THE DESIGN AND IMPLEMENTATION OF
USER-ORIENTED SYSTEMS

by
‘Nathan Relles

Computer Sciences Technical Report #357

July 1679

The Design and Implementation of

User-Oriented Systems

BY

NATHAN RELLES

A thesis submitted in partial fulfillment of
requirements for the degree of

DOCTOR OF PHILOSOPHY
(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

1979

il

The Design and Implementation of

User-0Oriented Systems

Nathan Relles

Under the Supervision of Professor Larry E. Travis

The research described in this dissertation investi-

gates user-oriented facilities of computer systems, that 1is,

software features and capabilities that contribute—to —ease

of wuse and learnability. These facilities are aimed at
improving user performance and satisfaction by 1) simplify-
ing communication between a user and a system, 2) improving

a user's understanding of a system and 1its messages,

3) minimizing the likelihood of user errors, and 4) enabling
users with widely differing levels of experience to use the
same system.

A taxonomy of wuser-oriented features 1is developed,
consisting of five categories: on-line aids, alternative
modes of communication, defaults, language extensibility,
and effective language design. These features benefit naive
and experienced users alike, but are not provided uniformly
and effectively in existing systems. A set of operating

system capabilities 1s proposed to simplify and encourage

iii

the provision of user aids. A set of primitives realizing
these capabilities was implemented in the form of a user
interface that enables any system to provide user aids
consistently, efficiently, and 1in an unobtrusive manner.
The implementation includes facilities for experimenting
with and evaluating alternative protocols for user aids.

An experiment was conducted to investigate the
relationships among on-line aids, user performance, and ease
of use. Although other categories of user-oriented
facilities (communication modes, defaults, and language
extension) were not empirically studied, the experiment
serves as a model for such future study. The hypothesis of
the experiment was that user performance and perceived ease
of use would be affected by the existence of on-line aids
and the manner in which those aids were provided. The user
interface served both as an instrument and object of
evaluation. In the first sense, the interface was used to
implement the different forms of assistance under study and
to monitor their use. At the same time, properties of the
interface were evaluated with respect to 1) their effect on
ecase of use and 2) the effort required to incorporate

on-1line aids into a program.

iv

Acknowledgements

I am indebted to many people for their help with this
research. My advisors, Dr. Richard Venezky and Dr. Larry
Travis, were an invaluable source of guidance and
encouragement. I am especially grateful to Professor
Venezky for his assistance after he left Madison; I could
not have begun nor completed this research without him. I
would also 1like to thank the members of my committee for

their constructive criticisms and suggestions.

My association with the University of Wisconsin-Madison

Academic Computing Center gave me a most favorable
environment in which to work: a stable computer system, a
wide range of applications and users, and a cooperative,
competent staff of co=-workers. Many fellow students and

MACC -employees contributed to my research through

stimulating and challenging discussions. I cannot name them
all here, but I would be remiss if I did not single out
Lynne Price for all her helpful and constructive criticism.
Finally, I must express with words what words cannot
convey: my boundless gratitude to my family. My parents
and parents-in-law provided the support and encouragement
that made this research possible. My wife, Mary, made
countless sacrifices so that I could complete this work; I
will be forever grateful for her unrelenting support and

inspiration.

Table of Contents

Introduction

1.1

Problem definition

1.2 Scope of the study
Background

2.1 HELP modes

2.2 Language extensibility

2.3 Alternative modes of communication
2.4 Defaults and options

2.5 Miscellaneous user aids
2.6 Summary

User Performance and User Needs
3.1 Cost-benefit tradeoffs

3.2

User needs
3.2.1 Learning about a system
3.2.2 Correcting errors

3.2.3 Communicating with a system

Supportive Facilities that Improve User Performance

4.1

Goals of the Design

11
13
20
24
29
33
35

37
37
42
42
43
uy

b7
ug

vi

4,2 On-line aids 51
4.3 Alternative communication modes 57
4.4 Default facilities 63
4.4,1 Task-related defaults 66
4.4,2 Generalized Defaults 71

