AN INTRODUCTION TO
MODULAR PROGRAMMING FOR PASCAL USERS

by

Robert P. Cook and Stephen J. Scalpone

Computer Sciences Technical Report #372

November 1979

AN INTRODUCTION TO MODULAR PROGRAMMING FOR PASCAL USERS

1, BLOCKS

In this discussion, capital letters will be used for syntac-
tic constructs and lower case for language keywords. In text,
both notations will be distinguished by double quotes. A
"BLOCK", then, denotes a lexical scope for a series of

"DECLARATION"s followed by a "STATEMENT_SEQUENCE". The repeti-

tion of a construct is represented as '][le..'; for example,
"[DIGIT]..." indicates a sequence of one or more "DIGIT"s. Fi-
nally, '{ }o..' is used to indicate zero or more instances of a
string.

PROGRAM = module IDENTIFIER;
[DEFINE_LIST; |

BLOCK IDENTIFIER.

A "PROGRAM" is the unit of compilation and must follow the
previous definition. If the "IDENTIFIER" is "main", execution
will be started with this module. The two "IDENTIFIER"sS must
match and the "." indicates the end of the program text. 1In Jgen-
eral, all lexical scopes are named and must terminate with an
identical name; thus, the text of a block can be easily delineat-
ed by the block identifier.

This language definition should be considared as experimen-
tal and is subject to change from time to time. For an extensive
set of examples and some historical perspective, the description

of Modula by Wirthl 2 3 should be consulted.

-] -

BLOCK = [USE_LIST; 1
{BLOCKHD }...
[begin STATEMENT_ SEQUENCE]
end
BLOCKHD = const [IDENTIFIER = CONSTANT_EXPRESSION;}... |

type [IDENTIFIER = ["] TYPE;}... |
var {IDENTIFIER LIST: ["] TYPE;}... |
value {IDENTIFIER = INITIAL VALUE;}... |
MODULE_DECLARATION; |
PROCEDURE_DECLARATION; I

PROCESS DECLARATION;

Unlike PASCAL, the dzclarations can occur in any order but
not in the body of the "BLOCK". Again, note that the "IDENTIF-
IER" following the "end" of the "BLOCK" must match the name of
the "module", "process", or "procedure" in which it occurs. The
comment convention "(*...*)" is the same as Pascal, except that
any segquence of statements may be commented out by enclosure with

a comment.

IDENTIFIER LIST IDENTIFIER {,IDENTIFIER}...

IDENTIFIER LETTER {LETTERIDIGIT}...

LETTER = albl...lzlalBl...l2]_

CONSTANT = CONST_IDENTIFIER | INTEGER | CHAR | STRING |

BIT_CONSTANT | true | false | nil

INTEGER = [DIGIT]... | [OCTAL DIGIT]...b
CHAR = 'CHARACTER' | [OCTAL DIGIT]...c
STRING = '[CHARACTER]}..."

Thus, integers can be expressed in octal as well as decimal.
In addition, a single character can also be represented as its
octal equivalent. A " ' " can be represented in a string con-
stant as a " '' ". A "STRING" of length three is considered the
same "TYPE"™ as an array with three "CHAR" elements. A named con-
stant can be declared by using the "const" declaration in which
case each use of the "const" IDENTIFIER will be replaced by its

associated constant value.

TYPE = integer | boolean | char | bits | signal |

ENUMERATION | ARRAY | RECORD

Note that subrange types are not currently implemented. all
variables must be declared before use, which may reguire using a
"forward" declaration for "procedures" and "processes".

"integer" is a signed integer which occupies one machine
word, as do "bits" and "signal" variables. "boolean" variables
can take on a value of "true" or "false" and occupy one machine
word. "char" wvariables are stored 1in 8 bits and have single
characters as values. Currently, all variables are packed in de-
claration order, so care must be taken with "char" variables to
insure that succeeding declarations start on word boundaries(two
characters per word). Pointer variable("TYPE) are defined as in
Pascal except that the "new" procedure 1is not implemented. A
"bits" wvariable 1is a wordlength-size boolean value which can be

"

manipulated by any boolean operator; thus, "a:= b or c; would
logically "or" the wordlength values in "b" and "c", storing the
result in "a". "bits" can be set to "true" or "false" in any

selected positions by using the following notation.

BIT CONSTANT "{" BIT LIST "]".

