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Abstract

Continuity properties of linear programs that are subjected to data
perturbations are characterized. It is shown that the optimal value is
continuous relative to joint right-hand-side and objective coefficient
perturbations that preserve finiteness of the optimal value, whereas
continuity properties of the optimal solution sets of the problem and
its dual are equivalent to certain properties of the corresponding
solution sets of the unperturbed problem. Extensions of the results
to perturbations of the coefficient matrix are then considered, along

with applications to nonlinear programming.
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1. Introduction

Continuity properties of linear programs that are subjected to
data perturbations are of computational interest in a number of areas,
including linear programming sensitivity analysis (where uncertainties
and variability of the data give rise to questions of stability of the
optimal value and optimal solutions) and nonlinear programming (where
continuity properties of linear programming approximations are crucial
in establishing the convergence of certain algorithms). Bereanu [1]
also discusses some applications in stochastic programming.

Initially, we will be concerned with linear programs of the form

minimize cx

X
LP(b,c)

subject to: A*x =b, x > 0,

where x€IRn, t>eZRm, ¢ is an n-dimensional row vector (the juxta-
position of two vectors, as in cx, denotes their inner product), and
A* s mxn. (In this context the notation A* does not indicate the
conjugate transpose, but merely some fixed matrix; perturbation of the
constraint coefficients will be considered in Section 5.) The notation
LP(b,c) is intended to emphasize that in Sections 2-4 only right-hand
side and objective perturbations are allowed. (When constraint
coefficient perturbation is considered, obvious modifications to the
notation will be employed.) To avoid trivial cases, we assume through-

out this paper that the unperturbed problem LP(b*,c*) has an optimal

solution.



The dual of LP(b,c) is the problem

maximize by
D(b,c) ¥
subject to: yA* < c,

where y 1is an m-dimensional row vector. For notational convenience,
the unperturbed problems LP(b*,c*) and D(b*,c*) are denoted by
LP* and D* vrespectively.

Since we are assuming that LP* has a finite optimal value,
perturbations that lead to infeasibility or unboundedness clearly
result in discontinuities of the optimal value function. Thus, we will
concentrate attention on those perturbations that preserve the
existence of an optimal solution. This is equivalent to considering
only perturbations for which the constraints of both the primal and

dual remain solvable. Accordingly, let

B = {b|A"x=b, x>0 1is solvable}
and

C = {c|yA*<c is solvable},

j.e., B 1is the set of RHS's such that LP(b,c) has a feasible
solution, and C 1is the set of objectives for the primal (right-hand
sides for the dual) such that D(b,c) has a feasible solution. Note
that (b*,c*) ¢BxC, and that LP(b,c) has an optimal solution if
and only if (b,c) eBXC. Moreover, B and C are polyhedral and

therefore closed sets. The optimal value of LP(b,c) 1is denoted by



w(b,c), and the optimal value of the unperturbed problem is denoted
by w*. Note that by assumption =-e < w* < +=, and that

-0 < w(b,c) < +o if and only if (b,c)eBxC. Finally,
QP(b,c) = {xlA*x=b, x>0, cx=w(b,c)}

denotes the set of optimal solutions of LP(b,c) and
QD(b,c) = {y]yA*fp, yb=w(b,c)}

denotes the set of optimal solutions of D(b,c). Note that

Qp(b,c) o # QD(b,c) if and only if (b,c)eBxC. For notational
convenience, we denote the optimal solution sets of the unperturbed
problems by Q; and Qg respectively.

The main result of Section 2 is the continuity of the optimal
value function with respect to perturbations in BxC. An application
of this result to a nonlinear programming algorithm is also briefly
discussed. In Sections 3 and 4, perturbations of only the right-hand
side and only the objective function are considered. The principal
results are that the primal optimal solution set is always continuous
with respect to RHS perturbations, but is continuous with respect to
objective perturbations if and only if it is a singleton (i.e., the
primal has a unique solution). (By duality, corresponding results hold
for the optimal solutions set of the dual.)

Section 5 takes up the issue of constraint coefficient perturba-
tion, and discusses conditions related to continuity with respect to
optimality-preserving perturbations. Finally, the main results of the

paper are summarized in the two tables of Section 6.



2. Continuity with respect to joint right-hand-side and objective

perturbations

In this section we will consider continuity properties of the
optimal value and optimal solution sets with respect to perturbations
in BxC, 4d.e., perturbations of the RHS and objective that preserve

the existence of an optimal solution. The continuity of the optimal

value function relative to such perturbations was established in [5],
but, for the sake of completeness, we give a proof of this key

result.

