MAXIMUM PROCESSING RATES OF
MEMORY BOUND SYSTEMS

by
R. M. Bryant

Computer Science Technical Report #362

AUGUST 1979

MAXTMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS

R. M. Bryant
University of Wisconsin-Madison

Madison, Wisconsin

ABSTRACT

Multiresource queueing systems are of particular
importance in modelling computer systems because a job must
have access to a processor and main memory simultaneously in
order to proceed. Existing methods of determining max imum
processing rates for multiresource queueing systems are
limited to small memory sizes because problem complexity
grows exponentially with increasing memory size. By
restriciting our attention to a particular scheduling
discipline (first come first loaded or FCFL) and treating
memory as the 1limiting resource, methods of calculating
maximum processing rates of memory bound systems for
realistic main memory sizes are derived. The distribution

of the number of jobs loaded under the FCFL policy is given

in terms of a convolution of the memory reguest size
distribution. Time averaged behavior of the number of

loaded jobs 1is also found. Finally, the framework is

extended to allow multiple job classes in the input stream.

Results of this approach allow one to estimate main memory

size requirements from a workload characterization givenin
terms of arrival rate, memory size distribution and CPU

service rate.

KEY WORDS AND PHRASES: computer system models, multiresource
queue, computer system design, memory allocation, finite

memory size models.

CR CATEGORIES: 4.32, 4.35, 4.6, 5.5, 6.29, 8.1.

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS

R, M. Bryant
University of Wisconsin-Madison

Madison, Wisconsin

1. INTRODUCTION

In a series of papers [23; 26; 28; 27}, Omahen and
Marathe have defined and explored some of the proverties of
multiresource queueing systems. In their terminology [27].,
a multiresource queueing system is a single congestion point
associated with a number of resources. Each arriving job
simultaneously requires some combination of those resources
in order to be processed. The primary result from their
approach is an algorithm [27] for calculating the capacity
bound (or maximum processing rate) of a multiresource
gueueing system. Their solution 1is based on solving a
linear programming problem in which the proportions of time
spent by the system in each of its feasible states are the
unknowns. Equality constraints for the problem are derived

using Little's result [22] and the law of total probability.

Such qgueueing systems are particularly important in the
modelling of computer systems, where a job must have access

to both main memory and a processor in order to proceed.

2 R. M. BRYANT

One problem with using a multiresource gueue to represent

this dual resource gqueueing system is that the number of

feasible states grows exponentially with increasing main
memory size. For example, in [108] it is shown that for a
two processor system with 160 blocks of memory, there are
more than 190,000,000 feasible states. It is unlikely that
a linear programming package will ever be written which can
handle this number of independent variables. For this
reason, the applications of Omahen and Marathe's theory have
only been made to systems with very small main memory sizes.
(In [27] an example is solved for a system with eight blocks
of main memory.)

In this paper we are concerned with determining maxdmum
processing rates of ©processor and memory dual resource
gueueing systems for realistic main memory sizes (hundreds
of blocks of memory). We will treat memory as the limiting
resource, hence we are concerned with "memory bound”
systems. To do this, we will assume a specific scheduling
discipline. Thus we lose the advantage of Omahen and
Marathe's approach, which allows one to determine the
optimal schedule with respect to throughput.

Related work. Papers concerned with analytically

modelling: the simultaneous use of processors and memory can

be divided into two groups depending on whether the

multiprogramming level (MPL) is constant or allowed to vary
in relation to the memory sizes of loaded jobs. Models of

the first type are discussed in [24; 208; 21] and apply to

MAXIMUM PROCESSING RATES OF MEMORY: BOUND SYSTEMS 3

paging systems with a fixed upper limit on the MPL and a

saturated memory gqueue. Such models are often insensitive

to small changes in main memory size or to any change in the
memory size reguest distribution not reflected by a change
in the mean. Models of the second type as applied to paging
systems have been studied by Brandwajn [5; 6; 7] and Gelenbe
f2: 151]. The effect of memory size in these models is
modelled indirectly through the use of 1lifetime functions.
Models of the variable MPL type in which the memory reguest
size distribution is an explicit input have been studied by
Bard [3] and by Brown et al [8]. 1In this paper we simplify
some of the results of [3] and place some of the results of
[8] on a rigorous foundation.

Another class of papers deals with memory allocation in
swapping systems. Betteridge [4] considers a Markov Chain
model of memory allocation with contiguous placement of each
job's address space. Once again the exponential growth of
the state space limits application of this approach to very
small memory sizes. Buzen and Rubin [12] discuss the effect
of compaction in swapping type computer systems. They
derive a formula for <calculating the distribution of
residual (unused) core which will be present even when as
many jobs as possible are loaded into memory. We will

discuss the relation between these results and the results

of this paper in Sections 2 and 3. For a more detailed
survey of the literature see [10].

Notation and Assumptions. We consider a computer

4 R. M. BRYANT

system with M independently allocatable units (blocks) of

main storage. We assume that the size of main memory is the

limiting resource in the system; thus as many jobs as
possible are loaded at any given time. The remaining jobs
wait in a gueue (the memory gueue) and we will assume that
the arrival rate of jobs is high enough that the memory
queue 1is never allowed toibecome empty. We assume that no
external storage fragmentation takes place. This is
equivalent to assuming that memory is compacted at each job
departure time [12] or that paging hardware 1is used to
eliminate external storage fragmentation [3]. We require,
however, that the entire storage reguirement of a job must
fit into main memory before the job can be loaded. Finally,
we assume that jobs are 1loaded strictly in the order of
their arrival, i. e. the loading policy is first come first
loaded (FCFL) .

The resource requirements of each job are represented
by the pair of independent random variables (Xi,Si). X

denotes the storage requirement (in blocks) of the ith job;

i

the sequence {Xi} is assumed to be i. i. d. (independent and
identically distributed) with distribution F(x) and density
f(x). The Xi's are reguired to be integer valued with
lixigm where m<M, Xi can be interpreted as either the

th

program size of the the i job in a swapping system, or as

th

the working set size of the i job in a paging system. S.

i
represents the service time requirement of the ith job. The

seqguence {Si} is i. i. d. with an exponential distribution

MAXIMUM PROCESSING RATES OF MEMORY: BOUND SYSTEMS 5

of parameter u.

Let L(t) denote the number of loaded jobs (the MPL) at

time t and let P denote the number of processors on the
system, 1<{P<. We assume that if L(t)<P then each job is
assigned its own processor and each job receives service at
a unit rate. If L(t)>P, then processor sharing [13] takes
place and each job receives service at the rate of P/L(t).
When a job's service reguirement has been satisified, its
memory space is freed and as many jobs as possible are
loaded from the memory queue. This process 1is assumed to
occur instantaneously. We let t;=0 and for k>1 we let t,
denote the departure time of the k—lSt job to leave the
system; we note that jobs need not depart in the same order
that they arrive. Let Lk=L(tk+) be the MPL just after the
k-1St job departs. We will call the seguence {Lk} the MPL
sequence.