BIT _LIST

CONSTANT EXPRESS5ION {,CONSTANT“EXPRESSION}...

As an example, "a:=[0,4];" would set bits % and 4 to "“true" and
all other bits to "false". Bit zero is always the rightmost bit,.
In addition, "true" can be used for an all ones value and "false"

can be used for zero.

ENUMERATION = (IDENTIFIER LIST)

ARRAY = array INDEX LIST of ["] TYPE
INDEX_LIST = INDEX {,INDEX}...

INDEX = CONSTANT [:CONSTANT]

Enumerated types are identical to Pascal; arrays are not the
same, howaver. Note the absence of "[]". If the lower "INDEX"
is omitted, a default value is chosen which represents the con-
stant with ordinality zero that matches the upper "INDEX". The
component type of the array can be anything, including other ar-
rays. In addition, strings may not be used as array bounds. Fi-
nally, an array of arrays is distinct from a single multidimen-

sional array declaration.

RECORD = record FIELD LIST [;FIELD_LIST]... end

FIELD LIST = IDENTIFIER_LIST : ("] TYPE

Racords are identical to PASCAL, except that variant parts are

not implemented.

TWO VARIABLES ARE OF THE SAME "TYPE" IF THEY WERE DECLARED WITH

THE SAME TYPE NAME.

In general, operators require their operands to match in "TYPE".

i

value [IDENTIFIER INITIAL_VALUE;}...

INITIAL VALUE CONSTANT |
(INITIAL VALUE {,INITIAL“VALUE}...) |
"[" REPEAT_COUNT "1" INITIAL VALUE
REPEAT_COUNT = CONSTANT

An initialization part can be used to assign initial wvalues
to a module's variables. It cannot occur inside a procedure or
process declaration. The "INITIAL VALUE" specifies a storage
template which must not exceed the variable's storage area in
size. For convenience, an integer "REPEAT COUNT" may be used to
replicate any value or 1list of values. Pointers, signals and

variables declared with a protected type cannot be initialized

with this construct.

2. STATEMENT SEQUENCE

The language is structured so that once a program is con-
structed, additional statements can be added at any point with no
other changes necessary, such as adding "begin" - "end" pairs.
To maintain this convention, it 1is advisable, although not

strictly necessary, to terminate each "STATEMENT" with a ";".
STATEMENT_ SEQUENCE = STATEMENT {;STATEMENT}...

STATEMENT = ASSIGNMENT | PROCEDURE | PROCESS |

IF | CASE | WHILE | REPEAT | LOOP | WITH
ASSIGNMENT = VARIABLE := EXPRESSION

PROCEDURE = IDENTIFIER [PARAMETERS]

PARAMETERS = (EXPRESSION {,EXPRESSION}...)

-5

The procedure call must contain the same number of parame-
ters and with the same types as in the procedure declaration.
The arguments are evaluated from left to right before the pro-
cedure is called. If the procedure returns a value, it is ig-
nored. Arguments may be passed by value ("const") or by address
("var®) . Only integers, booleans, enumerations, characters, or
bits can be used as value arguments and only values of these
types can be returned from functions. All other constructs must
be declared as address parameters. The builltin procedure state-

ments are as follows:

halt = terminates the program
inc(x) = Re=x+1l
dec (%) = X:=%x-1

[t}

inc(x,EXPRESSION) X:=Xx+EXPRESSION

i

dec(x, EXPRESSION) X:=X—-EXPRESSION

sys (any number of arguments) outside interface

Since no I/0 facilities are d=2fined, "sys" allows the user
to build anything desired. It can also be used as an "integer"
function. "sys" generates a library call with the first argument
passed by value and the remaining arguments by address. It is
intended that "sys" be used to implement and isolate machine

dependent functions; it should be used with care.

PROCESS = IDENTIFIER [PARAMETERS]

A process statement starts a new process running in parallel
with the current process. Initially, the only process executing

is the main program. Also, calls on processes with "var argu-

-6~

ments are restricted to the main program to prevent dangling

reference problems.

IF = if EXPRESSION then STATEMENT SEQUENCE
{elsif EXPRESSION then STATEMENT_SEQUENCE}...
[else STATEMENT“SEQUENCE]

end

All "IF" statements must terminate with an "end". The
"alse" matches the nearest previous "then". "elsif" is a short-
hand for "else if" and has the additional advantage that only one
terminating "end" is required. The "then" part is selected when

"EXPRESSION" is not false.