Theorem 1: The optimal value function w 1is continuous on BxC

relative to perturbations in BxC.

Proof: Let {(bk,ck)} c BxC with (bk,ck) > (b*,c*). We will show
that w(b¥,ck) + w(b®,c*).

Without loss of generality we may assume that the matrix A has
full row rank, since linearly dependent rows may be deleted. (The
only case not covered by this assumption is the one in which A is

the 0 matrix and b = 0, but the result is obvious in this instance

n

since B = {0}, C = R,

and the optimal value is always 0.) Let K
denote a sequence of indices such that there exists a fixed basis

matrix B such that for keK an optimal solution of LP(bk,ck) is

k 1

obtained by setting the corresponding basics to the values Xg k

=B b

(and non-basics to 0) and an optimal solution of the dual of LP(bk,ck)

is given by yk = cg B'], where cg are the components of ck corre-
sponding to B. Taking the Timit over keK, it is easily seen that
XE = 8'1 b* is feasible for LP(b*,c*) and y* = cg B'] is feasible

for its dual, and thus these solutions must be optimal for their
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respective problems. Clearly, for keK, w(bk,ck) = cg B'] bk converges

to cg B~ b* = w(b*,c*). By considering subsequences K; and Kg
corresponding to lim inf and 1im sup and extracting from them further
subsequences corresponding to fixed bases, it is clear that
lim inf w(bk,ck) = 1im sup m(bk,ck) = w(b*,c*). A

The key element in the proof of Theorem 1 is the existence of
bounded sequences of optimal solutions of the primal and dual problems.
Under the hypotheses of Theorem 1 it is possible to obtain such

sequences because of the existence of optimal basic feasible solutions

and the ability to work with a fixed basis. (This fixed basis property
also leads to well-known linearity properties of primal and dual solutions
when sensitivity analysis is performed with respect to given RHS and
objective perturbation vectors — see, for example, [4].) 1In Section 5,
where matrix perturbations are allowed, additional assumptions will be
required in order to ensure boundedness.

0f course, the preceding result holds for general LP's (i.e., those

not in standard form), since conversion to standard form has no effect on

the optimal value of an LP. Note also that BxC contains a ball about

(b*,c*) if and only if b* is in the interior of B (b* e int(B)) and
¢* cint(C). In this case continuity relative to BxC 1is equivalent to
continuity in the ordinary (i.e., unrestricted) sense.

Although no assumptions are required to ensure that the optimal
value is continuous relative to BxC, the same is not true with regard
to continuity properties of the optimal solution sets. The next
theorem, in fact, shows that the optimal solution set QP(b,c) is
continuous at (b*,c*) relative to BxC 1if and only if LP(b*,c*)
has a unique optimal solution, i.e. Qp(b*,c*) is a singleton. In
order to define continuity of Qp(b,c), which is set-valued, we require

the concepts of upper semi-continuity and lower semi-continuity of



set valued mappings. A set-valued mapping { will be said to be lower-

semi-continuous (1.s.c.) at (b*,c*) relative to a set S if x* e Q(b*,c*)

and {(bk,ck)}<:S with (bk,ck)~*(b*,c*) imply the existence of xkezQ(bk,ck)

k

with x=+x*. @ will be said to be upper semi-continuous (u.s.c.) (or

nelosed" in the terminology of [6]) at (b*,c*) relative to S if

(5.1 s and XK ea(d®,c) (k=1,2,...) with (bK,c) = (b*,c*) and

K 5 x* dmply x*eq(b*,c*). Finally, @ is said to be continuous at (b*,c*)
relative to S if it is both 1l.s.c. and u.s.c. at (b*,c*) relative
to S. If © 1is continuous at (b*,c*) with respect to a particular

sequence {(bk,ck)} we will write Q(bk,ck) - Q(b*,c*).

Theorem 2: The optimal solution set QP is upper semi-continuous on
BxC relative to BxC. Qp is continuous at (b*,c*) relative to

BxC 1if and only if Qg is a singleton.

Proof: The u.s.c. follows trivially from Theorem 1. Thus, we need only
show that 1.s.c. of QP is equivalent to uniqueness of the optimal

solution.

