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ALGORITHMIC ASPECTS OF POLYNOMIAL RESIDUE CLASS RINGS

Stuart C. Schaller

ABSTRACT

This thesis investigates algorithmic aspects of polynomial
residue class rings giving special attention to the problem of
simp1ifying polynomial equations in the presence of algebraic
relations among the variables. Algorithms are described for
transforming polynomial ideal bases to allow the computation of
canonical residue class representatives through the use of sim-
plifying ample functions. The fundamental theory is given a new
treatment in a general setting using the concept of simple con-
structibility. It is shown how resultant systems may be used
during the basis transformation yielding, for certain polynomial
rings, polynomially bounded computing times. For the case of
polynomials over a field, detailed algorithm descriptions are
presented. Empirical results are presented for an implementation

based on the SAC-2 computer algebra system.
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CHAPTER ONE:

Introduction

1.1 The Problem of Simplification in Computer Algebra

In symbolic mathematical computations one often desires to sim-
plify a mathematical expression by taking into account relations
among the variables involved. These relations may be mathematical

identities such as cos2 X + sin2

x = 1, or they may be identities
expressing physical laws such as conservation of quantum numbers in
high energy physics, equations of state in thermodynamics, or basic
dynamical laws in celestial mechanics. In each instance the aim is
to use the identities or laws to find a simplified form for the
expression being considered. By "simplified form" one might mean
that the expression is more readable, that it contains more physical
meaning, that it is more tractable mathematically, or even that it
just consists of fewer symbols. In some cases one may wish to realize
many or all of these goals -- a wish that cannot often be fulfilled.
This problem -- the simplification of expressions in the
presence of side relations -- is part of the larger problem of
simplification in the field of computer algebra. The general prob-
lems of simplification have been discussed elsewhere, (see [CAV70],
[FAT72], and [MOS71]). In [CAV70], Caviness formalized the notion
of a canonical form for a class of expressions and showed, following

Richardson [RCD68], that for a sufficiently rich class of expressions,

the problem of finding a canonical form is recursively undecidable.



In this thesis we are interested in a portion of the simplifi-
cation problem known to be decidable. Namely we are concerned with
the problem of doing unique simplification in the ring of multi-
variate polynomials over some effectively given coefficient domain
in the presence of algebraic relations among the variables.

Section 1.2 introduces the notions of canonical form and
simplifying ample function in order to give a precise meaning to
simplification when a set and an equivalence relation on that set are
given. Section 1.3 specializes these ideas to the case of polynomials
with an equivalence relation defined by congruence modulo an ideal.
Sections 1.4 and 1.5 discuss past work in this area and possible
applications, respectively. Section 1.6 deals with basic ideas
concerning the presentation and analysis of algorithms in this thesis.

Chapter 2 shows how simplification in polynomial rings actually
hinges on the computation of a special form of ideal basis (called
"complete"). This chapter contains a new formulation of the basic
theory using the concept of "simple constructibility." Chapter 3
describes an implementation of the ideal basis transformation
algorithms in the case where the coefficient ring is a field.

Chapter 4 discusses greatest common divisor and generalized resultant
algorithms for several (i.e. more than two) polynomials, and the

application of these algorithms to the problem of computing complete

bases. Chapter 5 includes empirical investigations in the polynomial ring

GF(p)[x,y]. Chapter 6 concludes with a short summary.




1.2 Canonical Forms and Simplifying Ample Functions

As a first step in refining our ideas about simplification in
the presence of an equivalence relation we introduce Lauer's concept
of a simplifying ample function, [LAU76a] and relate it to Caviness'
definition of a canonical form.

Let us consider the ordered pair (S,Z) where S is a non-empty
set and = is an equivalence relation on S (i.e. = is reflexive,

symmetric, and transitive). The relation = partitions S into equiva-

H

lence classes. If a subset A of S contains exactly one element of
each of these equivalence classes, we say that A is an ample set for
the ordered pair (S,=), [MUS71]. A function o mapping S into a subset

A of S is called an ample function for (S,=) if A is an ample set for

(S,=) and for all elements s in S
o(s) = s. (1.2.1)

Furthermore, we can see that if ¢ is an ample function for (S,=)

then forall s and t in S
if s = t then o(s) = o(t). (1.2.2)

In fact, properties (1.2.1) and (1.2.2) taken together are
sufficient to guarantee that A = range(o) is an ample set for (S,=).
We shall often assume that an ample function, o, is defined by these
two properties without specific reference to the associated ample set.
In addition, when no ambiguity is possible we also drop the explicit

reference to the ordered pair (S,=).



For a moment we change our point of view and consider the set S*
of equivalence classes of S generated by =. An element s* of S* can
be thought of as having a large number of equivalent representations.

Hence, since o satisfies (1.2.1) and (1.2.2), it is a canonical form

for S in a slightly more general sense than [CAV70]. To put this

in Caviness' terms S is a class of expressions given by a set of rules
for determining the set of well-formed expressions in the class. S*
is a set of functions determined by interpreting the expressions over
some domain. The relation = is determined by functional equivalence.
Since we have defined no algebraic structure on S, we omit the part

of Caviness' definition which requires that o(0) = 0. Lastly, we need
to require that o be computable, a specification we have omitted up

to now.

Thus either ample functions or canonical forms can serve as a
starting point in defining what we mean by the phrase "simplification
of elements of S with respect to the equivalence relation =." The
ample function o(s) selects a unique representative of the equivalence
class composed of all elements of S which are equivalent to s under =.

In general, however, there are many possible ample sets and
hence ample functions for a given pair (S,Z). Any one of these
ample functions provides an unambiguous description of the simplifi-
cation of elements of S with respect to =.

. Many of the ample functions possible for the pair (S,Z), how-

ever, do not reflect the usual notions of what is meant by




"simplification." If S has an associated partial order relation, <,
(i.e. reflexive, anti-symmetric, and transitive) we can limit our
attention in a natural way to ample functions which for all s in S

satisfy
o(s) < s. (1.2.3)

A function which satisfies (1.2.1), (1.2.2), and (1.2.3) will be

called a simplifying ample function for the triple (S,=,g), [LAU76a].

The partial order on S thus gives an analytic basis for our concept
of simplification.

The justification for calling such a function a simplifying
ample function is that the element it selects as a representative of
a given residue class is minimal with respect to the partial order.
This is expressed as follows:

Lemma 1.2.1 If o is a simplifying ample function for (S,=,s<)
and if s = t then o(s) < t.

Proof o(S) = o(t) < t.O

Since in general many partial orderings may be defined on S,
there are many different ways of specifying, in this manner, what we
mean by "simplification" of elements of S with respect to =. However,
as Lauer observes [LAU76al,once a partial order is specified, it
uniquely determines the associated simplifying ample function.

Lemma 1.2.2 If 9y and g, are both simplifying ample functions

for (S,=,<), then for all s in S



c](s) = 02(5).

Proof Since oy and o, are both ample functions we know that
01(5) = s = 02(5) for all s in S. However, since o, and g, are
simplifying ample functions Lemma 1.2.1 shows that o](s) < oz(s) and
similarly cz(s) < c](s). Hence o](s) = 62(5) for all s in S.[J

As an example let us take S = Z, the ring of integers, and con-
sider the equivalence relation defined by congruence modulo m for some
positive integer m. We will write this relation as a = b mod m if and
only if m|a-b. Let rem(a,m) be the remainder of a divided by m,
i.e. a = g°m + rem(a,m) with 0 < rem(a,m) <m. For a fixed m we see
that co(a) = rem(a,m) is an ample function for the pair (Z,= mod m).
Indeed, for any integer n the function cn(a) = rem(a,m) + n*m is also
an ample function for (Z,= mod m). Now let us define a partial order-

ing, <*, on Z as follows.

a=0and b#0
a <*b iff a>0and b<0

\\ sign(a) = sign(b) and |a| < |b]

where < is the normal ordering of the real Tine. We write a <*bif
a<"bora-=b. Onecan easily verify that oo(a) is a simplifying
ample function forthe triple (Z,= mod m,s*). The ample set asso-
ciated with co(a) is the set of inteders A = {0,1,2,...,m~1},

in fact this set is often used to represent Z/(m), the residue class

ring of the integers modulo m.




As a final note before turning to the specification of simpli-
fying ample functions in rings of polynomials we point out that the
specification of a partial order does not guarantee the existence of
a simplifying ample function. In particular, it can be seen that the
normal ordering of the real line does not allow a simplifying ample
function for the integers modulo m. This is because in any given
equivalence class there is no minimal element, a consequence of the
fact that the integers are not well-ordered by this ordering. Note,
however, that in general it is not necessary for S to be well-ordered
by < in order to have a simplifying ample function.

In summary then, simplifying ample functions give us a way to
uniquely specify what we mean when we wish to simplify elements of a

set with respect to an equivalence relation and a partial order.



1.3 Specialization to Polynomial Ideal Theory

We now cast our preyious discussion in a more concrete form.
Our problem is that of sfmplifying polynomial expressions in the
presence of algebraic relations among the variables involved. In
particular, we would like to be able to recognize when two expres-
sions are equivalent as determined by the given relations. We
formulate this problem in terms of finding a simplifying ample func-
tion for a polynomial ring with respect to an equivalence relation
over the ring generated by the algebraic relations among the vari-
ables.

Let R be a ring and let R[x1,...,xr] be the ring of polyno-
mials in the r indeterminates Xy,...,X.. We will often abbreviate
R[x],...,xr] by R[x]. We let R[x] be our set S in the definition of
a simplifying ample function. Since we will need to recognize when
two elements of R[x] are identically equal, we assume the existence
of a canonical form for elements of R[x].

We assume further that the relations among the indeterminates

X7s+.sX, are given by a set of algebraic equations:

Ai(x],...,x )=0,1<i<n, (1.3.1)

r

where for 1 < i < n, A, is in R[x]. We may reasonably interpret the

;
equivalence of two polynomials P and Q in R[x] to mean that their

difference can be shown to be the sum of multiples of the polyno-

mials A],...,A In other words P and Q are equivalent if their

ne




difference

where Si is an element of R[x] for 1 < i < n. Since Ai = 0 for
1 <1 < n, this means that P-Q = 0.

If we let A = { 'g S;A; ¢ Si e R[x] } = R[x] then we see that
P and Q are equiva1ent1;l this interpretation if and only if P -Q is
an element of A. But A is just the ideal in R[x] generated by the
ideal basis {A],...,An}. Our equivalence relation thus is equivalence

modulo the ideal A. Expressed formally we say for polynomials P and

Q in R[x],
PzQmod A iff P-Q e A. (1.3.2)

Thus we have our equivalence relation which we write = mod A.

Finally, we need to introduce a partial ordering, <, on the
polynomial ring R[x]. This will be done in Chapter 2 by specifying a
partial order on the monomials (or products of indeterminates) con-
tained in R[x] (see Definition 2.2.2).

With a set, an equivalence relation, and an ordering specified
we can now restate the definition of a simplifying ample function for
the triple (R[x], = mod A, <).

Definition 1.3.1 The function o:R[x] + R[x] is a simplifying

ample function for (R[x], = mod A, <) if for all P and Q in R[x]

(a) o(P) = P mod A,
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1]

(b) if P =Q mod A then o(P) = o(Q), and

A
=

(c) ofP) <

Qur task in the remainder of this thesis is, first, to show
under what circumstances it is possible to find a computable simpli-
fying ampie function for (R[x], = mod &, <). In particular we would
like 0 know what restrictions are required on the ring R and the
ordering relation <. Our second task is to investigate the prac-

ticality of special cases of the resulting algorithms.
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1.4 Past Work

The approach to algebraic simplification discussed in the pre-
vious section relies on finding constructive methods to answer
questions in polynomial ideal theory. During the first third of this
century many people investigated explicit constructions in ideal
theory, but as Lazard [LAZ76] points out, the limits of practical
computability were quickly reached. Characteristic of this work was

Macaulay's The Algebraic Theory of Modular Systems [MAC16] which formed

the basis of what later became elimination theory. In 1926 Hermann
[HER26] gave explicit bounds on the number of steps required for
several jdeal theoretic constructions in rings composed of multi-
variate polynomials over a field. In particular, she gave a finite
method for deciding when a given polynomial was contained in a given
jdeal. This work was later corrected and extended by Seidenberg
(see below).

During the second third of this century constructive problems in
ideal theory gave way to the more abstract methods of algebraic
geometry. One exception was Szekeres [SZK52] who in 1952 presented
a constructive method of finding canonical bases for ideals formed by
univariate polynomials over a principal ideal domain. In 1970
Buchberger [BUC70] gave a generalization of work he did in 1965
[BUC65] which included an algorithm for computing a vector space basis
for the residue class ring of an ideal in the ring of multivariate

polynomials over a field. This algorithm also provided a procedure



12

for deciding when a polynomial is contained in a given ideal.

The rapid expansion in the application of digital computers to
symbolic mathematics during the late 1960's revived interest in
several neglected areas of constructive mathematics and, in particu-
lar, in polynomial ideal theory. In 1966 Kleiman [KLE66] proposed a
canonical form for rational functions in several algebraically
dependent variables over a field, and gave an algorithm to put a given
polynomial in this form. The algebraic relations in this case must
generate a prime ideal, however, making this approach less than
satisfactory.

A technical report by Shtokhamer [SHT76] in 1976 generalized
the work of Szekeres. Shtokhamer showed that if R is a Noetherian
ring in which residue class representatives can be constructed, then
a similar construction is possible in the ring of univariate polyno-
mials over R.

The efforts of Buchberger and Shtokhamer were joined in a 1976
paper b& Lauer [LAU76a] which, in addition, showed how the computation
of residue class representatives allows the specification of simpli-
fying ample functions. Shortly thereafter, Lauer [LAU76b] generalized
Buchberger's work to allow the computation of residue class repre-
sentatives for ideals in the ring of multivariate polynomials over a
Euclidean domain.

In the same year Buchberger revised and extended his original

presentation [BUC76a, BUC76b, BUC76c]. Recently, Kollreider and
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Buchberger [KOB78] have given an improved version of the basic
algorithm for the case of multivariate polynomials over a field.

The most general formulation to date is that of Trinks [TRI78].
He presented an algorithm for computing residue class representatives
for ideals in the ring of multivariate polynomials where the coef-
ficient ring satisfies Shtokhamer's criteria. Chapter 2 of this
thesis is a reformulation of this general case.

The central algorithm in each of the papers since 1960 performs
an ideal basis transformation. The termination proof in each case
relies, implicitly or explicitly, on the ascending chain condition for
Noetherian rings. Bounds on the length of ascending chains are not
well understood even in simple cases. Some work on this has been
done by Seidenberg [SEIS6,SEI71], but the bounds obtained are not
primitive recursive functions. Heuristic arguments for "efficient"
algorithms have been given in [BUC70] and [KOB78]. Some computational
studies have been reported by Buchberger [BUC65], Schrader [SCH76],
and Trinks [TRI78].

Co-temporaneous with the revival of interest in constructive
ideal theory by those interested in computer algebra has been the
increase of attention to constructive aspects of algebra by pure
mathematicians. As mentioned above, Seidenberg [SEI74] revised and
extended Hermann's work, giving detailed attention to strictly con-
structive algorithms for operations on ideals in rings of multi-

variate polynomials over a field. In [RCM74] Richman solves similar
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problems for polynomials over a wider class of coefficient rings; in
particular, his work applies to multivariate polynomials over the
integers. A summary of these results and comments on the optimiza-
tion of the associated algorithms is given in Lazard [LAZ76].

Richman and Seidenberg do not consider the problem of computing
representatives of ideal residue classes nor do they deal with the
computation of canonical ideal bases.' The work originating with
Buchberger and Szekeres, however, deals directly with these questions,
and, thus is immediately applicable to the problems of simplifica-
tion.

As a final note, the problem of determining canonical forms for
a wide variety of algebraic structures is discussed by Bergman
[BER78]. He deals with the general case of associative algebras over
commutative rings given a presentation of the algebra by a family of
generators and a family of relations. He discusses the criteria which
must be satisfied to uniquely "reduce" (or "simplify") elements of
the algebra with respect to the relations. The.general form of the

algorithm of Buchberger appears as a special case of Bergman's work.
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1.5 Applications

The original motivation for this study grew out of interest in
extending the algebraic domains in which the zero recognition problem
in algebraic simplification is decidable. This motivation is the
reason for the introduction of the concept of a simplifying ample
function in Sections 1.2 and 1.3. The simplifying ample function
guarantees that we can use the information given by a set of alge-
braic relations to obtain a unique "simplified" form for a polynomial
expression.

This area is not the only application of the concepts and
algorithms discussed in this thesis. There are also applications to
computations in residue class rings, to solving systems of polynomial
equations, and to constructing the primary decomposition of ideals.

The equivalence relation = mod A (using the notation of
Section 1.3) partitions the polynomial ring R[x] into disjoint
equivalence (or residue) classes. As is well known, [VDW70a], these
classes form a ring called the residue class ring of R[x] modulo
ideal A, denoted by R[x]/A. Addition and multiplication in R[x]/A
are defined in terms of the addition and multiplication of elements
of the residue classes. A computable ample function allows one to
uniquely represent each residue class and thus to effectively perform
computations in R[x]/K. If we use a simplifying ample function, the
residue class representatives will be minimal in the sense specified

by the partial ordering on R[x].



16

Now assume that R is a field and consider the finite ideal
basis for A as a system of polynomial equations for which we desire
the solutions. In this case R[x]/A can be interpreted as a vector
space over R and if A is a zero dimensional ideal, then R[x]/A is a
finite dimensional vector space. In [BUC70] it is shown how the
residue class representatives for a certain finite set of monomials

in R[x] can be used to compute a series of polynomials P1.P2,...,Pr

with Pi € R[x],...,xij for 1 < i < r, which can be successively
solved. The set of solutions thus derived can be shown to contain the
set of solutions for the system of polynomials generating'ﬁ.
Buchberger also extends this technique to the case of systems of
polynomials which generate ideals of dimension greater than zero.

If ¢ is an ample function for (R[x], = mod A), then it is
possible to determine whether an arbitrary polynomial P in R[x] is
contained in A merely by comparing o(P) and o(0). Furthermore, if we
are given another jdeal A' presented by a finite basis, then we can
determine whether &' ¢ A by testing if each of the basis elements
which generate A' is in A. Schrader, [SCH76], uses this property of

an ample function in an algorithm which computes the primary decom-

position of an arbitrary ideal.
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1.6 Algorithm Presentation and Analysis

The algorithms in Chapters 3 and 4 and in Appendix B of this
thesis are presented using the Aldes language for Algorithm Description
developed by Loos and Collins [LOS76]. The algorithms in Chapter 2 use
an informal varient of this language.

The SAC-2 System for Symbolic and Algebraic Computation [COL78]
has been written entirely in Aldes. Algorithms used but not described
in this thesis may be found in either [L0S76] or [COL78].

The Aldes language processor and the SAC-2 system assume the
existence of a run-time 1ist processing system. In this system, atoms
and 1ists are distinguished by the system parameter B, which is approxi-
mately a factor of four smaller than y, the largest single precision
integer available on a given computer. Integers with absolute value
Jess than 8 are interpreted as atoms and are called B-digits. Integers
greater than B are interpreted as 1ist pointers. The empty list,
denoted by (), is represented by B.

Each list cell is composed of two fields. These fields are
referenced through the functions FIRST(L) and RED(L). If L is a non-
empty list, then FIRST(L) returns the first element of Tist L and
RED(L) returns the reductum of L, i.e., the 1ist L with the first element
removed. Lists are created using the composition function COMP(a,L)
which, if L is a 1ist, returns a new 1ist whose first element is a and
whose reductum is L. A summary of other list processing algorithms may

be found in [LOS76].
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Where possible in this thesis, we will analyze the maximum comput-
ing times of the algorithms presented. We express these computing time
bounds in a computer-independent manner by using the concept of
dominance. If f and g are two real valued functions defined on some
set S, we say that f is dominated by g (or g is a bound for f) in case
there exists a positive real number c such that f(x)Sc-g(x) for all x
in S. If f is dominated by g and g is dominated by f, we say that f and
g are codominant. The properties of the dominance relation are dis-

cussed in detail in [MUS71] and [COL78].




CHAPTER TWO:
Computation of Simplifying Ample Functions

in Polynomial Rings

2.1 Introduction

The constructions in this chapter will show how to find simpli-
fying ample functions in very general polynomial rings. A ring R in
which, roughly speaking, we can find simplifying ample functions and
in which we can also solve any linear homogeneous equation in several
unknowns will be called a simplification ring. We will prove that,
if R is a simplification ring, then it is possible to construct sim-
plifying ample functions in REX]""’Xr]‘ As a consequence we will be
able to show that R[x],...,xr] is itself a simplification ring.

In this section we present an informal discussion. An attempt
to construct a simplifying ample function in R[x1,...,xr] begins by
writing the algebraic relations among the indeterminates given in
equation 1.3.1 in distributive canonical form using some given ordering
of the power products of the indeterminates. For each polynomial Ai
we then have a well defined leading term, 1t(Ai), and reductum,
rd(Ai)
lt(Ai)

A; -1t(Ai). Since A; =0, we know that we can write

-rd(Ai). When the coefficient ring is a field we can make
1t(Ai) monic, and it would seem that substituting -rd(Ai) for occur-
rences of 1t(Ai) in an arbitrary polynomial, P, would serve to
"simplify" P. This process does result in a simpler form for P in

terms of the ordering given forthe power products of the indeter-

19



minates. It does not guarantee, however, that two polynomials which
are equivalent with respect to the algebraic relations given in
equation 1.3.1 will have the same "simplified" form.

We will see that if two equivalent polynomials have different
simplified forms, it is because the ideal generated by the Ai contains
elements (i.e. algebraic relations among the indeterminates consistent
with the initial set) which are "irreducible" with respect to the
jnitial set of relations. By combining and simplifying all possible
subsets of relations, we eventually will reach a point where no new
relations can be generated. The substitution operation described
above, when used with respect to this new set of relations, can be
shown to be a simplifying ample function.

In the development of this and the following chapters the
repeated substitution process will be called "remaindering" and the
combining of relations will be referred to as "consensus formation."
The ideal basis resulting after all possible relations have been com-
bined will be called a "complete" basis.

We conclude this informal introduction with a concrete

example. Let Q be the field of rational numbers and consider the
2 2

20

relations AysA, « Q[x,y] given by A; = x"y + 1 =0 and A, = xy +1=0,

which generate the ideal & in Q[x,y]. Define an ordering, <, of the
power products of x and y such that 0 <1 <x<y <x2 <Xy <y2 <x3. Let
P= xyA] -szz = Xy —x2. Since both P and 0 are in A, we would like

their simplified forms to be the same. However P cannot be reduced




using either A] or AZ' If we let A3 = yA1 -xA2 = y -X, we see that
A; is an element of &, and A3 is "irreducible" with respect to A, and
AZ‘ But since P = x-1t(A3) -xz, we have that P' = x(-rd(Aa)) -x2 =

2

x(x) =x¢ = 0 is the "simplified" form of P with respect to the new

set of relations {A],AZ,A3}.

Continue by combining relations A] and A3 to get

2A3 = x3-+1 which is also in A, but is "irreducible" with

A4 = A] - X
respect to A], A2’ and A3. A1l other combinations of the relations
Ay, AZ’ A3, and A4 turn out to be reducible to zero, so there are no
more relations to be added. The theorems in the remainder of this.
chapter will show that the remainder operation with respect to the

ideal basis <A],A2,A3,A4> is a simplifying ample function for
(Q[x,y], = mod A, 5).
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2.2 Simplification Rings and Monomial Orderings

Let R be a ring and let R[x],...,xr] be the ring of polynomials
in the r indeterminates X;,...,X.. As in Chapter One we will
abbreviate R[x],...,xr] by R[x]. In what follows we will often use
lower case Roman letters to represent elements of R, and similar
upper case letters for elements of R[x]. Letters with an arrow above
them represent finite length sequences of elements of either R or
R[x] depending on whether the letter is lower or upper case. A letter
(1ower or upper case) with a bar above it represents the ideal
generated by the elements of the sequence represented by the same
letter with an arrow above it. In this situation the sequence
represented by the letter surmounted by the arrow will be called an
jdeal basis. The word "basis" throughout the remainder of this
thesis will mean ideal basis unless otherwise noted. A sequence of
elements of some domain (and in particular an ideal ba;is) will be
denoted by the given elements surrounded by angle brackets (<>).

For example, if 81s...8, € R, then we let 3= <@ys...sap> and

n

3= {1 s;a;:s;¢R 1<ign}, i, 2 is the ideal generated by
i=1

basis 3.

1f 3 = <@yse..sdp> and b = <b1,...,bn> are sequences of the
same length, then we write the vector inner product of 2 and b as

n
asb= 1 aibi' We can thus rewrite @ in the previous paragraph
=1

- - -
33 0% < R").

&

®

I
e
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Let R* be the set of all finite non-null sequences of elements
of R, i.e. R* =R u R2 u R3 U.... If3,B e R*and we write a-b,
we are assuming that 2 and b are’sequences of the same length.

The following definition gives the criteria which must be
satisfied by the coefficient ring R.

Definition 2.2.1 Let R be a Noetherian ring with identity, and

Jet < be a partial order on R. Such a ring is called a simplification

ring if the following additional conditions are satisfied.

(a) There exists a function 6 :R x R* - R* such that if 2 e R*
and b ¢ R then the function p(b,3) = b - a - 8(b,a) is a simplifying
ample function for (R, = mod a, <) where a is the ideal in R generated
by 3. In addition we require 8(0,3) = <0,...,0>.

(b) There exists a function 8 : R* - (R*)* such that if d ¢ R*
then g(d) is a finite sequence of generators for the R-module
V() = {$ e R* : 3.3 = 0L

Some remarks on this definition are in order.

A Noetherian ring R is a commutative ring which possesses the
following three equivalent properties [VOW70b].

(a) Every ideal in R is generated by a finite basis.

(b) Every strictly ascending chain of ideals of R must contain
only a finite number of terms. (A strictly ascending chain of jdeals
is a sequence of ideals 3} < R such that 3} c Eé C vae e

(c) Every non-empty set of ideals of R must contain a maximal

element (i.e. an ideal which is contained in no other ideal of the

set).
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If R contains an identity element, then property (a) can be

used to prove the Hilbert Basis Theorem.

Theorem 2.2 If R is a Noetherian ring with identity, then
the polynomial ring R[x],...,xr] is also Noetherian.

Proof See [VDW70b]. []

We will use the Hilbert Basis Theorem in conjunction with
property (b) of a Noetherian ring to provide a termination proof for
an algorithm which constructs complete ideal bases in R[x] (see
Section 2.5).

The function 6(b,a) provides a representation of b -o(b,a) in
terms of the basis a. Of more importance in the following develop-
ments is the behavior of p(b,g).

As a simplifying ample function, p(b,g) must satisfy the follow-
ing conditions (given b,c ¢ R and @ ¢ R*):

(a) p(b,a)

(b) if b = c mod @ then p(b,g) = p(c,a), and

(c) o(b,a) < b.

b mod 3,

it

In addition, since 6(0,3) = <0,...,0> we have

(d) 0(0,3) = 0-2-8(0,3) = -a-<0,...,0> = 0.

Now let a = <I> so that a = R. Then, by (d), (b), and (c)
respectively, since 0 = b mod a, 0= p(O,g) = p(b,z) < b for all
b ¢ R. This is an important restriction on the order < in R.

By Lemma 1.2.2 we know that a simplifying ample function

o(b,a) is unique for the triple (R, = mod a, <). Therefore o(b,3)
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must be independent of the basis d used to represent the ideal a.
Hence it is possible to write p(b,a) instead of p(b,g). We will
retain the explicit reference to ¥ because e(b,Z) explicitly depends
on the basis used to represent a. Note that although we have called
o(b,3) a simplifying ample function, we really mean that for any fixed
ideal @, the function p= defined by pz{b) = p(b,a) is the actual
simp1ifying ample function for (R, = mod a, <).

The second part of Definition 2.2.1 simply states that if
-+
a

= <@y5...53p then we can find a finite representation of all solu-
n

tions Sys...sS, € R of the equation 151 S;a; = 0. This is what was
meant by our reference to solving linear homogeneous equations in
Section 2.1. The function 8(3) will prove to be vital in constructing
combinations of basis elements for ideals in R[x].

The algorithms presented in this chapter will be "abstract
a]goritﬁms" in the sense specified by Musser [MUS71]. The domains of
the inputs and outputs of these algorithms are abstract algebraic
structures, and the validity of the algorithms depends on the
existence of effective algorithms for computing p, 6, and 8. That
such algorithms actually exist is evident from the following examples.

If R=F, a field, then the only ideals are {0} and F. A
valid partial ordering of F is given by a < b iff a =0 or a =b,
for a,b ¢ F. Assume that an ideal a in F is given by basis
3= <aps...sap>. If ag =0 for 1<1ign, thena = {0} and if
b e F, then
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8(b,a) = <0,...,0>,
and B8(3) = {<1,0,...,0>, <0,1,0,...,0>, ..., <0,...,0,1>}
satisfy Definition 2.2.1 with p(b,{0}) = b. Otherwise we may assume

that a, # 0. Then a = F and the definition is satisfied by

6(b,3) = < ,0,...,0>
3
and B(.g) = {<"az,a],0,...,0>, <‘63,O,a-‘ ’O,ooa’0>, I

<-an,0,...,0,a]>, <0,...,0>}
with po(b,F) = 0.

These forms for p, 6, and B will be used implicitly in
Chapter Three when we treat the special case of computing residue class
representatives in the ring of multivariate polynomials over a field.
If R = Z, the ring of integers, then all ideals in R are
principal ideals. If 3= <@ps...58p> is a basis for ideal a in Z, and
a # {0} then a is also generated by the basis <d> where
d = gcd(a1,...,an). As in Section 1.2, let us define the function
o(b,3) = r where b = qd + r with q,r ¢ Z and 0 < r < d. Also let us

define a partial order <* on Z such that

a=0andb #0
a <* b iff a>0and b <0
sign(a) = sign(b) and |a| < |b],

with a <* b iff a <* b or a = b. In Section 1.2 we pointed out that




p(b,g) is a simplifying ample function for (Z1 = mod d, <*), and
hence for (Z, = mod a, <¥).

If the extended Euclidean algorithm for n integers [BRD70] is
applied to a, the output will be S ¢ R" such that $-a = d. Then
o(b,3) =r=b-qd =b -qZ-E = b -(qg)-g. Hence if we set e(b,E) = qs
then p(b,a) =.b -98(b,3)-a, as required in Definition 2.2.1(a).

To determine 8(3) we must be able to find a general solution to

n
the linear homogeneous Diophantine equation I x.a, = 0. Algorithms

P A

for solving such equations have been discuss;;]by Blankinship [BLK66],
Bradley [BRD71], Knuth [KNU6Y], and most recently by Kannan and
Bachem [KBA78].

We now shift our attention to the polynomial ring R[x] =
R[x],...,xr]. Our first task in making R[x] a simplification ring is
to specify a partial ordering of polynomials in R[x]. A large class
of partial orderings in R[x].which lend themselves to the determina-
tion of simplifying ample functions is defined by combining the
partial order, < in R with a total ordering of all monomials in R[x].

To be more explicit, by a monomial in R[x] we mean a power
product x]e]...xrer where e; 2 0, 1 < i <r. Note that when

regarded as a polynomial in R[x], a monomial in our usage is monic,

j.e. its coefficient is the identity element of R. Let

€r

= 1y 01
M_ {X] ...Xr

:e.20,1<isr} be the set all monomials

in R[x]. By the exponent vector of a monomial we mean the sequence

of its exponents, <ey,...,e> in the above case. Corresponding to
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the set M of all monomials, we have the set of all exponent vectors,
E={<ep...oe> e 20, 1sicrh Ifl=c<e....e>ce E then
by xI we mean the monomial x]e]...xrer. Exponent vectors will be
represented by upper case Roman letters I, J, K, etc.