CASE = case EXPRESSION of CASES {;CASES}... end
CASE5S = CASE_LABELS: begin STATEMENT_SEQUENCE end

CASE_LABELS = CONSTANT EXPRESSION {,CONSTANT“EXPRESSION}...

All "CASE"™ statements must terminate with an "end". The
"CASELABELS" must evaluate to a constant which matches the type
of the case selector expression. If the expression does not
match any of the labels, an error message will be printed at run-

time.
WHILE = while EXPRESSION do STATEMENT_SEQUENCE and

The statements are executed as long as "EXPRESSION" is not

false at the beginning of each iteration.
REPEAT = repeat STATEMENT_SEQUENCE until EXPRESSION

The statements are executed as long as "EXPRESSION" is false

at the end of each iteration.

LOOP = loop STATEMENT_SEQUENCE
{when EXPRESSION [do STATEMENT SEQUENCE] exit
STATEMENT“SEQUENCE}...

end

All "LOOP" statements must terminate with an "end". The
"when" clauses may be interspersed at will within the loop body;
thus, the loop body is executed sequentially and repetitively un-
til one of the "when" clauses becomes true. At this point, the

optional "do" statements will be executed and the loop terminat-

ed.
WITH = with SELECTOR do STATEMENT*SEQUENCE end
SELECTOR = RECORD“VARIABLE] SIMPLE_VARIABLE

Within th= "with" statement, the fields of the spacified
record variable can be denoted by their field identifier only,
i.e. without preceding them with the denotation of the entire
record variable. The "with" statement effectively opens the
scope containing the field identifiers of the specified record
variable, so that the field identifiers may occur as variable
identifiers.

If a simple variable is listed, it 1is interpreted by the
compiler as an indication that the variable occurs frequently in
the body of the "with" statement. The compiler will then try ¢to
keep the variable in a fast storage medium. If this necessitates
making a copy of the variable's value, the variable will 'be un-

dated at the end of the "with" statement.

3. EXPRESSIONS

The components of an "EXPRESSION" can be record references
(a.b.c), array references (alx,y]l), constants, simple variables,
function references (sin(x)), parenthesized expressions
(a* (btc)), and operators. The operators are listed below along

with the operand types and precedence levels.

not boolean, bits
unary + integer
unary - integer

* integer

div integer

mod integer

and boolean, bits
+ integer

- integer

or boolean, bits
Xor boolean, bits

= array, record, string, char, integer,
enumeration, boolean, bits
< > " "

K= enumeration, char, integer

array, record, string, char,

enumeration, integer, boolean, bits

The only builtin functions are "ord", "char" and "addr".

4, PROCEDURE DECLARATION

Procedures are the same as Pascal, except for functions, and

have the following format:

PROCEDURE DECLARATION = procedure IDENTIFIER [(FORMALS)]

[+ [7] IDENTIFIER]; [forward;]

BLOCK IDENTIFIER

The "BLOCK" "IDENTIFIER" must match the procedure name. The
"BLOCK", representing the body of the procedure, cannot contain
declarations for processes or interface modules. The ": IDENTIF-
IER" 1indicates a function and specifies a type name for the re-
turned value. The returned value for functions must be set by
assignment to the procedure's "IDENTIFIER". Procedures can only
exit at the end of the "BLOCK" and can be recursive. The
"USE_LIST" is defined under "MODULE DECLARATION". Also, only one

level of nesting is allowed for procedure declarations.

FORMALS = SECTION {;SECTION}...
SECTION = [const | var] IDENTIFIER_LIST : [7] TYPE
"const" parameters can have an enumeration, "integer", “"char",

"hoolean" or "bits" type. The corresponding argument must match
this type and is completely evaluated before the procedure call;
in other words, the parameter cell contains the value of the ar-
gument. For "var" parameters the cell contains the address of
the argument and any reference to the parameter name is a refer-

ence to the argument variable. If "forward" 1is specified, the

-103-

remainder of the declaration is omitted and must occur later in

the block as follows:

procedure IDENTIFIER;

[USE_LIST;]

BLOCK IDENTIFIER

5. PROCESS DECLARATION

A "process" is an entity, not found in Pascal, which can be

used to explore areas of parallel programming.