(=) If QY is a singleton {x*1 then by the construction used in
P

k

the proof of Theorem 1, every subsequence of the sets Qp(b ,ck) contains

a corresponding subsequence of solutions xk converging to x*, so
that 2p is also 1.s.c. at (b*,c*).
(=) Suppose that Q; is not a singleton. If A® is the 0 matrix,
k

a contradiction is obtained by choosing ck >0, ¢~ 0. Otherwise, let

x* be an optimal basic feasible solution of LP(b*,c*). Now consider
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the family of problems LP(b*,ck) where ck is chosen so that
c? = c? for the i corresponding to variables basic with respect to
x* and c§ = cr + k! (k=1,2,...) otherwise. For these perturbed

i
problems, x* is the unigue element of Qp(b*,ck), so that clearly

QP(b,c) cannot be continuous at (b*,c*). A

It turns out to be the case that QF is bounded if and only if
¢* is an interior point of C (see [15]). Thus, the following

extension of Theorem 2 also holds.

Corollary 1: The optimal solution set Qp(b,c) is continuous at
(b*,c*) relative to BxR" if and only if Qp fis a

singleton.

Corollary 1 is related to a result of Mangasarian [8] who showed
that a general linear program has a unique optimal solution x* if and
only if x* is an optimal solution of all LP's whose objectives are
are sufficiently close to the original objective (the coefficient matrix
and RHS are assumed to be unchanged). In Corollary 1 RHS changes are
allowed, so in general x* 4s not in the optimal solution sets of the
perturbed problems, but there must be optimal solutions of the perturbed
problems “"close" to x*.

Analogous results hold for the optimal solution set of the dual as
well as for general linear programs. Here we shall only state the
result for the dual problem, and refer the reader to the Appendix for

the proof for the general linear program.



Theorem 3: The optimal solution set ) is upper semi-continuous on
BxC vrelative to BxC. 2 is continuous at (b*,c*) relative to

R"x ¢ if and only if QB is a singleton.
Proof: See Appendix. A

Note that a general LP may be converted to the form D(b,c) by
converting all of the constraints to inequalities in the usual manner.
Since the optimal solution set of the original problem is unchanged by
this conversion process, Theorem 3 may be used to establish continuity
properties for general LP's. Lipschitz properties of w and extensions
to quadratic programs may be obtained by exploiting properties of
polyhedral multifunctions (see Robinson [137).

In a series of papers, Meyer [10, 11] and Kao and Meyer [7] describe
iterative approximation methods for convex optimization problems of
the form

min  f(x)
X

subject to: xeS,

where f(x) 1is real-valued on the nonempty, compact, convex set S.
In certain cases, this method utilizes subproblems of the form
min  f(x)
X

subject to: xeS, I < X < 1,

~

where f 1is a convex piecewise-linear approximation of f and & and

i are appropriately chosen bounds. When S s polyhedral, it may be



shown that these approximating problems are equivalent to linear
programs which differ only in their objective function coefficients
and right-hand sides. In this situation, the convergence of the
algorithm to an optimal solution of the original problem may be
established by exploiting the continuity of the optimal value of the
approximating LP's. The convergence proof is also easily extended to

the case of non-polyhedral S.
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3. Continuity of the optimal solution set with respect to right-hand-

side perturbations

In this section we assume that the objective function is fixed
at some vector in C, but that the RHS is allowed to vary over
B. Continuity of the optimal value function relative to B
follows as a special case of Theorem 1, but in this case the optimal

solution set &p is also continuous even in the absence of a uniqueness

assumption.

Theorem 4: The optimal solution set QP(b,c) is continuous on BxC

relative to perturbations of b within B.

Proof: By Theorem 1, u.s.c. holds, so we need only show 1.s.c. Let
{bk} c B with bk > b* and let wk = w(bk,c*). Suppose that
x* eQ; and consider the problem

*
minimize f x -XH]

k X
(N*) y

. * * k
subject to: Ax =b", x >0, cXx =w .

Since (Nk) may be written as an LP in which only the RHS depends

k

on k, and since (Nk) has some optimal solution X for all k, it

follows from the preceding theorem that le*-iikH1 ~ 0, since 0 1is the

optimal value of the 1imiting problem and thus ik > x5, A

Note that since this result depends only on the continuity of the
optimal value, the extension to general LP's is straightforward. The

result is an immediate consequence of a continuity theorem of Dantzig,
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Folkman, and Shapiro [3], and also strengthens a result of Bohm [2]
who established (by a different argument) the continuity of QP
relative to perturbations within B under the assumption that Q; was
compact, (For u.s.c. see also [6].)

0f course, perturbations of the RHS in the primal correspond to
perturbations of the objective in the dual. This leads to the next

Theorem.
Theorem 5: The optimal solution set QD(b,c) is continuous on BxC

relative to perturbations of ¢ within C.