Throughout this paper, we will use subscripts to
indicate particular members of a sequence, e. d. Xk'
Capital letters are (usually) wused to indicate random
variables, 1lower case letters indicate wvalues for the
associated random variables. Underbars are used to indicate
vector quantities and superscripts are used to indicate
elements of a vector. Thus Zj is the jth element of zk' the

k¢

latter being a random vector. Square brackets are used to

indicate events (such as [X=x]). The probability of this
event 1is denoted by Pr{X=x}; the expected value of the

random variable X is denoted by E{X} or X. A box 0 is used

6 R. M. BRYANT

to indicate the end of a proof or the end of a theorem with

no formal proof. A box is also used to set off extended

examples from the text. The symbol .=. is used to indicate
"defined as" and the symbol = is used to mean “identically
equal to".

Summary of results. In Section 2 we explore the
properties of the distribution of memory sizes of jobs in
system at time tkf We show that under the 1loading policy
FCFL, this distribution is the same at time tk as it is at
time tl. Then in Section 3 we use this result to determine
properties of the MPL sequence {Lk}. In particular we
determine the marginal distribution of {Lk}. Section 4
contains an extension of these results to the process L(t)
and we consider some applications. Finally in Section 5 we

generalize this framework« to allow for multiple job classes.

2. THE MEMORY STATE VECTOR SEQUENCE {Ek}

Let the vector Ek = (Zi,Zi, e o e ,Zg) represent the

memory sizes of the oldest M jobs in system at time tkf
Here Zilis the memory reguirement of the oldest job, Zi is

the memory requirement of the second oldest job, and so

forth. (Note that Zi is not the same as Xi+k—1’ k>1, since

jobs need not depart 1in the same order as they arrive.)

Then we can calculate Lk as h(gk) where h(z) is defined as:

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS 7

7 - M .
Moif zt = M
h(z)=4
. n . . n+l .
n if / 7t < M and / zb > M
% lom i=] ——i=1

where E=(zl,22, e o o ,zM).

We will call gk(the memory state vector at time tk‘ By

examining the sequence {gk} we will determine some of the
properties of the MPL sequence {Lk}.

Now consider the set of loaded jobs at time tk‘ Their

1 .2
k'Zk’ . ° ° ,ZQ

where n=h(gk). One of these jobs will be the next job to

memory requirements are given by the list 2

depart, §k+l can therefore be obtained by deleting one of
the first h(gk) elements from the vector Ek’ shifting the

remaining values left, and then inserting a new memory size

reqdirement ZM in the Mth

k+1

Let Dk be the position in the memory state vector of

position in the vector.

the job which departs at time tk (k>1). Let a(i,j)=
Pr{Dk=i|Lk=j}. Clearly, a(i,j)=0 if i<l or i>j. To avoid
trivial cases, let wus assume that a(l,j)>8 for all j.

Normally (due to our exponential service time assumptions),

we will have a(i,j)=1/3., 1 < i < j, and a(i,j)=0@ otherwise.

Then the sequence {Ek} is a time-homogenous, vector-valued

Markov chain. It follows that:

Lemma 2.1: {gk} is a positive recurrent Markov chain

8 R. M. BRYANT

with a unigue stationary distribution.

Proof: Ek can take on at most mM values so that the

state space 1is finite. Let 2z and Zq be any two possible

states, that is any states which satisfy

M . - M .
= } f(zi) > 0 and T { f(z3) > 0.
L1l i=1 Ll 9=
With non-zero probability Xak = zg and D, = 1 for k =
1, « « « M (since af(l,j) > 8 for each 7). Therefore

Pr{gM+l=52I51=El} > @ and hence {gk} is irreducible. Since
all states of an irreducible chain have the same period, we
can show aperiodicity by finding a state with period one.
To do so, choose any integer j with f(j) > 8 and consider
the state Z = (Jsdr o o o 573)e We clearly have
Pr{§2=le =z}=£f(j) > @. Thus z is a state with period one.
Since {gk} is irreducible, aperiodic, and has a finite state
space, it follows from the elementary theory of Markov
chains that {gk} is positive recurrent and has a unigue
stationary distribution (see, for example, [16]). D

We now present a Theorem which gives the form of the
stationary distribution for {Ek}. In its proof, we use the

following notation. Let x & (i,d) denote the vector
th

o]

roduced from x by inserting d in the i position of x and

shifting the remaining elements to the right. Thus, if

L. .. ,x" then

X & (i.d))=(xl, . e ,xl—l,d,xl, e o e ,xM—l).

X={(x

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS 9

Also, let P(g,z)=Pr{g

Theorem 2.2: The stationary distribution T of the

B

memory state vector Markov chain {gk} is given by

— M .
w(z) = T ? . f(zl).
—- e iz=1
Proof: We show that W(x) = z: v w(y)P(y,x) when W has
the given form. We have
— M
Y T rwn =) > T(y) P(y,%)
by k=1 y 3h{y)=k

Let us consider those y's in the inner sum with P(y,x) > 0.
Any such y must be of the form x & (3,4), 1 < j < k, for

some d. Using this representation for y, we see that d must

satisfy

e K . k-1 .
M - > xD+1<a<m- } x*
[Aa— i:l S i=1
since otherwise h(x o (3,4)) # k. Let Dl(g,ko denote the
lower bound in this inequality and Dz(ifk) denote the upper

bound. For any d in this range and any j, 1 < 3j <k, we

have

_ _ : _ M .
Pr{ 2z ., =x.D =3 |7% =x@o(j.,d) }=Ff(x) a(3.k)

because the events [§n=§$(j,d)] and [Ln=k] are eqguivalent.

We also note that

19 R. M. BRYANT

M-1 \
T(x6(d,3)) = £(4) T £(x").

L1 4=1
Thus
; T(y) P(y,x) =
Y
M d=D, (x,k) k
\ \ PAELA AN T . . .
(xe(j,d))Pr{X =x,D_=j|X_=x&(j,d)}
/ k=l/ d=D1(_)_(_yk)'/""'“" j=l — ~-n+l1 = n n
TS X I R T R
= £(d) f(x7)E(x7) a(3,k)
Loyl aleos Lo
_ N N
= W(X) f£(d)
=/ vl g

f(d) =
L k=1{— a=p (x,k)
- 1
M - M-X
>...._ lf(d)_*_;‘ 1 f(d) + . . . +
Y d=M-x"+1 L d=M-(x"+x°)+1
1 M
- Me(xTE .) M
£(d) = f£f(d) =1
L a=m-(x¥+ . .. wx"hn [— a=1

because each x* is at least 1.

