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ON K-LINE AND K x K BLOCK ITERATIVE SCHEMES

FOR A PROBLEM ARISING IN 3-D ELLIPTIC DIFFERENCE EQUATIONS

by
Seymour V. Parter
and

Michael Steuerwalt

ABSTRACT

Novel computer architectures and a desire to solve three-
dimensional problems have together aroused new interest
in iterative methods for computing solutions to elliptic
difference equations. Block iterative methods are
particularly attractive for vector machines, such as the
CRAY-1. Plane iterative schemes reduce a three-
dimensional elliptic system to two-dimensional systems.
We analyze the convergence rate of k-line and k x k
block iterative methods for solving these two-dimensional
problems.

1. INTRODUCTION

Some years ago there was great interest in iterative methods
for solving elliptic difference equations: see [1, 12, 13, 21, 22,
23, 24]. Recently there has been more emphasis on finite element
equations ([2, 4, 5, 20, 25]) and direct methods of solution
([7, 8, 11, 17, 18]). Nevertheless, in practice, particularly in
the case of three-dimensional problems (see [9, 11, 19]), finite
difference equations are frequently used and they are commonly
solved by an iterative method, usually some variant of the SOR
method. Furthermore, the advent of new computer architectures,
"yvector machines' and "parallel processors,'" has stimulated a
search for iterative schemes that are particularly efficient for

these machines.



In this report we examine two problems that arise in this
way. Consider the three-dimensional model problem

(1.1) - A (3 U=f , (x5, ¥y, 2p) € f

(1.2) u=g¢g , (xi, Yo zn)e 30

where

(1.32) (%3, vy, 2g) = (b, Jh, mh) o, 0 <i,j,n<P+1

are the grid points in the unit cube Q with

- 1 »
(1.3b) h = T

and 4, (3) is the usual 7 point discrete approximation to the
Laplace operator, given by

~
i+1,j,n - £ Yijn * Vi-1,5,n |
2
(1.4) [Ah(S)U]ijn =9 UYi,j+1,n - 2 Usjn * Ui,5-1,n .
)
Ui,j,n+1 - 2 Ysjn * Ui 5 ,n-1
. hZ

Suppose that one has decided to use a "plane" iterative method,
probably block SOR where each block is the set of unknowns

(1.5) U = f{o; 5032880 % J



associated with a plane n = constant, Now we must solve the
equations in each plane, With V = ﬁn’ these equations can be

written as

- V. . = F

(1.6) 6 V.. - V 5-1
i,j < P

ij ~ Visl,y 0V

i-1,j 7 Vi,j+1 ij

We consider two block iterative schemes for the solution of (1.6).

These are
(i) k-line iterative scheme: In this scheme each block con-

sists of the unknowns Vij associated with the points on k
consecutive horizontal lines. These blocks are indexed by a

single index, say s. We have
(1.7) Vs = {Vi,k(s—l)+u pl<ws k}

(ii) k x k block iterative scheme: 1In this scheme each block

consists of the unknowns Vij associated with the points in a
k x k square. It is easiest to describe this block with a

double index (r,s). The (r,s) block is

(1.8) Ves = {Vkgr-1yea, kse1yeg 5 1 2 100 < )

Because each of these block structures satisfies block
property A (see [1, 22, 24]) the spectral radii of the Gauss-Seidel
method and the SOR method (as well as the optimal overrelaxation
parameter w,) are determined by the spectral radius of the block

Jacobi scheme.
From the analysis of the corresponding block iterative methods

applied to the two-dimensional Poisson problem (see [3, 14, 15]),
one might expect that these spectral radii behave like 1/k.
Unfortunately, this is not the case., In fact, if p(SkL) and

p (SkB) are the spectral radii of the block Jacobi iterative methods

based on the blocks (1.7) and (1.8) respectively, applied to (1.6),
we find that both p(SkL) and p(SkB) have nonzero limits as k » « !
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In Section 3 we give the results for the case k = 1. These
results are obtained immediately by tensor product methods.