Both multiplicative operations on monomials and orderings of
monomials can be represented by means of the associated exponent
vectors. This will be done almost exclusively throughout this thesis.

Let 1,0 ¢ E with [ = <ep,e..he> and J = <fp,...,f >0 I x5 = xlx)

then we write K = I +J = <ey + fy,...,e + fo- If e; f; for
K

1<i<randx = xJ/xI, then we write K = d -1 = <f, -e;,...,f -e>.

r “r
and xK = 1cm(xI,x

I

K J)

Finally if x = gcd(xI,x J)

» the greatest common

and x'J

divisor and the least common multiple of x , respectively, then
we write K = gcd(I,d) = <m1n(e],f]),...,min(er,fr)> and
K' = 1em(I,d) = <max(e],f]),...,max(er,fr)>. Note that these defini-
tions extend readily to expressing the gcd and lcm of more than two
monomials.

The relation of divisibility is a partial order of the set M,
and hence induces a partial order in E. We use a vertical bar to

J

denote this order and say that forI,J ¢ E (xI,x e M)

113 (or x'|x) iff e < f, Tsicr.

We write 1 TJ when I|J is false.
~ We now use this partial ordering to limit the possible total

monomial orderings.
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Definition 2.2.2 An acceptable monomial ordering in R[x] is

a total (linear) ordering, <, of the set E such that for I,J,K ¢ E,

(a) ifI|d thenI <J,
(b) if Isd then I+K < J+K.

IfI <Jdand 1 #J then we write I <J ordJd > I.

The first property will be used in Lemma 2.2.1 to show that E
(and hence M) is well-ordered by <. The second property of < will be
used in Lemma 2.2.2 to show that the exponent vector of the leading
term of a polynomial product has a well defined upper bound relative
to <.

Although we use < to represent both the partial ordering in R
and the total ordering in E, the context will always be sufficient to
resolve which is intended. In particular, note that if E' is a
finite subset of E, then by max E' and min E' we méan the maximum and
minimum I ¢ E', respectively, relative to the total ordering < of E.

The specification of the monomial ordering is crucial, for on
it hinges the meaning of simplification in R[x]. Given two different
orderings, the algorithms to be presented will produce two different
residue class representatives, i.e. there will be two different
simplifying ample functions. In addition, even when the actual residue
class representative is unimportant (for instance when using these
algorithms to determiné when a polynomial is in a given ideal), the
choice of the ordering can have a significant effect on the associated

computing times. This will be discussed further in Chapter 5.
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The restriction given in part (a) of Definition 2.2.2 is essential
because several proofs in the following sections are by transfinite
induction and depend on the following lemma.

Lemma 2.2.1 The set E of all exponent vectors (and hence the
set M of all monomials) is well-ordered by <.

Proof It is sufficient to show that there is no strictly
decreasing infinite sequence of elements of E. Let D = <I],Iz,...> be
an infinite sequence of elements of E such that Ij > Ik for j < k.

Note that by Definition 2.2.2(a) this implies IJ.TIk for j < k. If
r =1, i.e. E contains exponent vectors for polynomials in one indeter-
minate, then this is clearly impossible.

Let r > 2 be the least number of indeterminates for which there
is such an infinite sequence D. Let Ij = <ej]""’ejr>‘ Suppose

first that the set {ejr : j > 1} has no upper bound. Then we can
select a sub-sequence of D, D' = <I1',12'...> with Ij' = <ejH,...ej;>
such that ej; <eLr for j < k. But then since Ij'flé for j < k the
sequence D" = <I,",I,",...> where Ij" = <ejH,...,ej:r_1> must be an
infinite sequence with Ij"TI; for j < k. But D" is a sequence of
exponent vectors representing monomials in r-1 indeterminates. This
violates our assumption that r is the least such integer.

Now suppose that the set {ejr : j > 1} is bounded. Then there

must be some integer e such that ejr =g for an infinite number

of j's. Now let D' = <I]'.12',...> be a sub-sequence of D such that

' " : .
Ij = <@ypreeesBy L7002 The sub-sequence D" derived from this




sequence as in the previous paragraph also violates the assumption
that r is the minimum number of indeterminates for which there exists
a strictly decreasing infinite sequence of exponent vectors.

These two contradictions imply that there are no strictly
decreasing infinite sequences of elements of E, and hence that E is
well-ordered.O

We now return to the problem of specifying a partial order in
R[x]. First we note that any polynomial A ¢ R[x] can be written as
a sum of monomials, A = IZE aIxI where only a finite number of the

€

ay e R are non-zero. Given any acceptable monomial ordering, <, we

can define several important components of A. If A # 0, the leading

exponent vector (or degree) of A is 5A = mgx {I¢E: aI # 0}. We

then define the -leading coefficient of A, 1c(A) = anps the leading
oA

oA

monomial of A, Im(A) = x°', and the leading term of A, 1t(A) = X

a3A
A-1t(A). Incase A=20

Finally, we define the reductum of A, rd(A)

we adopt the conventions that 1c(0) = 1t(0)

rd(0) = 0. We leave
Im(0) undefined, but we consider 30 to be a special exponent vector
with the properties 30 < I, 30 1+ I and I 1 30 for I ¢ E. Exponent
vector sums and differences involving 30 are not defined, but if
Ijseeenly e E v {50} then gcd(I],...,In) and 1cm(I],...,In) are the
greatest lower bound and least upper bound respectively of
{11,...,In} relative to the partial order |. We define gcd(30,...,30)
lem(30,...,90) = 30. ‘

Note that when we refer to the degree of a polynomial, 3A, we

are referring to its leading exponent vector. This is distinct from
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the degree vector of A, which is defined to be <8x]A,...,3x A> where
r

9, A is the maximum degree of the indeterminate x;, in A, 151 <.
i

We now are in a position to use restriction (b) in Definition
2.2.2 to give a bound on the leading exponent vector of a product of
two polynomials.

Lemma 2.2.2 Let A,B ¢ R[x]. Then 3(AB) <3A+3B. If

T1c(A)1c(B) # 0 then 3(AB) = 3A+293B and 1c(AB) = 1c(A)1c(B).
Proof Let A= I a.x! andB= I b,x). Also let
— I J
_ IcE JeE _ _
I =1{I ¢E: 3; #0},d={JeE: bj # 0}, 1 eI andd € J. Then

3A > I and 3B > J so, by Definition 2.2.2(b), 3A+3B > I +3B > I +J.

= I.J . I+J
Now AB = I_a;b;x"x” = I_a;b,x""". Let
Iel Iel
Jed Jed

K=1{1+d :1eT,JeJ}. Then 3(AB) < max K = 3A +93B, proving the
first part of the lemma. To prove the second part, it is sufficient
to show that if I <3A and J <9B then I +J <0A+03B. If I < 9A then,
by Definition 2.2.2, I +J < 3A+J. 1If equality holds, then we can
subtract J from both sides giving I = 3A contrary to our assumption.
Hence I +J < 3A+J. Similarly, since J < 3B, 3A+J < 3A+3B. Hence
I+J < 3A+23B.0
With these remarks out of the way, we can finally define a

partial order in R[x].

Definition 2.2.3 If < is a partial ordering in R and < is also

32

an acceptable monomial ordering, then we define an acceptable polynomial

ordering, also denoted by <, as follows. If A,B ¢ R[x] then
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oA < 3B,
A <B iff¢ d5A = 3B and 1c(A) < 1¢(B), or

3A = 3B and 1c(A) = 1¢(B) and rd(A) < rd(B).

We define A < B by A<B or A=B. Again, the context in which < is
used will serve to distinguish the ordering intended.

We end this section by defining several sets of polynomials and
coefficients which will be of importance later.

Let A = <A],...,An> be a finite sequence of polynomials in
(R[x])*. As before, we let A denote the ideal in R[x] generated by
the polynomials in K, ie. B={§-h:%¢ (R[x1)"™}.

Definition 2.2.4 For I ¢ E the degree I leading coefficient

ideal of ideal & is defined to be 31 = aI(ﬁ) = {lc(A) : Ae A and

aA | 1}.

That 31 is indeed an ideal in R can be justified as follows.

If b,c ¢ 31 and b,c # 0 then there exist polynomials B,C ¢ A such

that b I-38

1c(B), ¢ = 1c(C), 8B |I and 3C | I. Note that B' = x "B

and C' = xI°aC

C are such that b = 1c(B'), ¢ = 1c(C') and 8B' = 3C' =1.
If d=b+c=0thenb+ce aj. If d # 0 then d = 1c(B' +C') and
since 3(B' +C') = I we have that b+c ¢ 31. Similarly we may show
that b'b ¢ §If0r all b' € R. Hence 31 is actually an ideal of R.

Definition 2.2.5 For I ¢ E we define the degree ] sub-basis

of basis A = <Aqs...sA > to be KI = <A]',...,An'> where for
1<dsn, Aj' = Aj if aAj |1 and Aj' = 0 otherwise. The degree I
leading coefficient sub-basis of R is 31 = EI(K) = <1c(A]'),...,1c(An')>.




The degree I leading coefficient ideal of basis R is just that ideal,

3}, in R generated by the elements of ;I'

Note carefully that EI(K) and EE(K) denote two ideals in R.
Clearly, 3} c 31. We will see shortly that 3} = EI’ i.e. that 31
generates EI.whenever A is a complete basis for A.

In Section 2.1 we indicated that some polynomials in R[x] can
be considered to be "irreducible" with respect to a given basis A
This set of kernel polynomials defined here will prove to be those
polynomials which cannot be further reduced by the remainder algorithm
described in the next section.

Definition 2.2.6 Given a basis A as above with leading coeffi-

cient sub-bases EI’ the set of kernel polynomials with respect to

basis E is defined to be ker(K) ={BeBA:B=0o0orB= I beI where
I¢E
b; = o(b;,a;) for all I e E}.

The coefficient of xI

in a kernel polynomial is thus defined to
be the representative of the residue class that it is contained in

modulo the leading coefficient ideal 3}.
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2.3 Complete Bases and Simplifying Ample Functions

In this section we define a special basis (complete basis) which
allows us to find a simplifying ample function for the ideal in R[x]
generated by this basis. We assume A= <Ayse.nA> is a basis for
jdeal A in R[x]. We first need a way to describe a given element of
% in terms of A.

Definition 2.3.1 Let A e A and assume there exists

$=<s S > ¢ (R[x])" such that A = S-A. 3 is said to b D
ERREER € S . S S 0 De a repre-

sentation of A in terms of A. The degree of 3, 83, is defined as

follows. If for 1 <1 <n, either A, =0 or 5; = 0 then 38 = 30.

Otherwise 3% = max {351-+3Ai : Si # 0 and Ai # 0}. We also define
1<i<n

the multiplicity of representation §, ﬁg =n if 3S = 30, and u§ =

cardinality of {1 <1 <n:A; #0, §5;70 and 33 = 9S; + A, 1.
Note that 35 is actually the maximum of the "formal degrees"

of the products SiAi’ 1 <1 < n, where by the formal degree of SiAi

we mean 30 if A; = 0 or Si =0 and 35, + aAi otherwise. If R is an

jntegral domain, then the formal degree of SiA1 is just B(SiAi), and

35 = max B(SiAi). In this case u$ = cardinality of
Tgign
{1<i<n: 3(51Ai) = 33},

We now define a special class of representations.

Definition 2.3.2 If 35 = A then S is said to be a simple

representation of A with respect to the basis A (or that A is simply

constructible from K).
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Note that 3% < 3A is an equivalent requirement for simple con-
structibility since in every case we must have 33 > dA.
Finally we describe a special class of bases.

Definition 2.3.3 If all polynomials A ¢ A are simply con-

-> -+
structible from basis A, then A 1is said to be a complete basis for

jdeal A (or that ideal A is simply constructible from basis K).

It should be emphasized that the monomial ordering is inti-
mately connected with the notion of a complete basis. The existence
of a complete basis guarantees that every element of the ideal has a
representation which involves no monomials of higher degree than its
leading term.

We now present the description of a function which will become
our simplifying ample function in R[x]. The basic idea is to reduce
a given polynomial by subtracting multiples of various basis elements.
Eventually a polynomial is found that is a kernel polynomial with
respect to the given basis.

ﬁeca]l that for J ¢ E, EJ is the degree J leading coefficient

sub-basis of basis K, and Eb is the corresponding ideal in R.

Algorithm 2.3

Qerem(P,A)
[Remainder of polynomial with respect to ideal basis.
Input: P eR[x]; K=<A],...,An> e (R[x])", a basis for ideal A.
Output: Q e R[x] such that Q=P mod &; Q « ker(R); Q<P; and P-Q is

simply constructible from A.]
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(1) [Initialize.] Q«P.
(2) [IsQ=0?] if Q=0 then return.

(3) [Assuming Q= I quI, determine possible reductions.]
33

De{l € E:qI#D(qI,gl)}; if D is empty then return.
(4) [Apply remainder choice function.] Choose J € D.
(5) [Use e(qd’gd) to determine p(qJ,Ed) in terms of 30.]
-+ -
b=<b],...,bn>+6(qd,ad).
(6) [Make new degree J coefficient the residue class representative
for the residue class of a3 mod Eb, i.e. qd*p(qd,36)=qd-g-gd.]
for i=1,....n do if aA,|J then Byeb x ™M

§*<B],...,Bn>; Q+Q—§~K; go to step 2 [

else Bi+0;

Although we will eventually demonstrate that Algorithm 2.3 is
indeed an algorithm and that at termination the output conditions are
satisfied, let us assume these results for the moment. Note that
Algorithm 2.3 is an abstract algorithm implementing a function rem(P,K).
The abstractness appears in step 4, where we must select an element of
D to determine which term of Q to reduce, and in step 5, where we must
use e(qJ,Eb) to compute a representation b for a -p(qd,gd) in terms
of 3&. In both of these steps we are assuming that the abstract sub-
algorithms are functions, i.e. that they are single valued. In
particular, every time the choice function is given some subset D cE
as input, it always returns the same element J ¢ D as output. In both
the case of the choice function and the 8 function we have a large

family of possible functions to choose from.



Note that the actual function computed by Algorithm 2.3 depends
on the specifications made for these abstract sub-algorithms. For

example, let A= <A].A2> where A] = yzx-+2 and A2 = yx2-+1 are poly-

nomials in Qlx,y]l. 1f Q = y°x%+y and J = <2,2> then 3, = <1,1>.
Since q; = 1, we can reduce q; to zero in at least two ways. Let
6](qd,sd) be such that B](l,<1,1>) = <1,0>, and let ez(qd,gd) be such
that 82(1,<],1>) = <0,1>. Both of these 6 functions give p(1,<1,1>) =

However, when used in Algorithm 2.3 we find

Qq = Q- <xA;yA>+8,(1,<1,1>) = Q -xAy = y-2x while

0. Thus two different choice

Q, =Q -<xA],yA2>-62(1,<1,1>) = Q-yA,
for 6 yield two different remainder functions.

We discuss the resolution of these ambiguities in the definition
of the remainder function in Chapter 3 under the heading of remainder

selection rules.

We now turn to the task of establishing the validity and termi-
nation of Algorithm 2.3. We begin by giving two lemmas. The first
deals with the results of a single reduction step in the remainder
algorithm. The second deals with certain sequences of subsets of a
well-ordered set.

Lemma 2.3.1 Let non-zero polynomial Q = IEE quI e R[x], and
let J ¢ E be such that q 7 p(qd,gd) where 35 is the degree J leading
coefficient sub-basis of ideal basis A = <A],...,An>. Let
b= <bys...sb > = e(qd,gd) and B = <Bys...,B > where for 1 <1 <n
if 9A;|J then By = b.x’%A1 otherwise B, = 0. If Q' =

Q -Bh= : qI'xI

IeE

, then

38
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(a) a(B-R) =9,

(b) a5 = elazdy),

(c) Q' <AQ, and

(d) B is a simple representation for Q -Q', and in fact 3B = J.

Proof For 1< i <nleta, = 1c(Ai). If aAilJ then b, =1c(Bi)

and 3(B,A;) = a(bix‘]'aAiA].) < (3-2A) +3A; = J by Lemma 2.2.2, while

otherwise BiA; = 0. Hence 3(B-R) < J. Now since q; # p(qJ,“a*J),
> - >
a,*0(qy,aq) = Beay, = I bia.= I Tc(B;)lc(A;)
J J°%d J 3A11J i 3A1|J i i
which is the coefficient of x in B-A. Hence 5(B-R) = J, proving (a).
, n
Now since 3(B-A) = dJ, 9y =4y - 151 bya; = q -(qJ -p(qJ;EJ))
L aAg[d

by the previous paragraph. Hence q; = p qJ,aJ), proving (b).

07 gy -play:3)) =

Again since 3(B-A) = J, we have that qI' = q; for I >J. But
qJ' = p(qd,gd) 7 q;- Hence, since p is a simplifying ample function,
qJI <45 where < is the partial order in R. Thus by Definition
2.2.3, Q' < Q, establishing (c).

By the proof of (a), Z! 1c(Bi)1c(Ai) # 0. Hence for some
9A. 1J
i

s aAiIJ, B; 7 0 and Ai # 0. But if B, # 0 and A, # 0 then 3A1|J

and aBi-+aA1 = (J -aAi)-+3Ai = J. Hence ]T?in{881-+ BAi : Bi #0

and A; # 0} = 3 = 3(B-R) = 3(Q-Q"). So 3B =1J=23(Q-Q"), i.e.
B is a simple representation for Q -Q'.D
The following lemma will be used to prove that Algorithm 2.3

terminates. For the purpose of this lemma, the set E is any well-
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ordered set. We do not use any special properties of exponent vectors
in the proof.

Lemma 2.3.2 Let E be a set well-ordered by the relation <.
Let D],Dz,... be a sequence of finite subsets of E such that for every
i 2 1 either D; is empty or there exists Ji € Di and finite sets

Fi»F; ¢ E such that I < J, for all I ¢ F, u F,' and

Dopq = (D ={d;}-F.) v F].'. Then for some j > 1, D; is empty.

i+]
Proof (The proof is by transfinite induction on max Dy.) Let

K = max Dy, and assume the theorem is true whenever max Dy < K.

Assume that D is non-empty and that'J; # K for all i > 1. Let

1

D.

;= Dy -{K} for all i. If D]‘ is empty then D; = {K} and J; = K,

contrary to hypothesis. Therefore, D]' is not empty and max D]'< K.
By the induction hypothesis, there must exist a k such that Dk' is
empty. But then Dk = {K}and Jk = K, contradicting again our assump-
tion that Ji # K for all i. Hence, if D; is non-empty for all i, then,

for some k, Jk = K. But then max D < K, and the induction hypo-

K+1
thesis applied to Dk+1’Dk+2"" shows that for some j > k+1, Dj is
empty. Hence the theorem is true for max D] = K, completing the
induction.[]

Now we come to the termination proof for the algorithm pre-
senting the remainder function.

Lemma 2.3.3 Algorithm 2.3 eventually terminates.

“ Proof Let Qi represent the value of Q at the i-th execution

of step 2. Let Di’ Ji’ and §i be the values of D, J, and B after the




i-th execution of steps 3, 4, and 6, respectively.
If Qi = 0 then Algorithm 2.3 terminates during the i-th execu-
tion of step 2. So assume Q; = I quI #0. IfD; ={l eE:
Tek

aq # p(qI,EI)} is empty, then the algorithm terminates during the i-th

execution of step 3. So assume Di is non-empty.

Now Q.,, = Q; -B;-A. I 0,

during the (i +1)-st execution of step 2. Assume Qi+1 = I qI'xI # 0.

IcE
We now describe Di+1 in terms of Di‘

= 0 then Algorithm 2.3 terminates
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Let Di(> Ji) = {I ¢ D; : 1> Jd;} and D1(< J;) = {I e Dy ¢ I<J;}

Define Di+1(> Ji) and Di+1(< Ji) similarly. By Lemma 2.3.1(a),
a(ﬁi-K) = J;; hence Di+1(> Ji) = Di(> Ji)‘ By Lemma 2.3.2(b),

95 = p(qJ,gd), and since residue class representatives are unique,

qJ = p(qJ|’

-
a

J)' Hence J. ¢ Di+1'
Now D; (< Ji) and Di+](< Ji) are clearly finite, so
1 ¢ Di(< Ji)} are also finite sets.

(< Ji)} and Fi = {] ¢ D1+](< Ji) :

Thus we can write Dy .y = (D - {J;}-F;) v Fi' where for all

io By and Ji satisfy the

hypotheses of Lemma 2.3.2. Since E is well-ordered by the monomial

ordering <, there must be a j > 1 such that Dj is empty. Hence

Algorithm 2.3 will terminate during the j-th execution of step 3.0
Before we prove the validity of the output assertions in

Algorithm 2.3, we need one preliminary lemma.



+ —
Lemma 2.3.4 Let A be a basis for ideal A in R[x]. If
P e ker(K) then 3(P -rem(P,R)) = 30, otherwise a(P -rem(P,K)) =

z pIxI.

max {I ¢ E : P1 # p(pI,EI)} where P =
IeE

Proof We use the notation and results of the proof of
Lemma 2.3.3. If P e ker(R) then P = rem(P,A) and 3(P - rem(P,A)) = 20.

j
If P ¢ ker(R) then clearly P -rem(P,A) = 5 B.-A and 3B; = J; <4

i=1
for 1< ¢ j, where J = max {I « E : py # o(py,ap)}. Since Dy is
empty, there is a least k such that Jk =J. Then J; < for i # k.

§i~ﬁ) = max 8(§i-§) = max Bﬁi =

J
Hence 3(P -rem(P,A)) = 3(
i=1 Tsign lsisn

max Ji = J.0
1<isgn

We now restate and prove the properties given in the output
specification of Algorithm 2.3.

Lemma 2.3.5 Let P ¢ R[x] and let A be a basis for ideal
A ¢ R[x]. Then

(a) rem(P,A) = P mod &;

(E) rem(P,R) ¢ ker(R);

(c) rem(P,R) < P, where < refers to the ordering of polyno-
mials;

(d) P -rem(P,K) is simply constructible from A.

Proof Part (a) is immediate from (d).

(b) Let Q = rem(P,A). IfQ =0 thenQ ¢ ker(A). Let

Q= = quI # 0. When Algorithm 2.3 terminates, D is empty. Hence
IcE

ar = elap.3;) for all I« E. Thus Q « ker(R).
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(c) We proceed by induction on the number of times step 6 of
Algorithm 2.3 is executed. If step 6 is never executed, then
rem(P,K) = P. Assume step 6 is executed at least once. After the
first execution of step 6, Q = P -E'K where B is determined in steps
4, 5, and 6. By Lemma 2.3.1(c), we know Q < P. But rem(P,K)==rem(Q,K),
and the computation of rem(Q,A) requires one less execution of step 6
than does rem(P,K). Hence, by our induction hypothesis, rem(Q,K) < Q.
Thus rem(P,K) = ren(Q,A) < Q < P. Therefore, rem(P,K) < P, and we
are done.

(d) Going back to the proof of Lemma 2.3.4, P -rem(P,A) =
ESEE R AR RS
i= =

i
j

it ca.
—r

Ei) < max 3§i = J. Hence
1 I<i<n

—ta

§i is a simple representation for P -rem(P,K) with respect to KJ]

it o1 Ca.

-
—t

We now combine the remainder with a complete ideal basis to
obtain our simplifying ample function. But first we present a lemma
dealing with the leading coefficient sub-bases of a complete basis.

Lemma 2.3.6 If A is a complete basis for ideal A, then for all
I e £,3; is a basis for the leading coefficient ideal a; (i.e.

3 = ap).

Proof Let peaj. Ifp=0thenpea. Ifp70 then there

exists Pe A such that 1c(P) = p and P|I. Since A= <A1,...,An>

is complete, P has a simple representation 3= <S]""’sn> € (R[x])n

and 35 = 3P. Permute A such that Si # 0, Ai # 0, and asi-+ aAi = 3%
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for 1 <1< uS.  Then

g
p = 1c(P) =

II.MT:
D

1c(S:)1c(A;).
1 c(S;)1c(A;)

Now for 1 < i <13, 3S; +3A; = 9P, hence 8A;|I, and therefore
]c(Ai) € 31. Therefore p « 3}, and 31 < E&. We have already noted
that a; ¢ 31 so a; = 31.0

The next theorem gives the crucial properties of the remainder
when used with a complete basis.

Theorem 2.3 Let R be a basis for ideal A in R[x], and let
P,P' ¢ R[x]. Then the following are equivalent.

(a) R is a complete basis for A;

(b) If P =P mod A then rem(P,h) = rem(P',A);

(c) IfP ¢ A then rem(P,A) = 0.

Proof (b) =>(c). If P < A then P = 0 mod A. Hence
rem(P,K) = rem(O,K) = Q.

(c) => (a). By Lemma 2.3.5(d), P —rem(P,K) is simply con-
structible from A. If P ¢ A then P -rem(P,A) = P -0 = P is simply

constructible from A. Hence R is a complete basis for A.

1"

rem(P,K) = I quI, Q' = rem(P',K) =
IeE
1ce(Q"), J = ZQ", and assume Q" # 0.

(a) => (b). LetQ
: o, e =0-0, g
IeE
Then q" ¢ EJ. By Lemma 2.3.6, since A is complete, EJ = 35. Hence

q;-9; =9" ¢ ay and g = qJ' mod a;. By Lemma 2.3.5(b),
Q,Q' ¢ ker (R). Hence q; = p(qJ,gd) and qJ' = p(qd',ﬁb). Since




q; = qJ' mod 35 and p is an ample function, p(qJ,gJ) = p(qJ',ZJ).
Hence q5 = q;4', g" = 0 and Q" = 0.0

We now conclude this section with a corollary establishing
our desired simplifying ample function (see Definition 1.3.1).

Corollary 2.3 If A is a complete basis for ideal A in R[x],

then rem(P,A) is a simplifying ample function for the triple
(R[x], = mod &, <).

Proof (a) rem(P,A) = P mod A by Lemma 2.3.5(a). (b) if
P,Q € R[x] and P = Q mod A, then rem(P,A) = rem(Q,A) by Theorem
2.3(b). (c) rem(P,A) < P by Lemma 2.3.5(c) O

We note in passing that Lemma 1.2.2 guarantees that the simpli-

fying ample function given by rem(P,K) is independent of the complete

basis A. Indeed if A = <A1,...,An> is a complete basis forA and
Aeh, then A = <Ays...,A ,A> is also a complete basis for A since
any polynomial having the simple representation <S],...,Sn> in terms

of A has the simple representation <S],....,Sn,0> in terms of A'.
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2.4 Consensus Formation and Complete Bases

In the previous section we have shown that we have a simplify-

ing ample function for (R[x], = mod A, <) if we can find a complete
basis for the ideal A. Theorem 2.3 states that a basis is complete

if and only if the remainder of all elements of A is zero with respect
to this basis. This criterion is hardly suitable for deciding when a
basis is complete -- let alone the problem of trying to find such a
basis. In this section we characterize a complete basis in terms of

a smaller set of polynomials. In the next section this characteriza-
tion will provide an algorithm for computing a complete basis.

The informal remarks in Section 2.1 indicated that combinations
of the original algebraic relations can be added to the initial set
without changing the relations between the variables. We make this
idea more precise by defining the consensus operation.
| Let B = <B;,...,B,> ¢ (R[x])" and let B = <by,....b > where

b; = 1c(Bi), 1<i<n. Let V(E) be the R-module V(K) =

2 eR":3b =0} SinceRis a simplification ring, there is a

function B(B) which determines a finite sequence of generators for
> -+ - -+ - n
V(b). Let B(b) = <CypeeesCy® where c; = <Cj1"“’cjn> € R' for
1T<jigsts= t(F), the number of vectors in the set of generators.
Furthermore let J = lcm(3By,...,38,), i.e. J is the exponent
vector of the least common multiple of the leading monomials of the

non-zero Bi's. If each Bi = 0 then we set J = 30.
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Definition 2.4.1 For 1 < j < t(B) let ‘c‘j = <C >

j],o--’Cjn
J-9B; . _
J.1-x otherwise Cji = 0. Then the
-> -+
j=th consensus of B is defined to be consj(B) = fj-ﬁ.

where if Bi # 0, then Cji = C

J-(_5) with respect to B,

and afj =J., If fj # <0,...,0>, the terms of degree J of the com-

Note Ej is a representation for cons

ponents of the inner product Ej-ﬁ cancel, and it is clear that consj(ﬁ)
is a polynomial in R[x] such that a(consj(g)) < J.
We now relate the consensus to an ideal basis. As before, let

A= <Ajs...»A > be a basis for ideal & in R[x].

Definition 2.4.2 Let W(A) = {<Byse.rsBy> € (R[x])" : for

1 51 <neither By = Aj or B; = 0}. For B ¢ W(A) we define B,

V(g), and t(B) as above. Then the set cons (R) = {consj(g) : B e N(K)

and 1 < j < t(g)} will be called the consensus set of basis A.

Note that cons (R) is a finite subset of K. Furthermore, any
element C e cons (A) can be written as C = €.k and if € # <0,...,0>
then aC > 3C. The representation € can be found using Definition
2.4.1.

The word "consensus" has been suggested by the similarity
between this operation and the consensus operation in the consensus
method of finding prime implicants in Boolean algebra [MEN70]. In
both cases the output expression is found by canceling, in some
sense, certain elements of the input expressions.

We now give a technical lemma relating consensus formation to

other combinations of polynomials. Essentially this lemma says that
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if the elements of B ¢ N(K) are combined such that the leading terms
of the components of the sum cancel, then the combination can be
written in terms of the consensus polynomials of B.

Lemma 2.4.1 Let B = <B;,...,B,> « W(A) with B, V(B), and
t= t(g) defined as above and B # <0,...,0>. Let K ¢« E be a multiple
of J = 1cm(aB],...,aBn), and suppose there exists d= <d],...,dn> eV(E),
j.e. dB=0. AlsoletD = <Dy,...,D0,> where if B # 0 then
K-93B;

D. = dix

i , otherwise D.i =0, 1 <1 <n. Then there exist

95 « R, 1 £j £ t, such that

t
B8 = K9 3 g: cons.(B).
51 3 i

Proof Let us assume that R-module V(E) has a set of generators

Ty o > -> -» - n .
g(b) = <Cys..sCy> Where €5 = <Cjys--esCyp”e R" for 1 <J < E. Now
d e V(g), hence there exist 95 « Ry, 1 £ j <t such that d= : gjgj.
J=1
t
Thus d; = j51 95¢55 for 1 <i <n
; . t _on.
If B, 7 0 then D; = d.x" %1 = 3 gj(c..xK Biy, for 1 <1 < n.
=1 3
But then
n n t .
BB= 1 DB.= I I gilc.ix<Bi)g,
i=1 ' 4= gm0 !
B,#0
t n
K-9B;
= L g:( I cix “7B:)
=1 3 =1 V! !
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t n .
= xkJ 3 gj( z c.ixJ'aBTBi)
j=1 j=1 J
81#0
k- &
= X _Z] 95 consj(ﬁ), because the zero elements of B
J'_‘.

do not contribute to consj(ﬁ) 0

We can now use the consensus operation to give another charac-
terization of a complete basis. The statement of Theorem 2.4 is in-
tentionally parallel to that of Theorem 2.3.

Theorem 2.4 Let A be a basis for ideal & in R[x]. The follow-
ing statements are equivalent.

(a) R is a complete basis for A;

(b) IfC ¢ cons(K) then C is simply constructible from K;

(c) If Ce cons(R) then rem(C,A) = 0.

Proof (a) => (c). Clearly, cons (A) c A. Hence if
C e« cons(A) and Ris a complete basis, then by Theorem 2.3(c),
rem(C,K) = 0.