The surprising aspect of Theorem 2.2 1is that the

stationary distribution W it the same as the ome wirich would
result if we had defined h(gk) = 1. Now h(gk)zl corresponds
to a first-in first-out (FIFO) departure process, while the

departure process we have been describing may be called a

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS 11

random departure process because the next departing job is

chosen at random from the set of loaded jobs. Thus

Theorem 2.2 states that the distribution ® is the same under
the FIFO departure rule as it is under any departure rule
which choses the next job to depart at random from the set
of loaded jobs. (This observation is also made in [4] and
[121.) Furthermore, the proof shows that statement is true
for any departure rule in which the choice of the departing
job is made independently of memory size, vprovided only that
the first job has a non-zero probability of departing.
Finally, we see that since the form of % does not depend in
any way on a(j,k), we may allow Pr{Dnan} to be a function
of n. The resulting Markov chain, while no longer
time-homogenous, must still have the unique stationary
distribution given in Theorem 2.2.

Another view of this result is that we could choose
K+l independently of gk‘according'to the product density
II i f(xi) and still obtain the same marginal distribution
for the MPL. This observation forms the basis for
approximate, product form solutions of this dual resource

queueing system under Poisson arrivals [8; 9: 11].

3. THE MPL SEQUENCE {Lk} AS A FUNCTION OF {Ek}

Because {Lk} can be represented as {h(gk)} we can
immediately derive several basic properties of the MPL

sequence.

12 R. M. BRYANT

Theorem 3.1: (i) If {Xi} is an i. i. 4. sequence, then

the seguence {Lk) is strongly stationary. 1In particular,

{Lk} is marginally identically distributed.

(ii) Suppose that (1) Xl" . "Xk’ k < M have an

arbitrary joint distribution; (2) Xk+1'xk+2’ e . . are
i, i, d. with distribution F; and (3) {Lk} is an MPL
sequence resulting from this seguence of memory sizes {Xk}.

Then as k-->w, L, converges in distribution to Lo where

Lco=h(§) and X is an M-vector of i. i. d. random variables

with distribution F.

(iii) In (i) or (ii) we have with probability one:
. L1+L2+ s o _ e +Lk‘
Lim ——
k==> ke

=E{L<I)}'

Proof: (i) This is clear since Lk=h(§k) and {gk} is a

stationary Markov Chain.

(ii) Even if El = (Xl’ e o e M)

the limiting distribution of zk as k--> o 1is w(z) provided

/X is chosen arbitrarily
that XM+1’XM+2' « o« » are i, i, d. with distribution F and
T(z) has the form given in Theorem 2.2,

(iii) This follows from a theorem [29] which states
that 1if {Yn} is a Markov chain with stationary distribution
T and g is a measurable function on the state space of {Yh}'
then {g(Yh)} satisfies the strong law of large numbers and

g (Ys)+ . . .+g(Y,)
Lim 1 - - K - Ev{g(Yl)}. N

K==>" 0 k

Other authors have proven results similar to

Theorem 3.1. Buzen and Rubin [12] evaluate the distribution

MAXIMUM PROCESSING RATES OF MEMORY' BOUND SYSTEMS 13

of residual (unused) core after all possible jobs have been

loaded from a never—-empty memory gueue. They show that

under the FCFL policy the distribution of the size of

th loader activation as

residual core is the same after the k
it was after the first one. 1In part (i) of the Theorem, we
have shown that the distribution of the number of Jjobs in

th loader activation is the same as the

memory after the k
distribution of number of jobs in memory at the first loader
activation. It appears that these two results are
equivalent; however we will not pursue this matter any
further. Betteridge [4] also proves a result similar to (i)
in the case m=M. Parts (ii) and (iii) seem to be new
results.

By our construction it is clear that {Lk} does not form
an independent sequence of random variables. As a matter of
fact, {Lk} need not be a Markov chain, as the following
example indicates.

Example 3.2: Suppose m=2, M=3 and £(1)=£(2)=0.5.
Consider the event [Lk_1=2,Lk53]. The only way Lk=3 can
occur is by gk=(1,l,l) while Lk_l=2 can occur as Z, ; =
(1,1,2),(1,2,1), or (1,2,2). But the event [Lk_1=2,Lk
must occur as [gk_l=(l,2.l),gk?(l,l,l)] since the other

:3]

transitions are not allowed. Because the event

[L,_y=2,L,=3] can occur, Pr{L =3|L _,=2} > #. Next consider

the event [Lk_2=3.Lk_l=2,Lk=3]. The memory state vector

sequence corresponding to this event must be

(2 _o=(1,1,1),2, 4=(1,1,2),2,=(1,1,1)].

14 R. M. BRYANT

However this event has probability zero since the state

(1,1,1) 1is unreachable in one transition from (1,1,2). The

only possible destinations from (1,1,2) are (1,2,1) and

(1,2,2). Thus Pr{Lk?BIL =2,L =3}=0 and therefore {Lk}

k-1 k-2

is not a (one-step) Markov chain. D

We now turn to the problem of evaluating the marginal
distribution of Ly e

Theorem 3.3: The marginal distribution of Ly is given
by

Pr{Lk=n}=F(n)(M)—F(n+l)(M)
where F(?) gdenotes the n-fold convolution of F with itself.

Proof: Pr{Lk=n} = Pr{Ll=n} by Theorem 3.1. Thus

Pr{Lk=n} = Pr{len} - Pr{len+l}

T* n T—»—- n+1
=Pr X.<M -Pr . X.<M
{l——.. i=1 1—= } {,./i.._. i=1 1=

=™ (y-p (™) 4y . O

—

Note: This result 1is a basic formula from renewal

theory [3ﬂ].|]

Bard [3] and Betteridge [4] both observed that

—_ M — 1
Pr{Lk=n} =§ Pr { ;

X'=j' X >M—j °
L j=n [521 1 n+l }

However the fact that the right hand side was indeed a

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS 15

difference between two convolutions was not observed until

[11. Because Pr{kan} can be expressed in this way, it can

be evaluated exactly by directly performing the
convolutions, or approximately by using a normal
approximation for F(n)(M). Furthermore, Bard states this
eguation without proving Pr{Lk;n}=Pr{L1=n} so his result is
not as strong as ours. Similarly, Brown et al [8] derive a
formula for Pr{kan} under the loading policy FCFL (FCFL is
called "first fit without skip" in [8]), while they do not
consider the stationarity issues we have discussed. Indeed,
the other loading policy discussed in [8] (the "first fit
with skdp" policy) yields an MPL sequence which 1is not
strongly stationary and their formulas for that case are

exact only for the distribution of L1 (1917 .

4, TIME~AVERAGED BEHAVIOR OF THE MPL SEQUENCE

Since only loaded jobs receive service it is reasonable
to assume that job interdeparture times depend only on the
number of Jjobs loaded. So let Yfk=tk+1--tk be the time

between departures of the k—lSt and kth

jobs to leave the
system, For the moment, we drop our exponential service

time assumption. Let Pr{Yk§y!Lk=n}=Gn(y) denote the

distribution of Yk given n Jops loaded. We assume L[Oor each

n, 1<n<M, that the following hold:

(i) Gn(@)=0

16 R. M. BRYANT

1 (00
(ii) -- = }/r y dG_(y) < o
. 0

n

Furthermore, we require that Yk depends on the other Y&'s
only through the MPL sequence, that is

Pr{Yi <ygei=l,. . .,nlLi=ni,i=1.. . .,n} =

EWI 2—1Pr{Yk§yk|Li=ni,i=l,. o «¢D}.