5. The Implementation of User Aids 76
5.1 A software architecture for user aids 76
5.2 Structure of the message file 83
5.3—Primitivefunctions of the User Interface 84
5.3.1 Initiating communication: UIOQPEN 85
5.3.2 Defining aids: UIDEF and UICODE 87
5.3.3 Activating a script: UISET and UINPUT 90
5.3.4 Script parameters, references, and 91

special characters

5.3.5 Initial display of a message: UISHOW 94

5.3.6 Key-directed aids: UINDEX 95

5.3.7 Monitoring system usage: UILOG and UILMSG 99

6. Evaluating the Effectiveness of User Aids 101
6.1 Design of the experiment 103
6.1.1 Hypotheses 104

6.1.2 The independent variable 106

6.1.3 The dependent variables 107

6.2 The pilot study 109

6.2.1 Objectives 109

6.3

6.5

6.2.2 Subjects

6.2. Procedure

(VY

6.2.

=

Results and Interpretation
6.2.5 Summary

The experiment

6.3.1 Hypotheses and subjects
6.3.2 Procedure

6.3.3 Results and Interpretation

Incorporating on-line aids: the
programmer's view

Conclusions

7. Summary and Future Research

7.1
7.2

Summary

Future research

References

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

A

B

vii

110

112
116
117
M7
119
120
131

134

137
137
139.

143
153
160
165
169
170
173
174
177
179
181

List of Figures and Tables

viii

Figure 2-1 Sample HELP session (Project Genie) 18
Table 3-1 Costs of using and learning to use a system 40
Figurel4-1—Use of the EXPLAIN ERROR aid 53
Figure 4=2 Use of the HELP aid 55
Figure 4-3 Use of EXPLAIN TERM 56
Figure 4-4 Use of the DOCUMENTATION aid 58
Figure 4-5 Task hierarchy 65
Figure h-6 Jllustrated use of defaults 67
Figure 4-7 Form of a PREAMBLE T2
Figure 5-1 Structure of early computing services T7
Figure 5-2 Existing structure of supportive services 78
Figure 5-3 General-purpose supportive services 79
Figure 5-4 Integration of supportive capabilities 80
Figure 5-5 The User Interface 82
Figure 5-6 Representation of two defined aids 90
Figure 5-7 Sample scripts 93
Figure 5-8 Sample session using scripts 95
Figure 5-9 Sample scripts for key-directed aids 97

Table

Table

Table

Table

Table

Table

Table
Table
Table

6-2

6-3

Analysis of variance; perceived
ease of use (pilot study)

Analysis of variance; response to
question 8 (pilot study)

Analysis of variance; response to
question 8 (experiment)

Analysis of variance; preceived
ease of use (experiment)

Analysis of variance; perceived
effectiveness of on-line aids

Analysis of variance; total cost of
performing tasks

Analysis of variance; connect time
Analysis of variance for errors

Summary of significant differences

ix

113

116

121

123

124

126

128
129
136

1. Introduction

A continuing concern in the development of computer

systems has beem the—ease—with—which—those—systems—ecould-be— - —

used+—Few—systems—have—been—developedthat did not lay

claim to being easy to use or 'user-oriented.' The need for
such systems has become apparent for a very practical (i.e.,
economical) reason: the cost of computing is decreasing,

while the cost of people 1is 1increasing and becoming

increasingly—important-. Martin, for example, described

decreasing computer costs as follows:

In 1955, about 100,000 program instructions could
be executed for one dollar. In 1960, the same
dollar bought one million, and by 1970, 100
million. In other words, the number of
instructions per dollar is going up by a factor of
10 every five years. Twenty years of computer
history has brought a 10,000-fold increase in
power., If the increase [in computing power]
continues to be exponential, as in the past, the
dollar in 1980 will buy one hundred times as many
computer instructions as in 1970. [MA73a, pp.
3-41]

At the same time, it is becoming more costly to train and
employ people -- those who must develop and maintain
software, and those who must use it. The extent to which
people use a system, and their effectiveness in using it,
depend on how easily they can learn and use 1it.

