
Similarly, a schema JD is a pair <R;,S>, also written R;:S,

where S is a JD for degree deg (Rj) .

An FD Z->A for degree k is true in tuple set X C mk  if  for
all tuples tyr ty in X, |if tl[Z] = t2[Z], then tl[A] =
t2[A]. Brackets '[', ']' indicate projection on the 1listed

domains.

A JD [Jy,...,0,] for degree k is true in tuple set X C nk if
every element t € Nk such that t[Ji] is in X[Ji] (i=1l,...,m)

is in X.

A schema constraint <Ri,c> 1s true in an instance I if ¢ |is

true in Ii'

If C is a set of schema constraints, the subset sat(C) of ¢

denotes the set of instances in which C is true,

The set E of expressions over our fixed schema and the asso-

ciated functions deg (degree) and doms (domains) for expres-

sions are defined inductively as follows:



If e € B has degree k, then doms(e) = {1,...,k}.

(1) R; € E for each R; in the schema, and deg (R;) is
already defined.

(2) Projection: If e € E and deg(e) is k, then e[X] € E
where X is a sublist of doms(e), and deg(e[X]) = number
of elements in X.

(3) Cross Product: If €1r €y € E and deg(ey) = dq, deg (e5)
= dz, then (elXez) € B, and deg(elXe2) = dl + d2.

(4) Selection, Restriction: If e € E, X,Y € doms/(e) and
V € W, then e[X=V] € E and e[X=Y] € E and deag (e[X=V]) =

deg (e[X=Y]) = deg(e).

With these operators we can also define joins and intersec—
tions. Set difference was not included because determining
validity of dependencies on expressions with set difference
is impossible [7]. The union operator will be discussed in

the last section of this paper.

For each e € E of degree k and for each I € I, the value of
e on I, denoted e(I), is a subset of MX. The formal defini-

tion, which is omitted, gives the usual semantics for rela-

tional algebra operators.

An expression constraint is a pair <e,c>, also written e:c,

where e € E and ¢ is an FD or a JD for degree deg(e). An

expression constraint e:c is true in instance I if c is true

in e(I).

An expression constraint e:c is valid in a set of instances
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P C I if for every I € P, e:c is true in I.

3. Tableaux

Tableaux have been defined by Aho, Sagiv and Ullman [l1]. We
generalize the notion in several ways: A tableau may have
many rows in its summary. There is no division of variables
into distinguished and nondistinguished classes?. There 1is
also no restriction on the number of columns in which a

variable may occur.

The set W of variables is the set tay, ao, a3, +.. } Oof sub-

scripted "a"s. The set Y of symbols is W U W.

A tableau T of degree m for the schema Ryse.../Rp> 1s an

n+l-tuple <S;Tyreee,T> such that s ¢ v, for each

i=l,...,n, T; C y9e9 (Ry) | ang every variable in S appears in
2

some T;. S is called the summary2. We let T be the set of

all tableaux over the schema.

If X is a tuple, a tuple set or a tableau, we 1let Y (X)

denote the set of symbols occurring in X.

A valuation r is a partial function Y¥-N which is the iden-

tity on W C Y. Valuations are extended to functions Yk—>Mk

1 1f one wishes, the variables appearing in the summary
may be called distinguished. 1In this paper we only need to
distinguish them in one place.

This and subsequent definitions and theorems can easily
be extended to allow constants in summaries. This was not
done because constant columns in a view add nothing.
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and functions P(Yk)~>P(Nk) (P = power set) by component-wise
and element-wise extension. A valuation for a tableau T is
one which is defined on ¥(T). A tableau can be <considered
an instance by applying a one-to-one valuation to it and
omitting the summary. Normally, the one-to~one wvaluation

will not be explicitly mentioned.

A renaming is a one-to-one partial functign r:¥->Y which is

the identity on M.