PROCESS_DECLARATION = process IDENTIFIER [(FORMALS)]; [forward;]

BLOCK IDENTIFIER

A process is an independent execution entity which 1is ini-
tiated by a "PROCESS" statement. The number of concurrent
processes at execution time is limited only by the memory of the
host computer. A process declaration has the form of a procedure
declaration, and the same rules about locality and accessibility
of objects hold. A process is terminated by executing the "end”

statement in the "BLOCK",.

6. MODULE DECLARATION

A module defines a lexical scope at compile time and is used
te encapsulate data structures, and the procedures and processes

to manipulate them.

-11~-

MODULE DECLARATION = [interface] module IDENTIFIER;
[DEFINE LIST;]
(USE_LIST;]

BLOCK IDENTIFIER

DEFINE_LIST define IMEX LIST

i

JSE LIST use IMEX LIST

i

I4gx LIST IDENTIFIGR [*] {,IDENTIFIZR [*] }...

Tha2 "BLOCK" that constitutes the module body is exescuted
when the procedure or process to which the module is local is ac-
tivated. If several modules are declared in parallel, the execu-
tion sequence is in declaration order. Thus, the module body is
used to start the main program and to initialize local variables.
Note that module initialization will occur only for the "main"
program; any initialization in separate compilations must be done
axplicitly. Every separately compiled module has an implicit
procedure associated with it. This procedure has the same name
as the module name and can be called to execute the initializa-
tion code for the module. ©Note that the module name must occur
in a "use" list and a procedure heading before it can be used for
initialization.

The "define" and "use" lists specify which variables to ex-
port or import, respectively. Normally, all global variables are
accessible within a module. However, the appearance of a "de-
fine" or "use" list closes the scope of reference to only those
variables in the "use" list and locals. BEach 1identifier in a
"use" 1list must be declared in a global block and will have its

declaration copied into the block of the "use". The "define"

statement copies definitions of local variables into the scope of

-12-

the enclosing block. Thus, "define" and "use" force the program-
mer to specify the external interface for each block in which
they are used.

An "*" following any name indicates a reference to a symbol
which will be used external to the current compilation. "define"
exports a definition for the referenced symbol to the 1load-time
environment; while "use" imports a symbol from another compila-
tion. Only variables, processes and procedures may ba used as
egsternal symbols. Iin addition, symbols in the "use" list wmust
also be followed by a declaration. For procedures and processes,
only the heading need be declared. Once an imported variable is
declared, it can be referenced in succeeding modules by inclusion
in a "use" list; no further declaration is necessary.

Each variable exported within a compilation 1is made read-
only to the scopes outside its block of definition. Also, ex-
ported types are treated as opaque; that is, variables declared
using the type name are read-only and only the major name can be
referenced. For example, an exported "record" type could only be
referenced as a record variable; the components would be invisi-
ble. Finally, any exported variable or instance of an exported
type can be passed as a "var" argument to an exported procedure
from the same block to manipulate its value. Variables exported
from, or imported to, the program are an exception and are
read/write. Protection for external variables is obtained by ex-
porting only procedure names while encapsulating the data.

ANY LOGICAL UNIT OF A PROGRAM, TOGETHER WITH ITS DATA,
SHOULD ALWAYS BE MODULATED. This serves as a useful documenta-
tion convention and also protects variables from unwanted side-

effects.

-13-

7. Interface Module

Only procedures or variables can be de2clared within the
scope of an interface module since the intent is for no process
to execute within such a module for any length of time. Inter-
face modules have the property that only one process can be exe-
cuting within the same module at the same time; thus, simultane-
ous accesses to encapsulated data and procedures are prohibited.
If a process attempts to enter a "busy" interface module, it |is
delayed until no process is executing within the module. ©Note
that this implies that waiting processes in an interface module
do not exclude newcomers. In addition, the order in which wait-

ing processes are selected for entry is non-deterministic.

8. Signalsl

In general, processes communicate via common variables, usu-
ally declared within interface modules. However, it is not
recommended that synchronization be achieved by means of such
common, shared variables. A delay of a process could in this way
be realized only by a 'busy waiting' statement, i.e. by polling.
Instead, a facility called a signal should be used.

Signals are introduced in a program (usually within inter-
face modules) 1like other objects. 1In particular, the syntactic
form of their declaration is like that of variables, although the
signal is not a variable in the sense of having a value and being
assignable. There are only two operations and a test that can be
applied to signals. They are represented by three standard pro-

cedures.