Hence, given a particular MPL sequence, the associated
seguence {Yk} is an independent sequence of random
variables. Finally, let us redefine the memory state vector
sequence {gk} as a function of t as follows:

(i) Z2(0) = Zq.

(11) for t>@, Z(t)=2, iff t,<t<t, .
As defined Z(t) is a vector valued semi-Markov process, and
L(t)=h(Z(t)).

Since {Lk} obeys the strong law and since given {Lk},
the seguence {Yk} is independently distributed with finite

mean, it follows that:

Lemma 4.l: With probability one

I e . gt

Y + L] e E] +Y‘
Lim 1 k‘=E{Y1}. [l

k==>0 ke

Let D(t) be the number of Jjob departures which have

occurred at time ., Because {Y,} obeys the strong law we

can show, using standard arguments (see, for example, [30]),
that:

Lemma 4.2: With probablity one,

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS

D(t) 1
Lim = .
t-->m t E{Yl}

17

We now state the main result of this section.

Theorem 4.3: With probability one,

t
- 1 E{L,Y,}
t-->0 t 7 E{Yl}
Proof: We have
1 D(t) 1 ¢ 1 D(t)+1
_ /(LYy < — / L(t) dt < - /:) LY,
t b= i=1 t 2 t f— i=1
which implies that
t
D(t) 1 T D(t) 1
t D(t) & i=1 t 4
D(t)+1 1 —— D(t)+1
< \ L.Y
- / itij} °

t D(t)+1 i=1

Now as t--> so does D(t) and therefore, with probability

one, both the right and left hand sides converge

E{LlYi}/E{Yl}' Therefore so must the middle term. D

to

Corollary 4.4: Let P{L(t)=j} be the time-averaged

e e .t S

probability of finding j jobs loaded. Then

P{L,=3JE(Y; 5;=3)

E{Yl}

P{L(t)=]} =

Proof: We have

18 R. M. BRYANT

t
1
P{L(t)=j} = Lim -)/’ 9. (L(t)) dt
t-->m t J
0
where @j(x) = 1 if x=j and zero otherwise. The argument of

the Theorem applies to this integral as well so that the

result follows. D

We now consider three applications of these results.
For the purpose of these examples, we have chosen F(x) to be
the discrete uniform distribution on the integers
1,. . .,106. While this is an admittedly artificial choice,
it suffices to illustrate the ideas involved, The details
of evaluating F(n)(M) for these examples are given in the
Appendix.

Example 4.5: Calculating the time averaged mean number

of Jjobs 1loaded in a saturated system. Let us consider a
computer system with P processors and M blocks of main
memory as described in Section 1. We assumed that job
service times are exponentially distributed with mean 1/p.

It follows that G (y) = 1-e TPRY) gnere n is defined by
np for P>n>1

Pu for n>P.

Under these assumptions we can easily derive (using
Corollary 4.4) a general formula for the mean number of jobs

loaded given P processors and M blocks of memory, which we

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS 19

shall denote by T(P,M):

1 o -e GFD () 4
/ . _
fem 1=1 p\li
L(p,M) = e e
| (1) o (i+1)
- M F (M) -F (M)
Z....]_=l M

1

In certain cases this egquation takes a particularly
simple form. For example, if P=1 then n;=p (pure processor

sharing) and
() o -r D) (uy) 4
- i) my .

[i=1

Similarly if P=co (sufficient servers), then ui=iu and

Example 4,.6: Balancing the number of processors and the
amount of memory attached to a computer system. We continue

to consider the system of Example 4.5. If P<KL then all

ProCcESSOTS are neariy aiways busy and the —system —is
processor bound rather than memory bound. If PZZ then the
system becomes memory bound rather than processor bound. 1In

such a case, one might wish to answer the guestion: "Given

20 R. M. BRYANT

that our system is memory bound, how much of the time will

at least one ©processor be idle due to the fact that not

enough jobs can be loaded to keep all processors busy?" Let

us call this fraction of time P_(P,M). 1If PI is large, then

1 ¢
the system does not have enough main memory in relation to
the number of processors it has and an increase in main
memory size will cause an increase in service rate. Now
PI(P,M) can easily be evaluated as

P-1 - M
PI(P,M)=§__ PriL(t)=i} = 1 -) Pri{L(t)=i}

L i=1 lew i=p

i M . .
N (r 1)y - (2F1) ()

E{Y,)P0 VA

]
o

1
1 - ——— By,
E{Yi}Pu

Examining the values of PI(P,M) for various memory sizes M
would allow one to Dbalance the amount of memory on the
system to the number of processors P in an intelligent way.
Suppose for example that M=160, P=2 and F(x) 1is the
discrete wuniform distribution on the integers 1 to 190.
Since the mean memory size of arriving Jobs is 58.5, it
might seem that both processors will be busy most of the

time. Actually this is not guite so,. Table 4.1 gives

selected values of PI(Z,M) for M between 100 and 208. From

these values we see that the system as described 1is memory
bound until M increases beyond 170. Thus it seems that the

minimum amount of memory which should be attached to our

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS 21

M P (2,M) M R" (20,M)
108 #.6711 1049 1.3853
110 2.5811 200 3.2554
1290 #.4894 300 5.2430
130 7.3981 400 7.2355
1490 0.3094 500 9.2239
150 0.2262 600 11.20876
160 #.1516 700 13.1929
179 7.0889 800 15.1834
180 g.0411 900 17.20822
190 0.0189 1060 19.2673
200 2.0000

Table 4.2
Table 4.1 *
Values of R (P,M) when
Values of P_.(P,M) when pP=20 and F(x) is the
P=2 and F(xX) is %he discrete discrete uniform
uniform distribution on distribution on
1,. . . ,1806. 1,. . . ,100.
x
M R (20,M)
400 7.2355
410 7.4344
429 7.6334
430 7.8323
449 8.0311
450 8.2300
460 8.4285
479 8.6271
480 8.8257
490 9.0243
500 9.2230
Table 4.3

This table is a finer
resolution version of
Table 4.2.

22 R. M. BRYANT

hypothetical system is about 170 blocks., D

Example 4.7: Maximum processing rate of a memory bound

system. 1In this example we give a capacity bound similar to
(but computable for much larger memory sizes than) that of
[27]. We then use this capacity bound to estimate the
amount of memory a hypothetical system requires in order to
process its workload.

We begin by observing that the mean job inter-departure
time in our model is E{Y1}7 therefore the job departure rate
given that the memory queue is never empty is l/E{Yl}. It
the memory gqueue does become empty, then the departure rate
can only decrease. Thus l/E{Yl} is the maximum service rate
which the system can sustain. Let R*(P,M) denote this
maximum service rate when there are P processors and M
memory blocks on the system.