A tableau T = <S,T1,...,Tn> may also be considered to be a

function I->N9e9(T) by defining:
T(I) = {r(s) : r is a valuation for T, s € 8, ¥i r(T;)

Tableau T; is equivalent to tableau T, with respect to a

subset P C I, written Tl =p T2, if Tl(I) = TZ(I) for all

I € P.

4. Transformation Rules and Chases

In this section, the chase computation is defined. A chase
consists of a sequence of transformations on a tableau which
preserves equivalence with respect to a given class of
instances. We start by defining three classes of transfor-
mation rules. The first two correspond to FDs and JDs,
respectively, which are wvalid in the class of instances.
The third type of transformation rule adds rows to the sum-

mary when this will not change what the tableau computes,



and these rules are applicable in any set of instances.

A transformation rule for P C I is a partial function f:T->T

such that f(T) =p T,

F-rules. For each schema FD R;:Z—->A there is an F-rule which

is defined as follows: If T = <S,T1,.,.,Tn> and there are

tl' t, € T; such that tl[Z] = tz[Z] and tl[A] # tZ[A], then

(a) if one of tl[A], tZ[A] are constants, replace all
occurrences in T of the other by that constant3, or

(b) if both tl[A] and tZ[A] are wvariables, replace all
occurrences in T of the one with the smaller subscript

by occurrences of the other.

d-rules. For each JD Ri:[Jl,.,.,Jk] there is a J-rule which
is defined as follows: If there is an element t ¢ y9€9(R;)
such that for each j=1,...,k there is a tj
= t[Jj], then add t to T; if it is not already there,.

T-rules. If r is a function ¥(T)-Y(T) such that r(Ti) C T;

for i=1,...,n, then add r(S) to S if not already there.

In Figure 1 some examples applying these rules are given.

Theorem 1. Let T € T and let T' be the result of applying

the F-rule for Ri:Z—>A to T. Then T = T' wrt sat(Ri:Z->A).

3 If both are unequal constants, nothing needs to be
done; we will already have T(I) = g for all 1 € sat(Ri:Z—>A).



schema: Ry, deg(Ry) = 3

laq ay agl la; a; agzl  ——mem—een > lay ag azl tay ay a3l
lay ag agl lay ag asl
S Rl [{112}1{213}] 5 Rl

!al 32 a3| 'al a2 a3| ‘‘‘‘‘‘‘‘‘‘‘ > 'al 82 aQI Ial 32 a3l
lag ay agl lag ay agl

' ) la; a, acgl

a - 83

laz a; asl la; a; agl  ——=———u-"ee > laz aj asl la; a, ajl
lay a3 agl lap ay azl lay a3 ayl

Figure 1. Transformation Examples

Proof. As in [8].

Theorem 2. Let T € T and let T' be the result of applying

the J-rule for <R;/S> to T. Then T = T' wrt sat(R;:S).

Proof. As in [8].

Theorem 3. Let T € T and let T' be the result of applying

the T-rule for the function r to T. Then T = T°'.

Proof. Let I € I. Suppose t € T(I). There is a wvaluation

P:¥(T)>N and an s € S such that t = p(s) and p(Ti) C I;

(i=1l,...,n). We still have s € S' and T] = T;, so

t € T'"(I). For the converse, suppose t € T'(I). There is a
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valuation p and an s' € S' such that t = p(s') and
p(T}) C I; for i=1,...,n. If s' € 5, then, since we also
have p(Ti) C Ii' t = p(s') € T(I). Otherwise we may write

s' = r{(s) for some s € S, Then because r(Ti) C T; for

i
i=l,...,n, the valuation POr has the property that t =

p(r(s)) and p(r(Ti)) C I;. Hence t € T(I). []