Several factors compound the problem of making systems
easy to use. Among these are the widespread availability of
timesharing systems, the establishment of computer networks,
the decreasing cost of interactive terminals, and the
plethora of systems and languages accessible from those
terminals. Computing is no longer the exclusive purview of
people with specialized equipment and programming skills.
Today's computer system must address itself to a broadening
range of wusers with differing needs and abilities.
Similarly, a wuser faces a multitude of systems, each with
its unique capabilities, characteristics, and protocols.

Unfortunately, there is 1little agreement about what
constitutes a user-oriented system. Language simplicity is
commonly put forth as proof of a system's user-orientation.
But for every APL enthusiast, who points to that language's
brevity as evidence of its simplicity, there is at least one
COBOL user who prefers a more verbose means of
communication. Some systems offer wusers innumerable
options, and place these under the rubric of user-oriented
features. Finally, there are systems whose ease of use is

reflected in an impressive set of terminal characteristics,

ranging from editing features to single-key overations.
Empirical evidence is seldom provided to substantiate these
claims of ease of use. Differing notions of what makes a
system user-oriented remind one of Supreme Court Justice
Stewart's observation on pornography: "I can't define [it],
but I know it when I see it."

Lacking a precise definition, many user needs have been
subordinated, if not totally neglected, at every stage of
system development. In too many instances, systems have

been designed with little regard for user needs. Typically,

greater emphasis has been placed on the performance of the

computer, as demonstrated by its otitity programs;
compilers, and operating system. In part, this is because
cost improvements have been easier to describe and measure
for computer resources than for human behavior and

productivity. HELP modes, tutorial programs, on-line

documentation, and similar user aids have become common on
many systems, but seldom in a consistent or integrated
manner. Such capabilities have usually been implemented in
an ad hoc (and post hoe) fashion. Proponents of widely
differing systems each c¢laim that their system is easy to
use, and a potential user has no means of evaluating those
claims, except through intuition and hearsay. Ultimately,
the choice of a system is usually made on the basis of other
factors such as hardware costs., response times, system

capacities, and the like.

Before 1974, few empirical studies of user behavior
were done [GOT3, GR67, KNT71, RO67, SI73], and the design of
systems and languages was guided by intuition and personal
experience. More recently, controlled experiments have been
used to investigate programmer productivity, software
reliability, and the reputed advantage of one language
construct or programming technique over another [GAT76, GATT,
GO75b, MI75, SH76a, SHT76b, SHT77c, WET74b, YOTH4]. Other
studies have been directed at query languages and
characteristics of database management systems [LOT77a, RET75,
RE77, TH75]. For the most part, these experiments have
pertained to programming activities, especially those that
take place outside an interactive setting. Few studies have
focused on the exigencies of on-line computing or the needs
of inexperienced or infrequent wusers [DZ78, MI74, MITT,
WATY4, VETT7b].

The research reported here deals with the design and
implementation of user-oriented systems. The first question
addressed by this study is:

1) What capabilities do systems have that make

them easy to wuse, or easier to use than
otherwise comparable systems?
Chapter 2 describes features of a system commonly associated
with ease of use. A taxonomy is presented that generalizes

user-oriented features to five categories: on-line aids,

alternative modes of communication, defaults, macro

facilities, and effective language design.