1. The procedure call "wait (s,r)" delays the

-14-

process until it receives the signal s. The
process is given delay rank r, where r must be
a positive valued integeasr expression. "wait(s)"

is a short form for wait(s,l).

2. The procedure call "send(s)" sends the signal s to
that process which had been waiting for s with
largest delay rank. If several processes are
waiting for s with the same delay rank, that process
receives s which had been waiting longest. If no
process is waiting for s, the statement "send(s)"

has no effect.

3. The Boolean function procedure "awaited(s)"
yields the value "true", if there is at least one

process waiting for signal s, "false" otherwise.

If a process executes a wait staement within an interface
procedure, then other processes are allowed to execute other such
procedures, even though the waiting process had not completed its
interface procedure. If a send statement is executed within an
interface procedure, and if the signal is sent to a process wait-
ing within the same interface module, then the receiving process
obtains control over the module and the sending process 1is de-
layed until the other process has completed its interface pro-
cedure., Hence, both the wait and send operations must be con-
sidered as 'singular points' or enclaves in the interface module,
which are exempted from the mutual exclusion rule.

If a signal variable is exported from a module, then no send

-15-

operations can be applied to it outside the module.”

9. The PDP1ll Implementation

The compiler is a 3909 line C program which runs as a shared
processor under the UNIX operating system. The size is 60K bytes
of which 33K bytes are shared by all users of the system. The
compilation rate is approximately 3828LPYM. The conventions for
invoking the compiler under UNIX are illustrated in a later sec-
tion. The generated code is operating system independent and can
be loaded with a UNIX kernel for class use or program develop-
ment., A stand-alone kernel is also available for bare machine
programming. The stand-alone kernel can be used on any PDPll and
also on LSI1lls.

Since the "sys" call is machine independent; a special run-
time package has been constructed to interface with the operating
system. This package may be deleted or augmented at the pleasure

of the user community. The system I/0 calls are implemented as

follows:
sys(l, list of integers) prints integers in octal followed
by a carriage return,
sys(2, C format, list of prints list with C format
integer, char, boolean, bits) followed by a carriage return.
sys(3, C format, list of prints list with C format

integer, char, boolean, bits)
sys{4, C format, string) prints string with C format
followed by a carriage return.

sys(5, C format, string) prints string with C format

The "C format" must be a string constant with the following

-16-

forms:

swd dzcimal in field of width w
WO octal in field of width w
%c single character

o
n

string of characters (can only be

used with sys(4) or sys(5) and then only once)

In addition the following operating system interface is provided:

sys(6, opcode, argument list)

returned value

opcoda meaning argument types
1 change directory string

2 change mode string, integer
3 close file integer

4 create a new file string, integer
5 duplicate a file

descriptor integer

5 exit integer

7 fork a new task -

3 file status integer, record
9 get group identity -

10 get process identity -

11 get user identity -

12 get tty status integer, record
13 kill integer, integer
14 link to a file string, string
vlS nice priority integer

16 open a file string, integer

-17-

4-no error
J-no error
#-no error

file descriptor

file descriptor

process id-old

B-new
4 - no error
group id

process id
user id

J-no error
-no error

#-no error

file description

17 create a pipe array 2-no error
18 read a file integer, array, integer 0 - endoffile
>3 - number of

characters read

19 seek in a file integer, integer,

integer 3 - no error
20 set group identity integer g-no error
21 set user identity integer f-no error
22 catch or ignore signals integer,integer d-no error
23 sleep integer -
24 get file status string,record F-no error
25 set tty integer, record 3-no error
25 sync - -
27 time array -
28 get process times array -
29 unlink directory entry string 3-no error
39 wailt - status of last

one

31 write to a file integer,array,integer 3-no error

For more information, check Section II of the Unix Reference
Manual. In addition, most of the above calls return a v"-1" for

errors.

19. Sample Program

The following program is one solution to Dijkstra's "Dining
philosophers" problem?. We have five philosophers sitting in a
circle with one fork between each philosopher. In the middle of
the table 1is an unusual brand of spaghetti which requires two

forks to eat. The philosophers must all cooperate 1in order to

-18-

eat. The program will print a "1" when a philosopher starts to
eat; and will print a "2" when eating is over and thinking
starts. The exported procedures "join" and "leave" are used to
regulate eating habits. WNote that since the data structures are

modulated the philosophers cannot cheat to get at the food.