If C is a set of schema constraints, a C-generating sequence

for a tableau T is a sequence Tﬂ'Tl'TZ"'°'Tn where T@ = T,
T; is obtained from Tj—1 by an application of a T-rule or an
F-rule or a J-rule for C (i=1,...,n), and where there is no

applicable rule for Th-

Suppose T' is obtained from T by some rule. For each tuple
terT; (and s € S) there is a corresponding tuple in T1
(s' € S') determined as follows: If T' was obtained from T
by a J-rule or a T-rule, then for i=l,...,n, T; C Ti and
5 C 8", so all tuples can be made to correspond to them-
selves. If T' was obtained by an F-rule, then either t e T
(t € S'") too, or there is some variable replacement function
r:¥-=>Y such that r(t) e T (r(t) € 8s'), and this is the
corresponding tuple. If T' was obtained by a T-rule, then

T; = T{ for i=1,...,n, and S C 8" and the corresponding

tuples in S are themselves.

The following four lemmas similar to lemmas in [8]1, end

their proofs are omitted.
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Lemma 1. Let I € sat(C), T € T, and let r be a valuation

such that r(T;

l) C I; for i=1,...,n. Then for all tableaux

T. in a generating sequence for T, (a) r(Tji) C I and (b)

] = “iv
if t in T; and tj in Tji correspond, then r(t) = r(tj),
i.e., r maps corresponding tuples to the same instance tu-

ple.

Lemma 2. A given set of F-, J- and T-rules can be applied

to a tableau only a finite number of times.

Lemma 3. Suppose no T-rule and no F- or J-rule for C is ap-

plicable to tableau T. Then T € sat(C) (as an instance).

Lemma 4. Let T,U,V € T such that U and V are the final ta-

bleaux in two C-generating sequences for T. Then U and V

are identical.

Lemmas 2 and 4 mean that the following chase function Iis
well-defined: Given a set C of schema constraints and a

tableau T, chasex(T) is the final tableau in a C-generating

sequence for T.
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Lemma 5. Let T' = chaseC(T), Then (a) T' = T wrt sat(C),
and (b) S' = T'(T'), where 8' is the summary of T'; the
first occurrence of T' is the function 1I-N99(T)  sna the

second occurrence is T' the instance.

Proof. (a) This is a combination of Theorems 1, 2 and 3
noting that if ¢ € C, then sat(C) C sat(c).

(b) Let p be a one-to-one valuation for T'. The statement

S' = T'"(T") formally means p(8') = T'(<p(Ti),...,p(Tﬁ)>).
Checking the definitions shows that the inclusion "C" |is
true.

To prove the other inclusion, suppose

X € T'(<p(Ti),...,p(T5)>). There is a valuation g such that
X = g(s) for some s € S8' and a(T}) C p(T}) (i=l,...,n).
Consider the function p"l og:¥(T')->¥(T'). The above condition

1

means that p ~ (q(T!)) C T}. The T-rule for p_l 0qg is applica-

ble to T', but since T' 1s already the end of a chase, we

1

must have p - (q(S')) C S'. Applying p, we get g(S') C p(S').

In particular, x = p(s) € p(s')y. [

Theorem 4. 1If sat(C) = sat(D), then chase~(T) = chasep(T)

for any tableau T.

Proof. As in [8]. This theorem says that the set of con-
straints on which the chase is based may be replaced by any

convenient equivalent set of constraints. [J
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5. Chasing Expression Constraints

Our first goal is, given an expression, to find a tableau to

represent that expression.

If e€e BE and T € T, we write e = T if e(I) = T(I) for all

I € I.

We define a transformation t:E—=T such that e = t(e) for all

e € E. The summary of t(e) will have only one row.

(1) For R; € E of degree m, T(Rj) is the tableau whose sum-
mary is {<al,...,am>}, whose i-th component is also
{<a1,..,,am>} and whose other components are empty.

Suppose t(e) is defined and is <S,Tl,,..,Tn> where § =

{<by,...,b >},

m

(2) For projection, t(e[X]) is <S[X],Tl,..,,Tn>, i.e., the
summary 1s projected on the domains in X, and other
components are the same.