In Section 4 we begin the discussion of our analysis of p(SkL)
and p(SkB). In particular we use a variant of '"separation of
variables" to reduce the problem to a one-dimensional eigenvalue
problem involving tridiagonal matrices. |

In Section 5 the basic estimates are obtained. Loosely speak-
ing, we obtain: if P/k > 2 then

(1.9) b(SKL) » 2 - V3 + 0(h2) = .267949 + 0(h?)
0(SKB) » 1/2 (3 - V5) + 0(h?) = .381966 + 0(h?)

Two sets of approximate values for p(SkL) and p(SkB) are given in
the following tables. The results are correct up to a term which

is 0(h?).

k p,(SKL) P, (SKL)

1 1/2 - 312h%/8 1/2 - 3n2n%/s

2 1/3 + 0(h) 1/3 + 0(h)

3 268541 + .185(-1) 286398 *+ .684(-3)
4 .267987 + .483(-2) 272772 + L443(-4)
6 .267949 t ,344(-3) 268293 + .221(-6)
8 276949 = .247(-4) 267974 + .114(-8)
12 267949  .127(-6) 267949 + .302(-13)
14 .267949 + ,913(-8) .267949
18 267949 + .471(-10)

24 .267949 + .178(-13)

27 . 267949

Figure 1.



k P (SkB) P, (SkB)
1 2/3 - mlh?/3 2/3 - m2h2/3
2 1/2 + 0(h) 1/2 + 0(h)
3 .384848 + .515(-1) .432468 + .390(-2)
4 .382296 * .187(-1) 400477 + .477(-2)
6 .381972 * .266(-2) 384625 + .934(-5)
8 .381966 + .387(-3) .382353 &+ .196(-6)
12 *  .381966 x .824(-5) .381974 + .888(-10)
14 .381966 * .120(-5) 381967 *+ .189(-11)
16 .381966 * .175(-6) .381966 + .409(-13)
18 381966 * .256(-7) .381966
24 381966 * .795(-10)
30 ,381966 * .247(-12)
36 .381966
Figure 2.

In these tables the shorthand .185(-1) stands for ..185 x 1071,
Note that the tolerances for p, are smaller than the tolerances
for Py, even though the estimates p; appear to converge more
rapidly.

As we indicated above, the Jacobi spectral radius determines
the spectral radii of the Gauss-Seidel and SOR methods. For the
Gauss-Seidel scheme, neglecting O(hz) terms,

(1.10) b (SwL-GS) = p(SwL)? = .071797

b (SwB-GS) = p(S=B)?

.145898 .

The optimal w for the SOR method is given by

wy = 2/ (1 + /1i-02)



where p is the spectral radius of the Jacobi method (see [22]),
and with this choice of w

p(SOR) = wy -1
Hence
(1.11) p(S=L-SOR) = ,018624
p(S=B-SOR) = .,039406

Figures 1 and 2 show that in a plane iterative method the inner
iterations to solve (1.6) need not use a very large k. Indeed,
at k = 8 the spectral radii have essentially reached their
asymptotic values.

In Section 6 we describe some computational results. Finally,
in Section 7 we comment on the results of this work.

However, one important comment should be made at this point.
The analysis given here seems to be very special and possibly
limited to model problems. On the other hand, standard elliptic
problems can now be handled in great generality by the methods of
[3, 13, 15]. Unfortunately, it is not difficult to see that those
methods do not, and apparently cannot, apply to these strongly
diagonally dominant problems. The elliptic problems discussed in
the earlier works are regular problems while the system (1.6)
corresponds a two-dimensional discrete singular perturbation pro-
blem

(1.12) -hZ A () U+ 20U =F

For this reason, and to distinguish from the notation used in
[15], we designate the spectral radii as p(SkL) and p(SkB).

We are indebted to Dan Boley, Bill Buzbee, and Molly Mahaffy
for much support and encouragement during the evolution of this
work. Bill Buzbee aroused our interest in the problem and provided
the basic support, as well as many fruitful discussions. Dan
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Boley wrote the original code which was used for experimentation
and optimization of the results of [3]. Molly Mahaffy revised
Dan Boley's code and carried out the computations described here.
These computations were all performed on the CRAY-1 at the Los
Alamos Scientific Laboratory.