A well-defined notion of user-oriented systems makes it
possible to investigate the second question in this thesis:
2) What are the cost-benefit tradeoffs associated

with the provision of user-oriented facilities?
Chapter 3 discusses those characteristics of man-machine
interaction that must be considered 1in evaluating and

improving ease of use. Three classes of performance-related

user needs are identified: 1learning how to use a system,

2y cx

correcting errors, and communicating with—a—system-

The results of these investigations provide a framework
for research into these two questions:

3) What features and capabilities should a system

have to make it more wuser-oriented and how
should they be provided?
4) What capabilities must an operating system have

to support and encourage the implementation of

user-oriented systems?
Chapter 4 proposes a set of user-oriented facilities that
attend to those user needs identified in chapters 2 and 3.
The capabilities are sufficiently general that they could be

adapted to any class of users and within any application.

Chapter 5 describes a software user interface that could be
used to provide a variety of on-~line aids.

To assess the influence of user aids on ease of use,
and to evaluate the effectiveness of the software user
interface in particular for providing such aids, an
experiment has been conducted. Chapter 6 describes the
experiment and resulting conclusions. Chapter 7 compares
results of this research with other studies of man-machine
interaction, and suggests several areas needing further

study.

1.1 Ptoblem definition

The first thing we must do is define what is meant by a
user-oriented system. Our definition must be operational in
the sense that it can be used ¢to evaluate the degree ¢to
which a system is user-oriented. It does not suffice to say
that a user-oriented system is easy to use, or that it
promotes a user's satisfaction with the system, though these
are desirable characteristics of any system. The definition
we require must have observable features that can be
measured, preferably in an objective way.

In addition to humanistie concerns, the desire for
user-oriented systems is motivated by the cost of human (as

opposed to computer) resources. In a user-oriented system,

then, total system effectiveness 1is sought by maximizing
user effectiveness, as well as the computer system's
efficiency. User effectiveness 1s both observable and
measurable in terms of the time, effort, and resources
required to use a system, and this serves our need for a
practicable definition. This dissertation begins by
describing user-oriented facilities on a variety of systems.
It will be =seen that what users and system designers
commonly call user-oriented features are, in fact, those

features of a system that promote the effectiveness of its

users.

1.2 Scope of the study

Many factors influence user effectiveness; the ones
relevant to this study are those that are features or
capabilities of a computer system. Clearly, other
"external" factors may influence a user's effectiveness
(e.g., the wuser's age, the noise level of the user's
environment, the printing speed of a wuser's terminal, and
the wuser's motivation). Such factors are outside the scope
of this study and, generally, beyond the control of system

designers.

This study pertains to all types of users and systems.
There is a tendency, both in the 1literature and in the
implementation of systems, to divide user-related concerns
according to classes of users, systems, or languages. It is
especially common, for example, to find features aimed at
so-called naive users, i.e., those with little or no prior
experience with computers. Conversely, systems designed for
professional programmers often have capabilities, also
called user-oriented features, intended for the more
experienced user. There are several drawbacks to viewing a
user-oriented system as one that provides special services
for users with a particular level of experience.

First, it is not clear that previous experience can be
quantified, or how such measures can be used to influence a
system's design. Few systems have such a small and static
group of users that the previous experience of those users
can be precisely defined. Depending on the nature of a
system, several categories of experience affect a user's
needs and abilities, for example:

programming experience,

previous experience with an interactive system,

previous experience with a similar system, and

previous experience with the system in question.

Each of these types of experience must be further stratified
according to frequency and duration of use, as well as some

measure of attained competency. It 1is therefore not

surprising that very general and subjective criteria have
been applied to classify users [LOT77b, SH76b, WATH, VETTec].
Experience has usually been equated with programming
experience or academic background. Only recently have
studies begun to focus on the problem of categorizing users
[FDT76, MOT79].

Second, it 1is self-defeating to provide for the needs
of one group of users at the expense of another group. For
example, a system designed exclusively for beginning users

(with long explanatory messages, prompts for required data,

and English-like commands) 1is 1likely to be unpopular and

cumbersome for more experienced users. lhe effectiveness of
a system depends on the combined effectiveness of all 1its
users.