(¢) => (b). By Lemma 2.3.5(d), C -rem(C,A) is simply con-
structible from A for any C and R OIfC econs(K), then rem(C,K) = 0.
Hence C —rem(C,K) = C-0=C is simply constructible from .

(b) => (a). Let P ¢ A. To show A is a complete basis we must
prove that there exists a simple representation for P with respect
to A. If P = 0 then the representation S = <0,...,0> is clearly a
simple representation for P. Now suppose P # 0, and, using the well-

ordering of E by <, let 3= <SyseeasSy> € (R[x])" be a representation
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of P with respect to K of least degree. If 35 = 9P then $ is a
simple representation for P, and we are done. Therefore, assume that
38 > aP, i.e. that P is not simply constructible from . We will
construct from 3 a representation U for P such that 3l < a8, obtaining
a contradiction.

For convenience, we order the basis A such that S; 70, A; # 0,
and 3S, +3A; = 35 for 1 <1 <8, and either S; = 0, A; = 0, or

n. As before u§ is

S; 7 0, Ay # 0, and 35, +3A; < 3% for S < i ¢
the multiplicity of representation 3. LetK=235andm= ng.
Thus we can write
m m n
P=3A= 1 1t(S))A;+ I rd(S))A; + T S;AL
i=1 i=1 i=mt]

By definition of m, the only part of this expression which contributes
terms of degree K to the representation 3 is the first summation.
Since K = aA1-+asi for 1 £ i < mwe can write

m

L OTt(S;)A; =
i=] L.

K-9A;
]c(Si)Aix 1,

W=

m
Now since K > 5P, we know that I 1c(Si)1c(Ai) = 0. Let
i=1

B = <A],...,Am, 0,...,0> where we have appended n -m zeros. Then
B e W(R) with B = <lc(A}),...,1c(A ), 0,...,0>. As in Definition
2.4.1, let t = t(g) be the number of vectors in the finite represen-
tation given by 8(B) for V(b). Let b= <Dy»...»D > such that, for

1gsis<mDy= 1c(si)xK'aAi and, form <1 <n, D; = 0. Then
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d = <le(Dy}...,1c(D,)> ¢ V(B). Therefore, when Lemma 2.4.1 is

applied, we see that there exist 9y « Ry 1 < J < t such that

B8 -

m t
i =

D;B; = I lc(s;)AxN A1 o K
1 =1 §=1

LI o -]

9 consj(ﬁ)ﬂ

where J = 1cm(39],...,aAm), and a(consj(ﬁ)) < J.

Hypothesis (b) implies that consj(ﬁ) has a simple representation

with respect to A, i.e. that there exist Ts <Tj1"""Tjn> eR[xN",

a(consj(ﬁ)).

1 <J ¢t such that consj(ﬁ) = ?j-x and é?j

Therefore,

: (S;)
L 1t(S)A; =
=1 ] j=1

i
*
©
<
o
o
3
(V2]
.
o~
oo}
-

1]
b
[ [ e B 2

Thus

n t
P=XK-JZ(Z ng

m
JA; + I rd(Sj)A; + I SiA. .
i=1 j=1 i=

J1 1 jemtl 1!

Now let representation ﬁ = <U]....,Un> be defined by



t
U, = XXV g

T
j=1 9

ji +355 m<i<n,
Hence P = U-A, and we claim 55 < K.

It suffices to show that if A; # 0 then 38U, <K-3A,. Since
Tj is a simple representation of consj(ﬁ) and a(consj(ﬁ)) <J,

t
K-J ~
3(T43) < J-3R;. Hence 3(x jiI]ngj_i) < (K=-J) + (J-03A;) = K-2A,.
Now assume also that S; # 0. Since $is a representation of P of

degree K, a(rd(Si)) < a(si) < K-3A;, and if 1 > m then

a(51)< K'-aAi by our assumptions about the multiplicity of §, and the

arrangement of the basis A. Hence an < K-3A, by definition of Ui’
But éﬁ < K = 35 contradicts the assumption that 3% is minimal,

completing the proof that (a) => (b).DO
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2.5 Construction of Complete Bases

Theorem 2.4 provides a way to check whether a given ideal basis
A is complete or not, i.e. A is complete iff all polynomials in
cons(R) remainder to zero. This theorem does not, however, give a
method for constructing a complete basis. If an element, say C, of
cons(K) does not remainder to zero, then A = rem(C,A) is, in a sense,
"irreducible" with respect to A. More precisely, we know that A is a
kernel polynomial with respect to A, If we add A to basis
A= <A],....An>, then A does not change but A is now simply construc-
tible from A' = <Ays...»A sA>. We will see in this section that,
since 1t(A) e ker (R), repeating this process leads to the construction
of an ascending chain of ideals generated by these leading terms. Thus
the process of adding non-zero consensus remainders must terminate.
These ideas are made precise in the following algorithm and its

validity proof.

Algorithm 2.5

Bcbasis ()
[Complete ideal basis formation.
Input: R=<A;,...,A > ¢ (R[x])", a basis for ideal & in R[x].
Output: §¥<B],...,BS> € (R[x])s, a complete basis for A.]
(1) [Initia]ize.]'§¥ﬁ.
(2) [Find consensus polynomials with non-zero remainders. ]
C<{C e cons(B):rem(C,B)#0}; if € is empty then return.

(3) [Apply consensus choice function.] Choose C e C.
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(4) [Compute remainder.] A+rem(c,§).
(5) [Adjoin to basis.] Append A to B; go to step 2 [

Before proving termination and correctness for Algorithm 2.5 we
note that as with Algorithm 2.3 we have presented an abstract
algorithm. We wish to emphasize that each of the abstract sub-
algorithms implements a function, and hence cbasis, if it terminates,
js a function mapping (R[x])* into itself. There are three areas
which require further specification for a concrete realization of the
F]gorithm. In step 2 the consensus operation assumes that the function
B associated with the simplification ring R will be applied to deter-
mine a finite set of generators for various R-modules V(E), where B
is a vector of zeros and leading coefficients of elements of B. We
have imposed as yet no restrictions on the generating sequence pro-
duced by B. In step 3 we apply a choice function that specifies which
of the (possibly many) non-zero consensus remainders will be added to
B. Finally, in step 4, as in step 2 the remainder function itself is
viewed ébstract]y. The first two of these areas will be dealt with

precisely under the heading of consensus selection rules in Chapter 3.

Before proving that Algorithm 2.5 terminates we need a lemma
about ideals generated by bases composed of single-term polynomials.

Lemma 2.5.1 Let [ = <Lys...slp>, where for 1 <9 <n either
Li = aixaLi orL; = 0, generate the ideal T in R[x]. Then T is a
complete basis. .




Proof We claim that cons(f) = {0}. To do this we construct
an element of cons(L) following Definitions 2.4.1 and 2.4.2. Let
B e W(T), i.e. B = <B;,...,B>, where By = L. or B, = 0 for 1 < i <n.
Let b = <bys.eeabp> =<1c(B1),...,1c(Bn)> and <E],....3t> = B(E) where
E& = <CipseeesCyp> for 1 < j < t. Let J = lem(8By,...,3B,), since

J J
we may assume [ # <0,...,0>. Then

(C- .xJ‘aBi )Bqi

consj(B) 5

H]
Moo

J-9Bj 0B
(cjix )(bix )

L
M. U1

fl
*
ll. ™M
(2]
o

'
o
-
wn
—le
]
o0
o
a4t
m
-
o~
o
g

Thus cons(L) = {0} and, by Theorem 2.4, L is complete.O

We now prove that the cbasis algorithm terminates.

Lemma 2.5.2 Algorithm 2.5 always terminates.

Proof Let §i be the basis B during the i-th execution of step 3
of Algorithm 2.5. Then B, = <Aj,...,A> and B, =
<AyseearhAn, An+1""’An+i>' i.e. An+i is the non-zero consensus
remainder appended to the basis §1 on the i-th execution of stiep 5.
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Finally let ti = <1t(A]),...,1t(An+i_])> generate [}, the leading term
ideal of §i’

Now for i > 1, An+1 is the remainder of some polynomial with
respect to ﬁi' Hence by Lemma 2.3.5(b), A
that 1t(A ,.) ¢ L;.

n+i € ker (ﬁi). We claim

— -— =
Let J = 3A_,. and let aJ(§i), aJ(Li). and aJ(I}) be the degree
J leading coefficient ideals of basis B., basis [y, and ideal Tj,
respectively. Since §i and ti have the same leading terms Eb(ﬁi) and
Eb(ti) have the same bases (i.e. Ed(ﬁi) = Ed(ti))‘ Hence Eb(ﬁi) =
Eh(ti)' Lemma 2.5.1 indicates that ti is a complete basis for f}.

- = e — T e
Thus by Lemma 2.3.6 aJ(Li) = aJ(Li). Therefore, aJ(Bi) = aJ(Li).

Now assume 1t(An+i) e Ly, and Tet a = 1c(A .

ae EJ(I%) = Eb(ﬁi), and hence p(a{gd(ﬁi)) = 0 where Ed(ﬁi) is the
) €

). Then

degree J leading coefficient sub-basis of basis ﬁi' But lt(An+i

ker (ﬁi), so a = p(a{%d(ﬁi)). Since a = 1c(A ,.) # 0, we have a

n+i
contradiction which invalidates our assumption that 1t(A ..) « I%.
And hence, Li c Li+1’

Therefore, if Algorithm 2.4 does not terminate, then it
generates an infinite strictly ascending chain of ideals in R[x],
namely,

L-ICLZCL3C...
But this contradicts the fact that R[x] is Noetherian, so Algorithm

2.4 must terminate.D
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Corollary 2.5.1 When Algorithm 2.5 terminates, B is a

complete basis for A.

Proof We have already noted that B is a basis for X (adding
ideal elements to A does not change the ideal generated).

When Algorithm 2.5 terminates, C is empty. Hence by Theorem
2.4, Bis a complete basis.[

Notice that the termination proof for Algorithm 2.5 given in
Lemma 2.5.2 only requires that ]t(An+i) e ker (Bi)' If, in the
remainder algorithm (Algorithm 2.3), we replace D in step 3 by
D={aQ} if 1c(qQ) # p(1c(o),3w), or otherwise D is empty, then the
output condition Q € ker () is changed to 1t(Q) ¢ ker (A). The
modified remainder algorithm thus obtained can then be used in the
cbasis algorithm, with correctness and termination of the new cbasis
algorithm still being guaranteed by Lemma 2.5.2.

The polynomials output by the original remainder algorithm are
kernel polynomials with respect to basis K. The outputs of the
modified remainder algorithm will be called semi-kernel polynomials.

Definition 2.5.1 Given a basis A with leading coefficient sub-

bases EI’ the set of semi-kernel polynomials with respect to A s

given by sker (A) = B eA : B =0 or 1¢c(B) = p(lc(B),EaB)}.
A remainder algorithm which generates semi-kernel polynomials

-
is called a semi-remainder algorithm, and is denoted by Qesrem(P,A).
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2.6 Computing Representations in R[x]

In the next two sections we establish the main result of this
chapter, namely, if R is a simplification ring then so is R[x]. In
Section 2.2 we found that if R is a simplification ring, then R[x] is
a Noetherian ring with identity. We have also defined a partial
ordering, <, on R[x]. It remains to be shown that we can find
analogues in R[x] for the functions 6, p, and B associated with R. To
be precise we restate Definition 2.2.1 for R[x].

Definition 2.6.1 Let R[x] be a Noetherian ring with identity

and let < be a partial order on R[x]. Such a ring is called a
simplification ring if the following additional conditions are satis-

fied.

(a) There exists a function 6* : R[x] x (R[x])* + (R[x])* such
-
that if A ¢ (R[x])* and B € R[x] then the function p*(B,A) =

B -A-6%(B,A) is a simplifying ample function for (RIx],

mod A, <)
where A is the ideal in R[x] generated by K. In addition, we require
6*(0,R) = <0,...,0>.

(b) There exists a function B* : (R[x])* + ((R[x])*)* such
that if & e (R[x])* then B*(K) is a finite sequence of generators for
the R[x]-module V(K) = {$ e (R[x])* : 3-A = 0}.

Section 2.7 deals with the formulation of 8*. The current
section will show how 6*, and hence p*, can be constructed from
variants of the remainder and complete basis functions presented in

Sections 2.3 and 2.5.




59

The determination of p* is quite straightforward. Since the
function cbasis (K) yields a complete basis for A, the ideal generated
by I,‘Corol]ary 2.3 tells us that p*(P,A) = rem(P,cbasis(K)) is a
simplifying ample function for (R[x], = mod A, <) and by Lemma 1.2.2,
p* is independent of the complete basis generated by cbasis (Z).

The function 6*, however, must satisfy the condition that
P -p*(P;K) = A-o*(P,A), i.e. that 6*(P,A) is a representation of
P-p*(P,A) = P -rem(P,cbasis(R)) with respect to A. In Algorithm
. 2.6.1 we will seehow a slight modification to the remainder algorithm
allows the computation of a representation for P -rem(P,ﬁ) with
respect to B, where B ¢ (R[x])*. In fact, the representation obtained
will be a simple representation. A similar change in the complete
basis algorithm allows us to find a representation of each element of
basis B with respect to A where B = cbasis(ﬁ). This will be seen
in Algorithm 2.6.2. Finally Algorithm 2.6.3 combines these two
results to produce 6*.

The functions defined in Algorithms 2.6.1 and 2.6.2 will be
referred to as extended remainder and extended complete basis func-
tions. They are extensions of the remainder and complete basis
functions in the same sense that the extended Euclidean algorithm is
an extension of the Euclidean algorithm.

Algorithm 2.6.1

remx(P,K;Q,g)

[Remainder of polynomial with respect to ideal basis, extended.



Input: P e R[x]; K=<A],....An> e (R[x])", a basis for ideal A.
Output: Q ¢ R[x] and -§=<S],...,Sn>«:(R[x_|)n such that Q=rem(P,K) and
T is a simple representation for P-Q with respect to basis K.]

(1) [Initialize.] Q«P; for i=1,...,n do S;+0; $e<S,...uS >

(2) [IsQ=0?] if Q = 0 then return,

(3) [Assuming Q= I quI

IeE
De{l ¢ E:ql#p(ql{sl)}; if D is empty then return.

» determine possible reductions.]

(4) [Apply remainder choice function.] Choose J e D.

(5) [Use e(qd,gd) to determine p(qJ{EJ) in terms of 35.]
B=<bys...sb >+6(q;,3 ).

(6) [Make new degree J coefficient the residue class representative
for the residue class of qj mod Eh, i.e. qJ«p(qJ,EJ)=qJ-K-35.]
for i=1,...,n do if 3A;]J then Bi«b,x""°M else B.«0;
Be<By,...,B,>; QQ-B-A,

(7) [Update multipliers.] 3348, go to step 20

Lemma 2.6.1 A]gorithm'2.6.1 always terminates, and when it
does, d = rem(P,K) and $ is a simple representation for P -Q with
respect to K.

Proof Algorithm 2.6.1 differs from Algorithm 2.3 only in the
added initialization of 3 in step 1 and the modification of S in
step 7. The termination of Algorithm 2.6.1 does not depend on either
of these steps. Hence the proof in Lemma 2.3.3 that Algorithm 2.3

terminates suffices to prove Algorithm 2.6 also terminates.
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The changes mentioned above do not affect the computation of
Q from P. Hence Q = rem(P,A).

Using the notation of the proof of Lemma 2.3.3 we showed,
in the proof of Lemma 2.3.5(d), that % ﬁ is a simple representat1on
for P -rem(P,K). When Algorithm 2.6. } lerm1nates 3= 2 '§ Hence
$is a simple representation for P —rem(P,K).D =

We now give an extended version of the cbasis algorithm.

Algorithm 2.6.2

cbasisx(A;8,T)
[Complete ideal basis formation, extended.
Input: K=<A],...,An> € (R[x])n, a basis for ideal A in R[x].
Output: §=<Bl""’Bt> e(R[x])t, a complete basis for A, and T¥<?1,...,T >
such that for 1<j<t, Tj € (R[x])n and Bj=T5-K, i.e. ?3 is a represen-
tation for Bj with respect to K.]
(1) [Initialize.] B<A; for j=1,...,n do{ for i=1,...,n do if i=j then
j1ree ’Tjn> }; T¥<T],...,Tn>.

(2) [F1nd consensus polynomials with non-zero remainders.]

Tyl else T,+0; :f<-<T

6+{ Ce cons(E):rem(C,ﬁ)?O }; if € is empty then return.

(3) [Apply consensus choice function.] Choose C € C; set T to the
representation of C with respect to §, given in Definition 2.4.1.

(4) [Compute A=rem(C,B), and a representation 3 for C-A.]
remx(C,B;A,3).

(5) [Make Ua representation of A with respect to K. Assume
§L<BI,.. B>, T=<CyyniCe>, $5<54,...,5,>, and T5<T1,...,Ts>.]
U<-z(c ;.

J=1



(6) [Adjoin basis element and multipliers.] Append A to B; append U
to T3 goto20

Lemma 2.6.2 Algorithm 2.6.2 always terminates, and, when it
does, B is a complete basis for &, and for 1 <ist By Tj-K.

Proof Algorithm 2.6.2 differs from Algorithm 2.5 in the added
initialization of T in step 1 and the added computation of €, §, U and
T in steps 3 through 6. The termination of Algorithm 2.6.2 is not
affected by any of these changes. Hence Lemma 2.5.2 shows that
Algorithm 2.6.2 terminates.

The computation of B is also not affected by these changes,
hence Corollary 2.5.1 shows that Bis a complete basis for A.

The final statement in the lemma is proved by induction on the
number of times step 2 is executed in Algorithm 2.6.2. Let
ﬁo = <By,...,B > and 10) . é?],...,?n> be the values of B and T just
before the first execution of step 2. Then for 1 < j <n, Es = Tj-K

since gj = Aj in step 1.

Let ﬁi = <B],...,BS> and T(i) =<T],...,TS> be the values of B
and T at the i-th execution of step 2. Also let t= <C],...,CS>,
§==<S].....SS>. and U = <Uys...5U > be the values of these variables
at the i-th execution of step 6.

Note T(i+1) = <T],...,Ts,ﬁ> and by the induction hypothesis
By = T;A for 1< cs. Now
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.

- S
U-A = (jzl(cj-sj)Tj)-I = J

S S
51(C5'53)T5'K = 21(cj-sj)sj

= (€-%)B =CB-SB=C- (CA) = A.

Hence U is a representation of A with respect to A. And thus T(i+])

is a sequence of representations of the elements of gi = <B],...,BS,A>

with respect to Ao

The two previous algorithms can be combined to yield 6+*,

Algorithm 2.6.3

S«theta(P,A)
[6 function for the ring R[x].
Input: P e R[x]; A=<A;,...,A> ¢ (R[x])", a basis for ideal A.
Output: $=<S;,...,5,> e (R[x])" such that p*(P,A) = P-A-3 is a
simplifying ample function for (R[x], =mod A,<) and if P=0 then
$=<0,...,0>.]
(1) [Compute a complete basis E for A and a representation T for B in
terms of K.] cbasisx(K;ﬁ,T).
(2) [Compute the residue class representative Q for P, along with a
representation U of P-Q with respect to §.] remx(P,B;Q,U).
(3) [Compute a representation S of P-Q in terms of A. Let

S
-de
Tetye T and Uectp, U] 3+

U.T.; return J
JJ
Jj=1

Lemma 2.6.3 Algorithm 2.6.3 always terminates, and when it

does p*(P,K) =pP-A% is a $implifying ample function for
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(R[x], = mod &, <). In addition, if P = 0 then $ = <0,...,0>.

Proof The termination proof is trivial, since each of the
sub-algorithms is known to terminate. At the end of step 3 let
K= <Ap,...,A>, B = <B,....B>, T= <Fp,i.. T > where

Tj = <Tj1"“’Tjn> for 1 < j < s; also let

<U‘l I ’Us>-

1

-+ S - ~>)

*A=P- I U.(T,°A) =
PRORSARN

Then p*(P,A) = P -3-A = P - ( : u.T.)
j=1 J3J

]

s
P-jzl U;B; =P-(P-Q) = Q
Corollary 2.3, o*(P,A) is a simplifying function for (R[x], = mod &, <).

rem(P,g) = rem(P,cbasis(K)). Hence by

Furthermore, if P = 0 then remx(P,ﬁ; Q,ﬁ) returns U = <0,...,0>

S
(see Algorithm 2.6.1). Hence $ = = ujfj = <0,...,0>. Thus the
J=1
lemma is proved.O
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2.7 R[x] is a Simplification Ring

In this section we complete the proof that R[x] = R[x],...,xr]
is a simplification ring. To do this we must find an algorithm for
the function g* of Definition 2.6.1. If A ¢ (R[x])" then
8*(3) =V = €71,...,Yh> must be a finite sequence of generators for
the R[x]-module V(A) = {$ ¢ (R[x])" : S:A =0} . Note that any
element $ ¢ V(A) is actually a representation of zero with respect to
A. Hence, we are seeking a sequence of representations of zero, namely
?k ¢ (RIxD", 1 < k < u, where if 3 ¢ V(A) then there exist polyno-

>

u
mials Py,...,P e R[x] such that $= 1 P.V..
1 u j=1 JJ

Consider the case where A is a complete basis. Llet C ¢ cons(K).
and note that if C # 0 then we have two different representations for
C with respect to K. The first representation, €, is given in the
consensus definition (2.4.2), where it was also observed that,
if € # <0,...,0>, o€ > aC. Since R is a complete basis, and since C ¢ A,
the ideal generated by R, we know that C has a simple representation,
say T, with respect to K. Since T is a simple representation,
aT = aC < SE. Let T be our second representation for C, and note that,
since rem(C,A) = 0, remx(C,A; Q,T) determines such a simple represen-
tation for C. But then C-A = C = T-&, and hence 0 = C-A-T-A = (C-—T)Jf
s0 C-T ¢ V(). In Lemma 2.7.1 we show that <C-T : C ¢ cons(R)> is
a sequence of generators for V(R) when Ris a complete basis. When A

is not complete, the situation is only a little more complicated as

will be seen when g* is realized in Algorithm 2.7.2.
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The process of finding a sequence of generators for V(K) when A

is a complete basis is made precise in the following algorithm.

Algorithm 2.7.1

7¥modgen(x)
[Computation of sequence of module generators for the R[x]-module V(A)
when A is a complete basis.
Input: 3#<A],...,An> e (R[x]D", a complete basis for ideal A.
Output: ?¥<V],....7g>where Vk e (R[x])" for I<k<u, a finite
sequence of generators for V(A)= fg € (R[x])":S:A=0}.]
(1) [Initialize.] Y«empty; for i=1,...,n if Ai=0 then { for j=1,...,n
if i=j then y;«1 else y;«0; append <yy,...,y >to Y }; Cecons(R).
(2) [Select consensus.] if C is empty then return; choose C e C;
¢C-1c}.
(3) [Non-simple representation for C.] Set C to the representation
of C with respect to A given in Definition 2.4.1.
(4) [Simple representation for C.] remx(C,A;Q,T).
(5) [Fbrm new generator. ] V'<C-T; append Y' to v; go to 4 00
Lemma 2.7.1 Algorithm 2.7.1 always terminates, and when it
does, Y = <7]....,?h> is a finite sequence of generators for V(A).
Proof Since each sub-algorithm always terminates, and since

cons(R) is finite, Algorithm 2.7.1 always terminates.

If ?i € 7. then either Vi <03...50,1,0,...,0> with a 1 in the

€-T where € and T are two re;re—

i-th position and A; = 0, or V,

sentations for some element C ¢ cons(K). In either case Yi-z =90




- g
and hence Yi € V(K). We must now show Y generates all of V(K).

Let A= <Aj,...,A> and Tet 3= <5q,...,5 > ¢ V(R). e will
prove that S is generated by Y by induction on 3.

If 88 = 20 then for1 <4 <n, S; = 0 or A, = 0. Let us assume
that A, =0 for 1 <i <mand A, # 0 for 0 <m< i <n. Then since
3 =00,S;=0form<ic<n So$=<5,...,5,0,..,00. In
step 1 of Algorithm 2.7.1 the zero representations ?5 = <¥ﬂ""’yjn>
where y.. = 0if i #j, y,; =1ifi=3,forl1 <j<m 1<ic<n,

Ji ji m -V - - -
have been appended to Y. But then S = &

7. 3=

Sj?s and § is generated by

Now assume 3S > 30. Let a; = 1c(A1) and s, = 1c(Si), 1<ic<n,
and Tet K = 35 and m = yS. Assume now without loss of generality that
A s organized such that Si # 0, Ai # 0 and asi~+aAi =Kforl <ic<m,
and either S, =0, A, =0, or S, # 0, A; # 0 and 35, + A, <K for
m<i<n,

Write § = $' +3" where ' = <s1xK'aA1,....sme'aAm,O,...,0>
and 3" = <rd(S]),...,rd(Sm),Sm+];...,Sn>. Since K is a multiple of
J = lem(3Aq,...,0A,), we can write 3= xK'J<s1xJ°3A]....,sme'aAm.
o,...&0>. And since 35 < K then $'-<1t(A}),...,1t(A ),0,...,0> =0

and ¥ s.a:. = 0.
=1 7

Let B = <Ajue.isAu0,e..00> ¢ (RIxD)", and B = <aj,....350,...,0

e R". Then ¢ = <572e235050 030> € R" and T ¢ V(B) since 3.B = 0.

Le't B(E) = <-E],o-o |-Et> Where the -Ej = <Cj-l,o-oocjn> € Rnl ] sj 5 t,

generate V(B). Thus there exist g5 ¢ Ry 15 <t such that

67

>



68

t
=z gj'c*j
J=1
- - (3 *
Now, by Definition 2.4.1, consj(B) = 'Ej'B where
= J-9A J-23
Cj = <CjyX 1.....cjmx A‘",O,...,0> e (R[x])". Hence
S o= xK"'J<s]x']'aA],...,sme'aA'“,O,...,0>
t t
_K-d J-3A J-3Am
=X <I @giCiqiX seces L G:C. X 30,...,0>
j=1 9 31 j=1 4 dm
t
i J-3A7 J-3An
= yK-J J_E] 95<¢4q% peoeaCypX 305...,0>
t
= xKd 3 gjf- .
j=1

As pointed out in Definition 2.4.2, fj is a representation for
consj(ﬁ) in terms of A, so we write consj(ﬁ) = Ej-ﬁ. But since A is
a complete basis consj(ﬁ) also has a simple representation Tj given

by remx(consj(ﬁ),'ﬁ; P,TJ-). Since 3(consj(§)) <Jd, aTJ. < J.

Now for 1 < j < t, let 'Y'J.' = 'CJ- -Tj. Notice that since
consj(ﬁ) € cons(K), 7j' ¢ Y when Algorithm 2.7.1 terminates.
Now Vj A= (Ej -Tj)-ﬁ = 'fj~K-’fj-'K = consj(ﬁ) -consj(ﬁ) = Q.

t
K-J ¢ gj‘Y*. ', then
=1

gj?j A =0. Hence U e V(R).

-
Therefore, if we set U = §-—x

Uk = 38 -4 ;

[y

J=1

Let us assume for the moment that a'ﬁ < K. If this is true, then

we can apply the induction hypothesis, namely that Y generates ﬁ, and




u
write U= I kak where for 1 < k < u, L R[x]. But then
k=1
> qt u t '
s=U+xY 3 g.¥:= & Pk?k + z g-xK'Jv., and since
j=1 JJ k=1 j=1 J J

75' e Y for 1 <jz<st, 3 is generated by Y and the lemma is proved.

We proceed to prove that 30 < K. For 1 <j <t let

- n
Tj - <Tj‘l’-o-,Tjn> € (R[X]) . NOW

j=1 3
I SFS RLCU gJ(E. -T.)
j=1 J J
t t
= @ -XY ngj) + 34k g gﬁ-
3= =19
t
=3+ 3 ngK'JTj.
J=1
Thus for 1 <3 <m
t
_ K-J
Ui rd(Si) + jE] gjx Tji
and form < i <n
t
K-J
. =S, + s
U1 ST j§1 ng TJ1

The conditions on J, K, Si’ gj, and Tji are the same as at the

end of the proof of Theorem 2.4. Hence 30 < K = 35 and our claim
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is established.l

If & is any basis for ideal & and if B is any complete basis for
A, let T be the concatenation of bases A and B. Algorithm 2.7.1 can
then be applied to find a sequence of generators for V(C). But V(A)
is isomorphic to a sub-module of V(C), hence the generators of V(C)
must also generate this sub-module.

This concept is made precise in the following definition of B*.

Algorithm 2.7.2

Z«beta(R)

[B function for the ring R[x].
Input: ﬁ#<A],...,An> € (R[x])", a basis for ideal A.
Output: 25€f]....,7t> where for 1<j<t 75 e (R[x))", and 7 is a
finite sequence of generators for the R[x]-module
v(R)=($ < (RIxD)":$-R=0}.]
(1) [Construct a complete basis B for A.] Becbasis(A).
(2) [Assuming §¥<B],...,Bm>, form a new complete basis C.]

[ SURRN N SN 5
(3) [Determine a sequence Y of generators for V(E).] 7¥modgen(3).
Y > get 7.]

jn’...’ j,n+m

for j=1,...,t do 23*<Yj1""’yjn>; return

(4) [Assuming ?5<V],...,7t> and 73=<Yj],...,Y

Lemma 2.7.2 Algorithm 2.7.2 always terminates and when it

does, 7 is a finite sequence of generators for the R[x]-module V(A).
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Proof Termination is obvious.
Let & = <Ay»...sA> and B = <Bys...sB> so that
T = <Aoo A uByaeniB>e Lot V= <¥q,.0.,Y,> where
¥ - Vgpseens¥ipoenesYy pap” FOr 123 < t be a finite sequence
of generators for v(t). 1f3= <SyseeeaSy> € V(K) then
3= <S],...,Sn,0,....0> € V(f), where we have appended m zeros to

t
S. Hence there exist Pj e R[x], 1 <J < t, such that $t=5 PV,
t

t . . =1 3
j=1 =1
t
= 5 P.Z.. Hence Z generates V(K).D
jop 99

We summarize our main result in the following theorem.

Theorem 2.7 If R is a simplification ring, then R{x] =
R[xl,...,xr] is also.

Proof Ring R is a Noetherian ring with identity. Hence, by
the Hilbert Basis Theorem, R[x] is also. Let < represent the partial
order in R[x] given by Definition 2.2.3. It is a combination of the
partial order in R and the total order of all monomials given by any
acceptable monomial ordering.

Let A be a basis for ideal A in R[x]. Let 6* and B* be defined
by Algorithms 2.6.3 and 2.7.2, respectively. By Lemma 2.6.3 we have
that p*(P,A) = P -K-6*(P,R) is a simplifying ample function for
(R[x], = mod &, <) and, in addition, 6*(0,A) = <0,...,0> . By

Lemma 2.7.2, B*(K) determines a finite sequence of generators for the

7



R[x]-module V(A) = fg e (R[Ix])*: S<A= 0}. Hence R[x], <, 6*, and
B* satisfy the requirements of Definition 2.6.1, and thus R[x] is a

simplification ring.0
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2.8 Special Case Improvements

In this section we present several lemmas which will be useful
in implementing the algorithms described in Sections 2.3 and 2.5.

Our first result deals with the possibility of replacing a given
basis element by its remainder (or semi-remainder, see the end of
Section 2.5 and Section 3.4) with respect to the rest of the basis.
The lemma also shows that, if the initial basis is complete, so is
the resulting basis.

Lemma 2.8.1 Let A = <Ays...A >, n > 2, be a (complete) basis
for ideal & in R{x]. Let B = <Ay,...,A> and A1l = rem(A],ﬁ). Then
= <A]',A2,...,An> is a (complete) basis for R.