2. Iterative Methods
In this section we describe the basic iterative schemes of

interest. Consider a system of linear equations
(2.1) AX = Y

where A is an R x R matrix. Block iterative schemes for the
solution of (2.1) are completely described by describing a par-
tition of the R-vectors into blocks. Specifically, suppose we
imagine all R-vectors X partitioned into block vectors of the form

(2.2) X = (Xy, X, -ovs Xg')

where each Xj is itself an Rj-vector and (of course)

e

(2.3) R. = R ,
=1

Corresponding to this partition of vectors the matrix A is natu-
rally partitioned into blocks

A= A,.
1]

where each Aij is itself an Ry X Rj matrix. In particular, each
diagonal block Aii is a square R; X R, matrix. The block Jacobi



jterative scheme associated with this block structure is now given
by

(v+1) _ v)
(2.4) Ajy X J_% Ays X&)+ Yy

The corresponding Gauss-Seidel iterative scheme is

(2.5) AL xOFD) o0 DA

(v+1) | M) 4y
[ X I D

j<s

while the successive overrelaxation (SOR) iterative scheme with
overrelaxation parameter w is

(2.6) AL xOD) oLy D0 A x§"*1) cw 2 A

oy V)
b ) j>s js j<s s Xs

_ (v)
+ Ajj(l w) XV o+ w Yj

In every case we have a splitting
(2.7) A=M-N ,
and the iterative scheme takes the form
(2.8) MxO+) oy xO) vy
In particular, for the block Jacobi scheme
(2.9) M = diagonal LAii).

For any such splitting, let

(2.10) p = max {lkl : det(AM - N) = 0} .



It is well known ([6, 10, 22]) that if A is nonsingular then the
iterates Xx(V) converge to the unique solution X of (2.1) inde-
pendently of x(0) if and only if

(2.11) p <1

Returning to our problem (1.6}, we see that our vector X is
an R-vector, with R = PZ, corresponding to the two-dimensional grid
vector ﬁn =V . Furthermore, (1.7) and 1.8) define two distinct
partitions of V.

It is not difficult to see that both partitions lead to Jacobi
iterative schemes that satisfy block property A. Hence the Gauss-
Seidel spectral radius and the SOR spectral radius, as well as the
optimal choice of w, are determined by the spectral radius p of
the Jacobi iterative scheme.

The problem studied in this report is: for each of the block
Jacobi schemes, k-line and k x k block, determine the asymptotic
behavior of 5 as P » » (i.e., as h + 0).

We therefore study the generalized eigenvalue problem

(2.12) AMV=NYV

where M is given by (2.9) for the two partitions (1.7), (1.8). In
addition to block property A these splittings also have the follow-

ing properties:

(2.13a) M= Mt =Mt

and M is positive definite;

(2.13b) N = N* = N¥;

(2.14) M is an M-matrix -- its inverse M = (ﬁij) satisfies

~



Finally, N = (Nij) also satisfies

(2.15) N.. >0

Other properties of M and N will be developed as needed.

3. Estimating p, k =1

The case k = 1 is easily handled by the method of tensor pro-
ducts: see [12, 23]. Here we merely record the results.

Let p(S1L) denote the spectral radius of the Jacobi iterative
scheme based on a block partition into single lines. Then

- 2 cos Th ~ 1 3 2.2
(3.1) p(SI1L) = gt —os 7R =7 (1 - 77 Bh7)

Let p(SlZB) denote the spectral radius of the 1 x 1 block
Jacobi iterative scheme. This is "point" relaxation and we have

(3.2) p(512%B) = 4 cos mh =~ Za- Z 72 )

4. Estimating p, k > 2. Preliminaries

In this section we develop some general properties of our
particular Jacobi iterative schemes. We use these properties to
reduce the problems to one-dimensional eigenvalue problems
essentially via '"separation of variables."

Because our splittings satisfy block property A we know
that if X is an eigenvalue of (2.12), so is -A (see [22, 23, 24]).
M is positive definite and N is symmetric, so all the eigenvalues

of (2.12) are real (see [6]), and thus p is characterized by

(4.1) p = ’;é% WT——T(NX’,;(()
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where ( , ) denotes the usual vector inner product
t —
(4.2) (X,Y) = XY= ) X; Y5 -

Let k > 2 be a fixed integer less than P. Assume that P is
chosen so that k divides P -- that is,

(4.3) P=kQ

where Q is an integer.