Third, all users will, at some time during their use of

a system, forget, make mistakes, or fail to understand some

aspect of the system or its output. Today's user must often
deal with more than one language, increasingly sophisticated
operating systems, several different editors, and a panoply
of wutility programs. It is a mistake to ignore the
experienced user on the assumption that he or she will never
need assistance from the system. A fundamental assumption
underlying this research is that ease of use benefits
professional programmers as well as non-programmers. Job
control statements are a common meeting ground (perhaps

'battleground' is a more appropriate term) for programmers

and non-programmers.
originally 1intended

essential to program
management, and data

characteristics of

In

for

development,

10

addition, many facilities

non-programmers have become

transfer.

users

qua

e.g.: editing, file
By considering the

users, questions of

effectiveness and ease of use can be addressed in a unified

manner.

11

2. Background

The continuing desire to improve user effectiveness by
making systems easy to use is reflected in many developments

in computing. For example, on-line aids, structured

programming, simplified interaction modes, and even the

— notion—of asubroutine are all aimed at improving a user's

effectiveness in the process of interacting with a computer.
Although it is seldom stated explicitly as the goal of
user-oriented features, improved user effectiveness 1is, 1in

fact, the intended result of many seemingly different

developments.

To analyze user-oriented features, it is necessary to
distinguish between two sets of capabilities. The first
set, which may be called fundamental capabilities, are those
that relate to the system's purpose at the user's level of
discourse. These are, generally, the tasks a user can
effect, the language used to effect those tasks, and the
data structures the user must understand. The fundamental
components of a database management system, for example,

might include

12
1) data records containing several fields of
information,
2) a file of records arranged in some order,

3) a program that creates a file, and inserts
records into that file,

4) a program that retrieves successive records
from a file,

5) a program that sorts a file according to some
user-specified order,

6) a program that prints the contents of a single
record, and

7) an interactive language for requesting that any
of the operations above be performed.

In addition, a system often includes a set of
supportive capabilities, whose function is to promote the
effective use of its fundamental capabilities. A recurring
source of confusion and inefficiency in many systems is that
user-oriented features are treated as if they were
fundamental capabilities of a system. User-oriented
features are supportive capabilities, and it is necessary,
for purposes of evaluation as well as design , to isolate
these features from a system. Most existing user-oriented
facilities may be divided into four categories:

1. HELP modes

2. language extensibility

3. alternative communication modes

4, defaults

13

2.1 HELP modes

Many interactive systems have implemented a HELP
command or HELP mode in one form or another. In a survey of
46 interactive database systems, for example, it was found
that 18 of the systems provided both a HELP facility and
on-line documentation, seven provided only on-line
documentation, two provided only a HELP mode, and 19
provided neither [FITA4]. However, a review of several

- 44ifferentHELP facilities reveals little consensus on what

constitutes 'help' for the user. The types of help vary

with different categories of users, different applications,
and different situations in which users require help. More
noteworthy are the different ways that assistance 1is given

on systems that are otherwise comparable in function and

capability. For seemingly arbitrary reasons, help on

various systems has consisted of 1lengthy displays of
information, interactive tutorials, special-purpose
programs, Or no more than the phone number of a consultant.
On some systems, HELP is 1invoked by entering special
commands or depressing a single key at any time, while on
other systems it is necessary to interrupt the task at hand
and interact with another part of the system.

One of the earliest documented HELP facilities was for

a Computer Assisted Instruction (CAI) system. The first

14

descriptions of PLATO, a CAI system developed at the

University of Illinois, included a HELP key:

If [a student] still has difficulty answering a
question, he may obtain supplementary material by
depressing the 'help' button. This action causes
the computer to transfer from the main sequence of
slides to the beginning of the appropriate 'help'
sequence. A 'help' sequence, designed to lead the
student to an understanding of the main-sequence
problem, 1is provided for every question in the
main sequence. The 'help' sequence may contain a
review and reformulation of previous materials
pertinent to the question as well as suitable
hints and suggestions. [Memory limitations of the
computer] preclude the use of secondary 'help'
sequences. Thus, if a student ... asks for help
once more, the machine informs him that no
additional aid is available. [C062, pp. 212-213]