(3) For selection, t(e[X=V]) = T' = <S',Ti,...,Tﬁ> is
obtained as follows: If by is a constant W # Vv, then S
is empty and Ty = T;. If by is already constant V then
T =T, If bX is a variable aj, T' is obtained from T
by replacing all occurrences of a. in T by V.

J
(4) For restriction, t(e[X=Y])

=T' = <S',T'{,...,T'> Iis
obtained as follows: 1If by = by, then T' = T, 1If by
and by are distinct constants, S' is empty and T] = T;.

If one of bX, bY are constants, all occurrences of the

other in T are replaced by this constant. If both by
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and bY are variables, every occurrence in T of the one
with the greater subscript is replaced by an occurrence
of the other.

(5) For cross product, suppose T(ey) = Ty and Tt(ey) = T,.
Let k be the largest variable subscript in T; and let m
be the smallest variable subscript in Toe Define the
renaming function g:¥Y->Y by q(aj) = 344k+l-m- This maps
variables of T5 to the smallest-indexed set variables
disjoint from those in Ty. Then
t(e1Xe2) = <Sng(SZ),Tll 8] q(Tzl), e 'Tln U g(TZn) >.

Lemma 6. For all e € B, e = *(e).

Proof. The proof by induction on the number of operators in

the expression is left to the reader. I

The tableaux of Aho, Sagiv and Ullman [1] are intended to
model a relational algebra with natural join, projection and
selection over a database with a universal instance. They
noted, however, that not all of their tableaux corresponded
to expressions. This is not the case here; every tableau

represents a relational algebra expression:

Theorem 5. For every T € T with a one row summary there is

an e € B such that T = e,

Proof. We will give here only an informal statement of the
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proof. For every non-summary row in Ty, there will be a
term R; in the cross product. Whenever two entries in two
rows are the same variable, there will be a corresponding
restriction on the cross product. For every occurrence of a
constant, there 1is a corresponding selection term on the
cross product. Finally, a projection is generated from the
summary: If the i-th entry in the summary is a:, make the
i-th entry in the projection list refer to any column in the
cross product corresponding to an occurrence of ay in the

tableau,. 0

In order to test constraints on exXpressions we need to be
able to generate representative tableaux for the expressions
which have summaries of a particular form. We arrange that
the summary, as a tuple set, will violate the test con-
straint in a canonical way. That is, we can take the sum-
mary as a template and fit it over any tuple set which actu-
ally does violate the constraint. TIf the chase removes this
violation, the —constraint is valid, otherwise we have a
counterexample state. The next lemma describes how to get

the desired summaries.
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Lemma 7. Let T € T and let r{res.,r be renamings on Y(T)
such that rzl is the identity on rj (¥ (T)) [ rj(Y(T)) for Jj#i
(i=1,...,k). This means that for every symbol b on which r;
is defined, r; (b) either doesn't appear in the ranges of the
other renamings, or it equals b. Then T = U rj(T), where

the union is done component-wise on the tableau n+l-tuples.

Proof. Let T' = U rj

There 1is a valuation p:¥(T)->N such that for some s € S, t =

(TY. Let I € I and suppose t € T(I).

p(s) and such that p(Ti) C I (i=1,...,n). Define a valua-

tion p':¥(T')=>N by the rule: p'(rj(b)) = p(b), where
b e ¥(T). This defines a function because if
X € r; (Y(T)) N rj(Y(T)), then rj;(x) = rj(x) = ¥x. Also
P'(T";) = p'(U rj(Ti)) = U P'(rj(Ti)) = U p(T;) =
p(T;) C I;-. Since there is some s' € S' of the form ry(s)

(in fact, there are k of them), p'(s') = p'(rj(s)) = p(s) =
t. Hence t € T'(I).