A unified approach to our two problems is provided by the
following convenient representation of N in each case. Consider
the one-dimensional operator N acting on vectors

(4.4) 6 = (81, bgs wees 0p)

as follows: for 1 <s <Q-1 , 0 <] < k-1,
(4.5) (N 6)yses = 3 Pkse1,

Let N, and N be the two-dimensional operators which act on grid
vectors V = (Vij) in the following manner: Nx acts on V only in
the x direction, i.e., the first subscript, and in that direction
NX acts as N. Similarly Ny acts on V only in the y direction.

For example, for 1 < s < Q-1, 0 < i < k-1

0 , 2 <1ic<k-1 ,
(4.6) (Nx V)ks+i,j = Vks+1,j’ i=0 |,
Vks,j , 1=1 |,

11



A careful examination of the two partitions of the matrix A

yields the first lemma.
Lemma 4.1: For the k-line Jacobi iterative scheme

(4.7a) N =N

For the k x k block Jacobi iterative scheme
(4.7b) N = N_ + N

Lemma 4.2: Let p(SkL) and p(SkB) be the spectral radii of the
k-line and k x k block Jacobi iterative schemes respectively.
Then

1

(4.8a) RIS THom

IA

p (SkKL)

A

(4.8b) i—%—f + 0(h)

A

o (SKB) < 7 + 0(h)

I A

Proof: We first obtain the lower bounds of (4.8). Let U= (Uij)

be the grid vector

(4.9) Uij = sin wih -+ sin wjh

Then

(NULU) (NU,U)
(MU,0)  (AU,U) + (NU,U)

However, U is an eigenvector for A and

(4.10) AU = (4 - 2 cos qh)U = (2 + 0(R*)U

12



whence

(NU,U) _ (NU,U)
MU, U) (2 + o)) @,1) + @U,U)

(4.10)

A direct calculation using the '"smoothness'" of U and the form of
N (see [3, 14, 15]) shows that

]

(4.11) (Nx Uu,U) (2/k + 0(h)) (U,

i}

(N, U,0) (2/k + 0(h)) (U,U)

We put (4.7) and (4.11) into (4.10) and use (4.1) to obtain the
lower bounds of (4.8).
Let V be an eigenvector associated with the eigenvalue p. Then

p MV =NV

Subtracting pNV from both sides gives

(4.12a) AV =uNYV
where

(4.12b) =1 -
Hence

(4.13) (AV,V) = u(NV,V)

It is an easy matter to see, using the explicit eigenvalue of A

or the Gerschgorin theorem, that

(4.14a) (av,V) > 2(V,V)



Moreover, the definition of N shows that

(4.14b) (Ny v,V) < (V,V)

(4.14¢) ([Nx . N v,v> <z W,V .

Thus (4.13) and (4.14a), together with (4.14b) or (4.14c), show
that 2 < u or 2 < 2u, respectively. The upper bounds of (4.8)

now follow at once.
Let

(4.15) o =

=

We rewrite (4.12a) as
(4.16) c AV =NYV

Any positive eigenvalue o of (4.16) corresponds to a positive
eigenvalue X of (2.12) and conversely via the relationships

_ A
(4.173) o = -I-—-:-—-X

— )
(4.17b) g

Because ¢ is a monotone increasing function of A (and conversely)
we seek the largest positive eigenvalue o of (4.16). But A'l is
a positive matrix and N # 0 is a nonnegative matrix, so by the
Perron-Frobenius theory [22] the largest positive eigenvalue of
(4.16) is its spectral radius, and the associated eigenvector V
may be taken nonnegative.

Let us study the eigenvalue problem (4.16). Because A is
positive definite and N is symmetric there is a complete set of

eigenvectors V(v), v=1l, 2, ..., P .

14



We attempt to apply ''separation of variables'" to this eigen-
value problem.
Case 1: The k-line scheme.