~19-

module dining;

const NOTHINKERS=4; (*number of philosophers¥*)
var cnt :integar;
interface mcdule table;
define join,leave;
use NOTHINKERS,cnt;
var state:signal;
forks:array 9:NOTHINKERS of boolean;
procedure join(i:integer);
var j : integer;
begin

jer=(i+l) mod (NOTHINKERS+1);

loop
(*wait for both forks¥*)
when forks[j] and forks[i] do
forks[jl:=false; forks[i]:=false;
(*mark them busy*)
exit;
wait(state); (*wait for status change¥)
end;
end join;

procedure leave(i:integer);
begin
(*set forks to true to indicate available¥)
forks[(i+1l) mod (NOTHINKERS+l)]:=true; send(state);
forks[i]:=true; send(state);
end leave;

begin

-29-

(*initialize all forks¥*)
cnt:=9;
repeat forks[cnt]:=true; inc(cnt) until cnt > NOTHINKERS;
end table;
procedure eat;
begin end eat;
process philosopher(a:integer);
begin
loop
(*get forks; eat; release forks; think¥*)
join(a); sys(l,a,l); eat; sys(l,a,2); leave(a);
end;
end philosopher;
begin
cnt:=3;
(*create philosopher processes¥*)
while cnt <= NOTHINKERS do philosopher(cnt); inc(cnt) end;
loop eat; end;

end dining.

-21-

and
begin
case
const
define

div

end
exit

forward

addr
array
awaited
bits
boolean

char

if
interface
loop

mod
module
not

of

or
procedure
process
repeat

then

NOT RESERVED

dec
false
halt
inc
integer

nil

-2

LIST OF RESERVEZD KEYWORDS

var
when
while
with

X0r

ord
send

signal

n
=
0

true

wait

Mod (1) 8/38/79 Mod (1)

NAME

mod - Modula compiler

SYNOPSIS

mod [¢] [-6 1 [-v1 [-111[-p] file ...

DESCRIPTION

Mod is the UNIX Modula compiler. It accepts three types of

arguments:

Arguments whose names end with *.m' are taken to be Modula
source programs; they are compiled, and each object program
is left on the file whose name is that of the source with
*.o' substituted for “.m'. The “.o' file is normally delet-

ed if a single Modula program is compiled and loaded all at

one go.

The following flags are interpreted by mod. See 14 (I) for

load-time flags.

-0 Suppress the loading phase of the compilation, and
force an object file to be produced even if only one

program is compiled.

-C Compile the named Modula source programs, but do not
produce object files. This option is useful when re-

moving compile-time errors.

-1 Instruct the compiler to send a listing of the named

source programs to standard output.

23—

-p Instruct the compiler to generate a 1listing of the
source program after C preprocessing. Note that if
the first character of the source file is a #, the C

preprocessor is automatically invoked.
-V Verbose. Writes to standard output what mod is doing.

Other arguments are taken to be either loader flag argu-
ments, or Modula-compatible object programs, typically pro-
duced by an earlier mod run, or perhaps libraries of
Modula-compatible routines. These programs, together with
the results of any compilations specified, are loaded (in
the order given) to produce an executable program with name

a.out.

FILES
file.m input file
file.o object file
file.i preprocessed file
a.out loaded output

temp.r temporary

/usr/1lib/modula/modula compiler -- pass 1

/usr/lib/modula/mxa.out compiler -- pass 2

/usr/lib/modula/mxload runtime support routines

/usr/lib/modula/errors compiler error messages
SEE ALSO

"An Introduction to Modular Programming for Pascal Users",

db (I), 1d (I).

DIAGNOSTICS

-24-

The diagnostics produced by Modula itself are intended to be
self-explanatory. Occasional messages may be produced by

the loader.

-25-

(1]

(2]

(31

[4]

N. Wirth, 'Modula: A language for modular multiprogram-

ming', Software--Practice and EBExperience, V7, No. 1,

3-35(1977).

N, Wirth, 'The use of Modula', Software--Practice and

Experience, V7, No. 1, 37-65(1977).

N. Wirth, '‘Design and implementation of Modula',

Software--Practice and Experience, V7, No. 1, 67-84(1977).

E.W. Dijkstra, '‘Hierarchical ordering of sequaential

processes', Acta Informatica, V1, No. 2, 115-138(1971).

-25-