Now suppose that jobs arrive at our system according to
a Poisson process of rate \. Clearly, if \ > R*(P.M), then
the system will be overloaded. Thus we may think of R*(P,M)
as the maximum processing rate which the system can supply.
We note that if \>Pup, then increasing the amount of memory
will not change R*(P,M) since there are not enough
processors to service the offered workload. So 1let wus

assume that N\<Pu. In such a system, throughput increases

with memory size until EZP, and the system is memory rather
than processor bound. For such a system, a reasonable

guestion to ask is: "What is the smallest memory size M we

MAXIMUM PROCESSING RATES OF MEMORY:' BOUND SYSTEMS 23

can use to serve the workload without overloading the

system?” Clearly, this wvalue of M is the smallest value

which makes R*(P,M) > \.

In particular, let us assume that \=8, p=1, P=20, F(X)
is the uniform discrete distribution on 1 to 166 blocks, and
that the processor model of Example 4.5 applies. To get an
approximate idea of the amount of memory required, we
examine Table 4.2 (see vpage 21) and find that between 400
and 500 blocks of main memory are needed. Table 4.3 1is a
finer resolution version of Table 4.2 and examination of
Table 4.3 indicates that approximately 440 blocks of memory
are required 1in order to service the workload. Actually,
one should probably attach more than 440 blocks of memory to
the system, in order to avoid the <congestion problems

associated with heavily utilized systems,. D

5. A MULTIPLE CLASS MODEL

In this section we generalize the framework used to
solve the examples of Section 4.0 to allow for the case of
multiple job classes. Distinct 1job <classes may have
distinct mean service times and processor scheduling models,

so that a mixture of CPU bound and I/0 bound job classes can

| P NP I PP | i PN v nde o de o mam o] o d o) a g by .7 rocd 3 i e
e Qe T OeC0 (AR notatioNal—SImMpPriICiITy; werrestt1rCc—our

attention to the case of two job classes; we will indicate
how to extend the analysis to an arbitrary number of

classes.

24 R. M. BRYANT

We give an approximate solution to this model and

estimate its accuracy by comparison to a detailed simulation

of the model. We will then describe an application of this
solution to a problem similar to that of Example 4.7.

Let Py be the probability that a job is a member of
class=-i, 1i=0,1. The <class of a job 1is assumed to be
independent of the job's memory requirement and the class
memberships of all other jobs. The service time requirement
of a class-~i job is exponentially distributed with parameter
pi. We let Li(t) be the number of class-i jobs loaded at
time t, and we define Lk,i=Li(tk+)'

Let Pi be the number of class-i processors attached to
the system, 1§Pi3c). A class—i job may receive service only
from a processor of class-i. The processor scheduling model
assumes processor sharing within each class with a maximum
of one processor assigned to each Jjob,. Thus 1if PiZLi(t)
then each class-i Jjob 1is assigned its own processor and
receives service at a unit rate. if Li(t)>Pi then the
class—-i processors are equally shared among the class-i jobs
and each Jjob receives service at the fractional rate
Pi/Li(t).

Now let Y, . be the time from tk until the next job of

k,i

class-i is ready to depart. If L, .=0 then we may put

ke 1

;= with probability one. 1f >@ then has

Y, bp i i i

exponential distribution with parameter nooy where n=Lk

' i

and

MAXIMUM PROCESSING RATES OF MEMORY' BOUND SYSTEMS 25

i
nu P.>n

The job departure model is based on the assumptions
that the next Jjob to depart will be a class-i job if
Yk '<Yk . and that all members of the <chosen <c¢lass are

"1 "l_l

equally likely to depart. From these assumptions it follows

that Y

l(‘E.t

k+l"tk= mln(ka@,qul) from which one may

calculate the distribution of Yy in terms of Lkui°

Now let c(t)=(c(t),c(t),. . .,c™(t)), with cl(r)= @
or 1, represent the class memberships of the jobs present in
the memory state vector Z(t). Then it is clear that
{g(t).g(t)} is a Markov process.

Before we state our solution, we need to define some
new quantities, Let us suppose for the moment that L(t)ZL
for all t. Then whenever a job departs, precisely one Jjob
is loaded into core and Lk,@ (as well as Lk,l) can only

increase or decrease by one. Therefore Lk g is a
7

birth-death chain with transition probabilities given by

Pobc s
=1 — — ~g L—'l'l
Pr{Lk+l,0—1+1lLk'@_l}_
Hi,otHn-1i,1
Ppk: ptP M7 _
Pr{Lk+1 w=i|Lk @=i}= i, 0 v17L-1i,1
4 ’
Hi,g™Mp-i,1
P1Hi g
=] - =il= A
Prily,;,g=i-11Ly 4 i}

26 R. M. BRYANT

where we have adopted the convention that ny i=@. We can
14

also evaluate the mean time between job departures given

L(t)=L as

1
| L(t)-_-Lr Lk(,(a::l'}: °

N + .
}1:] v 0 uL"j r1

E{Y

k

Using these gquantities we can evaluate the stationary
distribution of the number of class-0 jobs loaded given
L(t)=L, which we shall denote by WL(x). From W, we can

calculate the 1limiting mean number of class-0 jobs loaded

and the mean job interdeparture time given L(t)ZL as

L
E{Lﬂ(t) IL(t)EL}=Z: i=jSer(i)

- __'\—«". L ° wL(i)
E{YkIL(t):L}—'/—;. —_— .

Now we are ready to state our solution. We conjecture
that the time-averaged mean number of jobs loaded for this

two class model can be approximated by

t

_ 1 o ne ™ an-r B an)
L.=.Lim - L(t)dt = / R (5.1)
t-->0 t L 1=1 E{Y, |L(t) =L}

and that the time-averaged number of class-f jobs loaded can

be approximated by

MAXIMUM PROCESSING RATES OF MEMORY' BOUND SYSTEMS 27

t
1
L,.=.Lim - L,(t)dt =
0 t=-=>00 t B
/)
— M p (L) () -p (TFL)
) E{Ly(t) IL(t) =L} . (5.2)
L =1 E{Y,|L(t)=L}

We observe that the last term on the right in each equation
is merely the vrobability of finding L(t)=L.

These last two equations are based on the assumption
that each birth-death chain {Lk,@} (obtained by conditioning

on L(t)=L) reaches the equilibrium distribution However

Lu
this 1is not the way the system behaves since L(t) 1is
continually changing. On the other hand we observe that if
{Wk} is an identically distributed ergodic seguence of

random variables and if for each j, {Uk(j)} is a birth-death

chain with stationary distribution vj, then with orobability

one

U (W)+U2(W2)+o @ .+Uk (W‘)
Lim i 2 XK. } B, {U, (3)}Priw =3},
ke==>c0 k — 7 7]

Since {Lk} is known to be an identically distributed and
ergodic sequence of random variables, the parallel between
the above and eguations (5.1) and (5.2) should be clear.