For each n, 1 < n < P, let

(4.18) vi(?) = sin minh ¢J§“) ,  1<i,j <P

Substitution into (4.16) with N = NY yields
(4.19a) o] An ¢(n) =N ¢(n) s

where Aj js the tridiagonal matrix

(4.19b) An = [-1, 6 - 2 cos wnh, -1]

Each An is positive definite, soO each eigenvalue problem (4.19a)
has P linearly independent eigenvectors, say ¢(n)(r), r =1, 2,
., P. Now the vectors given by

(n) o : (n)
(4.20) Vij sin minh ¢j (r)

are P2 linearly independent eigenvectors of (4.16). Hence all
the eigenvalues of (4.16) are given by the eigenvalues of the P
eigenvalue problems (4.19a), n =1, 2, ..., P.

We therefore seek the largest positive eigenvalue © of the
P eigenvalue problems (4.192). However, each An is not only

positive definite but also an M-matrix, i.e., A;I is a positive

~

matrix. Because N is a nonnegative matrix, the largest positive
eigenvalue of (4.19a) is also the spectral radius of that problem.

Moreover, the associated eigenvector ¢(n) may be taken nonnegative.

Assume that has been done. Then both V, the eigenvector of (4.16)
associated with o, and ¢(n)’ the eigenvector of (4.19a) associated



with o, must be nonnegative. Therefore the representation (4.20)
shows that we must have

We summarize these facts in the following lemma.
Lemma 4.3: Consider the k-line iterative scheme with 2 < k < P
and (4.3) holding. Then

o

where ¢ is the largest positive eigenvalue, and the spectral radius,

of the eigenvalue problem

(4.21) oA, ¢ = N ¢

and A1 is given by (4.19b) with n = 1.
Case 2: The k x k block scheme.
This case is a bit more complicated, so we proceed with a

more formal development of the argument.

Lemma 4.4: Let N =N, + Ny‘ Consider the eigenvalue problem
(4.16) Let 0 be the largest positive eigenvalue. Then o is a
simple eigenvalue: there is only one linearly independent
eigenvector associated with o. Moreover, the associated eigen-
vector may be taken to be strictly positive.

Proof: Consider the matrix A'lN. Because A°1 is a positive
matrix and N is a nonnegative matrix not identically zero, every
column of A-lN is either the zero vector or a strictly positive
vector. Let T be the permutation matrix which collects the
positive columns into the first r columns, so that

o L

0

(4.22) Tt A"INT = =B .

16



Here Bl1 is an r x T positive matrix and B21 is a (Pz - r) xr

positive matrix. Let

X

c
n

be an eigenvector of B with associated eigenvalue A. Then

(4.23a) X

By A X,

(4.23b) Boq X

A Y
Thus ) and X are an eigenvalue and associated eigenvector of Byg-
In particular, if X = o then, because B11 is strictly positive,
there is only one linearly independent eigenvector X and X can be
taken strictly positive. Since (4.23b) determines Y uniquely in
terms of X, the lemma is proven.

We are now ready to reduce the eigenvalue problem (4.16) to
a one-dimensional problem.
Lemma 4.5: Let N = Nx + Ny and consider the eigenvalue problem
(4.16). Let G be the largest positive eigenvalue. Then g is also

determined as the largest positive eigenvalue of the eigenvalue

problem

(4.24) cB¢ =N

where

(4.25a) 8 = (8gs bg0 =nes 8P

and B is the tridiagonal matrix

(4.25b) B=([-1, 3, -1] .

17



Proof: The matrix B is both an M-matrix and positive definite.
Therefore the eigenvalue problem (4.24) has P linearly independent
eigenvectors. Moreover, if 94 is the largest positive eigenvalue
the associated eigenvector ¢0 may be taken strictly positive.

Let o be an eigenvalue of (4.24) and let ¢ be an associated
eigenvector. Let the grid vector V be given by

(4.26) v

]
-
©-

ij i’j
Then

G(AV) ;= o 4;(BO); + 0 5 (BO);

We apply (4.24) to see that

(N, V)55 * Oy Vg5 = 0D 5

In other words, the grid vector V is an eigenvector of (4.16) with
associated eigenvalue o. In particular, if o = % and ¢ = ¢O then
the grid vector V is not only an eigenvector of (4.16), it is a
strictly positive eigenvector! Hence, by virtue of lemma 4.4, the
V so obtained is an eigenvector of (4.16) associated with @, the
largest positive eigenvalue of (4.16). This proves the lemma.