Proof LetP c¢ Aand let S = <Sqs...,S,> be a representation

for P with respect to A. By Lemma 2.3.5(d) Aj-A,’ has a simple

representation, say T <T2,...,Tn>, in terms of B.

n n n
Now P= £ S:A. = SqA; + I S.A. = S,(A'+ T T.A;)
L L
n , n ; >

Uy =Syand for 2 <1 <n Uy =5;T; +5;. Then Uis a representa-
tion for P in terms of A, and since A]'e A, k' is a basis for A.

Now assume A is a complete basis for A and S s a simple represen-
tation for P with respect to A. We wish to show that U is a simple
representation for P with respect to K'.

By Lemma 2.3.5, BA]' <3y If A]' # 0 and Sy # 0 then
as1-+aA{5 8S, +9A, <oP. For 2<i<n it is sufficient to show that if
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A; # 0 then either Uj = 0 or 3U; + 3A; < 9P. Assume U; # 0. Then
either 3U; < 35 + 3T, or aU; < 35;. Since T is a simple represen-
tation for A-.-A]' with respect to B, in the first case

8T; + 3A; < 3(Ay-A;') < 8Ay. Thus 3U; + 3A; < (3Sy +9T;) +2A,

< 357 + 3Ay < 3P since 3§ js a simple representation for P. In the

second case 3U; + 3A; < 3S; + 3A; < 9P for the same reason.

Therefore BJ < 9P, and hence a0 = 3P. Thus A' is a complete
basis for A, O

Note that this lemma also holds if the hypothesis A{ = rem(A1,§)
is replaced by A1' = srem(A],E). That 1is, A] may be replaced by the
semi-remainder of A] with respect to the rest of the basis without
changing the ideal generated or the completeness of the basis.

Our next lemma deals with the case where R (and hence RIxl) is
a g.c.d. domain. It shows that in constructing complete bases we
need only consider bases whose elements have a greatest common divisor
of one.

Lerma 2.8.2 Llet A = <Aj,...,A >, n > 2, be a basis for ideal

K in RIx], a g.c.d. domain. Let A = gcd(Ay,...,A ) and, for

—t
§A

i<n, let By = A;/A. Let B= <Bys..-sB > generate ideal B in
Rix]. If B = <812...,Bs'> is a complete basis for B then
K' = <AB]',...,ABS'> is a complete basis for A.

Proof Clearly R' is a basis for A. We must show that if

P e A then P has a simple representation with respect to R




Since P e A, P = P/A e B. Since B' is complete, let
3= <S],...,Ss> be a simple representation of P' with respect to B.
s
Thus P/A = P* = $.8', and hence P = - (AB') = $.A'= :

S;(AB.").
' ' i=]
If S;=00rB; =0thenS;=0o0rAB =0. IfS, #0andAB'#0,
then 35, + 3(AB;) < 35, + A + 2B,

[ IFaY

3P' + 3A since S is a simple

representation for P'. But since P

AP', 3P = 3A + 3P', hence
asi + a(ABi') < 3P' + 9A = 3P. Therefore, $is a simple representa-
tion for P with respect to K'.D

Our final result gives a condition under which the consensus of
two polynomials is simply constructible from the given pair of poly-
nomials. During the execution of the cbasis algorithm we need not
construct the consensus of such polynomials.

Lemma 2.8.3 Llet A = <A],A2>, where A; and A, are non-zero
polynomials in R[x]. Let a; = Tc(Aq), a5 = lc(AZ) and B(<a1,a2>) =
é31,...,?t>. If a; and a, are units in R, and if 1cm(aA1,8A2) =
8A; +8A,, then, for 1 <j < t, consj(K) is simply constructible from
R.

Proof Let T = <CpsCy> € Rz, and 1§§ J = 1cm(aA],aA2).

J
J-9A1 J-23A
Then consj(K) CyX Ay + cox 2 A,

oA oA1
CyX 2 A] + CoX A2

Now a(consj(K)) < J, hence cjay + cya, = 0, Or cyay = -Cad,. Since

a, and a, are units in R, we can divide by them. Hence c1/a2 =-c2/a].
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Let d = c]/az, then ¢ = da2, and ¢y = -da]. Hence consj(K) =

da,x®P2 A - da)x®M A, = d 1t(A,)A; - d Tt(A))A, =
d(Ay-rd(A,))A =d(A,-rd(A;))A, ==d rd(A,)A; + d rd(A;)A, = 3-K where
$ = <5,,5,> and §; = -d rd(A,), S, = d rd(A;).

If S] = 0 then <0,52> is a simple representation for consj(K),
and if 52 = 0 then <S],0> is a simple representation for consj(z).

S 3Sy

Assume now S, # 0, S, # 0 and let 1t(S;) = s]xa 1, 18(s,) = s,x°%2.

If 8% > 8(consj(3)) then s]xas1 1t(A]) + szxaszlt(Az) = 0, hence

3y + 3, = 35, + BA,. Thus 3A2|(352 + 3A,) = 35 + 3A,, and

1cm(8A],aA2) p 35, + A, = a(rd(AZ)) + BA] < 3R, + 9A;. But we assumed

lcm(aA],aAz) = aA1 + 8A2. This contradiction implies 33 < B(consj(K))
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and hence $ is a simple representation for consj(K) with respect to R. ]




CHAPTER THREE:

Remainder and Complete Basis Algorithms in F[x]

3.1 Introduction

In this chapter we describe algorithms for computing simplifying
ample functions in the polynomial ring F[x],...,xr], where F is a
field. We again abbreviate F[x1,...,xr] by Flx]. Throughout this
chapter we assume F is an effectively given field, i.e. that algo-
rithms exist for performing arithmetic operations on field elements.
Since F may be any effectively given field, many of the algorithms
presented in this chapter will still be abstract. These algorithms
will be abstract, however, only in regard to arithmetic operations in
F. We will specify all other parts of these algorithms precisely.

In Section 3.2 we discuss 1ist representations for exponent
vectors, polynomials, and ideal bases. We also give the specifica-
tions for the algorithms which perform simple operations on these
structures. In Section 3.3 we investigate the special properties of
F when it is regarded as a simplification ring. The remainder
algorithm for F[x] is given in Section 3.4. Problems dealing with
the uniqueness of complete bases in F[x] are handled in Section 3.5,
culminating in Section 3.6 with an algorithm for computing what we
will call a complete "kernel” basis in F[x].

The algorithms in this chapter will be presented using the

Aldes language for algorithm description. Lower case algorithm names
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are used for algorithms which refer to the abstract arithmetic proper-
ties of F. Upper case letters are used for fully specified algorithms
given here, or for algorithms in the SAC-2 computer algebra system.

The algorithms discussed in this and the following chapters have
been implemented in the SAC-2 system for the cases F = Q, the field
of rational numbers, and for F = GF(p), a finite field with p elements,
p a prime B-integer. The table given in Appendix A relates the
algorithm names used in this thesis to the actual algorithm names in

the SAC-2 system. The algorithms themselves are given in Appendix B.
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3.2 Exponent Vectors, Polynomials, and Ideal Bases

In this section we describe the basic algorithms and represen-
tations needed to support the implementation of the remainder and
complete basis algorithms in the following sections.

We first define a representation for exponent vectors in terms

of SAC-2 system list structures. The dense exponent vector canonical

form, I*, of exponent vector I = <eq,...,e> e E is defined as
follows. If e; = 0 for 1 < i < r then I* = (), the empty list. If at
least one e; is non-zero, then I* = (er,...,e]). Note that when the
notation F[x],...,xr] is used, x. is often interpreted as the main
variable. This representation for exponent vectors has the advantage
that the exponent of the main variable of a monomial is immediately
available. We assume that the elements of an exponent vector are
B-integers (see Section 1.6). This allows the individual exponents to
be represented as atoms.

Two exponent vectors are compatible if they represent monomials
in the same number of variables. The exponent vector represented by
the empty list is defined to be compatible with any other exponent
vector. Any exponent vector is compatible with 30, but notice that
90 does not have an explicit representation.

We assume the existence of the following algorithms for opera-
tions on exponent vectors. In the following I, J, and K are

compatible exponent vectors.
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Algorithm Output

K«EVD1F(I,J) if J|I then K=I-J else K=-1
K+EVSUM(I,J) K=1+J

K+EVGCD(I,Jd) K=gcd(I,J)

K+EVLCM(I,J) K=1em(I,Jd)

For the studies in this thesis we have selected two of the many
possible acceptable monomial orderings. Let I = <@y,...,e.> and
J = <f],...,fr> be two compatible exponent vectors. We say that I < J

with respect to lexicographic ordering if there exists a j, 1 <jic<r,

such that e; = fi for j < i and ej < fj.

By the total degree of an exponent vector we mean the sum of the

r r

individual elements. lete = e, and f = I fi be the total
i=1 i=1

degrees of I and J respectively. Then I < J with respect to total

degree ordering if e < fore=fand I < J with respect to lexico-

graphic ordering.

In-both cases, I = J iff e; = fi, 1 <1 <randwewriteI <J
iffI<Jdorl=J.

We assume the existence of the following algorithm which uses
the global variable EVORD to select the ordering desired. EVORD =1

gives lexicographic ordering and EVORD =2 gives total degree

ordering.
Algorithm Qutput
+1 if I>J
b+EVCOMP (I ,J) b={ 0 if I=J

-1 if I«
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The computing times of EVDIF, EVSUM, EVGCD, EVLCM, and EVCOMP
are dominated by r.
We assume that elements of the field F are represented in some

canonical form. The following abstract algorithms perform arithmetic

in F (a,b, and c are elements of F).

Algorithm Output
c+fdif(a,b) c=a-b
befneg(a) b=-a
c+fprod(a,b) c=ab
c+fquo(a,b) c=a/b , b#0
c+«fsum(a,b) c=a+b

We can now describe a representation for a polynomial

A= I a xI
IeE 1
canonical form A* of A is defined as follows. If A = 0 then A* = 0,

e FIx]. The distributive, dense exponent vector,

If A# 0 then let E' = {I ¢ E: a; # 0} and let E' = {Iy,.00010)
where I] > I2 > . >Im and > is some acceptable monomial ordering.
Let Ij* be the dense exponent vector canonical form for I5s 1<j<m,
and let aj* be a canonical representation for the element an e F.
Then A* = (11*,a]*,....1m*,am*).

In the remainder of this thesis the phrase "distributive

polynomial” will refer to a polynomial represented in the distribu-

tive, dense exponent vector, canonical form. (In the SAC-2 system
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the word "polynomial" is reserved for polynomials represented in
recursive canonical form, see Section 4.2).
We assume the existence of the following algorithms which extract

various parts of a non-zero distributive polynomial, A.

Algorithm Output

a+~DPLC(A) a=1c(A)

DPLEC(A;1,a) I=3A, a=1c(A)
DPLECR(A;I,a,B) I=3A, a=1c(A), B=rd(A)
I«DPLEV(A) I=3A

B«DPRD(A) B=rd(A)

Since we are assuming the use of distributive canonical form for
A, the computing times of DPLC, DPLEC, DPLECR, DPLEV, and DPRD are
all codominant with one.

We also assume the existence of the following algorithms to
perform arithmetic on distributive polynomials in R[X] where R is an
as yet unspecified coefficient domain. Later in this chapter we will
use these abstract algorithms with the assumption that R is a field F.

We say that two polynomials are compatible if they have the same
number of variables. A non-zero constant polynomial, i.e. a polyno-
mial whose leading exponent vector is represented by the empty list,
is compatible with any polynomial. The zero polynomial is also

compatible with any polynomial.
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In these algorithms we assume A, B, and C are compatible
distributive polynomials. We also assume that J is an exponent

vector compatible with 9A, and that b is an element of the coefficient

ring.
Algorithm Qutput
C«dpdif(A,B) C=A-B
B+dpneg(A) B=-A
C«+dpprod(A,B) C=AB
C+dpsum(A,B) C=A+B
B«dptermpr(J,b,A) B=beA

A non-zero A ¢ R[x] is said to be monic if 1c(A) is the identity

in R. If R is a field then the monic associate B of a non-zero

polynomial A is given by B = A/1c(A). We let 0 be the monic associate
of 0. In the case R is a field we assume the existence of the follow-

ing abstract algorithm (A is a distributive polynomial).

Algorithm Output
B+dpmon(A) if A=0 then B=0 else B=A/1c(A)

Since we have not specified the coefficient domain, it is not
possible to give bounds on the computing times for these algorithms.

However, it is possible to bound the number of exponent vector opera-
tions required. Llet A= I a xI and B= Ib xI and let m, =
I 1 A
IeE IeE

cardinality of {I ¢ E: a; # 0} and mg = cardinality of

{I ¢ E: by # 0}. Then the number of exponent vector operations
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required by dpneg, dptermpr, and dpmon is just My The maximum number
of exponent vector operations required by dpsum and dpdif is dominated
by ﬁA-*mB,which is codominant with max(mA,mB). The number of exponent
vector operations required by dpprod is dominated by mAZmB.

Let A = <Ays...,A > be a basis for ideal A in FIx], and let Ai*
be the distributive, dense exponent vector, canonical form for

Ay e FIxI, 1<

A

n. Then the representation &* of the basis A is

just the list Ax

(A]*,...,An*). We assume that a basis is non-
empty.

In this section we have made a distinction between an algebraic
object and the list structure representing that object. For the
remainder of this thesis (except where otherwise noted) we will ignore

this distinction and use the same notation for both concepts.
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3.3 F as a Simplification Ring

To make the field F into a simplification ring it is necessary
to specify a simplifying ample function p and the functions 6 and B
such that the criteria described in Definition 2.2.1 are satisfied.

A brief discussion of this problem was given in Section 2.2. A more
extensive discussion is given here.

Recall that since F is a field, the only possible ideals are {0}
and F. Let us consider the residue classes defined by these ideals.
If a is an ideal in F and a = {0}, then, for a,b ¢ F, a = b mod a
iff a-b ¢ a, i.e. iff a = b. Thus every element in F is in a residue
class by itself, and p, considered as an ample function, must be such
that p(a,{0}) = a forallae F. Ifa=Fthena=bmoda iff
a-b ¢ F, i.e. there is only one residue class, namely F. Since
p(0,a) = 0 for any ideal a, we must have p(a,F) = 0 for any a e F.

Now p must be a simplifying ample function for the triple
(F, = mod 3, <) in the two cases a = {0} and a = F. This implies
that any partial order defined on F must be consistent with the
partial order < given by a < b iff a=0o0r a =b. We will assume
that our partial order on F is determined by just this relation.

The simplifying ample function, p, is uniquely determined by
the ideal of F under consideration. Much more freedom is allowed
in the specification of the functions 6 and B.

Let 3 = <@yse..adp> € F" be a basis for ideal a in F. If

a = {0} then 2 = <0,...,0>. Since a = p(a,g) = aJE-e(a,g), we have
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3:6(a,a) = 0. We straightforwardly set 6(a,3) = <0,...,0> in this
case. Ifa=F then0 = p(a,z) = a-goe(a,z). Hence 6(a,a)

n
= <S15e0esSp> e F" such that a = izl 3,5,
this equation over a field, the simplest is to find any integer j-such

s Of the many ways to solve

that aj # 0, set sj = a/aj and set 5; = 0 for i # 3.

Let B = <bj,...,b > ¢ F". Recall that B(B) is defined to be a
function whose value is a sequence of generators for the R-module
V(E) = {SeF: 5P =0} , and note that, since F is a field, V(E)
is actually a vector space. In Section 2.2 we gave an example of such
a 8(b) under the assumption b # <0,...,0>. It is our task here to
remove this assumption from our specification of B(E).

In the following definition we assume, without loss of generality,
that by # 0 for 1 < i <mand b, = 0 form< i <n. If b = <0,...,0>
thenm=0. For 1 <j<nlet 33 be the j-th unit vector of length

n, i.e. 35 = <0,...51,...,0> where the j-th element is 1.

Definition 3.3.1 Let B = <bysersbp> € F". Then g(B) =

<E],...,Et> is defined as follows.

(a) If b=<0,...,00, i.e.m= 0, then t = n and ¢; = 35,
1<3j<n;
(b) Ifm=1andn=1thent=1and ¢, =<0> if m=1 and
-+ - . .
n>1thent =n-1and ¢y = uj+1 for 1 <j <n;
(¢) Ifm>1 then t = n-1, Ej = bj+lﬁl -b135+] for 1< j<m,

<> -+
and c: = u.

j 541 form< j <n.
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o

Notice that if b = <0,...,0> then V(B) = F" which is generated

o

by 63],...,§n>. If b # <0,...,0> then the vector space dimension of
V(B) is n-1, and 8(B) contains exactly n-1 linearly independent
elements of V(B). Hence in both cases B(B) generates V(b).

We note in passing that we can regard the basis <1> as a canonical
basis for ideal @ = F, and the basis <0> as a canonical basis for
ideal a = {0).

Note also that the remark following Definition 2.3.1 applies to
representations in Flx] since a field is also an integral domain. That
is, if A = <A],...,An> e (FIx])" and § = <Sys...»S,> is a represen-

tation for A € F[x] in terms of K, then 3% = ]max a(SiAi)'
<i<n
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3.4 Remainder Algorithm for F[x]: Remainder Selection Rules

Let A be the ideal generated by the basis = <A1,...,An> e (FIx1)"
where F is an effectively given field. In Algorithm 2.3 we defined
the remainder, rem(P,A), in RIx] where R is a simplification ring. We
present in this section a version of Algorithm 2.3 for the polynomial
ring Flx].

In this section we assume A # {0} and that every element of basis
A e (FIx1)" is non-zero.

Let Qi = I quI € FIx] be the value of the variable Q during

the i-th execui?gn of step 3 of Algorithm 2.3, and let D; = D(Qi)

= {I ¢ E: gy # p(q,3])} be the value of D during the i-th execution
of step 4. Recall that 31 is the degree 1 leading coefficient sub-
basis of A. The simplifying ample function p is the one discussed in
the previous section. 1If E& = {0} thenfor all q ¢ F, p(q,sl) = q.
Hence J ¢ Di iff a, # 0 and there exists a j, 1 < j < n, such that
aAJ.IJ.

To specify the remainder choice function in step 4, we need to
give criteria for selecting J ¢ D. Since Q,i is represented as a list
in descending exponent vector order, it is reasonable to select the
largest possible exponent vector from Di' Note also that since F is
a field, p(qy,3;) = 0 if Ty # {0}. Hence, by Lemma 2.3.1, max D,

>max D.,., i.2. @ given term of Q will only be reduced once. We make

i+l
this version of the remainder choice function precise in the following

selection rule.
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Remainder Selection Rule 1 (RSR1) Given Qi and Di as above, at

the i-th execution of step 4 of Algorithm 2.3, J = max Di'

Note that this is the same as requiring J = max {I € E: qQq # 0 and
3j,1<3<n, aAjII}. This is the form in which RSR1 will be used
in the remainder algorithm in this section.

Once we have selected J ¢ Di’ it remains to determine B(qJ,EJ)
for use in steps 5 and 6 of Algorithm 2.3. Recall that KJ = <A]:...,An‘>
is the degree J sub-basis of ideal basis K, where AJ.I = Aj if aAjIJ
and Aj' = 0 otherwise, 1 < j < n. Let k be such that Ak' # 0 and let
ay = 1c(Ak') = 1c(Ak). In the previous section we have seen that
e(qJ,EJ) = <0,...,qJ/ak,...,0; is a straightforward realization of the
8 function where the non-zero entry, qJ/ak, occurs in the k-th position.

The problem now becomes one of deciding which of the possibly
many non-zero elements of KJ to choose. Two immediate possibilities
present themselves. We could choose k such that Akl # 0 and aAk' is
a maximum or aAk' is a minimum. Experimental comparisons of these two
results will be made in Chapter 5. Here we argue that, if we select
k such that aAk' is a minimum, then Ak' will most likely have fewer
non-zero terms than if 3Ak' is a maximum. This would have the effect
of reducing the number of exponent vector comparisons and field
operations required in the sum computed in step 6 of Algorithm 2.3.

We make this discussion precise in the following selection

rule.



Remainder Selection Rule 2 (RSR2) Given J ¢ D; » let I =
min{aAj: 1<j<nand aAj|J}, and let k = min{j: aAj = 1}. Then
o
e(qJ,aJ) = <b],....bn> where by = qJ/ak and bj =0 for j # k.

Note that e(qJ,EJ) as presented here actually depends on KJ as
well as 3& so it is not strictly a function of aj and EJ by them-
selves. We have here actually two remainder selection rules in one.
The first specifies an ordering of KJ and hence of EJ and the second
actually determines B(qd,gd). Since these two sub-rules are so
closely bound in the current situation, we have found it convenient
to treat them as one.

We can summarize RSR1 and RSR2 by saying that we will always
reduce the largest unreduced term of Q with respect to the element of
basis A with the smallest suitable leading exponent vector.

Before giving the remainder algorithm for F[x], we give an
implementation of RSR2 in the following algorithm. For efficiency,
we assume the elements of the basisli are organized such that their

leading exponent vectors are in non-decreasing order.

Algorithm 3.4.1

BESEL(J,A;K,a,B)
[Basis element selection.
Input: J € E, Re<Ap .. 0A> e (FIXD)", A5#0, 1<j<n, and

3A1<oA, <. .. <BA, .

90
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Qutput: If, for 1<j<n, aAjTJ then K=-1 and a and B are undefined.
Otherwise let k be the minimum integer such that 3A [J. Then

K=J-3A, , a=1c(Ak), and B=rd(Ak). This implements remainder selection
rule 2.)

(1) [Initialize.] A,

(2) [Check each basis element.] repeat { ADV(K';A,X');
DPLECR(A;I,a,B); K«EVDIF(J,I); if K#-1 then return; if
EVCOMP(J,1)=-1 then return } until A'=(); return O
We now present the remainder algorithm for F[x]. In the following

P,Q, and the elements of A are assumed to be compatible distributive

polynomials. These algorithms are still abstract because the field F

has not been specified.

Algorithm 3.4.2

Q+dprem(P,A)

[Distributive polynomial over a field, remainder.
Input: P e Flxl, Ae<A;,...,A> e (FIx])", A#0, I<icn, and

3R, <A< .. <RA .

2 n

Output: Q e FI[x], Q=rem(P,K) using remainder selection rules 1 and 2.]
(1) [P=0.] if P=0 then { Q+P; return }.
(2) [Initialize.] Q'«P; Q«().
(3) [Attempt to reduce 1t(Q').) repeat { DPLECR(Q';J,q,Q');
BESEL(J,A;K,a,B); if K=-1 then Q«COMP2(q,J,Q) else
{ befneg(fquo(q,a)); Q'+dpsum(Q’ ,dptermpr(K,b,B)) } } until
Q'=0.
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(4) ([Finish.] if Q=() then Q«0 else Q«INV(Q); return O

We also present an algorithm to compute semi-remainders in F[x].
In computing a semi-remainder, we terminate as soon as 1t(Q) e ker(R).

Hence remainder selection rule 1 does not apply.

Algorithm 3.4.3

-3
Q«dpsrem(P,A)

[Distributive polynomial over a field, semi-remainder.
Input: P e FIxl, BechAp,...,A > ¢ (FIxI)", A;#0, 1<i<n, and
9A <8R <. L <A .

OQutput: Q e F[x], Q=srem(P,K) using remainder selection rule 2.]

(1) [P=0.] Q+<P; if P=0 then return.

(2) [Attempt to reduce 1t(Q).] repeat { DPLECR(Q;J,q,Q');
BESEL(J,A;K,a,B); if K=-1 then return; b+fneg(fquo(q,a));
Q«dpsum(Q' ,dptermpr(K,b,B)) } until Q=0; return O

The termination and correctness proofs of Algorithm 3.4.1 are
obvious. The termination proofs for Algorithms 3.4.2 and 3.4.3 are

related to the termination proof for Algorithm 2.3 given in Lemma

2.3.3. Let Qi' = I quI be the value of variable Q' in Algorithm

IeE
3.4.2 at the beginning of the i-th execution of the repeat loop in

1 J
j such that aAjIJ then Q

step 3. Let J = 3Q. and a = 1c(Aj), 1 <j <n. If there exists a

=0 " J=-9A;
j+1 = Q4 -(qy/a;)x"" "3 A; and hence

301;] <3Qi" If such a j does not exist then Qiil = rd(Qi') and
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hence aQi;] <BQi'. Since the degree of Qi' is being reduced by each
iteration of the repeat loop, the algorithm must eventually terminate.
A similar, and even simpler, argument can be made for A1gorithm 3.4.3
with Q taking the place of Q'.

The detailed discussion at the beginning of this section shows
how Algorithm 3.4.2 is a specialization of Algorithm 2.3. Hence, when
Algorithm 3.4.2 terminates, Q = rem(P,K). To prove Algorithm 3.4.3

is correct, we need to show that at termination Q = P mod R and

1t(Q) ¢ ker(R). The first of these properties is obvious. When this
algorithm terminates, either Q = 0 or there is no j such that
aAjlaQ. The latter case is equivalent to saying that Eéq = {0} and
hence 1¢(Q) = p(1c(Q), an). Therefore, 1t(Q) e ker(RA) and we are
done.
Without specifying the coefficient domain, it is not possible
to completely analyze the computing times of Algorithms 3.4.2 and
3.4.3. We can, however, derive a function which dominates the number
of exponent vector operations required by Algorithm 3.4.2 (and hence
also by Algorithm 3.4.3) when total degree ordering is being used.
Consider now exponent vectors representing monomials in r
variables. The number of exponent vectors with total degree m is just
the number, N(r,m), of distinct ways of choosing non-negative integers
€ys-.-98, (not necessarily all distinct) such that i£1 e; = m. By
m:r;l). If we let N(r,m) be the

number of exponent vectors with total degree less than or equal to m,

induction we can show that N(r,m) = (
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m m
then N(r,m) = £ N(r,m) = I (k+r-1) = (™r) -
k=0 = r

Zo U N(r+1,m) (see

[KNU68], Chapter 1).

Let m, be the total degree of exponent vector aAi for 1 <i<n
and let m' be the total degree of 3P. If m = max{m',m],...,mn}, then
N(r,m) is a bound on both the number of terms in P and the number of
terms in any basis element. During the i-th execution of the repeat
loop in Algorithm 3.4.2, aQi' < 3P. Thus the total degree of Qi' is
less than or equal to m, hence the number of terms in Qi' is less than
or equal to N(r,m).

Since BQ;+] <aqi' the repeat loop can be repeated a maximum of
N(r,m) times. During the i-th execution, the number of exponent vector
operations required by dpsum and dptermpr is dominated also by
N(r,m).

The number of exponent vector operations required by Algorithm
3.4.1 is clearly dominated by n. Combining these results we see that
the number of exponent vector operations required by Algorithm 3.4.2
is dominated by N(r,m)(N(r,m) +n).

The case of lexicographic ordering cannot be analyzed in the same
way because the number of terms in a polynomial cannot be bounded by
a function of its leading exponent vector. In Chapter 5 we present
some computational experiments using both total degree and lexico-

graphic ordering.
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3.5 Canonical Complete Bases in F[x]

Let R be a simplification ring, let A # {0} be an ideal in R[x],
and assume we have fixed a monomial ordering, <. At the end of
Section 2.3 we remarked that there are many possible complete bases
for A. The complete basis computed by Algorithm 2.5 depends on the
initial basis and on the remainder and consensus selection rules
chosen.

In this section we restrict our attention again to the case where
R is a field, F. We describe a special basis called a "monic complete
kernel basis" which can be shown to be uniquely determined once an
ideal in F[x] and the monomial ordering are chosen. Section 3.6
describes algorithms for computing such a basis. The importance of a
complete kernel basis is that it is, in a sense, a minimal complete
basis. (In [TRI78] a similar type of basis is described in case R
is a ring very much like a simplification ring and it is possible to

compute canonical bases for ideals in R.)

Let A

<A],...,An> be a basis for ideal A in F[x]. If either

n=1 and A1 Oor, for 1 <i <, Ai # 0 and Ai is a monic polynomial,
then we say that R is a monic basis. Note that since F is a field,
it is always possible to compute a monic basis for A from any other
basis for A.

We now describe two important kinds of bases. We give algorithms

for computing these bases in Section 3.6. If n > 2 then, for
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1<1<n, let Ki = <A],...,Ai_], Ai+1""’An>’ i.e. Ki is just basis

R with A; removed.

Definition 3.5.1 A = <A],...,An> is said to be a semi-kernel
basis for A if eithern =1, or n > 2 and, for 1 < i < n, A; # 0 and
A; « sker(R;).

An important property of semi-kernel bases is given in the follow-
ing lemma.

Lemma 3.5.1 If A= <Ays---sA>, n > 2, is a semi-kernel basis

then for 1 < i, j <n, i#j, aAitaAj.

Proof Sincen >2,A; #0for1<i<n. Leta= 1c(A1),
I-= aAi, and let 31 be the leading coefficient sub-basis of Ki' Recall
A; e sker(Ki) just when 1t(A;) « ker(Ki), i.e. a=op(a,a;). In
Section 3.3 we noted that p(a,ﬁl) #0 iff E} = {0}. But, going back
to Definition 2.2.5, we see this implies that, for 1 < j < n and

j # is aAjTI, i.e. that BAjTaAi.D

Hence, in a semi-kernel basis, the leading term of each basis
element is irreducible with respect to the other basis elements, i.e.
Srem(Ai ’Ki ) = A.i .

An even more restrictive class of bases is given next.

Definition 3.5.2 1= <A],...,An> is said to be a kernel basis

for A if either n=1orn > 2and, for 1 <i <n, A; # 0 and

Ai € ker(K.i ).
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Note that this means that rem(Ai,Ki) = Ai’ i.e. A1 cannot be
reduced with respect to the rest of the basis.
We now describe the special properties of a complete semi-kernel

basis. By the leading exponent vector set, L(R), of basis

X = <Ays...,A> we mean the set {3Aq,...,3A }.

Lerma 3.5.2 Llet A = <A1,...,An> be a complete semi-kernel
basis for ideal & in FIxJ, and let B =<B],...,Bs> be any other com-
plete basis for A. Then L(RA) ¢ L(E) and n < s.

Proof If n=1 and A; = 0 then A = {0} and B must be of the
form <0,...,0>-so the lemma is true. If n =1 and A] # 0 then clearly
n <s. Since A is a principal ideal generated by A, aAliaBi for
1

A

i <s. But since B is complete there must exist a j, 1 <j<s

such that 3B;|3A;. Thus for this j»3B; = aAy and hence L(K) ¢ L(B).
Now assume n > 2. For 1 <1 <n, A; ¢ K, and since Bis a

complete basis there exists a j, 1 < j < s such that BBjIBAi. But

Bj e A hence, since A is a complete basis, there exists a k, 1 < k <n

such that aAklaBj, and hence 8A, |3A,. Therefore, since R is a semi-

kernel basis,by Lemma 3.5.1, 3A [3A, iff i = k. Hence 3B = 9A; and

L(R) < L(B).O

We have an immediate corollary.

Corollary 3.5.1 If R and B are both complete semi-kernel bases
in Lemma 3.5.2 then L(A) = L(B) and n = s.

Thus we see that the number of elements in a complete semi-

kernel basis is determined only by the ideal and the monomial ordering.
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A complete semi-kernel basis is minimal in the sense that the number
of elements in it is less than or equal to the number of elements in
any other complete basis for the same ideal.

Note that the number of elements in a complete semi-kernel basis
depends on the monomial ordering because completeness is defined in
terms of simple constructibility (Definition 2.3.2) which depends
directly on the monomial ordering. As an example, let A= <y+x2, x3>
and B = <y2, Xy, x2+y>. One can verify that A and B generate the
same ideal in Q[x,y]. In fact, Ais a complete semi-kernel basis with
respect to lexicographic ordering and Bis a complete semi-kernel
basis with respect to the total degree ordering. (K and B are
actually monic complete kernel bases.)

With the monomial ordering fixed, we can now prove the follow-
ing.

Theorem 3.5 If R and B are monic complete kernel bases for
ideal K:in FIx], then A and B differ only in the order of their
elements.