Suppose t € T'(I). Then there is a valuation
p':¥(T')->N and and s' € S' of the form rj(s), s € S8, such
that t = p'(s') and p'(T}) € Iy (i=l,...,n). Define
pP:¥(T)>N by p(b) = p'(rj(b)). Then p(s) = p'(rj(s)) = t,

and p(T;) = p'(rj(Ti)) Cp'(T}) C I;. Hence t € T'(I). [

Once we get a tableau with the desired summary, we will want
to treat the summary 1like a template and map it with a
valuation on portions of an expression instance. FEvery ele-

ment in the portion of an instance of expression e over
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which the template is mepped has an associated valuation
which gets it in image of the tableau as a function. But we
want a uniform valuation for all tuples matched by the tem-

plate. The next lemma shows us that this can be done.

Lemma 8. Let T be a tableau whose summary has only one row.
Let r1r...,r, be renamings such that rEl is the identity on

r; (¥(T)) N rj(Y(T)), j#i, and such that r; is not the iden-

tity on symbols not in the summary of T. Let T' = U r-(T).

i
Given instance I and valuation p:¥(S")>N such that
p(s') C T'(I), p may be extended to Y(T')->N such that

P(T!) C I; (i=1,...,n).

Proof. For each j=1,...,k, let 83 be the element of §' of
the form rj(s)° Since p(sj) € T(I) by the last lemma, we
know that there is a valuation pj:Y(T)—>N such that pj(s) =

p(sj) and pj(Ti) ¢ I1; (i=1,...,n). Consider ijrTl defined

J
. (sl . = . = .
on Y(rj(T)). We have pj(r] (sj)) pj(S) p(Sj), and
L (rTd (T = D« (T- . .or<l i
pj(rj (rj(Tl))) pj(Tl) € I;. Also, pJOrj does not conflict
on common domain of definition with pj.Orol for any J'#j:
For if b € Y(rj(T)) n Y(rj.(T)), then rgl and rol are both

the identity on b, and since b then appears in S', both pj
and pj. agree with p (and hence with themselves) on b., Thus
we may define pu:Y(T')~>N which extends each pjorgl ’
Jj=1l,...,k. This valuation has the properties that pu(sj) =

Py (r3t (sy)) = P(s§), and  py(T}) =  p,(U ry(Ty)) =

U pj(rjT (ry(Ty)) = U py(T;) C I;. O
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Theorem 6. Let e€ B and T = t(e), and let e:c be a con-
straint on e (an FD or a JD) and C be a set of schema con-
straints. Let T' = U rj(T) for some set {rl,...,rk} of
renamings as above. If e:c is valid in sat(C) then c is

true in the summary of chaseC(T') (under the image of some

one-to-one valuation).

Proof. Suppose e:c is valid in sat(C). By Lemma 5, T" =
chasec(T'), as an instance, is in sat(C), so e:c is true in
T". But by Lemmas 6, 7 and 5, respectively, e(T") = T(T")
= T'(T") = T"(7T") = 8", so ¢ is true in the summary of

chaseC(T'). 0

Theorem 7. Let e€ E, T = t(e), and C be a set of schema
constraints. Then e:Z—=>A is valid in sat (C) iff 7Z->A is true
in the summary of chase~(T U r(T)), where r is the renaming
which is the identity exactly on the variables in the 7-

columns of the summary of t(e) (and on N).

Proof. We have bent the conditions on the set of renaming

functions to allow one of them to be the identity every-

where. This will simplify notation and examples.

(=>) This is the last theoren.

(<=) Let T' =T U r(T). Suppose Z->A is true in the summary
of T" = chaseC(T')° Let T € sat(C), and let tl'tz € e(I)

such that tylz] = t,[2]. We can define a valuation P on

Y(s") such that p(s) = tl and p(r(s)) = t2. By Lemma 8, we
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may extend p to ¥(T') such that p(T}) C I; (i=1,...,n). By
Lemma 2, p(TY) C Ij (i=1,...,n), and p(s") = tty, to}. But
Z=>A 1is true in S", so Z-A is true in {ty, to}. These tuples

were arbitrary, so Z->A is true in e(I). [J

Theorem 8. Let e€ E, T = t(e), and C bhe a set of schema
constraints, Given a JD e:[Jl,...,Jk], define the set
{rl,,.,,rk} of renamings as in Lemma 8 such that r;y 1is the
identity on S[Ji] (i=1,...,k). Then e:[Jl,..,,Jk] is valid
in sat(C) iff [Jl,..,,Jk] is true in the summary of

chasec( U rj(T)).