5. Estimating p, k> 3
In this section we study the one-dimensional eigenvalue prob-

lems (4.21), (4.24). We shall first reduce the problem still
further by eliminating from (4.21) and (4.24) variables corre-
sponding to those equations in which

(Ncp)j = 0

In order to do this we require a specific representation of the
solution of tridiagonal systems of equations.

18



Let k > 3 be fixed.
Lemma 5.1: Consider the system of linear equations

(5.16) -¢j"1 + B¢j - ¢j+1 = 0 ’ j = l, 2, Q'f’ k'z
whe?e ¢, and ¢, _; are given and
(5.1b) B > 2

Let Ej’ j=20,1, ..., k-2 be generated by the recursive scheme

EO = 0
(5.2) B . 1 , j=1,2, ..., k-2,

J B - Ej-l
and set

ak - El EZ . Ek 2 ]
(5.3) =

by = By
Then
(5.4a) ¢, = ap ¢p * by bx.1
(5.4b) ox-2 = bk %0 * %k ®k-1 -
Furthermore

(5.5) 0 <Ej SEyyp 21



and as k tends to «

_ L1 < 7 >
(5.63) bk = Ek_z VA B - B 4 ’
(5.6b) a, >0 .

Proof: The formulae (5.4a), (5.4b) are obtained from the well
known algorithm for solving diagonally dominant tridiagonal sys-

tems; see [16, 10]. The monotonicity of the Ej and the bound
given in (5.5) are also well known and easily established by induc-
tion. Finally, if k - « then Ey_, must converge to E_, a solution

of

EZ - g E+1=0

Because one root is bigger than 1 and the other less than 1, the
bound (5.5) implies that E_ must be the smaller root. This proves
(5.6a). The proof of (5.6b) is immediate from (5.5), (5.6a) and
(5.3).

Returning to the eigenvalue problems (4.21) and (4.24), let
1 < s < Q-2 and consider the equations satisfied by ¢y .7, Pxe+3>

ey ¢ks+k—1' For the corresponding equations we have (ﬁ¢)j = 0.
Hence

(5.7) " Oxsej-1 * Blksaj T Cksejer =0 I T 2, 3, ..., k-1
where ¢ks+l and ¢k(s+1) can be taken as known. In these equations
(5.8a) B =6 - 2 cos th

for the eigenvalue problem (4.21) and

(5.8b) g =3

20



for the eigenvalue problem (4.24). In either case we use lemma
5.1 together with the equations numbered ks for s = 2, 3, ..., Q-1
and the equations numbered ks + 1 for s = 1, 2, ..., Q-2 to
eliminate ¢ks+j’ j=2,3, ..., k-land s =1, 2, ..., Q-2. For
example, the ks equation is

o [' Oks-1 * BOxks - ¢ks+1] = bks+l

If 2 <s <Q-1, then with the appropriate choice of ay and by we

have
1s-1 = Pk %ks * 3k k(s-1)+1
We thus obtain for 2 < s < Q-1
(5.9) o [- ax ¢k(s-1)+1 * (B - by) Oy - ¢ks+1] = Oysa1
Similarly, the (ks + 1) equation is

o [- fxs * B $kse1 " dksrz) = Oks -

If1 «s < Q-2, then with the appropriate choice of ay and by

we have

Orsez = 2k %k(s+1) * Pk Pks+1

Thus we have, for 1 < s < Q-2Z,

(5.10) o [' Os * (B - byddyss1 - 3k ¢k(5+1ﬂ = %ks

21



Now we must eliminate ¢35 ¢35 «+., 939 and Sx(Q-1)+2°
¢k(Q-1)+3’ c e ¢kQ' In these cases we have a system of k - 1
unknowns. However, the procedure is exactly the same. We collect
our results in

Lemma 5.2. Let o # 0 and ¢ be an eigenvalue and eigenvector
respectively of (4.21) or (4.24). Let a s bk’ and by ,q be given
by (5.3) with the appropriate choice of B, either (5.8a) or (5.8b).
Let