Note that for c* = 0, Qp(b,c*) is simply the feasible set of
LP(b,c*), so that Theorem 4 yields the continuity of the feasible set

relative to perturbations of b within B. In this fashion, results
below that provide continuity properties of Qp can be used to

establish continuity of feasible set mappings.
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4. Continuity of the optimal solution set with respect to objective

perturbations

Although the optimal solution set fp is continuous relative to
feasibility-preserving RHS perturbations, uniqueness is still required
to guarantee continuity in the case of objective function perturbations.
Since only perturbations within C were required in the proof of
Theorem 2 to show that continuity implied uniqueness for problems in

standard form, the next result follows directly from that proof.

Theorem 6: The optimal solution set Qp(b*,c) is continuous at
(b*,c*) relative to perturbations in C if and only if Q; is a
singleton.

As previously noted, ¢® s in int (C) when Q; is bounded, so

the following extension of Theorem 5 holds.

Corollary 2: The optimal solution set Qp(b*,c) is continuous at
(b*,c*) (relative to arbitrary objective perturbations) if and only if
Q§ is a singleton.

Actually, an even stronger result holds, namely,
Qp(b*,c) = Qp(b*,c*) for all ¢ sufficiently close to ¢* if and
only if Qp(b*,c*) is a singleton. This result is established in the

Appendix, where its extension to general LP's is proved. Here we note

only that the corresponding result holds for the dual problem.

Theorem 7: The optimal solution set QD(b,c*) is continuous at
(b*,c*) relative to perturbations in R™ if and only if QE is a

singleton.
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It should be noted that Rr" may not be replaced by B in the
preceding theorem. Although the singleton condition remains sufficient,
it is not necessary for continuity if perturbations are restricted to
B. (For problems whose feasible sets contain extreme points, this
difficulty does not arise, because, for any extreme point, objective
functions may be constructed with the property that the extreme point

is the unique optimal solution, as in the proof of Theorem 2.)
Example 1: For the problem
min 0 X

X

subject to: 0+x =0, x >0,

we have B = {0}. 1In this case continuity of the dual solution set

1

relative to perturbations in B is trivial, but QB = R . A
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5. Constraint coefficient perturbations

There are well-known examples that illustrate that if all of the
problem data, including the constraint coefficients, are perturbed,
then the optimal value may behave discontinuously relative to perturba-

tions that preserve the existence of an optimal solution.

Example 2: For XGIR], consider the families of LP's:

min X
X
5,t, tx = t
X 3_0.

For t =0, this LP has the unique optimal solution x = 0 and optimal
value 0. For t >0, the unigue optimal solution is x =1, with
optimal value 1. Thus, both the optimal value and optimal solution set
are discontinuous at t = 0. The optimal solution set of the dual is

also discontinuous, being R' for t=0 and {t']} for t > 0. A

To see why the proof used for Theorem 1 cannot be extended to the
matrix perturbation case, note that if the columns associated with a
fixed set of basic indices are substituted for the fixed basis matrix
B in the proof, there is no guarantee that their limit will have an
inverse. This is the case in the preceding example. However, a simple
modification of the proof is valid if certain boundedness conditions
hold. 1In a slight abuse of notation, w(A,b,c), QP(A,b,c), and
QD(Asbsc) will indicate the optimal value and optimal solution sets

as functions of the data, where A is the constraint matrix.
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Theorem 8: If the optimal solution sets QP(A,b,c) and QD(A,b,c)
have non-empty intersections with fixed bounded sets for all (A,b,c)
in a set S and sufficiently close to (A*,b*,c™), then the optimal

value function w(A,b,c) 1is continuous at (A*,b*,c*) relative to S.

proof: 1f L(AK,bK,cK)T < s with (AK,bK,cK) + (A%,b%,c"), then by

the boundedness assumption there exists a subsequence K such that

«K eQP(Ak,bk,ck) k

K K x*, yk K'y*. Since Kk = bkyk for keK and x* and y* are

for kekK,y eQD(Ak,bk,ck) for keK, and

feasible for LP* and D* respectively, it follows that

= lim Ckxk = Tim bkyk = b*y*,
keK keK

so x*¥ and y* are optimal for their respective problems. By

considering sequences corresponding to 1im inf and Tlim sup,

continuity of w may be established. A

Since this proof does not make use of the particular forms of the
linear programs, the result is also valid for general LP's, The pre-
ceding theorem is an extension of a continuity theorem of Martin [91
who used the fact that QP(A,b,c) and QD(A,b,c) are uniformly
bounded sets in some neighborhood of (A*,b*,c™) provided that Q;
and QE are bounded. As we will see, there are interesting cases in
which the perturbed sets are not uniformly bounded, but do nevertheless
intersect fixed bounded sets for (A,b,c) in some neighborhood of