Proof Since a kernel basis is also a semi-kernel basis, then,
by Corollary 3.5.1, we can assume A= <A],....An> and B = <B],...,Bn>
where 3A; = 8B, for 1 <i <n. If n=1 then A, is a multiple of By,
and B] is a multiple of A]. Since both A] and 81 are monic, we have
Ay = B] and we are done.

Now assume n > 2, and consider C; = Aj=By for 1 <i <n. We

wish to show Ci € ker(K). First note that since A and B are monic
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bases, lt(Ai) = It(Bi), hence C; = rd(Ai)-rd(Bi). Furthermore, with
A, given in Definition 3.5.1, A, « ker(A,), and since 3A; > 3(rd(A;)),
rd(Ai) e ker(R). Similarly, rd(Bi) e ker(B). Since & and B are
complete, we know ker(R) = ker(B) by Lemma 2.3.6 and Definition 2.2.6.
Hence rd(Bi) ¢ ker(R).

Let rd(Ai) = IZE aIxI and rd(Bj) = IﬁE beI Thus ay = p(al’;l)
and by = p(bI’;I) If a; # 0 or by # 0 then, since F is a field,
Section 3.3 shows a = {0}. But then aj=by = p(aI-.bI, aI), hence
C; e ker(R).

But C; € A, and A is complete so rem(Ci,K) = 0. But if C; e ker(R)
then C; = rem(Ci.K). Hence C; = 0 and we have rd(Ai) -rd(Bi) =0
or Ay = B;.[0

We conclude this section with a lemma which provides a foundation
for an algorithm to compute a complete kernel basis from a complete
semi-kernel basis.

Lerma 3.5.3 let A = <Ays-..sAp>s n > 2, be a complete semi-
kernel basis for ideal A # {0}, érranged such that 3A; < 3A, < .o < 3R

Let Ay = Aj and for 1 < i <n let A, = dprem(A . ,A;) where

i+1°1
Ki = <A’ ... WAy'> . Then Kh is a complete kernel basis for A.

Proof Let Kol = A and let Ki' = <A12.. ,A1 ’ 1+1, An> for
1 <1i<n. Now Ko' is a complete basis for A, so let us assume Ki
is a complete basis for A. Since 3Ry >0, for i+ 1 <j<n,

Definition 2.2.2(a) implies that Aj cannot be used to remainder A,,,.
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i
Therefore, by Lemma 2.8.1, Kil1 is also a complete basis for A.

Hence Ai+] = dprem(A.+],Ki) = dprem(Ai+],<A1,...,Ai,Ai+2,...,An>).

Furthermore, since 3A, = 3A; # 20, A,' =
] [ ] $ 1
dprem(Ai ’<A1""’Ai-l’Ai+1""’A;>) hence Kn is a kernel
basis.[D
We now turn to the problem of computing complete semi-kernel and

complete kernel bases.
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3.6 Complete Basis Algorithm for F[x]: Consensus Selection Rules

In this section we describe an algorithm for computing monic
complete kernel bases in Fix]. Let A be an arbitrary basis for ideal
R in Flx]. Algorithm 2.5 provides a method for computing a complete
basis for A once the function B and the consensus choice function have
been specified. Note that Algorithm 2.5 requires every element of
cons(K) to be remaindered. By combining results of Sections 2.8 and
3.3 we will show that it is possible to decide if Ris a complete
basis by using a rather small subset of cons (R).

As in Section 3.4 we assume that A # {0} and that every element
of A is non-zero. We wish to point out that Algorithm 2.5 only forms
a loose framework for the algorithm to be presented in this section.
In particular, we will never form the set C=1(Ce cons(K): rem(C,K)

# 0}. Rather, we will discuss strategies for choosing subsets of
-
elements of A whose consensus polynomials are possible candidates for

inclusipn in C. The consensus choice function mentioned in Section
2.5 thus becomes a function which selects a subset of Z whose con-
sensus in to be evaluated.

Our first step in specifying a complete basis algorithm is to
specify the remainder algorithm to be used. The remarks following
the termination proof of Algorithm 2.5 show that, in the computation

of a complete basis, it is sufficient to form the semi-remainder

of a-given consensus polynomial instead of the full remainder. Since
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the semi-remainder algorithm produces a semi-kernel polynomial, it,
in general, has a smaller computing time than the remainder algorithm.
We will use the semi-remainder algorithm, dpsrem(P,A), presented in
Section 3.4.

To continue the specification of the complete basis algorithm
we discuss consensus selection rules.

Consensus Selection Rule 1 (CSR1) If B ¢ F" then a sequence

of generators for V(B) will be computed using 8(b) in Definition 3.3.1.
We develop the implications of this selection rule in the
following definitions and lemmas.

Definition 3.6.1 Let A and B be two non-zero polynomials in

Fix] with a = 1c(A), b = 1c(B) and J = 1cm(3A,3B). The consensus of

the pair (A,B) is defined to be the polynomial P = bxI3Ay _ axJ-3

B.
We denote this by cons(A,B).

Definition 3.6.2 Let A = <Ay,s...,A > be a basis for jdeal A
in F[x]. Then the set {cons(Ai,Aj): T<i<jsn, Ab#0, Aj # 0}

is called the modified consensus set of K, and is denoted mcons(K).

Note that mcons(R) is clearly a subset of cons(K) determined by
the B given in CSR1.

Lemma 3.6.1 Let A be a basis for ideal K in FIx]. Then every
element of mcons(K) is simply constructible from R iff every element
of cons(R) is also.

Proof Since mcons(R) c cons(ﬁ), the only if part is obvious.
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let C ¢ cons(i). If C = 0 then C is simply constructible from
K, so assume C # 0. According to Definition 2.4.1 there exists a
Be N(K) and a € ¢ (FIx])" such that C = C.B. For this B let us
rearrange the basis R such that if B = <B1,...,Bn> then B_i = Ai 0
for 1 <i<mandB; =0 form<i<n. Since C# 0 we knowm > 2.

Also let b = <b1,...,bn> where b, = 1c(B ), 1<i<n.

By Definition 2.4.1 T = <c]xK'aA],...,cme'aAm,O,...,O> where

= lcm(aA],...,aAm) and € = <c],...,cm,0,...,0> is an element of
8(B). Now C # 0 so, by Definition 3.3.1 and CSR1, € = b, u] -b; u for
some j, 2 <j<m andC= bij'aA1A]—b]xK'aAjAj.

Let J = 1cm(aA1,aAj). Now J|K and for 1 < j <m, bj = 1c(Bj)

1c(Aj) = ay. Thus we can write C = xK'J(aij'aA1A] -a
K-Jd
X cons(A],Aj).

1

But cons(A],Aj) € mcons(K) and since cons(A],Aj) is simply con-
structible from A, then so is C = xK-J cons(A],Aj).D

Theorem 2.3 tells us that A is complete iff all elements of
cons(K) are simply constructible from K, or, what is the same thing,
iff all elements of cons(R) remainder to zero. Thus to check if R
is a complete basis using Algorithm 2.5 requires 2" remainder opera-
tions where n is the number of basis elements in R As a consequence
of Theorem 2.3 and Lemma 3.6.1 it is easy to see that in F[x], R is
a complete basis if every element of mcons (R) remainders to zero.

The complete basis algorithm to be presented relies on this and hence



104

requires at most n(n-1)/2 remainder operations to determine whether A
is a complete basis.

We can further reduce the number of consensus polynomials which
need to be remaindered by applying Lemma 2.8.3. Let A= <A],....An>
with a, = Tc(A;), 1< <n. Assume A; # 0 and A; # 0. Since F is a

J
cons(Ai ,AJ.) is simply constructible from the basis <Ai ,Aj> and,

field, 3 and a, are units; if 1cm(3Ai,aAj) = aAi + BAJ., then

therefore, also from the basis A.

Every time a non-zero consensus remainder is found in step 5 of
Algorithm 2.5, the remainder polynomial is appended to the current
basis. No provision is made for the possible deletion of basis
elements. When the coefficient ring is a field, however, deletions
are sometimes possible, as the next lemma shows.

Lemma 3.6.2 Let A = <A],...,An> generate ideal A in F[x]. Assume
A, #0, A2 #0, and 3A2|3A1. Let A." =dpsrem(cons (A ,AZ).K). Then & is
also generated by K'==<A]',A2,...,An>. If R is complete, so is R

Proof Let A]" = cons(A;,Ay). Then A]" = 2, -a1x3A1'3A2A2
since lcm(aA],aAz) = BA]. Hence A, = (A1"-+a]xaA1°3A2A2)/a2. Hence
A" = <A]",A2,...,An> generates A, and it is easy to see that if
P e A is simply constructible from R then it is also simply con-
structible from A .

Now A]' = dpsrem(A]",K). But aA1“ <3A;, hence
dpsrem(A]",K) = dpsrem(A1", <A2,...,An>). Therefore, by Lemma 2.8.1,

A' generates A, and if R is complete, then so is A'.0
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We take Lemma 3.6.2 to define our second selection rule.

Consensus Selection Rule 2 (CSR2) Let K = <A1,...,An>. and

let (Ai’Aj) be the next consensus pair selected, i # j. If 3A1|3Aj
then delete Aj after computing dpsrem(cons(Aj,Ai),K)), otherwise, if
aAjlaAi then delete Ai after computing dpsrem(cons(Ai,Aj),I).

Note that the consistent application of this rule will produce
a complete basis that is also a semi-kernel basis.

By applying Lemmas 3.6.1 and 2.8.3 along with consensus selection
rule 1, we have managed to considerably restrict the size of the
consensus set generated in Algorithm 2.5. It remains now to specify
a consensus choice function which will define the order in which the
remaining consensus operations will be evaluated.

Let A = <Aj,...,A > and Tet L = {(Aj,A;): 1 <1 < § < n such
that A, # 0, A; # 0, and 1cm(3A,,3A;) # dA; + 3As}. L is called the

consensus 1list of basis A. The previous results in this section show

that A is simply constructible iff for all (A;.Aj) e L, cons(A;,A;)
remainders to zero with respect to .

Now if (Ai'Aj) el, letd = 1cm(8Ai,aAj) and C = cons(Ai,Aj).
By Definition 3.6.1, 3C < J, and hence the remainder of C with respect
to & will have degree strictly less than J. If this remainder is
non-zero, it will be added to K. One can argue that, by choosing
the pair (Ai’Aj) with minimal J, the smallest possible polynomials

will be added to R.
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Notice also that L can be partitioned into two disjoint subsets
as follows: Ly = {(A, ,Aj) e L: aAi;aAj or aAjlaAi} and L, = L-L,
where the minus sign indicates set theoretic difference. L] contains
the consensus pairs which will result in the deletion of an element

from basis K, and is called the deletion consensus list of A1f we

form the consensus of pairs from this 1ist whenever possible, then we
will limit, to some extent, the growth of the number of elements in A.
This should usually have the effect of speeding the remainder algorithm
and reducing the number of consensus operations required.

We combine these two strategies in our third consensus selection
rule. This completes the specification of the consensus choice
function.

Consensus Selection Rule 3 (CSR3) Let L1 and L2 be defined as

above. If L1 is non-empty then let L' = L] else let L' = L,. Let
(A,B) be the first element of L' such that J = 1cm(3A,3B) = min
{fcm(3A',3B') : (A',B') € L'}. The next consensus to be formed will
be cons(A,B).

Before we can give the actual complete basis algorithm, we need
to give the specifications for an algorithm for inserting lists con-
taining exponent vectors in other lists. We assume the availability

of the following algorithm.

L'«EVLIN(L,M,k)
[Exponent vector, list insertion. L and M are lists. If L=() then

L'=(M). Otherwise L=(M],...,MS) where M, is a list such that
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Ki=FIRST(Mi) is an exponent vector compatible with the exponent
vector K=FIRST(M). The elements of L are arranged such that the
exponent vectors K, are in non-decreasing (k=1) or non-increasing
(k=-=1) order. M is inserted in L such that the ordering is pre-
served. L' is the new list; L is modified.]

Assuming fixed length exponent vectors, if s

LENGTH(L) then
the computing time of EVLIN is dominated by s+1. EVLIN will be
used to perform insertions in lists representing ideal bases and in
lists representing sublists of consensus lists.

We represent the consensus list of basis A by a two element
list L = (L],Lz) where Ly is the deletion consensus list and L, con-
sists of all other consensus pairs. If & = AyseesA>s Ay 70,
Aj # 0 and lcm(aAi,aAj) # 3Ai + aAj, then the consensus pair (Ai’Aj)
is represented in Ly or L, by the triple (K,A,B) where K = 1cm(Ai,Aj).
If 3Ai|3Aj then A = A., B = A, otherwise A = A

J
and L, = () then L = ().

j» B = Aj. If Ly = ()
The consensus list for basisJi is maintained by algorithms
CLGEN, CLSEL, and CLDEL. CLGEN maintains the consensus lists L, and
L2 such that the least common multiples of the consensus pairs are in
non-decreasing order in each list. Thus CLSEL can implement CSR3
by merely se]ecting the first consensus pair in L] or LZ‘ CLDEL

deletes unnecessary.consensus pairs,



Algorithm 3.6.1

L'<CLGEN(L,A,B)

[Consensus list generate new elements.

Input: L, a consensus list, A ¢ F[x] and §=<B],...,Bn> € (F[x])",

A#0, B;#0, 1<icn.

Output: L' a consensus list composed of the elements of L and, in

addition, the consensus pairs (A,B;), 1<i<n, such that

1cm(aA,aBi)#aA+aBi. The sublists of L and L' are arranged such that
the least common multiples of the leading exponent vectors of the
consensus pairs are in non-decreasing order. This partially
implements consensus selection rules 2 and 3. The list representing

L is modified.]

(1) [Initialize.] if L#() then FIRSTZ(L;L],LZ) else
{ L4=0)s Ly=() 35 I«DPLEV(A); B'<B.

(2) [Pair A with elements of B.] repeat { ADV(E';B,B'); J<DPLEV(B);
K'«EVGCD(I,d); if K'#() then { K«EVLCM(I,J); I'<EVDIF(K,I);
J'<EVDIF(K,J); if J'=() then MLIST3(K,B,A) else
M-LIST3(K,A,B); if I'=() vd'=() then L +EVLIN(L],M,1) else

L+EVLIN(L,,M,1) 1} until B'=().

(3) [Return L'.] if L]=() & L2=() then L'«() else
L'«LIST2(Ly,L,); return O

1
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Note that in step 2 we avoid adding the pair (A,Bi) to the
consensus list if gcd(aA,aBi) = () = 3(1). This is equivalent to
checking whether lcm(aA,aBi) = 3A+03B;. Lets = max(LENGTH(L1),
LENGTH(LZ)). Then, for a fixed number of variables in the exponent
vectors, the computing time of CLGEN is dominated by n(n+s).

The algorithm to select the next consensus pair is very simple.

Algorithm 3.6.2

CLSEL(L;L',K,A,B)

[Consensus list, selection.

Input: L=(L],L2) a consensus list, where either L]#() or LZ#().

Output: A,B ¢ F[x], the next consensus pair, and K=lcm(3A,3B). L'

is a consensus list equivalent to L with the pair (A,B) removed.

This partially implements consensus selection rule 3.]

(1) [Initialize.l FIRSTZ(L;L],LZ). |

(2) [Choose pair.] if L]#() then ADV(L];M,LT) else ADV(LZ;M,LZ);
FIRST3(M;K,A,B).

(3) [Finish.1 if Ly=() and Lo() then L«() else L+LIST2(L1,L2);

return O

The computing time for CLSEL is codominant with 1.

Algorithm 3.6.3

M<CLDEL(L,C)

[Consensus list, deletion.

Input: L, a consensus list, and C, a distributive polynomial.

109
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Output: M, the consensus list gotten from L by deleting all consensus

pairs containing C. L is modified.]

(1) =().1 if L=() then { Me(); return 1.

(2) (Scan Ly then Ly.] FIRSTZ(L;L],LZ); M'«Lys iel,

(3) Mv=().1 if M'=() then go to 6.

(4) [c in FIRST(M').] FIRSTB(FIRST(M');K,A,B); ijf C=Av(=B
then { M'<RED(M'); go to 3 1

(5) [Scan M'.] L"<M' L'<RED(L"); while L'#() do
{ FIRST3(FIRST(L‘);K,A,B); if C=A vC=B then SRED(L";RED(L'))
else L"«L'; L'<RED(L") }.

(6) [Next list.] if j=1 then { L1+M'; M'+los j«2; go to 3 13

L<M'.

2
(7) [Return M.] if L]=() & L2=() then M<() else M*LISTZ(L1,L2);

return O

If L= (Ll’LZ)’ the computing time of CLDEL js dominated by
max(LENGTH(L1),LENGTH(LZ)) +1.

Finally we assume the existence of an algorithm to delete
y-integers (see Section 1.6) from a list of y-integers. This
algorithm will be used to delete elements of a polynomial ideal
basis. The computing time of LDEL is dominated by the number of

elements in the list L.

MeLDEL(L,A)

[List deletion. L=(L1,...,Ln), n>1, is a list of y-integers. A is
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a y-integer. If i is the least integer such that L1-=A, then
M=(L],...,Li__1,L1.+],...,Ln). Otherwise M=L. L is modified.]

We can now present an algorithm for computing monic complete
kernel bases in F[x]. This algorithm is abstract only in that it

depends on arithmetic in the coefficient field F.

Algorithm 3.6.4

Temckbasis ()

[Polynomial over a field ideal basis, monic complete kernel basis.
Input: A=cAys... A € (FIx1)", a basis for ideal A in F[x], with
A;#0, 1<i<n, and aA]faAzg...gaAn.
Output: E=<C],...,CS> € (F[x])s, a monic complete kernel basis for
A. 8C1<302<...<3Cs. This algorithm uses cONsensus selection rules 1,
2, and 3, and remainder selection rules 1 and 2. The 1ist repre-
senting R is modified.] n
(1) (Initialize consensus list.] Ch; L=(0); AOV(A;AR )5 while

Tr#() do { LeCLGEN(L,AR')3 pov(A;ARY) 3.
(2) [Select consensus pair.] if L=() then go to 8;

CLSEL(L;L,K,A,B).
(3) [Form consensus and semi-remainder.]

DPLECR(A3I,a,A')s 1'<EVDIF(K,I); a~fneg(a);

DPLECR(B;J,b,B')3 J'<EVDIF(K,J)3

C+dpsum(dptermpr(L*,b,A") ,dptermpr(J*,a,8"'));

C+dpsrem((:,f) .
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(4) ([Delete if possible.] if I'=() then { CeLDEL(C,A);
L«CLDEL(L,A) 1.

(6) [C is constant?] if C=0 then go to 2; if DPLEV(C)=() then
go to 7.

(6) [Modify consensus 1ist and basis.] L+CLGEN(L,C,E);
EEVLIN(C,C,1)5 go to 2.

(7) [ldentity element is in ideal.] C<LIST1(dpmon(C)); return.

(8) [Make T into monic kernel basis.] ADV(E;C,B);
E-L1ST1(dpmon(C)); while B#() do { ADV(B;C,B);
G«dprem(c,t); C«~dpmon(C); TEVLIN(C,C,1) }; return O

The termination and correctness of Algorithm 3.6.4 are directly
related to the termination and correctness of Algorithm 2.5. In .
step 6 of Algorithm 3.6.4 the polynomial C added to basis T is a
non-zero semi-kernel polynomial with respect to €. Lemma 2.5.2 shows
that we can add only a finite number of such polynomials and hence
Algorithm 3.6.4 terminates. At termination the consensus list L is
empty indicating that all elements in mcons (C), and hence all elements
of cons(C), are simply constructible from €.

Since we are deleting elements whenever possible in step 4, the
basis C at the beginning of step 8 will be a semi-kernel basis.

Step 8 of Algorithm 3.6.4 is a straightforward jmplementation of the
algorithm embedded in Lemma 3.5.3 with the added provision that the
basis elements are made monic. Therefore, at the end of step 8, t

js a monic complete kernel basis for A. Note that in this step we




113

make explicit use of the order of the basis elements.

To analyze the computing time of Algorithm 3.6.4 it is necessary
to specify the field F being used. But, without specifying F, we can
discuss the possibility of bounding the number of exponent vector
operations required. To find such a bound we need to be able to find
an upper limit on the number of basis elements in any of the inter-
mediate bases and on the maximum degree of any polynomial contained
in these bases.

In the termination proof for Algorithm 2.5 we showed that the
Jeading term ideals generated by the intermediate bases formed a
strictly ascending chain of ideals in R{x]. The same thing holds
true in F[x] during the execution of Algorithm 3.6.4. In [SEI56]
and (SEI71], Seidenberg discusses bounds for the maximum length of
any strictly ascending chain of jdeals in F[x] in case 2 bound exists
for the maximum degree in any variable of the basis elements of any
idea} in the ascending chain. In [SEI56] a bound is given for the
case where each jdeal in the chain is generated by monomials--just
the situation we have in Algorithms 2.5 and 3.6.4. Unfortunately,
the chain length bound Seidenberg derives js not even a primitive
recursive function of the degree bounds.

In the next chapter we give a modi fication of Algorithm 3.6.4
which controls the degree growth and the number of elements in the
jntermediate bases. This provides us with an algorithm whoée com-
puting time js polynomially bounded for the polynomial ring

GF(p) [x.y1.



CHAPTER FOUR:

Resultant Systems and Complete Bases

4.1 Introduction

In the previous chapter, we indicated that the analysis of the
complete basis algorithm of Section 3.6 is very difficult. The pre-
sent chapter introduces the notion of a resultant system of a set of
polynomials, and shows how this system can be used to yield a poly-
nomially bounded complete basis algorithm for certain polynomial rings
The motivation for this work comes from the following observation.
Suppose ideal A in F[x,y], F a field, is generated by the polynomials
A](x,y) and Az(x,y). We wish to find a complete basis for A. By
Lemma 2.8.2, we can assume, without loss of generality, that gcd(A],A2)=1.
Let us assume A] and A2 are of positive degree in both x and y. If Rx
and Ry are the resultants of A] and A2 with respect to x and y, respec-
tively, then RX#O and Ry#O (see [VdW70a]). We also know that RxeF[y]
and RyeF[x] and, further, that there exist S

x’sy’Tx’ and TysF[x,y] such
that SxA1+TxA2=Rx and SyA]+TyA2=Ry.Hence, Rx,RysA, and since they are

univariate, we can use them to limit the number of intermediate basis
elements and their degrees during the computation of a complete basis.
Sections 4.2 and 4.3 discuss the problems of computing multi-
polynomial gcd's and resultant systems thus generalizing the resultant
to the case of more than two polynomials. Section 4.4 describes a
version of the complete basis algorithm which can be applied when the
ideal contains an appropriate set of univariate polynomials. Section

4.5 combines the results of Sections 4.2, 4.3, and 4.4 in a complete
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basis algorithm which, for bivariate polynomials over GF(p), has a poly-

nomially bounded computing time.
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4.2 Multipolynomial Greatest Common Divisors

To make full use of Lemma 2.8.2 in computing complete bases, we
need to be able to find the greatest common divisor of several (i.e.,
more than two) polynomials. In this section, we present an informal
discussion of this problem along with information concerning the SAC-2
system to aid in understanding the detailed algorithms presented in
Appendix B.

Let A be a polynomial in R[x]=R[x],...,xr]. In this section, we
will use the notation aiA to represent the degree of A in variable X
Also, if R=Z, we use |A|_ to denote the max norm of A, i.e., the maximum -
absolute value of the integer coefficients of A, and we use |A|, to
denote the sum norm of A, i.e., the sum of the absolute values of the
integer coefficients of A. If d is a non-zero integer, then by the
length of d, L(d), we mean the number of digits required to represent
d in some fixed number base.

If A1 and A2 are polynomials in R[x] where R=Z, the ring of inte-
gers, or R=GF(p), the finite field with p elements, p a prime, then the
problem of computing G=gcd(A1,A2) is relatively well understood. Let
us assume that 3.A;,3;A,<m for 1%i%r and if R=Z, then we assume
|A1|1’ IAZ’] < d. Under the assumption that all primes are single pre-
cision, that a negligible number of "unlucky" primes are processed, and
that G,A]/G, and A2/G have sum norms of d or less, Brown [BRN71] has
shown that modular algorithms lead to the following results. If R=GF(p)

r+1

then the time to compute G is dominated by m If R=Z, then the time

to compute G is dominated by mr+1L(d) + mrL(d)z. A prime is said to be
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"unlucky" if the gcd of the homomorphic images of A1 and A2 has degree
in some variable different from the degree of the homomorphic image of
G (see [BRN71]).

The restrictions mentioned in the previous paragraph imply that
the computing times given are not true bounds on the maximum computing
time for finding G. We now give a derivation of maximum computing
times for gcd algorithms similar to Brown's.

A modular algorithm to compute G=gcd(A],A2) in R[x],...,xr] can
be described informally as follows:

(v) 1If A] and A2 are in the coefficient ring, then we assume we
have an algorithm to compute G; if not, let G=0.

(2) Choose a prime element, p, of the coefficient ring and set
Ai=A] mod p, A5=A2 mod p.

(3) Compute G°=gcd(A7,A7) in RLxys. 005 1/ (p).

(4) If G=0, then set G=G”; otherwise combine G and G” using the
Chinese Remainder Algorithm.

(5) If enough lucky primes have been processed, then G=gcd(A],A2);
otherwise, repeat steps 2 through 5 with a new prime.

If R=GF(p), p a single precision prime integer, then the coeffi-
cient ring for the gcd algorithm described is GF(p)[xr]. A prime element
of this ring is a polynomial xr-b where beGF(p). The number of primes
required by the algorithm depends on the degree of G. Hence, p must be
fairly large for the algorithm to succeed.

Let T(r,m) be the maximum computing time required to find G when

R=GF(p) and 31A1’31A2<m’15 iSr. If r=1, then it is possible to compute
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G using the Euclidean algorithm in GF(p)[x]] in time dominated by m2.
Hence, T('I,m)Sfm2 where f is a constant.

Assume r22. Reduction modulo xr-b is actually evaluation at xr=b.
Hence, one execution of step 2 takes time dominated by mr, the number
of terms in A] or AZ' The same bound holds for a single execution of
the Chinese Remainder Algorithm in step 4, which in this case is actual-
ly polynomial interpolation. The remaining step, step 3, requires the
amount of time given by T(r-1,m).

To determine the number of times the loop from step 2 to 5 is
executed, we proceed as follows. Since GIAI and G|A2, 9.6<m. Hence,
at most m lucky primes must be processed before G=gcd(A],A2). However,

2

Brown [BRN71, p495] shows that at most 2rm unlucky primes will be

encountered. Hence, we can express T(r,m) as follows:

T(1,m) £ fmz,

™2, Zrsz(r-l,m).

T(r,m) < frm
By induction on r, we can show that T(r,m) ¢ (2r-1)fr!m2r which is domi-
nated by (2rm2)r. This, then, is our maximum computing time bound for
the case R=GF(p).

If R=Z, then the coefficient ring is just the integers and the
primes used are just the integral primes. If p is a single precision
prime integer, then the gcd computation in step 3 takes place in the
ring GF(p)[x],...,xr].

Let T"(r,m) be the maximum computing time required to find
G=gcd(A],A2) when R=Z, 3.A;,3;A,<m and ]A1I1,]A2l]<d. Let us first

consider the numbers of lucky primes required. Let g=|G|]. Since
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GIA], a result of Gelfond [GEL60, p135], shows that gfemrlA]l]Semrd;
Hence, L(g) is dominated by mr+L(d), and the number of lucky primes is
also dominated by mr+L(d). The number of unlucky primes is shown by
Brown [BRN71, p492] to be dominated by mrlL(d).

The computing time for the modular reduction in step 2 for one
single precision prime is dominated by m'L(d), the number of terms in
A] or A2 times the time to reduce one term. The time to compute the
gcd over GF(p) for a single prime is given by T(r,m) which we showed
to be dominated by (Zrmz)r. Finally, the time to apply the Chinese
Remainder Algorithm for a single prime is dominated by mrL(g) which is
dominated by m" (mr+L(d)).

Combining these results we find that T°(r,m) is dominated by
mrL(d) (m"L(d) + (Zrmz)r + m (mr+L(d))) which, in turn, is dominated by
2" ™1 2 ()™ L (0) 2

We now turn to the problem of computing the greatest common divi-
sor of more than two polynomials. If A],...AneR[x], m22, then the most
straightforward way to determine G=gcd(A1,...,An) is to compute
G=gcd(gcd(...(gcd(A],Az),A3)...,An_]),An). The cofactors of A]""’An
with respect to G are just the polynomials A]/G,...,An/G. These can
be computed by division. Let aiAj<m, 15iSr, 15jSn.  If R=GF(p), then
Z)r

the time to compute G is dominated by n(2rm“)" since if B|A then

aiBsaiA‘ The time to compute Ai/G is codominant with the time required

to multiply Ai/G by G which is dominated by mzr. Hence, the time to

find the cofactors is also dominated by n(2rm2)r.
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In the case R=Z, the coefficients of the intermediate gcd's can
grow in size. However, Gelfond's result shows that if B|A, then
[BlySe ™Ay If G=gcd (Ay,...,A), then g=|G| <™ |A;]%e™d, and
hence, L(g) is dominated by mr+L(d). Note, also, that the sum norm of
the gcd of any subset of A],...,An will also be dominated by e™d.
Hence, the time to compute G will be dominated by n(2rrr+]m2r+]L(g)+
rmr+]L(g)2). Substituting mr+L(d) for L(g), we find that the time to
compute gcd(A],...,An) in Z[x],...,xr] is dominated by
n2rrr+2m2r+2+n2rrr+]mzrf]L(d)+nrmr+]L(d)2. The time to compute the
cofactors is dominated by nL(g)L(d)m2r which is dominated by
nrm2r+]L(d)+nm2rL(d)2.

The complete basis algorithms described in this thesis require
all polynomials to be in distributive canonical form. Unfortunately,
the SAC-2 gcd algorithms assume that their inputs and outputs are in

recursive canonical form. Recursive canonical form results from con-

sidering a polynomial AcR[x] as a polynomial in a single variable X s

m
A= L A%, where A #0 and AjeR[x),...,x,_q], 0SiSm. If r=1, let A% be

a canonical form for the element AieR, otherwise let A? be the recursive
canonical form for the polynomial AisR[x1,....xr_]], 0SiZm. Finally,
let (i],...,in) be the sub-sequence of (0,...,m) such that A, #0. The
recursive canonical form A* of A is defined as follows. If A=0, then

A*=0, otherwise A*=(1n,A;n,...,1l,Ai]).

The algorithms to compute the gcd's (and also resultants) of poly-

nomials in distributive form must convert back and forth between distri-
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butive and recursive form. The time for conversion in either direction
is dominated by the time it takes to sort the terms of the distributive
canonical form polynomial in case it is not in lexicographic order. A
merge sort can be performed in time dominated by tlog(t) where t is the
number of items to be sorted. If AeR[x] and 3;A<m, then A contains at
most m" terms. Since the sort must compare exponenf vectors, each com-
parison will have a computing time dominated by r. Therefore, the com-
puting time for sorting a distributive polynomial, and hence the comput-
ing time for conversion between recursive and distributive canonical
form, is dominated by rmrlog(mr) = rzmrlog(m).

Combining the preceding results, we assume the existence of the
following algorithm.