(5.11a) Erg.1 = b3 » s =1,2, ..., Q1
(5.11b) Erg = %%s41 » S =1,2, ..., Q-1
Let
(5.11c¢) vw=1/0c , Y =1+yu
Then vy and El’ . EZ(Q—I) satisfy the homogeneous system
(5.12a) (8 - byy1)Ey - Y E, = 0
(5.12b) Y By * (B- b)E, - ay £ =0
(5.12¢) - Eog + (B - by)éogy1 - Y42 = 0,
s =1, 2, ..., Q-3
(5.124d) Y Eogeq * (B - by)Eagun - apbogez = 0,

s=1, 2, ..., Q-3

(5.12¢) T ag Ea0-2) * (B - bEdErqiayer T Y B2(Q-1) T O

22



5.12£f - - =
( ) Y E2(-2)+1 * (B - Pru1)Ea(q-1y) = O

Moreover, let U be the smallest positive number for which the
system (5.12) possesses a nontrivial solution; then Yo = 1 and

(5‘13) p = 1 =

Proof: It is only necessary to verify the characterization of Mg
oT ¥, given by €5.13). However, this is an immediate consequence
of our earlier characterization of ¢ as the largest eigenvalue of
(4.21) or (4.24).

Coroilarz: Consider equations (5.12) with bk+1 replaced by by.
Let y be the smallest positive value > 1 of y so that these modi -
fied equations have a nontrivial solution. Also, consider the

system (5.12) with bk replaced by by,;. Let Y be the smallest
positive value of y so that these modified equations have a non-

trivial solution. Then

(5.14) Y <y, <Y
Proof: Because

bk < bk+l

we see that
B-bk_'_lf_e'bk.
When y is a small positive number the tridiagonal matrix of (5.12)

is positive definite. If we increase some diagonal elements (for
instance, replace § - bk+1 by 8 - bk) we increase all the eigen-



values. Thus increasing some diagonal elements means we must raise
vy to make the system singular, Therefore

Yo =Y -

Similarly, replacing bk by bk+l makes the diagonal smaller and ¥
need not be so large. Thus we have proven (5.14).

Having established this corollary, we proceed to estimate the

-~

quantities ¥y, ¥y

We first rearrange the matrices of interest.
Lemma 5.3: Let A be the symmetric tridiagonal matrix of order
2(Q - 1) of the form

B -y
-y g - a2,
A = - ay B - ¥
-y B - gy
-y
-y 8

That is, the diagonal of A is a constant, g. The superdiagonal is
alternately -v, -a,, etc.

Let T be the permutation matrix corresponding to the permuta-
tion

(5.15) (25 ~1)+~3j , 2j~@Q~-1)+j ,

so that, letting ej denote the jth unit vector,
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(5.16) T = el’ 33’ vesy eZQ"l, ez, 84’ s e vy EZ(Q‘I)

Then
(5.17a) AT =3
where

BRI E
(5.17b) B =

gt BI

and E is the (Q - 1) x (Q - 1) matrix

oY
ak 'Y
(5.17¢c)

| .

Proof: Direct computation.
Remark: In the applications of this lemma

B=8- b orB =8 - by,

Let

y
(5.18) Vv =



be a nontrivial null vector of B, so that

(5.19)

Then (5.19) is equivalent to the pair of equations

(5.20a)

(5.20b)

Et Ey =82y

EEY X = 82 x

A computation shows that

(5.21a)

(5.21b)
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That is, E'E is the constant tridiagonal matrix [aky, ai + yz, a§y]

except that the ((Q - 1), (Q - 1)) term is YZ rather than ay + v
Lemma 5.4: Let y and y be defined as in the corollary to lemma
5.2. Then

(5.22) B - bray "3 ST SV SV
2
and from (5.13) we have
(5.23) 1 < 1 < p
B - b, + - -
B B - by - a + ay 0(h%)

Proof: Consider the case of y. Then g =B - bk+1' From (5.20a)
we see that if y = y then EZ is an eigenvalue of E'E. Thus by
the Gerschgorin Theorem [6]

=2 2, =2 - -2
B < ap + YT+ 2a, ¥ = (2 +v)

This establishes the left hand inequality of (5.22).