Proof. (=>) This is Theorem §.

(<=) Let T' = y rj(T), ™ = chaseC(T'), and suppose
[T1,...,3k] is true in the summary of T" = chaser(T'). Let
I € sat(C), and suppose tl,...,tk € e(I) such that there is
some t e N9€9(T) yitp t[Jj] = tj[Jj]. We can define a
valuation p on ¥(S") such that p(sj) = tj (3=1,...,k). By
Lemma 8, we may extend P to ¥(T') such that p(Tj) C I;
(i=1,...,n). By Lemma 2, p(T}y) C I; (i=1,...,n). Thus
p(s") C e(I), and because [Jl,..,,Jk] is true in S", there
is an s € 8" with s[Jj] = sj[Jj] (3=1,...,k). Then p(s) =

t € e(I) and so [Jy,...,J,] is true in e(1). 5

The last point we make in this section is that T-rules are
not really needed. We can replace this exponential-time

rule by a simple polynomial computation:
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Theorem 9. Let T be a tableau and e an equivalent expres-
sion. Let T' = chaseC(T) for some constraint set C. Define
the function chase* as the chase function without the T-
* * * * N
rules, and let T = chasec(T). Then 8' = e(T ), where T 1is

considered an instance.

Proof. The proof is left to the reader. Ej

6. Examples and Summary

We 1illustrate our generalized chase method in this section

with a number of examples.

Consider one relation R with 3 domains and PFDs 1,23 and
32, Does 1,23 hold in the "join"4
(R[1,31XR[2,3]1)[2=471[1,3,4]7? The tableau T for this expres-

sion is the following:

s R
la) ag agl  la) a; agl
|a4 a5 aﬁl

To test 1,2-»3, we use two renamings: ri is the identity; ro
is {a2—>a7,a4—>a8,a6—>a9}. Then r1(T) U r,(T) is the following

tableau:

4 If we use the notation of [l], and R has domains ABC,
this expression corresponds to the natural join R[ACIXR[BC].
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lal ag a6l lal as aﬁl
lay ag agl  la, ag agl
lal a- a9l
’38 a5 89'

The computation is given in Figure 2. We see that column 3
in the summary of the final tableau has only one variable,

so the FD holds.

Using the same expression, let us test the JD [<1,3>,<2,3>1.
The necessary renaming functions are: ry defined by
{a2—>a7,a4—>a8,a5—>a9} and ro defined by

{al—>alg,a2->all,a4—>a12}. The chase starts with the tableau:

lay ag agl la; ay agl
layg a5 agl lag aq agl
lajy ay; ag!

Ialz ag a6l

The computation is shown in Figure 3. We see that the JD is
true in the final tableau's summary, so it is valid in the

exXpression.

(@) la; ag agl la; ay agl (1) lay ag agl la; ag agl
'al a5 a9| '84 85 a6l (2->5)la1 a5 a9I la4 a5 agl

'al a7 agl lal a7 a9I

lag ag agl lag ag ag|

(2) lta, a ag| la, a agl (3)lay, a~ ag) la, a- ag|
(5—>7)la% az a9l lai a; a6l (6—>9)lai a; agl lai a; agl
lay a7 agl lay a7 agl

lag a7 agl lag a7 agl

Figure 2, Testing an FD. Each step is numbered and
labeled with the substitution that got it,
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la a acl | a a ag| Use F-rules for FD 3->2 to
1 9 6 1 7 6 b
'al@ ag  agl ;a8 ag 56; replace az, ag and ag by aj;.
a a a
19 11 A
lajp a5 agl
lal ay; agl lay ayy agl Use the T-rule for the function
lal“ ayy] agl lag aj; agl {l—>8,8—>1,lﬂ—>12,12->1@}.
' - lajg ajy agl
la;y ay; agl
lal ay; agl lal ay  agl The final tableau.
la1p 211 a6l lag ag agl
lag™ a1] agl laj, a11 agl
la1s a11 agl laj, as agl

Figure 3. Testing for a JDn.