(A*,b*,c*).
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In the case in which the coefficient matrix is fixed at A*, the

boundedness property required in the preceding Theorem is assured
because of the form of the optimal basic feasible solutions and the
corresponding optimal dual solutions. However, as illustrated by
Example 2, this argument cannot be used when the constraint coefficients
are perturbed, because a sequence of optimal bases may converge to a
singular matrix and the corresponding sequence of optimal solutions may
be unbounded. The sufficient boundedness property may be obtained by
assuming the boundedness of Q; and QB, which in turn is equivalent
to the conditions b*e int(B) and c¢*e int(C). Moreover, the latter
conditions are clearly necessary if arbitrary perturbations are allowed,
so in that case they are equivalent to continuity of w. With regard to
the continuity of the optimal solution sets of the primal and dual, the
results of the previous sections may be extended to allow constraint
coefficient perturbation, provided that the optimal solution sets of the

unperturbed problem are singletons.

Theorem 9: The optimal solution sets Qg and QB are bounded if and
only if the optimal value function w 1is continuous at (A*,b*,c*)
relative to arbitrary data perturbations. The optimal primal solution
set QP is continuous at (A*,b*,c*) relative to arbitrary perturba-
tions if and only if Q; is a singleton and QE is bounded. The

optimal dual solution set & is continuous at (A*,b*,c*) relative to

arbitrary perturbations if and only if QE is bounded and QB is a singleton.

Proof: See Appendix. A
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If attention is restricted to perturbations that are optimality-
perserving, (i.e., an optimal solution exists for the perturbed prob-
Tem) the conditions b*e int(B) and c*e int(C) are not necessary
for continuity, as the next Theorem shows. In fact, the sufficient
condition given in the next Theorem is a condition on the constraint

coefficients rather than the objective and right-hand side.

Theorem 10: If every set of m columns of A* is non-singular, then

w(A,b,c) is continuous at (A*,b*,c*) relative to perturbations in

y, the set of (A,b,c) for which LP(A,b,c) has an optimal solution.
In addition, under this assumption, QP(A,b,c) is continuous at
(A*,b*,c*) relative to perturbations in ¥ if and only if Q; is a
singleton; and @p(A,b,c) s continuous at (A*,b*,c*) relative to

perturbations in ¥ 1if QE is a singleton.

Proof: The proof of Theorem 1 is easily modified to show the continu-
ity of w, since the fixed basis matrix may be replaced by a set of
columns corresponding to fixed indices, and since all sufficiently
small perturbations will preserve the non-singularity property. The
proof of the continuity properties of QP and QD is given in the

Appendix. A

When A* has the property that every set of m columns of A*
forms a non-singular matrix, we say that A* 1is a Haar matrix and
write A* cH. It is easy to see that A*eH is not a necessary
condition for continuity of w, since b* ¢ int(B) and c* e int(C)

may hold whether or not A* ¢ H. Conversely, if A* ¢H, then w
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will be continuous relative to optimality-preserving perturbations

even if b” ebdy(B).

Example 3: MWith m=n=1 and c¢* =A* =1, b* =0, the primal
problem becomes

min X
X

subject to: x =0, x >0
and the dual problem is

max Oy
y

subject to: y < 1.

In this example, A eH, so the optimal value is continuous relative

to perturbations that preserve the existence of an optimal solution.

In this case, this allows all sufficiently small perturbations in c*
and A*, but only non-negative perturbations of b* = 0. Note that

the conditions of Theorem 9 are not satisfied, since b* 1is on the
boundary of B (the optimal solution set of the dual is thus unbounded).
However, the only discontinuities that can occur are those corresponding
to primal infeasibility, and such perturbations are specifically

excluded from consideration. A

Cases in which A*e¢H and b* ebdy(B) have an interesting
property. Robinson [12] showed that b* e bdy(B) implies that for any

X feasible for LP*, there exist perturbations A and b arbitrarily
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close to A* and b* such that X is optimal for the perturbed
problem LP(A,b,c*). However, when A* ¢ H, the optimal value function
is continuous, so, when b¥* ebdy(B), it must be the case that the
objective function is constant over the entire feasible set, since
Robinson's result implies that this is a necessary condition for con-
tinuity of w. In fact, the apparent instability corresponding

to the arbitrary nature of the optimal solutions of perturbed
problems does not occur, because (as in the case of Example 3)

the feasible set is a singleton whenever A*eH and b*ebdy(B) (see
Theorem 14 of the Appendix for a proof). In such a case the optimal
solution set Qp will also be continuous at (A*,b*,c*)

relative to optimality-preserving perturbations, since the

next theorem establishes that uniqueness of the feasible solution

of a general LP is sufficient for continuity of both the optimal value

and optimal solution set. When b* ¢ bdy(B), the feasible solution will

often be unique even if A* £H.