1dpgcdc(L;G,L7)

[List of distributive polynomials, greatest common divisor and cofactors.
L=(A1,...,An),n22, is a 1ist of polynomials in distributive canonical

" form. G=gcd(A],...,An) and L‘=(A{,...,A;) where A;=Ai/G,1$iSn.J
If 31A5<m for 15iSr and 15j$n, then the computing time of ldpgcdc

is dominated by n-(2rm2)r for the case GF(p)[x1,...,xr]. In the case

r r+2m2r+2

Z[x1,...,xr], the time is dominated by n2' r T+ 2rH

+n2"r L(d)+

(nrmr+]+nm2r)L(d)2.
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4.3 Multipolynomial Resultant Systems

Let A],...,AneR(x], n22, where x is a single indeterminate and R
is a gcd domain, and axAi>0 for 1%5isn. Let yz,...,yn be distinct inde-
terminates different from x, and consider the polynomials U=A] and
n

V= L yiAi contained in R[yz,...,y »X]. Let R _=res_(U,V) be the resul-
=2 n X X

tant of U and V with respect to x. Since RxeR[yz,...,yn], we can write

Rx= L rIyI where E is the set of'(n-l)-variate exponent vectors,
IekE

e e
yI=y22...yn" for some <e2,...,en>eE, and rieR. Modifying Van der Waerden's
usage slightly [VDW50], we call Rsx(Al""’An)= {rI:rI#O } the resultant

system of A]""’An with respect to x. Note that if n=2, then
m
ey 1 =
Rx—y2 resx(Al,Az) where m, = axAl'

The importance of the resultant system for our purposes is given
in the following lemmas.

Lemma 4.3.1 Let A1,...,An be polynomials in R[x], with x a single
indeterminate. Suppose that for 15i<n, axAi>0 and ax(gcd(A1,...,An))=O.
Then RSx(A1,...,An) is non-empty.

Proof Let U, V, and Rx be defined as above. By the well known
theorem on resultants, ax(gcd(U,V))=O if and only if RX#O. Now let

G=gcd(U,V) and note that since U is independent of i ay G=0, 2%isn.
i

Thus, if G is a common divisor of U and V, then G must be a common divisor
of A]"“’An’ and, in particular, G must divide gcd(A1,...,An). Hence,

axG=0. But then Rx cannot be identically zero, so RSX(A1,...,An) is

non-empty O
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The next lemma relates resultant systems to polynomial ideals.

Lemma 4.3.2 Let X¥<All...,An> be a basis for ideal A in R[x]
and suppose the elements of A satisfy the hypotheses of Lemma 4.3.1.
If reRS (Ay,...,A ), then reh.

Proof Let U, V, and Rx again be defined as above. By another
well known theorem on resultants, there exist polynomials S and T in

R[yz,...,yn,x] such that SU+TV=RX. This can also be written

n
SAL+ I

1 TyiAi=R . Since the A, are independent of the y., there exist
j=2 X i J

n I
.= L (2 SIiAi)y .

n
polynomials S,. in R[x] such that R.= % ( I S,.y})A
Ii X Ii i IeE i=1

i=1 IeE

Comparing this with the expansion for Rx given above, we see that

rlzlgESIiAi‘ Hence, if rIeRSx(A],...,An), then rIeA.(j
The following corollary shows how it is possible to find univariate
ideal elements in certain cases.

Corollary 4.3.1 Let <A;,...,A > generate ideal A in R[w,x] where

w and x are single indeterminates. Let G=gcd(A1,...,An). If
axAi>o, 1%i5n and BXG=0, then Rsx(A1""’An) is non-empty, and, for
rsRSx(A1,...,An), reA and reR[w].
Proof Apply Lemmas 4.3.1 and 4.3.2 with R replaced by R[w].O
Let us now consider the problem of computing RSx(A],...,An) when
we replace x by Xy and R by R[xl""’xr-1] with R=Z or R=GF(p). Let

3, As<m for 15i%r and 15i5n. In case ReZ, let lAj!]fd for 1555,
i
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To compute U and V, we need to introduce the variables yz,...,yn
into the Ai’ 15isn, and then to sum yZA2 through ynAn. The time for

this process depends on the number of terms in the A;. 1In case R=GF(p),
2mr.

the time for this is dominated by n If R=Z, the time is also domi-

nated by nzmr because no coefficient operations are necessary. When

this step is completed, we will have that ax U,ax V<m and ay U=0 and
i i i

3 V=1. Furthermore, if R=Z, then [U[1Sd and [V],3nd.
i

In [COL71, pp 526-527], Collins has derived computing time bounds
for resultant algorithms employing modular techniques, assuming the in-
put polynomials are in recursive canonical form, and that they contain
a fixed number of variables. If A and B are polynomials in r variables
where r is fixed, and if the degrees and A and B in any variable are
bounded by m, then for R=GF(p) Collins shows that the time to compute

2r

res(A.B) is dominated by m“". If R=Z and |A|,,[B[,<d, then the time to

compute res(A,B) is dominated by m2r+]L(d) + mer(d)z. If we now consi-

der r to be variable, we can modify Collins' analysis and show that

these bounds become r2'm?" and rzrm2r+]L(d) + Zrmer(d)2 for R=GF(p)
and R=Z, respectively.

The polynomials U and V contain r+n-1 variables. Hence the time

to compute R =res (U,V) is dominated by (r+n-1)2(r+"°])m2(r+n']) for

r
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the case R=GF(p). If R=Z the bound becomes (r+n-1)2{"*N=1)p2(ren-1)+1

L(nd) + 2(r+"'])m2(r+n'])L(nd)2. Note that for a fixed number of poly-
nomials and variables, these bounds are polynomial functions of m and
L({d).

After Rr has been determined, we can compute the resultant system
by finding the coefficients of Rr when we regard it as a polynomial in

the variables Yos ...y, Over the coefficient ring R[x],...,xr_]]. Now

Rr is the determinant of a matrix composed of at most 2(m-1) rows and

columns whose elements have degree less than m in the x_i and at most

degree one in the y.. Hence, ax.Rr<2m

2
j and ay.Rr<m' Thus, we have

1 J

1

fewer than m" ' elements in the resultant system and each element has

degree in x, less than 2m2. These elements can be isolated in time

i
dominated by m 1,
Our final subject in this section concerns the time required for
conversions between distributive and recursive canonical form. Using
the results at the end of section 4.2, we see that the time to convert
all of the Ai to recursive canonical form is dominated by n-rzmr-log(m).

Similarly, the time required to convert the resultant system to distri-

2)(r'1)1og(2m2).

From these observations, we can bound the time required to compute

butive canonical form is dominated by m"'](r-1)2(2m

the resultant system of A]""’An and perform the canonical form
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conversions. Let s = r+n-1. In the case R=GF(p) the time required is
dominated by nln’" + nrzmrlog(m) + s25m2S + p(n-1) 4 (r~1)2(2m2)(r'])

log(2m2) which is dominated by nSZZszslog(m). If R=Z then the time

is dominated by n?n” + nrzmr1og(m) + szsm25+]L(nd)-+ ZSmZSL(nd)2-+ m(n=1)

+ (r-1)2(2m2)(r'1)109(2m2). This bound is in turn dominated by

n5225m2$+]1og(m)L(nd)2. Again we note that for a fixed number of poly-
nomials and a fixed number of variables, these bounds are polynomial
functions of m and L(d).

We assume the existence of an algorithm with the preceding computing
times and the following specification.

L“«ldpres(L)

[List of distributive polynomials, resultant system. L=(A],...,An),n22,
is a 1ist of non-zero polynomials in distributive canonical form in r

variables with main variable x_. For 1Sisn 3 A.>0. 5_ gcd(A,,...,A )=0.
r X 1 X, 1 n

L” is the resultant system of A]""’An with respect to xr']
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4.4 Unjvariate Polynomials in Complete Basis Computations

Let Z=<A],...,An> be a basis for ideal A in F[x]=F[x],...,xr]
where F is a field. Suppose we also have a sequence of non-zero poly-
nomials E;<R],...,Rr> where, for 15ifr, Rieﬁ'and RiEF[xi]’ i.e., Ry is
a non-zero univariate polynomial in the indeterminate X; - In this
section, we show how the complete kernel basis algorithm of Section 3.6
can be modified to use the polynomials in ;. The computing time of the
modified algorithm, for certain coefficient fields, can be bounded by
a polynomial function of the degrees of the Ai's and Ri's.

The key to the modified algorithm is the observation that if
polynomial A is in a basis Z for A and if Rieg is an element of A
distinct from A, then A can be replaced by rem(A,<Ri>). This operation
has no effect on the degree of A in xj’ j#i, but it can lower the degree
of A in X; e If this operation is consistently applied during the course
of a complete basis algorithm, we can limit the degrees of the inter-
mediate basis elements and also the number of such elements.

We embody this observation in the special versions of the remainder

and semi-remainder algorithms presented next.

Algorithm 4.4.1

-> >

Q+dpremu(P,A,R)
[Distributive polynomial over a field, remainder using univariate ideal
elements. ‘
Input: PeF[x]=F[x].....xr], K=<A],...,An>e(F[x])", a basis for ideal
A in F[x], with A;#0, 15isn, 3A)5...50A 5 R=<R,...,R >, R #0, ReR,
12kSr, and ale...SaRr. For each j, 15jSr, there is exactly one R in

R such that RsF[xj].
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Output: Q=rem(P,<A1,...,An,R],...,Rr>).]

(1)
(2)
(3)

(4)

[P=0.] if P=0 then { Q+P; return }.

[Initialize.] Q+dprem(P,E); if Q=0 then return; Q7«Q; Q«().
[Attempt to reduce 1t(Q”).] repeat { DPLECR(Q”;J,q,Q");
BESEL(J,Z;K,a,B); if K==1 then Q«COMP2(q,J,Q) else

{ befneg(fquo(q.a)); Q «dpsum(Q~,dptermpr(K,b,B));
Q’«dprem(Q',E) } '} until Q7=0.

[Finish.] if Q=() then Q<0 else Q«INV(Q); returnO
Algorithm 4.4.2

- >

Q«dpsremu(P,A,R)

[Distributive polynomial over a field semi-remainder using univariate

ideal elements.

Input:

Same as Algorithm 4.4.1.

Output: Q=srem(P,<A],...,An,RIL...,Rr>).]

(1)
(2)

[Initialize.] Qedprem(P,R); if Q=0 then return.

[Attempt to reduce 1t(Q).] repeat { DPLECR(Q;J,q,Q");
BESEL(J,;;K,a,B); if K=-1 then return; b<«fneg(fquo(g,a));
Q«dpsum(Q“,dptermpr(K,b,B); Q+dprem(Q,E) } until Q=0; return [}
One will note that these algorithms differ from algorithms 3.4.2

and 3.4.3 (dprem and dpsrem) only in the remainder operations with

-

respect to R performed in the initialization and following each reduction

-

of a term with respect to an element of A. Note also that when we are

>

looking for a possible reduction with respect to A, we are using remain-

der selection rules 1 and 2.
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We now discuss the computing times of Algorithms 4.4.1 and 4.4.2.
Since we have not specified a coefficient field, it is not possible to
complietely analyze the computing times of these algorithms. However,
we can bound the number of exponent vector operations and the number
of field operations required. Note that the number of field operations
is dominated by the number of exponent vector operations. In cases
where the field operations have a computing time codominant with one,
such as F=GF(p) with p a single precision prime, this exponent vector
bound also gives a bound on the computing times.

Let s be an integer such that for 15isr and 15jSn, ax Aj<s and,
i

for R in ﬁ, ax‘R<s. Further, let t be an integer such that ax P<t.
i i

Note that any element of R can have at most s” terms. P and, hence,
the initial Q have at most t" terms. Since the elements of R are uni-
variate, each one can have at most s terms. We concentrate our atten-
tion on the remainder operation, dpremu, since the time to compute a
semi-remainder is clearly dominated by the time to compute a remainder.

Algorithm 4.4.1 uses remainder selection rule 1 which has the
effect of processing the highest ranking terms of Q first. Therefore,
once a term of Q is reduced, it cannot be reduced again. In addition,
note that any partial reduction of Q leaves it with degree still less
than t in all variables.

In the worst case each of the at most t" terms of P gets reduced

by some element of R. Each of these reductions requires:
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(a) Exponent division operations using possibly all elements
of A: at most n exponent operations.

(b) A reduction requiring the subtrﬁction of a multiple of an
element of A. This requires at most'max(s,t)r exponent vector opera-

tions. Since max(s,t) is codominant with s+t, and since (s+t)" is

codominant with sr+tr, max(s,t)r is also codominant with s +t".

(c) The remaindering of at most t" terms of the reduced Q with
respect to R. For each of these terms, we need at most r exponent
vector division operations and max(s,tr) exponent vector operations
for the reduction. Note that max(s.,t") is codominant with s+t'.

Combining these results, we find that the number of exponent

vector operations required to execute dpremu is dominated by

tT(n+s "+t T+t (rrs+t7)).

In the portion of algorithm dpremu which reduces intermediate
results with respect to E, we simply employed dprem and ignored the
special univariate structure of the elements of ﬁ. If we replace
dprem with a special algorithm which makes use of this information, it
is possible to obtain a better bound than that found in part c of the
analysis above. The central idea of the special algorithm is to con-
sider the polynomial to be remaindered as a polynomial with coeffi-
cients in F[xi] and to only remainder these coefficients with respect
to the polynomial Réﬁ which is an element of F[xi].

We give an informal sketch of such an algorithm below. Here P

-
and Q are defined as in Algorithm 4.4.1, but we assume R=<R],...,Rr>
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where RieF[xi] and, in addition, Ri is represented as a distributive

polynomial in x; only.

i
Q«dpremu](P,ﬁ)

[Distributive polynomial over a field remainder with respect to uni-

variate polynomials.]

(1)
(2)
(3)

(4)
(5)

(6)

(7)
(8)
(9)

(10)

Q<P; if Q=0 then return.

For i=1,...,r repeat steps 3 through 9.

Permute the components of the exponent vectors of Q such that X;
is the least major variable.

Sort Q into lexicographical order.

Represent Q as a distributive polynomial with coefficients in
F[xi].
Q is now a list (Ik,qk,...,Io,qo) where Q; is an element of F[xi]

and Ij is an r-1 variable exponent vector. We now reduce each qj

with respect to Ri‘] Q“+Q; Q<(); repeat { DPLECR(Q":;I1,4.Q7);
q-dprem(q,<R;>); if q#0 then Q«COMP(q,I1,Q) } until Q"=0.
if Q=() then { Q«0; return}; Q«INV(Q).

‘Represent Q as a distributive polynomial with coefficients in F.

Permute the components of the exponent vectors of Q such that X,
is again the i-th variable.

When Q has been reduced with respect to each of the elements of
ﬁ, sort the terms of Q into the original exponent vector order and

return [ ]
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This algorithm can be analyzed as follows. As in the analysis

of dpremu, we assume s and t are integers such that ax.Ri<s and
i

9. P<t for 15isr.
%

The major contribution to the computing time of this algorithm
comes from the Toop from step 3 through 9 which is repeated at most r
times. The only effect a given iteration of this loop can have on
Q is possibly to reduce the degree of Q in one or more variables.

Thus during any iteration Q can have at most t" terms.

In steps 3, 5, 7, 8, and 9, we must look at each term of Q, hence
each of these steps requires at most t’ exponent vector operations. As
discussed in Section 4.2 the terms of Q can be sorted in step 4 (and
step 10) in at most rt"log(t) exponent vector operations using a merge
sort.

In step 6 Q is represented as a polynomial in r-1 variables and
r-1

hence has at most t terms. The coefficients of these terms are poly-

nomials in X; and hence have at most t terms each. These coefficients
all must be remaindered with respeét to Ri’ a polynomial with at most s
terms. The reduction of a given coefficient term requires one exponent
vector division and at most max(s,t) exponent vector addition operations.
Hence step 6 requires at most tr']t(1+max(s,t)) exponent vector opera-
tions, which is codominant with t"(s+t).

Combining the results for steps 4 and 6, we see that the number of

exponent vector operations required for the loop from step 3 through

step 9 is dominated by r(rt"log(t)+t"(s+t)) which is
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1

r2t 1og(t)+rstrt ™1,

This compares with the bound of tr(r+s+tr)
found above for a straightforward application of dprem instead of
dpremul.

Applying this result to the bound for dpremu, we find that the
number of exponent vector operations required by dpremu is dominated

2trlog(t)+rstr+rtrﬂ) which is dominated by

r+1)-

by tr(n+sr+tr+r

2

tr(n+sr+r trlog(t)+rstr+rt



134

We can now give the modified complete basis algorithm.

Algorithm 4.4.3

- >

C«mckbas1su(A R)
[Polynomial over a field ideal basis, monic complete kernel basis

using univariate ideal elements.
-+ -+

Input: A and R are as in Algorithm 4.4.1.

-
Output: =<C],...,Cs>e(F[x])s, a monic complete kernel basis for A.

3C1<‘f'<3cs‘]

(1)  [Include elements of R in A and initia]ize consensus 1ist ]
R T S S - > -

C«A; R“«R; repeat { ADV(R” ,B R); C+EVLIN(C B,1) } until R =()3

e ->

L«<(); ADV(C;A,A"); while A‘#() do { L<—CLGEN(L,A,A‘); ADV(A‘;A,A’) }

-> -

(2) [Select consensus pair.] if L=() then go to 8; CLSEL(L;L,K,A,B).
(3) [Form consensus and semi-remainder.] DPLECR(A;I,a,A”);
I“«EVDIF(K,I); a<fneg(a); DPLECR(B:;J,b,B"); J”«EVDIF(K,J);
C«dpsum(dptermpr(1-,b,A”),dptermpr(J”,a,B"));
C+dpsremu(C,E,E).
N N
(4) [Delete if possible.] if I“=() then { C«LDEL(C,A); L<«CLDEL(L,A) }.
(5) [C is constant?] if C=0 then go to 2; if DPLEV(C)=() then to to 7.
(6) [Modify consensus 1ist and basis.]
L*CLGEN(L,C,E); E;EVLIN(E,C,1)§ 90 to 2.
(7) [Ident1ty element is in ideal.] C«LIST](dpmon(C)), return.

-

(8) [Make C into monic kernel basis.] ADV(C C,B); O+LIST1(dpmon(C)),
. L R

while B#() do { ADV(B c B) C +dpremu(DPRD(C),C,R);

C+DPLT(C), if C°#0 then SRED(RED(C),C”); C<«dpmon(C);

C+EVLIN(C C,1) }; return[]
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The only differences between this algorithm and Algorithm 3.6.4
(mckbasis) occur in steps 1, 3, and 8. In step 1, we include the
elements of; in ; This is necessary because we are using E in the
in the remainder operation. In steps 3 and 8, we replace the use of
dpsrem and dprem by dpsremu and dpremu, respectively, thus limiting
the degree growth of the remainder polynomials. Consensus selection
rules 1, 2, and 3 are applied as they are in Algorithm 3.6.4. Since
E is a semi-kernel basis at the beginning of step 8, we need only re-
mainder the reductum of each basis element with respect to the rest of
the basis. We treat this situation explicitly in Algorithm 4.4.3
because it is possible for a polynomial, say C, to be both an element
of E and E. In this case, C would remainder to zero with respect to E.
However, since rd (C) cannot be reduced with respect to C, we can form
the remainder of C with respect to the rest of the basis by computing
1t(C)+dpremu(rd(C),E,E).

The termination of Algorithm 4.4.3 depends, as does Algorithm 3.6.4,
on the ascending chain condition for Noetherian rings. The polynomial C

-

added to the basis in step 6 is a semi-remainder with respect to C, but
-

also a remainder with respect to R. However, when the algorithm termi-
nates, the consensus of all pairs of elements of E remainder to zero with
respect to E, and hence E is complete.

We now discuss the computing time of Algorithm 4.4.3. Since we

have not specified a coefficient field, it is not possible to analyze
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the computing time for this algorithm completely. However, as dis-
cussed for dpremu, we can bound the number of exponent vector opera-
tions required.

Let m be an integer such that for 15i<r and 15j<n, ax Aj<m and
i

ax.Ri<m' Note that any element of AorR has at most m' terms.
i

Let C be an element of the semi-kernel basis computed in Algorithm
4.4.3. Since aRi1ac we have at most m" choices for 3C. However, if
C” is also an element of the same basis, then 3C”J3C. Hence, we have
at most mr'] choices for the leading exponent vectors in such a basis.
Therefore, the final semi-kernel (and hence kernel) bases must have at

r-1 elements.

most m
Now, if polynomial C is added to the basis in step 6, and if C~

is added later then 3C“#3C. Hence, since C is a kernel polynomial with

respect to 5, at most m" elements can be added to the basis. Thus,

the total number of elements in E during the course of the algorithm

is bounded by n+r+m’ . Hence, the number of consensus operations per-

r
formed is bounded by (m+£+m ) which is codominant with (n+r+mr)2. If

we assume m22, then r is dominated by m', and the number of consensus
operations is dominated by n2+m2r. Note that this formula dominates the
number of times the loop from step 2 to step 6 is executed.

Since we are emp]bying consensus selection rule 2 in Algorithm
4.4.3, the consensus pair selected in step 2 will result in the deletion

of an element from E if that is at all possible. If the number of
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elements in an intermediate basis is greater than mr'], then a deletion
will always be possible. Hence, the number of elements in any inter-
mediate basis may not exceed max(n+r,mr']) which is codominant with

r-1

n+r+m If we assume m22, then r is dominated by mr'], and the

number of elements in any intermediate basis is dominated by n+mr'].
This, 1in tufn, implies that the length of the consensus list at any
point is dominated by ("+gr-1) which is codominant with n2+m2(r‘1).

Let us now consider the computing time of each of the steps of
Algorithm 4.4.3. We assume classical algorithms for polynomial arith-
metic and linear 1ist representations for 1list insertion and deletion.

Step 1. We must first insert r items in a list of length at
most n+r. To form the consensus list, we must insert (";r) items in
a list of length (";r). Hence, step 1 requires time dominated by
r(n+r)+(n;r)2 which is dominated by (n+r)4.

Step 2. Assuming the consensus 1ist is maintained in the proper
order, the time to select the next consensus pair is codominant with
one.

Step 3. The degrees of A and B in any variable are less than m,
hence the degree of the consensus, C, in any variable is less than 2m.

The number of exponent vector operations required to compute C is
dominated by m.
To bound the number of exponent vector operations required to

execute dpsremu, we apply the results obtained above for dpremu with

r-1

-y
s=m, t=2m, where n is now ntm ', the maximum number of elements in C.
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We assume that the version of dpremu under consideration uses the
special univariate remainder algorithm dpremul. The number of expo-

nent vector operations required is then dominated by
(Zm)r(n+mr']+mr+r2(2m)r1og(m)+rm(2m)r+r(2m)r+]). This, in turn, is

dominated by n(2m)ri-rz(Zm)zrlog(m)+r(2m)2r+1. This quantity clearly
dominates the total number of operations needed for step 3.
Step 4. If a deletion is possible, we must traverse at most the

current basis and the current consensus list. The time required for
this is dominated by n2+m2(r-1)

Step 5 requires time codominant with one.

Step 6. Insertion in the basis requires at most n+mr'] exponent
vector operations. To update the consensus list, we must pair C with
each member of the basis and insert each pair on the consensus list.
This pairing and insertion requires at most (n+mr'])-(n2+m2(r'])) ex-
ponent vector operations. This bound is codominant with n3+m3(r']).

Step 7 requires time codominant with one. ,

Step 8. At the beginning of step 8, C is a semi-kernel complete
basis for A, and hence contains at most mr'] elements of degree less
than m in all variables. To bound the number of exponent vector opera-
tions required for each application of dpremu, we apply the results
obtained above for dpremu with s=m, t=m, and n=mr°1. We again assume
the version of dpremu under consideration uses the special univariate

remainder algorithm dpremul. The number of exponent vector operations
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is then dominated by mr(mr']+mr+r2mrlog(m)+rmr+]+rmr+]). This, in

1

zmzrlog(m)+rm2r+ .

turn, is dominated by r There will be fewer than

mr'] basis elements, so the total number of exponent vector operations

required by step 8 is dominated by r2m3r'llog(m)+rm3r.

The number of exponent vector operations required for a single
execution of the loop between steps 2 and 6 is dominated by the number
of exponent vector operations required for steps 3 and 6. Using the
bound on the number of loop executions derived above, we see that the
number of exponent vector operations required for all executions of
the Toop is dominated by (n2+m2r)(n(2m)r+r2(2m)2r1og(m)+r(2m)2r+]
+n3+m3(r'])). This quantity clearly dominates the number of exponent
vector operations required by steps 1, 2, and 8. Hence, it provides
a bound on the number of exponent vector operations required by

Algorithm 4.4.3.

For the bivariate case to be discussed in the next section r=2.

In this case the bound on Algorithm 4.4.3 becomes (n2+m4)(nm2+m4log(m)+

m5+n3+m3). This bound is dominated by (n2+m4)(n3+m5).
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4.5 Resultant Systems and Complete Bases

We are now in a position to combine the results of the previous
three sections. In this section, we give an algorithm to compute a
complete basis using the resultant systems of the cofactors of the
initial basis for the case of bivariate polynomials over a field.
The number of exponent vector operations required by this algorithm
is dominated by a polynomial function of the degrees of the polyno-
mials in the initial basis whenever the number of basis elements is
fixed.

We begin by giving an informal description of the algorithm.

Algorithm 4.5

C+mckbasisr(K)
[Monic complete kernel basis using resultant systems. K=<A],...,An>
is a basis for ideal A in F[x]=F[x],x2], Fa field. C is the unique
monic complete kernel basis for the ideal generated by K.]
(1) [Find gcd and cofactors.] Compute G=gcd(A],...,An) and

§=<Bl’°"’Bn> where Bi=Ai/G’ 15iSn; remove zero elements from E; if
for some i, BieF-{O}, then E¥dpmon(Bi) and return.

(2) [Find univariate elements in ideal generated by §.] For
ey
j=1,2 do { R.={B-eE:a B.=0}; if R. is empty, then set R, to the re-
J i X; i J J

sultant system of B],...,Bn with respect to xj; let Rj be the element

-+

of R; with minimum degree in x; ; Re<R >;E«£VL1N(E,R2,1).
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(3) [Compute monic complete kernel basis for the ideal gener-
-+ -> -+
ated by B.] D«mckbasisu(B,R).

->

(4) [Use gcd to find C. Assume '6=<u],...,ns>.] Set E=<c1,...,cs>
where C.=G-D,, 15iSs; return []

In this algorithm, we have used Lemma 2.8.2 which allows us to
remove the gcd of the elements of K before computing the complete basis.
Note that for the results of the previous section to apply,ﬁ in step 3
must be composed of univariate polynomials. By Corollary 4.3.1, R.l is
a non-zero polynomial in Xy alone and R2 is univariate in Xy Hence,
in this case, the input conditions for Algorithm 4.4 are satisfied and
we have a polynomial bound on the number of exponent vector operations
required in step 3 of Algorithm 4.5.

For the rest of this section, let us assume F[x]=GF(p)[x1,x2],

where again GF(p) represents the finite field with p elements, p a fixed
prime. Arithmetic operations in this field have a time codominant with
one. Given this situation, we can proceed to analyze the computing time
of Algorithm 4.5.

Let k be an integer such that ain<k for 1<i<n and j=1,2. Then,

according to Section 4.2, the computing time for step 1 is dominated by

4

nk”. Furthermore, the degrees of the Bi's in X and Xy are less than k.

In order to compute the two resultant systems in step 2, we need

to arrange for first X and then Xy to be the main variables in the

Bi's. " These tasks can be easily accomplished in time dominated by nkz.
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The time to compute each resultant system, according to Section 4.3,
is dominated by n32f'+]k2("+])]og(k) which dominates the time required
to select the element of minimal degree from the resultant system.

Further, note that res, (U,V) in Section 4.3 is the determinant of a
1

matrix with fewer than 2k rows and 2k columns, each of whose entries
contains polynomials in Xy whose degrees are less than k. Hence, the
degrees of the elements of any resultant system are bounded by 2k2.
This bound on the degrees of the elements of R makes it possible
to apply the results of Section 4.4 to the computing time of step 3
of Algorithm 4.5. We thus have m=2k2 to be inserted in the time bound

(n2+m4)(ﬁ3+m5). This gives a bound of (n2+k8)(n3+k]o). Since the
coefficient field is finite, this bound on exponent vector operations
required by step 3 is also a bound on the computing time required for
step 3.

The computing time for step 4 of Algorithm 4.5 is determined by
the time required to multiply s polynomials of degree less than 2k2 by

a polynomial of degree less than k, where s<(2k2)2.

10

The time to per-

form this operation is dominated by k = which is less than the time

required for step 3.
Finally, we have that the computing time for Algorithm 4.5 when
FIx]=6F(p)[x,»X,] is dominated by n 2™ kZ(™ )1og(k)+(n2+i8) (n+k10).

For any fixed number of initial polynomials, we have a complete basis
algorithm whose computing time is a polynomial function of the degrees

of the initial polynomials.




CHAPTER FIVE:
Empirical Results

5.1 Introduction

In conjunction with the theoretical analyses described in the
previous chapters, several empirical studies were conducted to compare
various implementations of the remainder and complete basis algorithms.
In particular, we were interested in investigating how changes in the
remainder and consensus selection rules affect the computing times
of the associated algorithms. The data presented here do not represent
comprehensive comparisons of these alternatives, but they do indicate
some of the characteristics of each.

Section 5.2 describes timing results for the remainder algorithm
using two possibilities for remainder selection rule 2. Section 5.3
deals with three possible modifications of the consensus selection
rules; it also compares the computing times for finding a complete basis
using lexicographic order and using total degree order for the exponent
vector ordering. Section 5.4 concludes with a presentation of timing
results for the complete basis algorithm described in Section 4.5 which
makes use of resultant systems.

The algorithms in this thesis were implemented as part of the SAC-2
system for Symbolic and Algebraic Computation (see Appendices A and B).
The measurements reported in this chapter were made on a Digital Equip-
ment Corporation VAX-11/780 computer running under the VAX/VMS operating

system. The VAX-11 has a maximum memory access time of 1.8 us, but an

average memory access time of .3 ps.
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The timing runs were made in a multiprogramming environment.
Hence, in an attempt to eliminate timing effects due to the load of the
computer, the results presented here are the average of several runs.
It was observed that the timings were reproducible to within 5 to 10
percent.

The "random" polynomials used as input for the computations in
this chapter were generated as follows. Let ch]"“’xr] be the poly-
nomial ring in which we wish to generate a random polynomial, A, such
that 3A=I, for some specified IcE= {<e;,....e >: ei?o,lfifr }. Let
ET(I)= { JeE: J<I } where < represents total degree ordering. Let
EL(I)= {Jek: J<I and J|I } where now < stands for lexicographic ordering.

Note that both of these sets of exponent vectors are finite. Let
- I J, . .
PT(I)- {aIx +JEE¥(I)3JX .aI#o,aI,aJeF }, and let PL(I) be defined simi

larly with EL(I) substituted for ET(I). A randomly selected element
AePT(I) will be called a random polynomial of degree I with respect to
total degree ordering. A randomly selected element of PL(I) will be
called a random polynomial of deg%ee I with respect to lexicographic
ordering. For the computations reported here, we set r=2 and F=GF(p)
where pzzza. This choice of p implies that the random polynomials
generated will be dense in the associated orderings, i.e., that nearly

all exponent vectors in ET(I) or EL(I) will be present in a generated

polynomial whose leading exponent vector is I.
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5.2 Remainder Algorithm Comparisons

In forming the remainder of a polynomial P with respect to basis

e

A, we must first choose a term of P to reduce and then we must choose
-

an element of A with which to reduce it. Remainder selection rule 1 of
Section 3.4 specifies that we always choose to remainder the term of P
which is the largest possible with respect to the exponent vector
ordering. This rule has the advantage that once a term is reduced, it

can never be reduced again.

In Section 3.4, we discussed two possibilities for selecting the
->

element of A to be used at a given step of the remainder algorithm. We
finally formulated remainder selection rule 2 which specified that we

-
choose the element of A whose leading exponent vector is the minimum

-
possible. The other obvious alternative is to select the element of A
whose leading exponent vector is maximum. Using the notation of Section
3.4, we formalize this selection rule.