For the case of i=#,1,. . .,c job <classes (c>1), the
birth-death chain {Lku@} given L(t)EL is replaced by the

¢ dimensional random walk

(Lkr@’Lkll" ‘ .’Lkrc—l) ’

— c-1
/

where L, . > @,
kol l__ i=p

Bl =

28 R. M. BRYANT

Since the state space of this random walk is finite, its

discrete-time stationary distribution can (theoretically) be

determined. From the discrete-time stationary distribution
and the guantities

B{Yy, | L(8)ZL, Ly ;=3;, i=0,1,. . .,c-1]
we can calculate the time-averaged stationary distribution
of job types loaded given L(t)ZL, which we shall call WL(§).
Given L T and ii can be found by straightforward
generalizations of equations (5.1) and (5.2).

In the following examples we compare the accuracy of
the eguations (5.1) and (5.2) to a simulation model and
illustrate one application of these equations.

Example 5.1: Mean number of jobs loaded under an 1/0

and CPU bound mixed workload. We consider the case P,=1 and
Pl=a). iIf we assume that there 1is one CPU and a large
number of I/0 channels on the system, then class-8 can be
thought of a class of completely CPU bound jobs and class-1
can be thought of as a class of completely I/0O bound jobs.
Thus Py represents the percentage of completely CPU bound
jobs in the workload. We will use m=198 and F(x) the
discrete uniform distribution on the integers 1,. . .,100,
as before. Only the ratio)/==ul/;,1’Zj is actually significant
in the formulas; so we have stated our answers in terms of

Y. 1In Tables 5.1, 5.2, and 5.3 we have given values of T,

ﬁ@ and El (=E-E@) calculated from eguations (5.1) and (5.2)
and values calculated from a simulation model based on

29,008 job departures per case. (The details of this

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS 29

M Analytic Simulat%?? Difference
Method Method Between Mean
T = 1.406 1.408+0.934(2) g.002
100 Lg= 0.316 0.350+0.037 7.014
L= 1.0990 1.058+0.036 -0.032
L = 3.339 3.390+40.097 0.051
200 Lg= 1.012 1.089+0.093 0.077
L= 2.327 2.300+0.082 -0.027
E = 5,416 5.406+0.203 -0.010
300 Lg= 2.178 2.168+0.226 ~0.019
L = 3.238 3.238+0.206 -0.000+
L = 7.494 7.515+0.255 0.021
400 Lg= 3.768 3.717+0.3580 -0.051
L= 3.726 3.798+0.209 -0.0872
E = 9,535 9.477+0.235 -0.078
500 Lg= 5.614 5.487+0.446 -0.127
L,= 3.921 3.990+0.322 0.069
L =11.543 11.652+0.386 2.199
600 L,= 7.561 7.599+0.494 0.038
L= 3.982 4.0653+0.292 D.0871
T =13.532 13.605+0.422 0.673
700 §@= 9.535 9.615+0.535 0.080
Ll= 3.997 3.990+0.220 -0.007
T =15.514 15.4444+0.535 -0.079
800 Eg=ll.515 11.298+0.696 -0.217
L= 3.999 4.146+0.380 0.147
L =17.495 17.384+0.525 -7.111
900 §@=13.495 13.227+0.636 -7.268
L= 4.000 4.157+0.307 0.157
I, =19.475 19.493+0.523 0.018
1000 Eﬂ=15.475 15.460+0.555 -0.015
Ly= 4.000 4.033+0.375 0.033
Table 5.1
Analytic and simulation solutions to the two
class model of Example 5.1. 1In this table Y=0.25

and pa=@.5@.

Notes:

(1) For simulation details see Appendix.
(2) + figures give standard deviations.

30

R. M. BRYANT

Py Analytic Simulat%?? Difference
Method Method Between Means
T =7.235 7.336+0.183(2) g.101
.0 §@=@.@@® 6.000+0.000 —----—
L,=7.235 7.336+0.183 0.101
L =7.254 7.325+0.180 0.071
0.2 Ly=0.646 7.686+0.122 0.040
Lg-6.6ﬂ8 6.639+0.212 0.031
L =7.395 7.460+0.198 0.065
0.4 Lg=2.476 2,457+0.295 -0.001
L,=4.919 5.000+0.249 0.081
L =7.558 7.641+0.232 0.983
0.6 Ly=4.944 5.055+0.302 7.111
L=2.614 2.586+0.257 -0.028
L =7.593 7.542+0.285 -0.0651
9.8 L;=6.593 6.525+0.351 -0.068
L,=1.000 1.018+0.169 0.018
L =7.594 7.668+0.266 0.074
1.0 Lg=7.594 7.668+0.266 D.074
L,=0.000 0.000+0.000 ———--
Table 5.2

Analytic and simulation solutions to the two
class model of Example 5.1. 1In this table Y=0.25
and M=400.

Notes: (1) For simulation details see Appendixe.
(2) + figures give standard deviations.

MAXIMUM PROCESSING RATES OF MEMORY: BOUND SYSTEMS 31

Y Analytic Simulat%?? Difference
Method Method Between Means
= (2)
L =7.246 7.332+0.260 7.086
g.0085 £@=®.482 #.583+0.069 3.101
L1=0.676 0.675+0.231 g.081
E =7.,293 7.422+0.234 #.129
g.10 Eg=1°242 1.369+0.115 3.227
L1=6.@51 6.054+0.214 B.003
E =7.,494 7.51540.255 g.021
8.25 £@=3.768 3.717+0.359 -0.0857
Ll=3‘726 3.798+0.209 g.872
E =7.,579 7.517+9.183 ~-0.062
3.5 £®=5,593 5.547+0.193 -0 .046
Ll=l,986 1.969+0.123 -0.917
E =7,593 7.617+6.195 g.0624
1.9 £®=6.593 6.593+0.254 3.000+
L1=1.ﬂ@@ 1.024+0.103 3.024
E =7,594 7.658+0.251 @.064
2.0 Eg=7.@94 7.152+0.259 #.858
L1=@.5@0 0.506+0.038 3.006
Table 5,3

Analytic and simulation solutions to the two
class model of Example 5.1. In this table M=400
and pg=@.5@.

Notes: (l) For simulation details see Appendix.
(2) + fiqures give standard deviations.

32 R. M. BRYANT

simulation model are contained in the Appendix.) In each

table we have held two of the three parameters Y,M and Py

constant while allowing the other parameter to vary. In all
cases the agreement between the simulation and analytic
models is good. [

Example 5,2: Maximum processing rate of a memory bound

system subjected to a mixed workload. Given the system
described in the last example, 1let wus suppose that Jjobs
arrive at the system according to a Poisson process of rate
N and let us consider the guestion, "Does the system have
sufficient capacity to handle the workload without being
overloaded?" We can give an answer to this question by
comparing the arrival rate of each class of job to the
maximum service rate attainable by the system. As we
pointed out in Example 4.7, this maximum service rate occurs
when the system is subject to an saturation workload so that
the analysis of this paper applies.