Theorem 11: If the feasible set of a linear program is a singleton,

then the optimal value and the optimal solution set are continuous

relative to optimality preserving perturbations.
Proof: See Appendix. A

Finally, we provide an example that illustrates that for b*e bdy(B),

w may be continuous even if the feasible set is not a singleton,
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Example 4: Consider the LP

min 0 X
X
subject to: X + 2x2 =2
X3 = 0
x >0.

Because of the constraint X3 = 0, b* ebdy(B). Clearly, the feasible
set is not a singleton and every feasible solution is optimal. By
considering the three possible basic feasible solutions that may arise
as a result of perturbation, it is easily seen that the optimal value
function must be continuous relative to optimality preserving per-
turbations. (Alternatively, boundedness of the feasible set implies
that every feasible solution of the perturbed constraints will be

close to some solution of the unperturbed constraints, so the constancy
of the objective on the unperturbed feasible set implies continuity of

the optimal value.) A

Theorem 8 may also be used to establish the continuity of the
feasible set of a linear system under appropriate hypotheses. Let
F(A,b) = {x|Ax=b, x>0} and assume F* = F(A*,b*) is non-empty. The

behavior of the feasible set in Example 2 shows that the mapping F need
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not be continuous relative to feasibility-preserving perturbations.
However, if the set A* = {y|yA*<0, yb*=0} is bounded (which will occur
if and only if A* = {0}), then continuity of F at (A*,b*) holds.
(Observe that A* may be thought of as the optimal solution set of the
dual of the following problem,

min 0+ x
X

subject to A*x = b*, x > 0,

which has optimal solution set F*. From this viewpoint, the continuity
result to be obtained is related to Theorem 9, except that the objective
function is fixed at 0 and the optimal primal solution set is not assumed

to be a singleton.)

Theorem 12: If F* # ¢ and A* = {0}, then F is continuous at
(A*,b™).

Proof: We will first show that F(A,b) has a non-empty intersection

with some fixed bounded set for all (A,b) sufficiently close to (A*,b*).

Suppose that this is false, so that there exists a sequence
{(Ai,bi)} converging to (A*,b*) with the property that the correspond-
ing sequence {wi} of optimal values of the problems

min  ex
X

(P S
i i
subject to: A'x=b, x>0

tends to +w (where e = (1,...,1), and if (P1) is infeasible, its
optimal value w' is defined to be +w). Consider the corresponding

sequence of dual problems
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max biy

(0" ! .

subject to: yA1 <e.

Since y = 0 is always feasible, each (Di) has optimal value wi

also, where wi = +o implies that the problem (Di) is unbounded.

Thus, there exists a sequence {yi} such that yi is feasible for

(Di) and biyi + 40, Without loss of generality, we may assume that

all yi # 0 and that the sequence {yilHyiH} converges to a point

y* # 0. Since biyi - 4o, HyiH + +eo, and HyiH_]yiAi f_Hy1H_1e

implies y*A* <0 and y*b* > 0. However, y*b* = 0 contradicts

A* = {0} and y*b* > 0 contradicts F* # ¢, since it would imply

unboundedness of the dual of the Timiting problem.

We now apply Theorem 8 to the optimal value function of the

problem class

fl
o

subject to: Ax
- X+t Uu> =X
X+ u> X,

X > 0

where A and b are parameters and x* ¢ F*. The optimal value of this
problem is the distance from x* to the closest point (in the 21—norm)
in F(A,b). By the property established for F(A,b), the optimal solution
of the above problem must also intersect some fixed bounded set for (A,b)

sufficiently close to (A*,b*). The dual problem may be written as

* *
max by - x"v + xX'w
YsV,oW

subject to: yA - v +w <0
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The dual optimal solution sets must also intersect some fixed bounded
set for (A,b) sufficiently close to (A*,b¥), for, if they did not,
there would be an optimal solution sequence {yi} with Hyiﬂ + oo
corresponding to a perturbation sequence {Ai,bi} > {A¥,b*}, and a
contradiction to A* = {0} could be obtained along the lines of the
first part of tﬁe proof. Thus, Theorem 8 implies the continuity of the
optimal value of the minimum distance problem, which in turn yields

the continuity of F. A

(Note that Theorem 12 does not assert that the sets F(A,b) are
bounded; in fact, if {y|yA*<0} = {0}, then F(A,b) s unbounded for
all (A,b) sufficiently close to (A*,b*). To see that F* s
unbounded under this assumption, consider the problem

max — ex
X

subject to: A*x = 0, x 3_0
and its dual

min Oy
N

subject to: yA* > e.