Remainder Selection Rule 2°(RSR2”) Given JsDi, let

I=max {aAj:ISan and BAjIJ }, and let k=min {j:BAj=I }. Then
8(qy53,)=<by s+ sb > where by =q;/a, and bs=o for jrk.

This selection rule can be implemented as follows. In algorithms
BESEL, dprem, and dpsrem of Section 3.4 (Algorithms 3.4.1, 3.4.2, and
3.4.3) change the input specifications to read BAIZBAZE...ZEAH. In
algorithm BESEL, step number 2, remove the statement "if EVCOMP(I,J)=-1

then return”. These changes cause the basis K to be searched from the

largest element to the smallest.
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The remainder algorithms based on RSR2 and RSR2” were tested as
follows. Since the coefficient field was GF(p), we used algorithm
DDMPRM of Appendix B to realize abstract algorithm dprem (Algorithm
3.4.2). The remainder selection rules were realized in two versions
of DDBESL which realize the abstract algorithm BESEL (Algorithm 3.4:1).

For a fixed n, we generated a basis ;;<A1,...,An> and a polyno-
mial P in GF(p)[x,y]. For the case of lexicographic exponent vector
ordering, aA_i for 15i<n was selected randomly from EL((4,4))-EL((1,1));
Ai was then selected from PL(aAi)' For each basis, a polynomial P was
selected from PL((10,10)). For the case of total degree exponent vector
ordering, aAi was chosen from ET((3,3))-ET((1,1)), and Ai was selected
from PT(BAi); P was selected from PT((7,7)). Each polynomial/basis pair
was input to DDMPRM based on RSR2 and then input to a version of DDMPRM
based on RSR2”.

The results of these tests are presented in Tables 5.2.1 and 5.2.2.
Each entry is the average of ten separate polynomial/basis pairs. The
times are in seconds.

Table 5.2.1 Remainder Computing Times (DDMPRM, Lexicographic

Order)
n RSR2 RSR2”
6 2.54 6.18

20 2.24 7.29
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Table 5.2.2 Remainder Computing Times (DDMPRM, Total Degree

Order)
n PSR2 RSR2~
6 3.61 6.59
20 3.48 6.73

From these tables we observe the following. Remainder selection
rule 2 consistently performed significantly better than rule 2°, thus
reinforcing our decision to use RSR2 in the algorithms of Chapter 3.
Also, note that as the number, n, of polynomials in the basis increased,
the time required by RSR2 decreased while that for RSR2” increased.

This may be directly related to the importance of reducing a polynomial
with respect to the smallest basis elements first. If there are small
elements in the basis, then RSR2” requires us to test all the larger

elements of the basis before the smaller elements can be used.
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5.3 Complete Basis Algorithm Comparisons

In Section 3.6, three consensus selection rules were specified
during the formulation of the complete basis algorithm (Algorithm
3.6.4). The first two deal with the specification of the modified con-
sensus operation and with the possibility of deleting basis elements
during the course of the algorithm. Consensus selection rule 3, how-
ever, specified the order in which consensus pairs are to be chosen.
Let L] be the deletion consensus list of a basis (see Section 3.6), and
let L2 be the 1ist containing all other consensus pairs for the same
basis. Consensus selection rule 3 requires us to form the consensus of
the consensus pair (A,B) in L, such that lcm (3A,3B) is minimum. If
L] is empty, then we look for such a pair on L2.

Two alternatives to this rule are possible. First, we could
choose the pair (A,B) such that lem (3A,3B) is a maximum, and second, we
could use the deletion consensus 1ist last instead of first. Using the
notation of Section 3.6, we formalize these selection rules as follows.

Consensus_Selection Rule 3°(CSR3”) If L] is non-empty, then let

L‘=L] else let L’=L2. Let (A,B) be the first element of L” such that
J=Tcm(3A,3B)=max { 1ecm(3A",3B"): (A”,B”)eL” }. The next consensus to
be formed will be cons (A,B).

Consensus Selection Rule 3°°(CSR3”°) If L2 is non-empty, then let

L"=L2 else let L‘=L]. Let (A,B) be the first element of L” such that
J=1cm(3A,3B)=min { Tcm(3A~,3B"): (A“,B”)eL”}. The next consensus to be

formed will be cons(A,B).
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Thus, CSR3” chooses the maximum lem(3A,3B) first in Ly then in L,.
CSR3”“ chooses the minimum 1cm(3A,3B) in L2 first and then in Ly, effec-
tively postponing deletions.

Consensus selection rule 3 may be implemented by a change to
algorithm CLGEN (Algorithm 3.6.1) which generates the consensus list.
In step 2, it is only necessary to change the third parameter in each
of the two calls to EVLIN from 1 to -1. This ensures that the sublists
of the consensus lists L and L~ are arranged such that the least common
multiples of the leading exponent vectors of the consensus pairs are in
non-increasing order. Thus, algorithm CLSEL will select the consensus
pair (A,B) such that 1cm(5A,3B) is a maximum.

Consensus selection rule 3°” can be implemented by making sure
that algorithm CLSEL (Algorithm 3.6.2) always selects consensus pairs
from the non-deletion consensus list first. This is accomplished by
interchanging the references to L] and L2 in step 2 of Algorithm 3.6.2.

The complete basis algorithms based on CSR3, CSR3“, and CSR3"~
were tested as follows. Since the coefficient field was GF(p), we used
algorithm DDMBCK of Appendix B to realize abstract algorithm mckbasis
(Algorithm 3.6.4). The consensus selection rules were realized in ver-
sions of algorithm DDBCLG (for abstract algorithm CLGEN) and algorithm
DDBCLS (for CLSEL). Both of these algorithms are given in Appendix B.

We restricted our input to the complete basis algorithm to bases
in GF(p)[x,y] which contained two basis elements with the same leading
exponent vector. A bivariate exponent vector, I, was specified, and

the basis elements A1 and A2 were selected at random from PL(I) for
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tests conducted using lexicographic exponent vector ordering, and from
PT(I) for tests using total degree ordering. Each of these bases was
then input to the three versions of DDMBCK based on CSR3, CSR3”, and
CSRC”~.

The results of these tests are presented in Tables 5.3.1 and
5.3.2. Each entry is the average of five different initial bases. The
times are in seconds. Dashes indicate times in excess of 200 seconds.

Table 5.3.1 Complete Basis Computing Times (DDMBCK, Lexico-

graphic Order)

I CSR3 CSR3” CSR3”~
(2,2) 1.1 1.10 102.8
(3,3) 9.7 ~10.18 -
(4,8) 70.6 70.1 -

Table 5.3.2 Complete Basis Computing Times (DDMBCK, Total

Degree Order)

I CSR3 CSR3” CSR3”*
(2,2) 2.97 7.13 2.95
(3,3) 20.2 85.0 20.7
(4,4) 86.8 - 86.7

From these tables, we note that the time required to compute a
complete basis with any of these algorithms rises rapidly as the
degrees of the initial basis elements increase. But note, however,
that there are definite distinctions among these three versions. If
complete bases are being computed with exponent vectors in lexicogra-
phic order, then CSR3 and CSR3” yield virtually identical computing

times. This indicates that in this case it makes little difference in
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what order the consensus pairs are evaluated, as long as consensus
pairs which lead to deletions are processed first. Note that if
deletions are processed last (CSR3°“), then the time to compute a
complete basis with lexicographic order becomes much longer.

Nearly the opposite behavior is seen if we are interested in
computing complete bases with total degree exponent vector ordering.
In this case, it seems to make little difference whether deletions are
processed first or last (CSR3 and CSR3°“), but it seems important to
first process consensus pairs whose leading exponent vector least
common multiple is small. Although these tests are not exhaustive,
they do support the use of consensus selection rule 3 as a rule which
handles both exponent vector orderings in a satisfactory manner.

In Section 2.2, we mentioned that two different exponent vector
(or monomial) orderings will produce two distinct sets of residue class
representatives when the remainder algorithm is utilized with a com-
plete basis to give a simplifying ample function. However, we also
indicated that even when the actual residue class representatives are
unimportant, the choice of the ordering used during the complete basis
computation can have a pronounced effect on the computing time.

This phenomenon is illustrated in Table 5.3.3. The times in this
table were obtained by generating initial bases containing two random
polynomials in GF(p)[x,y] and using mckbasis with CRS3, as realized by
algorithm DDMBCK, to compute a complete basis. The source of the two
polynomials is given under the column headed "Initial." The times (in

seconds) required to compute complete bases using lexicographic and
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total degree exponent vector orderings are given in the final two
columns. As before, each of these entries is the average of five

complete basis computations.

Table 5.3.3 Complete Basis Computing Times (DDMBCK, Selection

Rule CSR3)
I Initial Lexicographic Total Degree
(2,2) PL(I) 1.1 1.55
(3,3) PL(I) 9.71 16.5
(4,4) P(1) 70.6 89.9
(2,2) PT(I) 3.48 2.97
(3,3) PT(I) 53.12 20.2

(4,4) PT(I) 822.5 86.8
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5.4 Complete Basis Computations Using Resultant Systems

In this section, we present some empirical results regarding
the computing time of the complete basis algorithm (mckbasisr, Algorithm
4.5), which makes use of multipolynomial resultant systems. For the
coefficient field GF(p) this abstract algorithm is realized by algorithm
DDMBCR of Appendix B.

Two comments are in order. DDMBCR uses a bubble sort, not a
merge sort, when converting between distributive and recursive canoni-
cal form. This only affects the time required to remove the ideal
basis gcd and compute the associated resultant systems. As will be
seen below, the time required for this phase of the process is only
a small part of the time required to find a complete basis. In addi-
tion, the univariate remainder algorithm used by DDMBCR is just the
remainder algorithm presented in Chapter 3, and not the special uni-
variate remainder algorithm, dpremul, described in Section 4.4. It is
not known whether the use of dpremul would have a significant effect

on the empirical computing times for DDMBCR.

The times listed in Tables 5.4.1 and 5.4.2 were obtained in the
same way as the times in Tables 5.3.1 and 5.3.2. We list the times for
mckbasis using CSR3 (as realized by DDMBCK) for convenience.

Table 5.4.1 Complete Basis with Resultant System Computing

Times (Lexicographic Order)

1 DDMBCK(CSR3) DDMBCR
(2,2) . 1.1 6.49
(3,3) 9.71 67.2

(4,4) 70.6 472.0
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Table 5.4.2 Complete Basis with Resultant System Computing

Times (Total Degree Order)

I DDMBCK(CSR3) DDMBCR
(2,2) 2.97 35.2
(3,3) 20.2 472.0
(4,4) 86.8 -

The computing times required by DDMBCR are much larger than those
required by DDMBCK. More information can be gained from Tables 5.4.3
and 5.4.4 which break down the times (in seconds) required by DDMBCR
into three categories. The column labeled "Prep" gives the time
necessary to "prepare" the initial basis, i.e., to compute the gcd and
the resultant system of the cofactors. The column marked "Comp" gives
the time actually required to compute a complete basis for the ideal
generated by the cofactors of the initial basis elements. This portion
of the algorithm makes use of the univariate ideal elements computed
from the resultant systems. The column marked "Post" gives the time
necessary to multiply the elements of the complete basis by the gcd of
the initial basis elements. The total times do not correspond exactly
to the sum of the partial times because of rounding.

Table 5.4.3 Complete Basis with Resultant System Component

Computing Times (Lexicographic Order)

1 Prep Comp Post Total
(2,2) 1.41 5.06 .02 6.49
(3,3) 4.23 62.88 .30 67.15

(4,8) 10. 31 461. 41 .55 an.ir7
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Table 5.4.4 Complete Basis with Resultant System Component
Computing Times (Total Degree Order)

1 Prep Comp Post Total
(2,2) 4.88 30.3 .04 35.23
(3,3) 22.17 450.04 1 472.31

The pairs of random polynomials used as inputs had a gcd of one.
Hence, most of the preparation time was spent in computing resultant
systems. The post time was small in every case because it was only
necessary to multiply each of the final basis elements by one. The
majority of the computing time was spent finding a complete basis using
the univariate elements computed from the associated resultant systems.
The frequent attempts to reduce polynomials with respect to the uni-
variate ideal elements probably contributes a great deal to the magnitude

of this figure.



CHAPTER SIX:

Conclusions

The work reported in this thesis is related most closely to that
of Buchberger, Shtokhamer, Lauer, and Trinks. In [BUC65] and [BUC70],
Buchberger first detailed an algorithm to compute what in this thesis
we have been calling a complete basis. His work dealt with multi-
variate polynomials over a field, and only considered the total degree
exponent vector ordering. A short while later, Shtokhamer [SHT76]
formulated an algorithm for computing complete bases in rings of uni-
variate polynomials over coefficient rings which are very much like
the simplification rings defined in Chapter 2. In [LAU76a] and
[LAU76b], Lauer recognized that both of these approaches could be used
to specify simplifying ample functions in the associated rings. He
also generalized Buchberger's algorithm to coefficient rings that are
Euclidean domains. Trinks [TRI78] synthesized this previous work in
an algorithm for computing complete bases for ideals composed of multi-
variate polynomials whose coefficients were elements of a ring that was
similar to a simplification ring.

Both Buchberger and Trinks call complete bases Grobner bases.
Lauer refers to them as Buchberger bases, and Shtokhamer used the phrase
Szekeres basis. The remainder operation described in this thesis is
similar to the M-reduction used by Buchberger, Lauer, and Trinks. The
polynomials formed by the consensus operation have been variously

described as S polynomials [BUC70], S and T polynomials [LAU76b], and
Sjr polynomials [TRI78].
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In the work of Buchberger, Lauer, and Trinks, a basis is defined
to be complete if the M-reductions of all elements of the associated
ideal are zero. This relates the completeness of the basis directly
to the specification of an algorithm. In 1976, however, G. E. Collins
suggested the concept of simple constructibility for multivariate poly-
nomials over a field. In Section 2.3 of this thesis, we have general-
ized this concept to the case of multivariate polynomials over a sim-
plification ring. The concept of simple constructibility thus abstracts
that property of a basis which makes it a complete basis. The formula-
tion of the remainder and complete basis algorithms in terms of simple
constructibility occupies most of Chapters 2 and 3.

Perhaps one of the main contributions of this thesis is the
application of greatest common divisor and resultant system calculations
to the problem of computing complete bases. In Section 2.8, we show
that the gcd of the basis elements may be removed before computing a
complete basis. In Chapter 4, we show how the computation of multi-
polynomial resultant systems can result in univariate polynomials which
can then be used to 1limit degree growth during the computation of
complete bases. This technique resulted in a polynomial time bound on

an algorithm for computing complete bases in GF(p)[x,y].



APPENDIX A:
Algorithm Index

A.1 Introduction

In this appendix we present an index of the algorithms
discussed in the body of this thesis. In addition we show the
correspondence between the algorithms in the thesis and the
algorithms as they have actually been realized in the SAC-2
computer algebra system. Aldes descriptions of the SAC-2
versions may be found in Appendix B. Appendix B also contains
Aldes descriptions of several algorithms not mentioned in the
thesis. These algorithms support the thesis algorithms by pro-
viding capabilities for polynomial output, sorting, and
canonical form conversion, among others. A list of the names
of these algorithms is to be found in Section A.3 of this
appendix.

‘In the algorithms presented in Appendix B we have added two
special symbols, "~ and "3", to the publication Aldes character
set given in [LOS76]. We transliterate the ornament "™ as "A"
for arrow; "3" is transliterated as "DG". Thus B becomes BA,

and 3A becomes DG(A).
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A.2 Index of Thesis Algorithms

Algorithm Section SAC-2 Version
BESEL 3.4.1 DDBESL
beta 2.7.2

cbasis 2.5

cbasisx 2.6.2

CLDEL 3.6.3 DDBCLD
CLGEN 3.6.1 DDBCLG
CLSEL 3.6.2 DDBCLS
COMP 1.6 coMP
dpdif 3.2 DDMPDF
DPLC 3.2 DPLC
DPLEC 3.2 DPLEC
DPLECR 3.2 DPLECR
DPLEV 3.2 DPLEV
dpmon 3.2 DDMPMN
dpneg 3.2 DDMPNG
dpprod 3.2 DDMPPR
DPRD 3.2 DPRD
dprem 3.4.2 DDMPRM
dpremu 4.4.1 DDMPRU
dpremul 4.4

dpsrem 3.4.3 DDMPSR
dpsremu 4.4.2 DDMPSU
dpsum 3.2 DDMPSM
dptermpr 3.2 DDMPTP

EVCOMP 3.2 EVDCMP



Algorithm

EVDIF
EVGCD
EVLCM
EVLIN
EVSUM
fdif
FIRST
fneg
fprod
fquo
fsum
LDEL
1dpgcdc
ldpres
mckbasis
mckbasisr
mckbasisu
modgen
RED

rem

remx
srem
theta

Section

3.2
3.2
3.2
3.6
3.2
3.2
1.6
3.2
3.2
3.2
3.2
3.6
4.2
4.3
3.6.4
4.5
4.4.3
2.7.1
1.6
2.3
2.6.1
2.5
2.6.3

SAC-2 Version
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see

EVDDIF
EVDGCD
EVDLCM
EVDLIN
EVDSUM
MDDIF
FIRST
MDNEG
MDPROD
MDQ
MDSUM
LDEL
LDOMPG
DDMBFV
DDMBCK
DDMBCR
DDMBCU

RED
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A.3 Support Algorithms

Algorithm Description

DDBSRT Distributive, dense exponent vector, polynomial ideal
basis sort.

DDIBWR Distributive, dense exponent vector, integral polyno-
mial ideal basis write,

DDIPWR Distributive, dense exponent vector, integral polyno-
mial write.

DDLFPL Distributive, dense exponent vector, polynomial list
from polynomial list.

DDLMVS Distributive, dense exponent vector, polynomial list,
main variable substitution.

DDMBFV Distributive, dense exponent vector, modular polyno-
mial ideal basis, ideal elements free of main variable.

DDMBRA Distributive, dense exponent vector, modular polyno-
mial ideal basis, random.

DDMPRA Distributive, dense exponent vector, modular polyno-
mial, random.

DDPFP Distributive, dense exponent vector, polynomial
from polynomial.

DDPFPL Distributive, dense exponent vector, polynomial
from polynomial, lexicographic order.

DDPMVS Distributive, dense exponent vector, polynomial,
main variable substitution.

DDPSRT Distributive, dense exponent vector, polynomial sort.

EVDMVS Exponent vector, dense representation, main var-

jable substitution.



List of modular polynomials, greatest common divisor

List of modular polynomials, resultant system.
Polynomial base coefficient list.
Polynomial from distributive, dense exponent vector,

Algorithm Description
LMPGDC

and cofactors.
LMPRES
PBCFL
PFDDP

polynomial.
PLFDDL

Polynomial 1ist from distributive, dense exponent
vector, polynomial list.
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M«DDBCLD(L,C)

[Distributive, dense eXponent vector, polynomial ideal basis con-

sensus list deletion. L is a consensus list, C is a distributive

polynomial. M is the consensus list gotten from L by deleting

all consensus pairs containing C. L is modified.]

(1)
(2)
(3)
(4)

(5)

safe DDBCLD.

[L=().] if L=(), then { M<(); return }.

[Scanlq, then LZ.] FIRSTZ(L;L],LZ); M'+L1; i«l.

[M'=().] if M'=(), then go to 6.

[C in FIRST(M').] FIRST3(FIRST(M'); K,A,B); if C=A V C=B,
then { M'<RED(M'); go to 3 }.

[Scan M'.] L"<«M'; L'<RED(L"); while L'#()

do { FIRST3(FIRST(L');K,A,B); if C=A V C=B, then
SRED(L",RED(L')) else L"«L'; L'«RED(L") }.

[Next List.] if i=1, then { L1+M'; M'«LZ; i«2; go to 3 };
L2+M'.

[Return M.] if L]=()& L2=() then M«() else M+LIST2(L],L2);
return []
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L'«DDBCLG(L,A,B)

[Distributive, dense exponent vector, polynomial ideal basis
consensus 1list, generate elements. L is a consensus list. A is

a non-zero polynomial in distributive, dense exponent vector,
canonical form; §¥<Bl,...,Bn>1s an ideal basis composed of non-zero
distributive polynomials compatible with A. L' is a new consensus
list composed of the elements of L, and, in addition, the consensus
pairs (A’Bi)’ 15i%n, such that lcm(BA,aBi)#aA+aBi. The sublists of
L and L' are arranged such that the least common multiples of the
Teading exponent vectors of the consensus pairs are in non-
decreasing order. This partially implements consensus selection

rules 2 and 3. The list L is modified.]
safe A,B,B',1,J.

(1) [Initialize.] if L#() then FIRST2(L;LsL,) else { Ly+(); Ly=() };
I+DPLEV(A); B'<B.

(2) [Pair A with elements of B.] repeat { ADV(B';B,B'); J«DPLEV(B);
K'«EVDGCD(I,Jd); if K'#() then { K<EVDLCM(I,J); I'<EVDDIF(K,I);
J'«EVDDIF(K,Jd); if J'=() then M<LIST3(K,B,A) else M<LIST3(K,A,B);
if I'=() V 3'=() then L,«EVDLIN(L,,M,1) else
L+EVOLIN(L,,M,1) } ) until B'=().

(3) [Return L'.] if L]=() & L2=() then L'«() else
L'«LIST2(L;5L,)5 return O
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DDBCLS(L;L',K,A,B)

[Distributive, dense exponent vector, po1ynoﬁia] ideal basis
consensus list, selection. L=(L],L2) is a consensus list, where
either L] or L2 is non-empty. A and B, the next consensus pair,
are compatible non-zero polynomials in distributive, dense
exponent vector, canonical form. K=1cm(3A,3B). L' is the
consensus list equivalent to L with the pair (A,B) removed. This

partially implements consensus selection rule 3. The list L is

modified. ]

safe DDBCLS.

(1) [Initialize.] FIRST2(L;L],L2).
(2) [Choose pair.] if Llf() then ADV(L1;M,L]) else ADV(LZ;M,LZ);
FIRST3(M;K,A,B).

(3) [Finish.] if L]=() & L2=() then L'«() else L“*LISTZ(L],LZ);
return []
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DDBESL (J,A;K,2,B)

[Distributive, dense exponent vector, polynomial jdeal basis element
selection. J is an exponent vector and K=<A1,...,An> js an ideal
basis composed of ﬂo1ynomials in distributive, dense exponent vector,
canonical form whose leading exponent vectors are compatible with J.
For 15j%n, Ajfo, and aA]SGAZS...SaAn. 1f aAjIJ for 15j$n, then

=-1, and a and B are undefined. Otherwise, let k be the least
integer such that aAkld. Then K=J-3A, » a=1c(Ak), and B=rd(Ak).

This implements remainder selection rule 2.]

safe DDBESL.

(1) [Initialize.] ARy Ke -1,

(2) [Check each basis element.] repeat { ADV(R' ;ALR');
DPLECR(A;I,a,B)s K<EVDDIF(J,1); if K#-1 then return;
i EVDCMP(J,1)=-1 then return } until R'=(). return ]
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B<DDBSRT (R ,k)

[Distributive, dense exponent vector, polynomial ideal basis sort.-
% is an ideal basis composed of compatible non-zero polynomials in
distributive, dense exponent vector, canonical form. The basis
elements are sorted such that their exponent vectors are in non-
decreasing (k=0) or non-increasing (k#0) order. B is the sorted

basis. The list representing R is modified.]
safe DDBSRT.

(1) [Initialize.] Bk; §0+().

(2) [Bubble sort non-decreasing.] repeat { B'<8; B'«RED(B' )3
A'<FIRST(B'); I'«DPLEV(A')s By'«()s while B"#8, do
{ A"<FIRST(E"); I"«DPLEV(A"); if EVDCMP(I',I")=1 then
{ SFIRST(B',A"); SFIRST(B",A'); By'<B" } else
[ A'eA"; T'«I" }; Br<B; BUeRED(E') 13 BB, ) until
By=0).

(3) [Finish.] if k#0 then BeINV(B); return O
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DDIBWR(R,V)

[Distributive, dense exponent vector, integral polynomial ideal
basis write. % is an ideal basis composed of compatible integral
polynomials in distributive, dense exponent vector, canonical
form. V is a variable list for the polynomials in K. The poly-
nomials in X are written in the output stream. The output buffer

js emptied after each polynomial is output.]
safe DDIBWR.

(1) A«X; repeat { ADV(R';A,A"); TAB(5); DDIPWR(A,V); EMPTOB }
until A'=(); return []
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DDIPWR(A,V)

[Distributive, dense exponent vector, integral polynomial write.

A is an integral polynomial in distributive, dense exponent vector,

canonical form. V is a variable list for A. A is written in the

output stream. ]

(1)
(2)

safe e,i,s,v,A',I,S,V".

[A=0.] if A=0 then { CWRITE('0'); return }.

[Output each term.] A'«A; i«0; repeat { ADV2(A';Il.,a,A');
s+ISIGNF(a); if s=-1 then { a«INEG(a); S«'-' } else S«'+';
if i=1 then CWRIT2(' ',S) else if s=-1 then CWRITE(S); i«1;
if I=() V a#1 then { CWRITE(' '); IWRITE(a) };

V'«V; while I#() do { ADV(I;e,I); ADV(V';v,V'); if e>0 then
{ CWRITE(' '); CLOUT(v) }; if e>1 then

{ CWRIT2('*','*'); IWRITE(e) } } } until A'=(); return[]




m

M«<DDLFPL(r,L)

[Distributive, dense exponent vector, polynomial list from poly-
nomial list. L is a list of polynomials in r variables, rz20,
represented in recursive canonical form. M is a 1ist of the
polynomials in L in distributive, dense exponent vector, canonical

form. ]

safe A,L'.
(1) L'+L; M«(); repeat { ADV(L';A,L'); B«DDPFP(r,A); M<COMP(B,M) }
until L'=(); M<INV(M); return[]
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MeDDLMVS (L ,k)

[Distributive, dense exponent vector, polynomial list, main
variable substitution. L=(A],...,An) is a 1ist of compatible
polynomials in variables XqseeesXy in distributive, dense
exponent vector canonical form. M=(B],...,Bn) is a 1ist of
distributive, dense exponent vector, polynomials. For 1%i%n, B;
is gotten from Ai interchanging the main variable X with the

variable x, 15ksr.]
safe A,L'.

(1) L'«L; M<(); repeat { ADV(L';A,L'); M<COMP(DDPMVS(A,k),M) }
until L'=(); McINV(M); return []
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CDDOMBCK(p,K)

[Distributive, dense exponent vector, modular polynomial ideal
basis, monic complete kernel basis. A=<A]....,An> is an ideal
basis composed of non-zero compatible polynomials over Zp, p

a prime B-integer, in distributive, dense exponent vector,
canonical form. A is arranged such that BA]SBAZS...SaAn.
E=<C],...,CS> is a monic complete kernel basis for the ideal
generated by R such that 3C1<3C2<...<3C5. This algorithm uses
consensus selection rules 1, 2, and 3, and remainder selection

rules 1 and 2. The list rebresenting A is modified.]
safe a,b,A,A',A',B,B',I,d.

(1) [Initialize consensus list.] TR L<(); ADV(R;AR");
while A'#() do { L<DDBCLG(L,A,A"'); ADV(A';AA") 3.
(2) [Select consensus pair.] if L=() then go to 8; DDBCLS(L;L,K,A,B).
(3) [Form consensus and semi-remainder.] DPLECR(A;I,a,A');
I'<EVDDIF(K,I); a«MDNEG(p,a); DPLECR(B;J,b,B'); J'<EVDDIF(K,J);
C«~DDMPSM(p ,DDMPTP (p,I',b,A'), DDMPTP(p,J*,a,B'));
C«DDMPSR(p,C,C).
(4) [Delete if possible.] if I'=() then { C<LDEL(T,A);
L-DDBCLD(L,A) }.
(5) [C is constant.] if C=0 then go to 2; if DPLEV(C)=() then go to 7.
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(6) [Modify consensus list and basis.] L*DDBCLG(L,C,E);
C<EVDLIN(E,C,1); go to 2.

(7) [Identity is in ideal.] C+LISTI(LIST2(1),1)); return.

(8) [Make € into monic kernel basis.] ADV(C;C,B);
CLIST1(DDMPMN(p,C)); while B#() do
{ ADV(B;C,B); C~DDMPRM(p,C,C); C<DDMPMN(p,C);
CeevDLIN(E,C,1) 5 return [




¢<DDMBCR(p, )

[Distributive, dense exponent vector, modular polynomial ideal

basis, monic complete kernel basis using resultant systems.

KE<A],...,An> is an ideal basis composed of compatible polynomials

over Zp, p a prime B-integer, in distributive, dense exponent
vector, canonical form. E=<C],...,Cs>is a monic complete kernel

basis for the ideal generated by R such that aC <...<3CS. This

1
algorithm uses consensus selection rules 1, 2, and 3. The list

representing R is modified. ]

safe r.

(1) [LENGTH(R)=1.] if RED(R)=() then { C<FIRST(R); go to 9 }.
(2) [Compute gcd and cofactors.] LDDMPG(p,K;G,g).
(3) [Check for zeros and constants.] B'«B; B«(); repeat
{ ADV(B';A,B'); if A#O then { if DPLEV(A)=() then
{ C«G; go to 9 } else B<EVDLIN(B,A,1) } } until B'=();
if B=() then { C«<0; go to 9 }; if RED(B)=() then
{ C<DDMPPR(p,FIRST(B),G); go to 9 }.
(4) [Determine number of variables.] r«LENGTH(DPLEV(FIRST(E)));
if r=1 then { C+G; go to 9 }.
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(5)

(6)

(7)
(8)

(9)
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[Find r-1 variate ideal element systems.] ﬁ*—(); for i=1,...,r
do { B'«DDLMVS(B,1); R'<DDMBFV(p,B'); R'~DDLMVS(R',1);
ReCOMP(R',R) 1.

[Select one element from each system.] 3R; ﬁ*—(); repeat

{  ADV(3;R',3); ADV(R';A,R'); I<DPLEV(A); while R'#() do

{ ADV(R';B,R'); J«DPLEV(B); if EVDCMP(I,J)=1 then

{ AB; I«J } }; REVDLIN(R,A,1) } until 3=().

[Compute monic complete kernel basis for B.] B«DDMBCU(p,B,R).
[Construct basis for ideal generated by K.]

C<(); repeat { ADV(B;A,B); C<DDMPPR(p,G,A); C<COMP(C,C) } until
B=(); C<INV(C); return.

[Ideal is principal.] C<DDMPMN(p,C); C«LISTI(C); return [




177

C«DDMBCU(p,A,R)

[Distributive, dense exponent vector, modular polynomial ideal
basis, monic complete kernel basis using univariate ideal elements.
K#<A1;...,An> is an ideal basis composed of non-zero compatible
polynomials over Zp, p a prime B-integer, in distributive, dense
exponent vector, canonical form. aA]f...faAn. §$<R],...,Rr> is a
sequence of univariate elements of the ideal generated by R with
3R1<...<8Rr. E=<C1,...,Cs> is a monic complete kernel basis for
the ideal generated by A such that ac]<...<acs. This algorithm

uses consensus selection rules 1, 2, and 3 and remainder selection

rule 3. The list representing R is modified.]
-
safe a,b,A,A',A',B,B',I,J.

(1) [Include elements of R in & and initialize consensus list.]
tk; R'<R; repeat { ADV(R';B,R'); C<EVDLIN(E,B,1) } until
R'=(); L«(); ADV(C;A,R'); while A'#() do
{ L+DDBCLG(L,A,A"); ADV(A';A.R") 1.
(2) [Select consensus pair.] if L=() then go to 8; DDBCLS(L;L,K,A,B).
(3) [Form consensus and semi-remainder.] DPLECR(A;I,a,A');
I'«EVDDIF(K,1); a«MDNEG(p,a); DPLECR(B;J,b,B'); J'<«EVDDIF(K,d);
C«+DDMPSM(p,DDMPTP(p,I',b,A'), DDMPTP(p,J',a,B'));
C+DDMPSU(p,C,C,R).