The arrival rate of CPU bound jobs is pgx, and their
maximum service rate 1is pg jobs per second provided T >1.
If not then the service rate drops to fgp@. Therefore in
order to process the CPU bound portion of the workload we

4]

must have pgxiu if Eazl; otherwise we must have pgxgﬂgug.

If this condition is satisfied, then we may determine

if the system can process the 1I/0 bound portion of the

workload. The arrival rate of I/0 bound jobs is plx and

their maximum service rate is ilpl. We must have pl\3E1u1

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS 33

in order to process this portion of the workload.

If the overall system is to be stable, then both of

these conditions must be satisfied. We have therefore only
argued that these are necessary conditions for system
stability and not sufficient conditions.

If we consider the case \=7.0, p@=ﬂ.5®, pg=4.@, and
p1=1.@ (i. e. Y=0.25), then we see from Table 5.1 that E@>l
for M>208 and hence the condition pgxg uﬂ is satisfied for
all memory sizes except M=100. Processing of I/0 bound jobs
is clearly the bottleneck. Examining the table we see that
the condition plxﬁilul is satisfied for memory sizes M=400
or larger. Therefore at least 400 blocks of memory need to
be attached to this system in order to service the workload.
Further refinements of this estimate could be made by
calculating El for M values between 390 and 4640.

We note that increasing memory size is not the only
change which may have to be made in order to obtain desired
system capacity. If in the current example the arrival rate
were to increase to \=18 then no amount of memory will allow
the system to handle the workload. This 1is because the
arrival rate of CPU bound jobs is 5 jobs per second while
the maximum possible service rate is 4 jobs per second. The

only choice given the system designer in this case 1is to

increase the speed or number of processors. D

34 R. M. BRYANT

6. CONCLUDING REMARKS

We have constructed a model of storage -allocation which
includes the memory reguest size distribution as an explicit
parameter. Using this model we were able to show that the
MPL sequence under the loading policy was strongly
stationary, and we were able to derive the marginal
distribution of the MPL. From this distribution and the
distribution of job interdeparture times given n jobs loaded
(Gn(y)) we then determined the time averaged distribution of
jobs loaded, and for the case of exponential service times,
we derived the maximum processing rate of a system with P
processors and M blocks of memory. These results were then
generalized to handle the case of a mixed I/0 and CPU bound
workdoad. We also showed how to wuse these results to
determine whether the main memory size of a computer system
was sufficient to handle a particular workload. We believe
these results to be applicable to real problems of computer
system configuration design.

We have considered only the loading policy FCFL. To
the best of the author's knowledge, this is the only
nontrival 1loading policy for which a theorem like
Theorem 2.2 (and hence Theorem 3.3) holds. Loading policies

such as first fit with skip [8], random, and smallest (or

largest) memory size first do not create strongly stationary
MPL seguences [10]. Any formula which claims to give the

distribution of the MPL under such a loading policy should

MAXIMUM PROCESSING RATES OF MEMORY: BOUND SYSTEMS 35

be considered an approximation, until a theorem analagous to

Theorem 3.3 can be proven.

Although we have not considered the application of
these results to an entire computer system model, it is
clear how to proceed in this direction. TIf we represent the
transitions of jobs in main memory by a closed network: of
gueues, then the rate of transitions in this network is much
higher than the rate at which the MPL changes. Such a model
is therefore nearly completely decomposible [14], with the
memory interface forming a natural boundary for the system
aggregates, One can then approximate Gn(y) as an
exponential distribution with parameter ny where Hp is
calculated as the reciprocal of the mean job departure time
from the closed network model when there are n jobs in the

network. For an example of this approach, see [10].

7. ACKNOWLEDGEMENTS

Much of this paper is vpart of the author's Ph. D.
thesis [10] which was written at the University of Maryland
under the direction of Ashok Agrawala. The current proof of
Theorem 2.2 as well as the current exposition were prepared

while the author was with the Computer Sciences Department,

University of Wisconsin-Madison. This preparation was
supported in part by the Wisconsin Graduate School Research

Committee.

36 R. M. BRYANT

A.1 EVALUATION OF r(?) (x)

To evaluate F(n)(x), f(n)(x) was evaluated by the

recurrence relation

m
f(n) (X)_T—_ f(n"'l)
e y=1

(x-y) £(v) (A.1.1)

with f(l)(x)Ef(x). F(n)(x) was then evaluated from f(n)(x),
and F(n)(M) was checked to see if F(n)(M)<l@"6. If so then
the calculations were stopped, otherwise the next

convolution was evaluated. Eventually a value Ny Wwas
6

found so that p (™) (M)<10” . (For M=1000 and F(x)

for n>n
<~ max:

the wuniform discrete distribution on 1,. . ..160, N oax is

about 35.) All computations in Examples 5.1 and 5.2 are

based on the assumption that F(n)(M)=@ for n>nmax° This
2 2

computation reqguires about m“n

max floating point operations

and reguires m(nm X+2) words of storage as shown below. The

a
convolution calculations used for the examples required less
than two minutes on a Univac 1110 computer.,

Each evaluation of equation (A.1.1) clearly requires m

multiplications and additions per evaluation. Since
f(n)(x)=ﬂ if x<m or x>nm it follows that equation (A.1.1)

needs to be evaluated n(m-1) times in order to find f(n)(x)

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS 37

throughout its non-zero range, The total number of

operations required is therefore

- n
5_ Max Hom(m-1)n =

m(m-1)n
e =2 n

(n +1)~2m(m~1) ,

ax max

. . . 2.2
which is approximately m noax®

(n+1)(

To calculate £ x) from f(n)(x) one clearly needs

to save f(n)(x). This takes a maximum of MmNy words. m
more words are reqguired to store f(x). Finally, the same
storage space <can be used to store f(n)(x) and f(n+l)(x)
provided the most recently calculated m values of f(n+1)(x)

are saved temporarily somewhere else. This gives a total

storage reguirement of m(nmax+2) words.,

A.2 DETAILS OF THE SIMULATIONS FOR EXAMPLE 5.1

These simulations were written in SIMSCRIPT II.5 which
is a product of C. A, C. I., Inc. A description of this
language is available in the language textbook: [17]. The
standard pseudo-random number generator for the Univac 1100
series implementation is the Lehmer generator described in
[25]7. This is the same generator as used in the IBM 360

implementation. Since extensive statistical tests of this

pseudo-random number generator were not available and
because we wanted to take advantage of the larger word size
(36 bits) on Univac 1100 series machines, we replaced the

standard pseudo-random number generator with the following

38 R. M. BRYANT

==15
n+1~

35

one: R Rn (mod 277). This pseudo-random number

generator is known to be good by the spectral test [19]

which is considered to be one of the most powerful tests of
a congruential pseudo-random number generator,

These simulations were straightforward implementations
of the model as described in Section 5, Since the
simulations of the example were so simple, and in order to
obtain maximum efficiency, we decided not to use the
SIMSCRIPT II.5 event set mechanism to schedule events in the
simulations. Instead we used a simple event scan loop. The
steps in this loop were:

(1) Determine how many jobs from the memory queue fit
into memory. Count the number of jobs of each
type present in memory.