The dual is infeasible, but the primal is feasible and therefore
unbounded. It is easily seen that these properties are invariant
under perturbations of A*.)

The continuity result of Theorem 12 may be extended in an obvious

manner to linear systems of other forms. Lipschitz properties of F

under the same assumptions will be described in a forthcoming paper.
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6. Summary

The results of Sections 2-4 are summarized by Tables 1 and 2. For
a given mapping and perturbation (or perturbation pair), the table
entries give properties relevant to continuity. The interpretation of

the tables is illustrated by the following examples.

Example 5: If arbitrary perturbations are allowed in b and c, the

perturbation sets are designated as R" and R" respectively. In

this case, w 1is continuous at (b*,c*) if and only if QF is

D
bounded (Table 1) and QE is bounded (Table 2); 2p is continuous at
(b*,c*) if and only if QB is bounded and Qg is a singleton. A

Example 6: If b 1is fixed at b* and the perturbations of c are
restricted to C, only Table 2 is required. In this case w and 2
; and Qg. QP is
continuous if and only 1if Q; is a singleton, A

are continuous regardless of the nature of Q

It should be noted that the continuity of a mapping in the tables
is equivalent to the solution set property corresponding to the per-
turbation with one exception - in Table 1 the property that QS is a
singleton is sufficient but not necessary for 2 to be continuous
relative to perturbation within B.

Note also that the results of Section 5 pertaining to arbitrary
perturbations of all of the data (including the constraint coefficients)
are the same as those corresponding to arbitrary perturbations of just

the right-hand side and objective coefficients (the R™ and R" rows
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Limitations on
Perturbation Continuous Mapping
Set for b
w Qp QD
m * * * .
R QD bounded QD bounded QD a singleton
(unrestricted)
. _ * . t
B unconditional unconditional QD a singleton
+sufﬁ’cient but not necessary for continuity
Table 1. The relationship between continuity

conditions and perturbation sets for b
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Limitations on|
Perturbation Continuous Mapping
Set for ¢
w Qp QD
n * * . *

R Qp bounded Qp a singleton Qp bounded
(unrestricted)

C unconditional Q; a singleton unconditional

Table 2. The relationship between continuity

conditions and perturbation sets for c
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of Tables 1 and 2). Moreover, the results of Section 5 based upon

A* ¢H correspond to the B and C rows of the tables, keeping in
mind that when the constraint coefficients are also perturbed, B and
C may be dependent upon the perturbed matrix A. It should be observed
that for A* £H, the conditions in the B and C rows are not in
general valid when constraint coefficient perturbation is allowed.

That is, w 1is not necessarily continuous relative to optimality-
perserving perturbations, and QP is not necessarily continuous when

Qg is a singleton (refer to Example 2).
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Appendix

The sufficient conditions stated previously for the continuity of

optimal solution set mappings are a consequence of the following Lemma.

Lemma 1: Let Q be a point-to-set mapping from one finite-dimensional
space into the subsets of another such that Q(t) 1is defined and non-
empty on a set T. Let & be u.s.c. relative to T at t*, and
assume that Q(t*) is a singleton. If there exists an open set N
containing t* and a constant K such that for each teNnT, there is

a teq(t) with UItl <K, then @ is continuous at t* relative to T.

Proof: The l.s.c. of Q at t* follows from the fact that if
{tk}_g T with tk > t*, then there exists a convergent subsequence

k

&7 with ¥ eQ(tk). If t = lim t~, then, by u.s.c., t eq(t¥). so

that t = t*. This establishes 1.s.c., so @ is continuous at t*. A

To apply the Lemma to prove Theorem 3, note that the u.s.c. of the
optimal solution set is implied by the continuity of the optimal value
function. When QE is a singleton, the boundedness property of the

Lemma is implied by the uniform boundedness of QE for t close to t*.

(If this uniform boundedness did not hold, then there would be sequences
1y 3, 6%y, 151 with HyK]]~+w, bK » b*, ¢ > ¢* and such that

P S SRS

By dividing these relations by ]lyKl] and
taking the limit of an appropriate subsequence, we obtain a vector y*
satisfying |ly*|| = 1, y*A* < 0, y*b* = 0, which contradicts the

assumption that QB is a singleton.)
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In the cases of Theorems 9 and 10, in which perturbations of the
constraint coefficients are allowed, it is easily seen that the analogous
uniform boundedness properties may be proved in a similar manner. Thus,
the sufficiency of the conditions assumed for the continuity of the
optimal solution sets is established. As in the case of the optimal
value function, it is easily seen via consideration of the appropriate
objective function that boundedness of both optimal solution sets is a
necessary condition for their continuity if arbitrary perturbations are
allowed (Theorem 9). To show that continuity also imples uniqueness
(Theorem 9) we introduce the family of problems GLP(q), where S is a
fixed polyhedral set:

min qz

z

GLP
(a) subject to: zeS.