Consider the case of y. Then B = B - by. For y < Y the matrix
B is positive definite. Therefore at y = Y the smallest eigen-
value of B is zero. Thus -8 is the smallest eigenvalue of

e
I

Et o

If n is an eigenvalue of BO’ so is -n. Moreover, n is an eigen-

value of By if and only if n2 is an eigenvalue of EYE. We
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conclude when y = Y that EZ is the largest eigenvalue of EtE.
Let n; = n, = e 2 ng-1 be the eigenvalues of E'E. From the

inclusion theorem [6, p. 149] and the known eigenvalues of

[ 1, 0, 1]
we see that
n.: > az + 2 + 2 a cos ——11~ > 1 < j < 2
j < %k Y kY Q"l"'nj"'l ’v___J___Q'
Thus
2> a2+ 3t v za vy (1-3 <——E—->2
Z %k kY 7 \g -1
2 ~2 ~ ~ 2
2 ap * - 2ayy = (v - oay)

It is easy to see that y < B, whence

2
- a ~
B2 1+ g’ls (Q—T.L‘jj> > (ay ¢+ ok

This proves the right hand inequality of (5.22).
Remark: It is important to observe that the coefficient of the
O(hz) term includes ay- Since ay - 0 rapidly, this term is truly

negligible.
Corollary: Let k - » . Then

(5.24) p >3 {e N Y 4}
Proof: Using (5.6a) and (5.6b) we see that

T @as k » o,
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However, from the basic equation (5.2) we see that

1
g - E. =Em=%’[8' 82'4}

Theorem 5.1: Consider the k-line Jacobi iterative scheme where

k divides P and k < P. Let p(SkL) denote the spectral radius of
this scheme. Then the results shown in Figure 1 are correct up

to a term which is O(hz).

Proof: The result for k = 1 follows from (3.1). The result for
k = 2 follows from (4.8a). The results for k > 3 were obtained

from a computation based on (5.23) with 8 = 4. The column P1

was computed with the coarse lower bound of (5.23), and 0y with

the fine lower bound.

Theorem 5.2: Consider the k x k block Jacobi iterative scheme
where k divides P and k < P. Let p(SkB) denote the spectral radius
of this scheme. Then the results shown in Figure 2 are correct.
Proof: The result for k = 1 follows from (3.2). The result for

k = 2 follows from (4.8b). The results for k > 3 were obtained
from a computation based on (5.23) with B = 3.

6. Computational Results

Using codes originally prepared by D. L. Boley (see [3]1), Molly
Mahaffy computed approximate spectral radii for the Gauss-Seidel
iterative scheme using k lines and k x k blocks. These spectral

radii were computed by the power method. The Gauss-Seidel method
was chosen because the general theory shows that the Jacobi
jterative scheme has both p and -p as eigenvalues while the Gauss-
Seidel scheme has a simple eigenvalue on the spectral radius.
Furthermore, we also have

(6.1) p (Gauss-Seidel) = [p(Jacobi)]z .
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The results are contained in the following tables. In all cases
P = 128. As with Figures 1 and 2, the columns p% and pg were
computed using the coarser and finer bounds of (5.23), respectively.

k-1line Iterative Scheme

k pi (Theory) p% (Theory) pz(Computed)

.071840 + .259(-2) .074404 + .242(-4) .07662

4

.071797 + .132(-4) .071810 + .608(-9) .07167

16 .071797 + .351(-9) .071797 .07164

32 .071797 .071797 .07164

64 .071797 071797 .07164

Figure 3.
k x k Block Iterative Scheme
2 2 2

k Py (Theory) P (Theory) p“ (Computed)
4 .146498 = .143(-1) .160382 *+ .382(-3) 16620
8 .145898 * .296(-3) .146194 + ,150(-6) .14631
16 .145898 + .,134(-6) .145898 + .311(-13) .14590
32  .145898 * .271(-13) .145898 .14590
64 .145898 .145898 .14590

Figure 4.

7. Comments
It is of interest to observe that the results of Theorem 5.1

and Theorem 5.2 do not require that k/P » 0. In fact, those results
are valid as long as k < P. This is clearly demonstrated in the

computational results. For example, in Figs. 3 and 4 we see that
with P = 128 and k = 64, the largest acceptable value, the value
of p2 ijs essentially given by the asymptotic value (k + «). These
results seem to contradict the jntuitive feeling that, were M to
include a much larger part of A, the spectral radius would be much

smaller.
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