This paper has generalized the chase computation method,
The method can determine the validity of functional and join
dependencies on relational algebra expressions. There are a

number of directions future work could take:

The union operator also can be accommodated in this method.
For given a set C Oonh constraints, a union e; U €, and an FD
Z—>A to test on this union, we can first test the FD on e,
and e, individually. If it was valid on both components,
the only way it could fail to be valid on the union would be
to have an instance I € sat(C) and tuples t, € e; and
t2 € €, which violate z->Aa. The method of generating rows in
tableau summaries could be modified to generate a tableau
which contains a summary row corresponding to €1 and a sum-

mary row for €5 which agree on the Z-columns. If the chase



23

identified the A-column, then the FD is valid in the union.
Determining valid JDs on a union would be more com-

plicated. If a test JD had k parts, we would need tableaux

with k rows in the summaries. But we would need to test 2K

tableaux, one for each way of getting these k tuples from ey

and €5

The method we have given may be described in these general

terms:

Given a set C of constraints, an expression e, its
tableau T and a constraint ¢ in some constraint
class to test on e, modify T wusing renaming func-
tions so that its summary contains tuples which
violate ¢ in a "canonical" fashion. Perform the
chase computation on this modified tableau, and if
the final tableau has a summary which still violates

¢, then c is not valid on e; otherwise c is valid.

This technique could be applied to constraint types other
than Fjust FDs and JDs. As a brief example, consider

"pseudo-keys". Given e € E, we can define a pseudo—key5 on

e to be a set {Ky,...,Kpt, Ki C doms(e), such that every
tuple in an instance of e 1is uniquely identified by its

value in columns Ky or by its value in Kos «ee 4, Or by its

Pseudo-keys are defined for illustrative purposes only.
It is unlikely that they represent any important semantics.
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value in Kne If e has 3 domains and a pseudo-key {{1},12}},

then a tableau summary which "canonically" violates this

constraint is:

lal 82 a3l
la; a4 agl
|86 a2 a7|
If we do the chase computation and the summary still

violates the constraint, then it is not valid, otherwise it

is.

Another extension is to use the chase method to answer the
opposite question: Given a schema s, an expression e over s
and a set C of constraints that must be wvalid on e, what
constraints must necessarily be wvalid on schema s? To
answer this question, we can generate the tableau T for e;
get a new tableau from T in which the schema constraint
being tested is violated and then do the chase based on the
expression constraints. This will surely work for FDs and

possibly also for JDs. An example is given in Figure 4.
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Schema: Rl' Ry, both binary o
Expression: e = (Ry X RZ)[?=3] (a Jjoin)
Assumed expression constraints: e:l1=>4
Test schema constraint: Ry:l->2

Tableau for e:

S R1 R2
lay a3 az agl  lap a3l lag ayl
Chase:
(2) s Ry R, .
lay ay ay a,l la; aal laz ayl Use T-rule with
RPN R 33 | I {a;—>a as—>ac}
%5 a3 a3 agl  lag a3zl la3 ag 1785, ag=>ag
(1) S Rl R2 . e £
la; a3 a3 a,l la; a5l :a3 a4: g?§~§;ru e for
185 23 a3 agl  lag a3l la3 agl e:
lal a3 a3 agl
lax az az ay|
(2) S Ry R
lal az a3z agl lay az| lay agl Ry:1->2 is necessary
a5 23 a3 agl  lag a3l a3 agl

lay a3 a3 ag]
la5 as as agl

Figure 4, Testing Necessary Schema Constraints,
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