Theorem 13: The following are equivalent:
(1) GLP(g*) has a unique optimal solution
(2) the optimal solution set of GLP(q) is continuous at q*
(relative to arbitrary perturbations of the objective)
(3) the optimal solution set of GLP(q) 1is the same singleton

for all q sufficiently close to q*
Proof: (1) = (2) The feasible set S may be expressed as

r . S . r .

S ={z|z =) Azt o+ ) usdd, A > 0, w> 0, ) A=11, where the z' are
LBt Lot -~ ~ L e
i=1 j=1 i=1

distinct elements of S and the d3  are non-zero vectors with the

property that if z is any element of S, then 2 + udd ¢S for all
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dj and all p >0 (see Rockafellar [14]; in the case of problems in
standard form, such as LP(b,c), the zi may be taken to be the
extreme points and the dj, the extreme rays). Uniqueness of the
optimal solution is equivalent to the existence of a zt such that
q*zt < q*zi for 1 #t and q*dj >0 for all dj. Clearly, if S
is unchanged, then for all § sufficiently close to q* these
inequalities must still hold, so that zt remains the unique optimal

solution for all perturbed problems with q sufficiently close to q*.

(2) = (1) Conversely, suppose that GLP(q*) has more than one
optimal solution. There are two cases to consider: (i) q*dj >0 for
all j, but |I| > 2, where I = {1|zi is an optimal solution of GPL(q™)}
and (ii) there exists a u such q*du =0 (note that if q*dj <0 for
some j, then the problem would be unbounded). In case (i), there
exists a tel and a & such that 62t<:62“ for all uel, u#t, and
S may be assumed to be scaled so that (q*+s) dj >0 for all j.

Thus, for all 6 (0,1) it follows that the linear program GLP(q*+08)
has a unique optimal solution zt, so that the set of optimal solutions
is discontinuous at q*. 1In case (ii), the linear problem GLP(q*—edu)
is unbounded for all 6 > 0, so again the optimal solution set is

. . *
discontinuous at q".

(1) = (3) Follows from the proof of (1) = (2).
(3) = (1) Trivial. A

In the presence of non-negativity constraints in GLP(Q), Theorem 13

and its proof may be modified so as to involve only optimality-preserving

perturbations (thereby completing the proof of Theorem 10) by noting that
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in case (ii) of the proof that (2) implies (1), discontinuity may be
demonstrated by means of an objective perturbation of the form ©6e,
where e 1is the vector of 1's. Such a perturbation (for arbitrary

6 > 0) transforms the optimal solution set from an unbounded set into
a subset of the convex hull of the (fixed) extreme points of GLP (g*)
(observe that this perturbation is optimality-preserving, since the

problem remains feasible and cannot become unbounded).

It should be noted that similar arguments may be used to show that
boundedness of the optimal solution set of GLP(q*) 1is equivalent to q*
being in the interior of the set of feasible RHS's for the dual family.

We will now establish the uniqueness of the feasible solution under

the conditions described in Section 5.

Theorem 14: If A*e#l and b* cbdy(B), then F*={x|A"x=b, x>0} fis

a singleton.

Proof: The proof is by induction on the number n of columns of A*.
Because A*e¢H, it is the case that n>m. If n=m, the result is

trivial because A* is non-singular. Suppose the result is true for

n=m...,k, and let A* be mx(k+1). Assume that F" contains

two distinct elements, x and x . Consider the vector X = H(x+x').
Clearly X eF*, and if X >0, it is easy to see that b* ebdy(B)

is contradicted. On the other hand, if ;1 =0 for some i, then X;=
Xli = 0, so that the mxk system obtained by deleting column i

from A* has two distinct solutions, contradicting the induction

hypothesis. A
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Finally, to prove Theorem 11, we first apply the preceding Lemma 1

to establish continuity of the feasible set by observing that u.s.c.

is trivial and that uniform boundedness property of the feasible set
may be established in the usual manner. Since the optimal solution set

of a perturbed problem must be a subset of the feasible set, uniform

boundedness of the optimal sets is obvious, and u.s.c. follows from the
observation that a sequence of optimal solutions must converge to the
lTimiting singleton. Continuity of the mapping follows from the Lemma,

and continuity of the optimal value is then trivial.