(4)

(5)

(6)

(7)
(8)
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[Delete if possible.] if I'=() then { C<LDEL(C,A);
L+DDBCLD(L,A) }.

[C is constant.] if C=0 then go to 2; if DPLEV(C)=() then
go to 7.

[Modify consensus list and basis.] L«DDBCLG(L,C,C);
C+EVDLIN(C,C,1); go to 2.

[Identity is in ideal.] C<LISTI(LIST2((),1)); return.
[Make € into monic kernel basis.] ADV(E;C,g);
C<LIST1(DDMPMN(p,C)); while B#() do { ADV(B;C,B);

C' «DDMPRU(p,DPRD(C),C,R); C«DPLT(C); if C'#0 then
SRED(RED(C),C'); C<DDMPMN(p,C); C<EVDLIN(C,C,1) }; return [
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B<DDMBFV (p,A)

[Distributive, dense exponent vector, modular polynomial ideal
basis, ideal elements free of main variable. K=<A1,...,An> is a
basis of non-zero compatible polynomials over Zp, p a prime
B-integer. §=<B1,...,Bs> is a sequence of elements of the ideal
generated by R such that the degree of Bi in the main variable is
zero, 15iSs. If there exist Ai such that the degree of Ai in the
main variable is zero, then B is the sequence of such Ai's. Other-

wise, B is the resultant system of A.]

safe r.

(1) [Check elements of K.] PLFDDL(K;r,K"); Rrefes B<();
repeat { ADV(R';A,R'); if PDEG(A)=0 then B<COMP(A,B) }
until A'=(); if B#() then go to 3.

(2) [Compute resultant system.] K‘*-LMPRES(r,p,K"); B<()3
repeat { ADV(A';AK'); A<LIST2(0,A); B<COMP(A,B) }
until A'=(); BINV(B).

(3) [Convert to distributive form and return.]

B«DOLFPL(r,B); return [



K+DDMBRA(m,n,I],12)

[Distributive, dense exponent vector, modular polynomial ideal
basis, random. Inputs m and n are B-integers, I] and I2 are
compatible exponent vectors in the dense representation such that
11512' KE<A],...,An> is an ideal basis composed of n compatible
non-zero random polynomials over Zm represented in distributive,
dense exponent vector, canonical form. For 1%icn, aAi is com-
patible with 12’ and aAi is selected at random from the set of
all exponent vectors J such that I]SJSIZ. In the case of lexico-

graphic order, we also require J!IZ.]

safe EVORD. global EVORD.
SAFE d,e,f,i,j,r,z,I'.

(1) [1,=0).1 &«(); if 1,=() v EVDCMP(I,,1,)=0 then
{ for i=1,...,n do K+C0MP(DDMPRA(m,IZ),K); return }.

(2) [Decide order.] if EVORD=2 then go to 4.

(3) [Lexicographic order.] for i=1,...,n do
{ repeat { J«(); I'¢I,; 2z+0; repeat
{ ADV(1';e,1'); T«MDRAN(e+1); if >0 then z«1;
J«COMP(f,d) } until I'=(); if 2=0 then J«() else J«INV(J) }
until EVDCMP(I],J)SO & EVDCMP(J,IZ)SO; A+<DDMPRA(m,J);
R<coMP(A,R) }; return.
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(4) [Total degree order.] r*LENGTH(IZ); d«1; I'+12;
for j=1,...,r do { ADV(I';e,I'); ded+e }; for i=1,...,n
do { repeat { J«(); z<0; for j=1,...,r do
{ f<MDRAN(d); if >0 then z«1; J«COMP(f,J) };
if z=0 then J«() else J«INV(J) 1} until EVDCMP(I1,J)$D

& EVDCMP (J,1,)50; A<DDMPRA(m,J); A«COMP(A,K)  }; return []
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C+DDMPDF(m,A,B)

[Distributive, dense exponent vector, modular polynomial
difference. A and B are compatible polynomials over Zm’ m
a B-integer, represented in distributive, dense exponent

vector, canonical form. C=A-B.]

(1) C<DDMPSM(m,A,DDMPNG(m,B)); return []




B«~DDMPHM(m,A)

[Distributive, dense exponent vector, modular polynomial homo-
morphism. A is an integral polynomial represented in distribu-
tive, dense exponent vector, canonical form. m is a positive

B-integer. B=Hm(A).]
safe a,b,A',I.

(1) [A=0.] if A=0 then { B«0; return }.

(2) [Apply homomorphism to each term of A.] A'<«A; B+();
repeat { ADV2(A';Il,a,A'); b+MDHOM(m,a); if b#0 then
B+COMP2(b,I,B) } until A'=(); if B=() then B0 else
B<INV(B); return [
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A'«<DDMPMN(p,A)

[Distributive, dense exponent vector, modular polynomial monic.
A is a polynomial over Zp, p a prime B-integer, in distributive,
dense exponent vector, canonical form. If A#0 then A' is the

polynomial similar to A with 1c(A')=1; if A=0 then A'=0.]
safe a,a’'.

(1) [A=0.] if A=0 then { A'«0; return }.
(2) [A#0.] a«DPLC(A); a'<+MDINV(p,a); A'<DDMPTP(p,().a',A);
return []




B«DDMPNG(m,A)

[Distributive, dense exponent vector, modular polynomial negative.

A is a polynomial over Zm’ m a B-integer, represented in distri-

butive, dense exponent vector, canonical form. B=-A.]
safe a,b,A’,I.

(1) [A=0.] if A=0 then { B«0; return }.
(2) [A#0.] A'«A; B«(); repeat { ADV2(A';I,a,A'); b«MDNEG(m,a);
B«COMP2(b,I,B) } until A'=(); B«INV(B); return [
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C«+DDMPPR(m,A,B)

[Distributive, dense exponent vector, modular polynomial product.
A and B are compatible polynomials over Am, m a B-integer, in

distributive, dense exponent vector, canonical form. C=AB.]

safe A',I.

(1) [A=0 V B=0.] C«0; if A=0 V B=0 then return.
(2) [A#0 & B#0.] A'«A; repeat { DPLECR(A';I,a,A');
C«~DDMPSM(m,C,DOMPTP (m,1,2,8)) } until A'=0; return [
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A<DDMPRA(m, 1)

[Distributive, dense exponent vector, modular polynomial, random.
The input m is a B-integer, I is an exponent vector in the dense
representation. A is a random polynomial over Zm represented in
distributive, dense exponent vector, canonical form, such that
?A=1 and A is ;ompatibIe with I. The ordering of the monomials of
A is determined by the global variable EVORD. EVORD=1 gives lexi-
cographic ordering, EVORD=2 gives total degree ordering. If J is
the exponent vector of any non-zero term of A in the lexicographic

case, then J|I.]

safe EVORD. global EVORD.

safe a,e,f,i,m' ,n,r,L,L'.

(1) [1=(0).]1 m'«m-15 if I=() then { a<MDRAN(m')+1;
A<LIST2((),a); return }.

(2) [1#().] r~LENGTH(I); if EVORD=2 then go to 4.

(3) [Lexicographic ordering.] I'«CINV(I); L«LIST1(());
repeat { Me(); ADV(I';e,I'); for f=0,...,e do { L'<L;
repeat { ADV(L';J,L'); M«COMP(COMP(f,J),M) } until
L'=() }; L«INV(M) } until I'=(); go to 7.



(4)

(5)

(6)

(7)

(8)

[Total degree ordering.] n+0; I'«I; repeat { ADV(I';e,I');
nente } until I'=(); Me(); for e=0,...,n do
M<COMP(LISTI(LIST1(e)),M); for i=2,...,r do { LeM; Me()s
for e=n,n-1,...,0 do { L<«L; M'«(); for f=0,...,e do

{ ADV(L;L',L); while L'#() do { ADV(L'3d,L')3
M'«COMP(COMP(f,J),M') } }; MeCOMP(INV(M'),M); L<RED(L) 1};
M<INV(M) }.

[Delete excess exponent vectors.] L<FIRST(M); repeat

{ L'«L; ADV(L;J,L) } until EVDCMP(I,J)=0; SRED(L',()).
[Connect sublists of M.] L«(); while M#() do

{ ADV(M;M',M); L<CONC(M',L) }.

[Insert coefficients.] SFIRST(L,()); A«();

repeat { ADV(L;J,L); a+MDRAN(m); if a#0 then

A<COMP2(J,a,A) } until L=().

[Make I the leading exponent vector.] If A=() V
EVDCMP(I,FIRST(A))#0 then { a«<MDRAN(m')+1; A«COMP2(I,a,A) };
return [ ] |
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Q«DDMPRM(p,P,R)

[Distributive, dense exponent vector, modular polynomial remainder.
P is a polynomial in distributive, dense exponent vector, canonical
form over Zp, p a prime B-integer. K=<A1,...,An> is a basis of
polynomials over Zp compatible with P. For 15i%n, Ai#O and

aA]SaAZS...SaAn. Q=rem(P,K) using remainder selection rules 1 and 2.]

safe a,b,q,B,J.

(1) [P=0.] if P=0 then { Q«P; return }.

(2) [Initialize.] Q'+P; Q«().

(3) [Attempt to reduce 1t(Q').] repeat { DPLECR(Q';J.q,Q');
DDBESL(J,A;K,a,B); if K=-1 then Q«COMP2(q,J,Q) else
{ b«MDNEG(p,MDQ(p,q.a)); Q'«~DDMPSM(p,Q' ,DDMPTP(p,K,b,B)) } }
until Q'=0.

(4) [Finish.] if Q=() then Q<0 else Q«INV(Q); return []
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Q«+DDMPRU(p,P,A,R)

[Distributive, dense exponent vector, modular polynomial remainder

using univariate ideal elements. P is a polynomial in distribu-

tive, dense exponent vector, canonical form over Z_, p a prime

P

B-integer. K=<A],...,An> and §$<R],...,Rr> are sequences of

non-zero polynomials over Z_ compatible with P. The elements of

P

R are univariate elements of the ideal generated by E.

<
BA] -

(1)
(2)
(3)

(4)

< -
...-aAn and 8R1<...<3Rr. Q—rem(P,<A],...,An,R],...,Rr>).]

safe a,b,q,B,d.

[P=0.] if P=0 then { Q«P; return }.

[Initialize.] Q~DOMPRM(p,P,R); if Q=0 then return; Q'<Q; Q<().
[Attempt to reduce 1t(Q').] repeat { DPLECR(Q';J,q.Q');
DDBESL(J,A;K,a,B); if K=-1 then Q«COMP2(q,J,Q) else

{ beMDNEG(p,MDQ(p,q,a))s Q'«DDMPSM(p,Q',DDMPTP(p,K,b,B));

Q' <DDMPRM(p,Q',R) } } until Q'=0.

[Finish.] if Q=() then Q<0 else Q«INV(Q); return [
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C«+DDMPSM(m,A,B)

[Distributive, dense exponent vector, modular polynomial sum.
A and B are compatible polynomials over Zm’ m a B-integer,

represented in distributive, dense exponent vector, canonical

form. C=A+B.]
safe a,b,c,k,A',B',I,J.

(1) [A or B zero.] if A=0 then { C«+B; return };
if B=0 then { C+A; return }.

(2) [Compare exponent vectors.] A'+«A; B'+B; C'«();
repeat { I+DPLEV(A'); J«DPLEV(B'); k«EVDCMP(I,J); case k
of { -1 do { ADV2(B';J,b,B'); C'«COMP2(b,J,C') };
0 do { ADV2(A';I,a,A'); ADV2(B';J,b,B'); c<MDSUM(m,a,b);
if c#0 then C'<COMP2(c,I,C') }; 1 do { ADV2(A';I,a,A');
C'<«COMP2(a,I,C') } } 1} until A'=() V B'=().

(3) [Finish.] if A'=() then A'+B'; if C'=() then C+A' else
{ C<INV(C'); SRED(C',A"') }; if C=() then C«0; return []
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Q«DDMPSR(p,P,A)

[Distributive, dense exponent vector, modular polynomial semi-
remainder. P is a polynomial in distributive, dense exponent
vector, canonical form over Z,» P a prime g-integer. K=<A],...,An>
is an ideal basis composed of polynomials over Zp compatible with
P. For 15iSn, A.#0, and 3A,3AS...S3A . Q=srem(P,k) using

remainder selection rule 2.]
safe aaqusB:‘JsQ' .

(1) [P=0.] Q«P; if P=0 then return.

(2) [Attempt to reduce 1t(Q).] repeat { DPLECR(Q:;J.q,Q');
DDBESL(J,A;K,a,B); if K=-1 then return;
b«MDNEG(p,MDQ(p.q.a)); Q«DDMPSM(p,Q',DDMPTP(p,K,b,B)) }
until Q=0; return []
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Q+DDMPSU(p,P,A,R)

[Distributive, dense exponent vector, modular polynomial semi-
remainder using univariate ideal elements. P is a polynomial in
distributive, dense exponent vector, canonical from over Zp,

p a prime B-integer. K¥<A1,...,An> and §$<R],...,Rr> are
sequences of non-zero polynomials over Zp compatible with P.

The elements of R are univariate elements of the ideal generated

by A. oA s...S3A and 3R

] <...<3R_. Q=srem(P,<A1,...,An,R],...,Rr>).]

1 r

safe a,b,q,B,J,Q".

(1) [Initialize.] Q«DDMPRM(p,P,R); if Q=0 then return.

(2) [Attempt to reduce 1t(Q).] repeat { DPLECR(Q;J,q.Q');
DDBESL(J,A;K,a,B); if K=-1 then return; b<MDNEG(p,MDQ(p,q,a));
Q«DDMPSM(p,Q' ,DDMPTP(p,K,b,B)); Q+DDMPRM(p,Q,R) } until Q=0;
return D
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B«DDMPTP(m,J,b,A)

[Distributive, dense exponent vector, modular polynomial term
product. A is a polynomial over Zm’ m a B-integer, represented
in distributive, dense exponent vector, canonical form; J is an
exponent vector in the dense exponent vector representation

compatible with 3A; b is an element of Z.- B=beA.]
safe a,c,A',I.

(1) [Aorb is zero.] if A=0 V b=0 then { B«0; return }.
(2) [Multiply each term of A.] A'<«A; B«(); repeat
{ ADV2(A';I,a,A'); c<MDPROD(m,a,b); K+EVDSUM(I,J);
if c#0 then B<COMP2(c,K,B) } until A'=(); if B=() then
B«0 else B«INV(B); return []
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B«DDPFP(r,A)

[Distributive, dense exponent vector, polynomial from polynomial.
A is a polynomial in r variables, r21. B is a polynomial in dis-
tributive, dense exponent vector, canonical form such that B=A.
The order of the exponent vectors in B is determined by the global

variable EVORD. ]
safe EVORD. global EVORD.

(1) B«DDPFPL(r,A); if EVORD#1 then B«DDPSRT(B); return []
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B«<DDPFPL(r,A)

[Distributed, dense exponent vector, polynomial from polynomial,
lexicographic order. A is a polynomial in r variables, r21. B is
a polynomial in distributive, dense exponent vector, canonical

form such that B=A. The exponent vectors in B are in lexicographic

order. ]
safe a,i.

(1) [A=0 or r=0.] if A=0 then { B«0; return }; if r=0 then
{ B«LIST2((),A); return }. “

(2) [A#0, r21.] Be(); r'<«r-1; A'«A; repeat { ADV2(A';e,a,A');
if r'=0 then { if e=0 then I«() else I«LIST1(e);
B«COMP2(a,I,B) } else { b«DDPFPL(r',a); while b#() do
{ ADV2(b3;Jd,c,b); if e#0 & J=() then for i=1,...,r' do
J+COMP(0,d); if J#() then J«COMP(e,J);

B«COMP2(c,J,B) } '} } until A'=(); B<INV(B); return [}
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B«<DDPMVS (A, k)

[Distributive, dense exponent vector, polynomial main variable
substitution. A is a polynomial in distributive, dense exponent
vector, canonical form in variables XqoeeesXp B is gotten from
A by interchanging the main variable X with the variable Xy

15ksSr. ]
safe a,A',I.

(1) [A=0.] if A=0 then { B«A; return }.

(2) [Interchange in each term.] A'«A; B«(); repeat
{ DPLECR(A';I,a,A'); J«EVDMVS(I,k); B«COMP2(J,a,B) } until
A'=0; B<«DDPSRT(B); return []



B«DDPSRT(A)

[Distributive, dense exponent vector, polynomial sort. A is a
polynomial in distributive, dense exponent vector, form. The
terms of A are in arbitrary order. The terms are sorted in

descending order. The order used is determined by the setting

of the global variable EVORD. The polynomial A is modified.]
safe DDPSRT.

(1) [A=0.] B+A; if A=0 then return.

(2) [Bubble sort A.] B «(); repeat { B'<B; B"+RED2(B');
DPLEC(B';I',a'); B '+(); while B"#B, do { DPLEC(B";I",a");
if EVDCMP(I',I")=-1 then { SFIRST(B',I"); SFIRST(RED(B'),a");
SFIRST(B",I'); SFIRST(RED(B"),a'); B '«B"} else
{ I'«I"; a'«a” }; B'«B"; B"+RED2(B') 1}; B«B ' 1} until
Bo=(); return [
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a+<DPLC(A)

[Distributive polynomial, leading coefficient. A is a non-zero

polynomial in distributive canonical form. a=1c(A).]
safe DPLC.

(1) a+«SECOND(A); return E]



DPLEC(A;I.a)

[Distributive polynomial, leading exponent vector and leading
coefficient. A is a non-zero polynomial in distributive

canonical form. I=3A and a=1c(A).]
safe DPLEC.

(1) FIRST2(A;1,a); return []
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DPLECR(A;I,a,B)

[Distributive polynomial, leading exponent vector, leading
coefficient, and reductum. A is a non-zero polynomial in

distributive canonical form. I=3A, a=1c(A), and B=rd(A).]
safe DPLECR.

(1) ADV2(A;1,a,B); if B=() then B=0; return []
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I+DPLEV(A)

[Distributive polynomial, leading exponent vector. A is a non-zero

polynomial in distributive canonical form. I=3A.]
safe DPLEV.

(1) I<FIRST(A); return []
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B«DPLT(A)

[Distributive polynomial, leading term. A is a non-zero poly-

nomial in distributive canonical form. B=1t(A).]
safe DPLT.

(1) FIRST2(A;I,a); B«LIST2(I,a); return []
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B«DPRD(A)

[Distributive polynomial, reductum. A is a non-zero polynomial

in distributive canonical form. B=rd(A).]
safe DPRD.

(1) B<«RED2(A); if B=() then B«0; return [ ]
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b«EVDCMP(I,J)

[Exponent vector, dense representation, comparison. I and J are

compatible exponent vectors in the dense exponent vector repre-

sentation.

The ordering used is determined by the global variable

EVORD. EVORD=1 gives lexicographic ordering; EVORD=2 gives total

degree ordering. If I<J then b=-1. If I=J then b=0. If I>J then

b=1.]

safe EVDCMP.

safe EVORD. global EVORD.

(1) [Initialize.] b«0; if I=J then return; if I=() then { b+ -1;

return }; if J=() then { b«l; return }.

(2) [Decide ordering.] if EVORD=2 then go to 4.

(3) [Lexicographic ordering.] I'«I; J'«J;

repeat { ADV(I';e,I'); ADV(J';f,d'); if e<f then

{ be-1; return }; if e>f then { b«1; return } } until

I'=(); return.

(4) [Total degree ordering.] I'«Il; J'«J; s<0; teo; repeat

{ ADV(I';e,1'); ADV(J';F,d'); s«s+e; t«t+f; if b=0 then

beSIGN(e-f) } until I'=(); if s=t then return;
b+SIGN(s-t); return []
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K<EVDDIF(I,J)

[Exponent vector, dense representation, difference. I and J are
compatible exponent vectors in the dense exponent vector represen-

tation. If J divides I then K=I-J. Otherwise K= -1.]
safe e,f,g,2,1',d".

(1) [Initialize.] ke(); if I=J then return; if J=() then
{ k«I; return }; if I=() then { K« -1; return };
I'«l; J'«J; z«0.

(2) [Subtract vector components.] repeat { ADV(I';e,I');
ADV(J';f,d'); gee-f; if g<O then { K« -1; return };
if g#0 then z«1; K«COMP(g,K) 1} until I'=().

(3) [Are all elements of K zero?] if z=0 then K«() else
K<INV(K); return [T]
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K«EVDGCD(I,J)

[Exponent vector, dense representation, greatest common divisor.
I and J are compatible exponent vectors in the dense exponent

vector representation. K=gcd(I,J).]
safe e,f,g,2,1',d".

(1) [I1=() or 3=().] K«(); if I=() V J=() then return.

(2) [Compute gcd.] I'+«l; J'«J; 2z+0; repeat { ADV(I';e,I');
ADV(J';F,d'); geMIN(e,f); K«COMP(g,K); if g>0 then z«1 }
until I'=().

(3) [Check for zero vector.] if z=0 then K«() else K«INV(K);
return D
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K«EVDLCM(I,J)

[Exponent vector, dense representation, least common multiple.
I and J are compatible exponent vectors in the dense exponent

vector representation. K=lem(I,J).]
safe e,f,g,1',d".

(1) [I=() or J=().] if I=() then { K«J; return };
if J=() then { K«I; return }.

(2) [Compute 1lem.] I'«I; J3'<«d; K«();
repeat { ADV(I';e,I'); ADV(J';f,d'); g«MAX(e,f);
K«COMP(g,K) } until I'=(). K<INV(K); return [ ]




L'«EVDLIN(L,M,k)

[Exponent vector, dense representation, 1ist insertion. L and M
are lists. If L=() then L'=(M). Otherwise L=(M1,...,MS) where
Mi is a list such that Ki=FIRST(M1) is an exponent vector, in the
dense exponent vector representation, compatible with the
exponent vector K=FIRST(M). The elements of L are arranged such
that the exponent vectors Ki are in non-decreasing (k=1) or non-

increasing (k=-1) order. M is inserted in L such that the

ordering is preserved. L' is the new list; L is modified.]
safe b,K,K',M' ,N,N',N".

(1) [L=().] L"<LISTI(M); if L=() then { L'<L"; return }.

(2) [Find insertion point.] K«FIRST(M); L'<L; N"«(); N'<L;
repeat { ADV(N';M',N); K'<«FIRST(M'); b«EVDCMP(K,K');
if k=1 & b#1 V k=-1 & b#-1 then go to 4; N"«N'; N'«N }
until N=().

(3) [Insert M at end.] SRED(N",L"); return.

(4) [Insert M between N" and N'.] SRED(L",N'); if N"=() then
L'«L" else SRED(N",L"); return []

209



210

J«EVDMVS(I,k)

[Exponent vector, dense representation, main variable substitution.
I is an exponent vector in the dense representation. If I=() then
J=()n If I=(er,...,e]) then J=(ekger°1’oeﬂsek+1 9er’ek&])"°°!e])9
12ksr. ]

safe e,f,r,1',J".

(1) [I=().] J«<(); if I=() then return.

(2) [k=r.] r<~LENGTH(I); if k=r then { J«I; return }.

(3) [Interchange.] I'«I; f«FIRST(I); for i=1,...,r-k
dob{ ADV(I';e,I'); J«COMP(e,d) }. ADV(I';e,I');
J«COMP(f,Jd); J'«J; J«INV(J); SFIRST(J,e); SRED(J',I');

return []
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K«<EVDSUM(I,J)

[Exponent vector, dense representation, sum. I and J are
compatible exponent vectors in the dense exponent vector

representation. K=I+J.]
safe e,f,I',J".

(1) [Initialize.] if I=() then { K«J; return }; if J=() then
{ KeIy return }; I'<I; 3'<«J; Ke().

(2) [Sum vector components.] repeat { ADV(I';e,I'); ADV(Jd';f,d');
K«COMP (e+f,K) } until I'=().

(3) [Invert K and return.] K«INV(K); return O
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LDDMPG(p,L;G,M)

[List of distributive, dense exponent vector, modular polynomials,
greatest common divisor and cofactors. L=(A1,,..,An), nz2, is a
1ist of compatible polynomials over Zp, p a prime B-integer, in
distributive, dense exponent vector, canonical form.

G=gcd(A "An) and M=(A1/G,...,An/G). G and the elements of M

],-;
are in distributive, dense exponent vector, canonical form.]

safe r.

(1) PLFDDL(L;r,L'); LMPGDC(r,p,L';G,M); G<DDPFP(r,G);
MeDDLFPL(r,M); return LJ
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M<LDEL(L,A)

[List deletion. L=(L],...,Ln), n21, is a list of y-integers.
A is a y-integer. If i is the least integer such that Li=A,
then M=(L1""’Li71’Li+1""’Ln)' If A does not occur in L, M=L.

L is modified.]

safe LDEL.

(1) [A=L,.] if A=FIRST(L) then { MeRED(L); return }.

(2) [Scan L.] MeL; L"<L; L'«RED(L"); while L'#()
{ if A=FIRST(L') then { SRED(L",RED(L')); return };
L"«L'; L'<RED(L") }; return []
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LMPGDC(r,p,L;G,M)

[List of modular polynomials, greatest common divisor and
cofactors. L=(A],...,An), n22, is a list of polynomials in r
variables, r21, over Z_, p a prime B-integer. G=gcd(A1,n,.,An)

P
and M=(A1/G,...,An/G), a list of cofactors.]

safe A,L',V,W.

(1) [Find G.] ADV(L;G,L'); repeat { ADV(L';A,L');
MPGCDC(r,p,G,AsG,V,W) } until L'=().

(2) [Compute cofactors.] Me(); L'«L; repeat { ADV(L';A,L');
M<COMP (MPQ(r,p,A,G),M) } until L'=(); MeINV(M); return [ ]
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M<LMPRES(r,p,L)

[List of modular polynomials, resultant system. L=(A1,...,An),
n22, is a list of polynomials in r variables over Zp, p a prime
g-integer. For 15iSn the degree of Ai in the main variable is
positive. The resultant system of L is computed with respect to
the main variable. If the resultant system is empty, then M=().
Otherwise, M=(B],...,Bs) is the resultant system of L. The

elements of M are polynomials in r-1 variables.]
safe b,e,n,n',r',A,L'.

(1) [LENGTH(L)=2.] n<LENGTH(L); if n=2 then { FIRST2(L;A,B);
C«MPRES(r,p,A,B); if C=0 then M«() else M«LIST1(C); return }.

(2) [Introduce indeterminates.] n'+n-1; L'<L; Ne();
for i=1,...,n do { ADV(L'3A,L'); B<«PINV(1,A,n'); B'«B;
repeat { ADV2(B';e,b,B'); for j=3,...,1 do b+SECOND(b);
if i>1 then SFIRST(b,1) } until B'=(); N<COMP(B,N) 1};
N<INV(N).

(3) [Sum last n' elements of N.] r'«r+n'; ADV(N;A,N'); B+0;
for i=1,...,n" do { ADV(N';B',N'); B«MPSUM(r',p,B',B) }.

(4) [Compute resultant.] C+<MPRES(r',p,A,B).

(5) [Get list of (r-1)-variate coefficients of C.]
M<PBCFL(n',C); return []
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L«<PBCFL(r,A)

[Polynomial base coefficient 1list. A is a polynomial in r variables.
If A=0 then L=(). If A#0 then L is the 1ist of base coefficients of
A. L is in descending lexicographic order with respect to the

monomials of A.]
safe a,e.

(1) [A=0 or r=0.] L«(); if A=0 then return; if r=0 then
{ LeLIST1(A); return }.

(2) [A#0 and r21.] r'<r-1; A'<«A; repeat { ADV2(A';e,a,A');
if r'=0 then L«COMP(a,L) else { L'«PBCFL(r',a);
L"«INV(L'); SRED(L',L); L«L" } } until A'=(); L<INV(L);

return D
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PFDDP(A;r,B)

[Polynomial from distributive, dense exponent vector,’po1ynomia1.
A is a polynomial in r variables, r20. A is represented in dis-
tributive, dense exponent vector, canonical form. B is a poly-
nomial in recursive canonical form such that B=A. If A is a

constant then B=1c(A) and r=0.]
safe a,e,i,r,A'.

(1) [A is constant.] if A=0 then { B<«0; r<0; return };
I«<DPLEV(A); if I=() then { B<DPLC(A); r<0; return }.

(2) [Convert each term of A and sum.] B<«0; A'«A; r<LENGTH(I);
repeat { ADV2(A';I,a,A'); T«a; if I=() then for
i=1,...,r do I«COMP(0,I) else I«CINV(I); repeat { ADV(I;e,I);
T<LIST2(e,T) } until I=(); B«MPSUM(r,B,T) 1} until A'=();

return [:]
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PLFDDL(L;r,M)

[Polynomial list from distributive, dense exponent vector, poly-
nomial 1ist. L is a list of compatible polynomials in r variables,
r20, represented in distributive, dense exponent vector, canonical
form. M is a list of the polynomials in L in recursive canonical

form. ]
safe r,r',A,L'.

(1)” [Convert polynomials in L.] r<0; L'+L; M'<();
repeat { ADV(L';A,L'); PFDDP(A;r',B); M'<COMP2(r',B,M');
if r'>r then rer' } until L'=().

(2) [Make constants compatible with r variables.]
M(); repeat { ADV2(M';r‘,B,M'); if B#0 & r'<r then
B<PINV(0,B,r); MeCOMP(B,M) } until M'=(); return []




APPENDIX C:
Definition/Symbol Index
Definition

acceptable monomial ordering
acceptable polynomial ordering

ample set

ample function

beta-digit

canonical form

codominant

compatible exponent vectors

compatible polynomials

complete basis

consensus

consensus list

consensus of pair

consensus selection rules 1, 2, 3
consensus selection rules 3', 3''
consensus set

consensus set, modified

degree I leading coefficient ideal of basis
degree I leading coefficient ideal of ideal
degree I leading coefficient sub-basis
degree I sub-basis

degree of polynomial

degree of representation

deletion consensus list

dense exponent vector canonical form
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Section

2.2
2.2
1.2
1.2
1.6
1.2
1.6
3.2
3.2
2.3
2.4
3.6
3.6
3.6
5.3
2.4
3.6
2.2
2.2
2.2
2.2
2.2
2.3
3.6
3.2



Definition

distributive, dense exponent vector, polynomial
canonical form

dominance

exponent vector

Hilbert Basis Theorem

j-th consensus

kernel basis

kernel polynomial

leading coefficient ideal of basis
leading coefficient ideal of ideal
leading coefficient sub-basis
leading exponent vector
leading exponent vector set
leading monomial

leading term

leading term ideal

length of integer
lexicographic ordering

max norm

monic associate

monic basis

monic polynomial

monomial

multiplicity of representation
Noetherian ring

recursive canonical form
reductum

remainder

remainder selection rules 1, 2

Section

3.2
1.6
2.2
2.2
2.4
3.5
2.2
2.2
2.2
2.2
2.2
3.5
2.2
2.2
2.5
4.2
3.2
4.2
3.2
3.5
3.2
2.2
2.3
2.2
4.2
2.2
2.3
3.4
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Definition

remainder selection rule 2'
representation

resultant system
semi-kernel basis
semi-kernel polynomial
semi-remainder

simple constructibility
simple representation
simplification ring
simplifying ample function
sum norm

total degree ordering
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Symbol

I|J

I

I+d

d=1
ker(K)
L(d)
1c(A)
Tem(I,4d)
Tm(A)
1t(A)
mcons(K)
S
N(r,m)
N(r,m)
P(D)
Pr(D)
rd(A)
R[x]

R*

RSR1
RSR2
RSR2'
RSx(il,...,A )
p’(‘b,a)

o (B,A)
sker(A)
eib,é'l

8 (B,A)
V(&)
v(R)
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