(2) Assign a departure time to each loaded job,
according to the job class service time
distribution.

(3) Find the job with the smallest departure time and
choose this job to be the departing job. Remove
this job from the system. Advance the simulation
clockc to the time of the job's departure.

(4) Create a new Jjob and place it at the end of the
memory queue. Set the class of this job according

to a simple Bernoulli trial.

(5) Update statistics recording the number of jobs of
each type loaded during this interval.

(Note: In step (1) it is not necessary to know which jobs

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS 39

were previously loaded since under the FCFL 1loading policy

this information can be calculated from the memory sizes of

the jobs in the memory gqueue.)

These steps were repeated 1,000 times per experiment.
At the end of an experiment, the mean number of jobs loaded
of each type was output and the simulation statistics and
parameters were reset. Another run of 1,880 job departures
was then performed. After 18 runs had been executed, the
random number seeds were reset to their original values and
the sequence of 18 runs was repeated with the antithetic
sequence of pseudo-random numbers being used to drive the
simulations. The simulation data reported in Example 5.1
were calculated on the resulting set of 20 simulation
outputs. The mean values reported in Tables 5.1, 5.2, and
5.3 are thus averages of experimental means; the standard
deviations in the Tables are the standard deviations among
the experimental means.

The purpose of using the antithetic sequence of
pseudo-random variables was two-fold. First, this is a
standard variance reduction technique [18]. Second, if the
first run tends to overestimate the true mean value, then an
execution with the antithetic random variates tends to
underestimate the mean (provided that the generated random

variates are monotonic functions of the base random number

stream). The combined estimate is therefore more accurate.

40

R. M. BRYANT

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(9]

BIBLIOGRAPHY

Agrawala, A, K. and Bryant, R. M. Models of memory
scheduling. Proceedings of Fifth Symposium on
Operating System Principles, Austin, Texas, 1975,
217-222,

Badel, M., Gelenbe, E., Leroudier, J. and Potier, D.
Adaptive optimization of a time-sharing system's
performance. Proceedings of the IEEE 63, 5 (June
1975), 958-965. - -

Bard, Y. An analytic model of CP-67 and VM/370. IBM
Research Report G320-2181, Cambridge Scientific
Center, Cambridge, Massachusetts, 1974.

Betteridge, T. An analytic storage allocation model.
Acta Epforma;}gg 3 (1974), 161-122.

Brandwajn, A. A model of a time sharing virtual
memory system solved using equivalence and
decomposition methods. Acta Informatica 4 (1974),
11-47. T

Brandwajn, A. A model of a virtual memory system.
Acta Informatica 6 (1976), 365-386.

Brandwajn, A. A gueueing model of a multiprogramming
computer system under full load conditions. Journal
of the ACM 24, 2 (April 1977), 222-240. T
Brown R. M., Browne, J. C. and Chandy, K. M. Memory
management and response time. Communications of the
ACM 20, 3 (March 1977), 153-165. T

Bryant, R. M. and Agrawala, A. K. An evaluation of
M/M/R queues as finite memory size models of computer
systems. Proceedings of the 1977 Sigmetrics/CMG VIII
Conference on Computer Performance Modelling,
Measurement, and Management, Washington, D. C.,
November 28-December 1, 1977.

[10]

Bryant, R. M. The storage limited exponential gueue
and applications to finite memory size models of
computer systems. Ph. D. Thesis, Applied
Mathematics, University of Maryland, College Park,
May 1978.

MAXIMUM PROCESSING RATES OF MEMORY BOUND SYSTEMS 41

[11] Bryant, R. M. Approximate, product form solutions to
the storage limited exponential gqueue. Computer
Sciences Department Techical Report, University of
Wisconsin~-Madison, in preparation.

[12] Buzen, J. P. and Rubin, D, B, Effects of compaction
on memory utilization in multiprogramming systems.
Proceedings of the International IRIA Workshop on
Modeling and Evaluation of Computer Architectures and
Networks, Rocqguencourt, France, 1974, 113-124,

[13] Coffman, E. G., Jr. and Denning, P, J. Qggrating
Systems Theory. Prentice-Hall, Englewood Cliffs,
1973, p. 172.

[14] Courtois, P. J. Decomposability: Queueing and
Computer System Applications. Academlc Press, New
York, 1977.

[15] Gelenbe, E. and Kurinckx, A. Random injection
control of multiprogramming in virtual memory. IEEE
Transactions on Software Engineering SE4, 1 (January
1978), 2-17.

[16] Hoel, P. G., Port, S. C, and Stone, C. J.
Introduction to Stochastic Processes. Houghton
Mifflin, Boston, 1972, p. 62.

[17] Kiviat, P. J., Villanueva, R. and Markowitz, H. M.
Simscript II.5 Programming Language. C. A. C. I.,
inc., Los Angeles, 1973.

[18] Kleijnen, J. P. C. §tatistical Techniques in
Simulation, Parts I and II. Marcel Dekker, New York,
1974, 1975.

[19] Knuth, D. E. The Art of Computer Programming,

Volume 2: Seminumerical Algorithms. Addison-Wesley,
Reading, 1969, bv. 88.

[26] Konheim, A. G. and Reiser, M. A gueueing model with
finite waiting room and blockdng. Journal of the ACM
23, 2 (April 1976), 328-341.

[21] Konheim, A. G. and Reiser, M., Finite capacity
queueing systems. SIAM J. Computing 7, 2 (May 1978),
p. 218-229,

[22] ©Little, J. D. C. A proof for the gueueing formula

L=\W. Operations Research 9, 3 (May 1961), 383-387.

[25]

[26]

[27]

[28]

[29]

[30]

Muntz, R, R, Analytic modeling of-interactive

R. M. BRYANT

Marathe, V. P. Priority gqueueing systems with
simultaneous server requirements. Ph. D. thesis,
Operations Research, Cornell University, May, 1972.

systems. Proceedings of the IEEE 63, 6 (June 1975),
946-953.

Payne, W. H. and Rabung, J. R. Coding the Lehmer
pseudo-random number generator. Communications of
the ACM 12, 2 (February 1969), 85-86.

O s]

Omahen, K. J. Analytic models of multiple resource
systems. Ph. D. thesis, Committee on Information
Sciences, University of Chicago, June, 1973.

Omahen, K. J. Capacity bounds for multiresource
queues. Journal of the ACM 24, 4 (October 1977),
646-663.

Omahen, K. and Marathe, V. A gueueing model for a
multiprocessor system with partitioned memory.
Computer Science Technical Report 132, Purdue
University, January 1975.

Revesz, P. The Laws of Large Numbers. Academic
Press, New York, 1968, p. 130.

Ross, S. M. Applied Probability Models with
Optimization Applications. Holden-Day, San

Francisco, 19760, pp. 31-60.