The PLATO system has undergone considerable development
since then, and the HELP facility is no longer as limited as
originally described. More than one HELP sequence can be
made availlable, and other forms of assistance are available
through more selective keys, viz., DATA, LAB, and TERM. In
addition, these facilities have the following
characteristics:

1) They are programmable by the system's users;

that 1is, anyone writing a program (actually, a
lesson) may specify a HELP sequence suited to
his audience of users.

2) Because of the nature of the PLATO system, it

is possible to make use of information about an
individual wuser 1in providing help. (In

practice, this is seldom done.)

3) Help 1is available by depressing a single key.
This 1is more significant than might first

15

appear; the presence of a HELP key makes the
user vividly aware of the feature and 1its use
could not be more straightforward.

4) The wuser's digression from his immediate task
is minimal; that 1is, one can obtain help
without going through a complicated protocol,
such as saving current information, leaving one
subsystem and entering another, and finally
returning to the original subsystem and
restoring information.

A more limited HELP facility was designed in PLANIT

(another CAI system) for users constructing lessons [BET70,

II.

(0]

~II.10] When the system solicited information

nn
[l 3

with an abbreviated request, entering a question mark would

invoke a more explicit question. In the following example
of this feature, system output is in upper case. User input
is in lower case, underlined, and preceded by an asterisk
(The asterisk is output by the system to indicate that

information may be entered).

Q/M/D/P
%9

—

(Q)UESTION/(M)ULTIPLE-CHOICE/(D)ECISION/(P)ROGRAMMING
*d

G2.CRITERIA
*9

G2. ENTER DECISION STATEMENTS

On the UNIVAC 1110 time-sharing system at the

University of Wisconsin, a user who makes an error in

16

assigning a file can obtain an explanation of the error by
entering 'HELP.! The following is an example (user input
is again in lower case):

@asg,a file.
FACILITY REJECTED 400010000000

%%%%35 FACILITY REQUEST REJECTED
FACO21 A-OPTION SPECIFIED ON @ASG; FILE NAME NOT
FOUND IN MASTER DIRECTORY
This HELP facility is currently available only for errors in
file assignment, but an expanded version 1is under
development.

In the KRONOS operating system of Control Data
Corporation's CYBERNET network, a HELP command could be
entered to obtain information about KRONOS commands. After
entering HELP, a user could request a directory of
information available, explanation (format and examples) of
a particular command, or miscellaneous information (e.g., a
directory of commands or a short example of a FORTRAN
program) . Another feature was the INFO command, which
displayed general information about the CYBERNET center
being accessed and its version of KRONOS ([CD731].

The HELP system developed at Project Genie at the
University of California, Berkeley, allows wusers to ask
questions 1in standard English, and to obtain information in
the same manner as they would consult a reference manual

[RO70]. This form of on-~line documentation is available not

17

only for operating system functions, but also for users who
want to set up HELP data bases for their own systems. A
second system, called QAS, enables a user to conveniently
generate a HELP facility for his own program. The system
relies on a technique that recognizes significant words
(keywords) of a user's question, ignoring both the order of
those words and the remaining unrecognized words. Other
useful features of the system include an ability to call any
HELP program from another HELP program, a subroutine

facility, and the saving of unanswerable questions on a file

for later investigation by the system designer. Although

the technique ﬁfrﬁmnﬂﬁﬁxnrima&ysis—{ﬁ—ﬁe%—eemp&e%j——ﬁgbeﬁxs_________
[RO70] reported that the system received a great deal of
use, generated useful answers, and could be easily updated
to allow for modifications and oversights. A sample session

with the Genie HELP system is shown in Figure 2-1.

Several other systems have provided assistance in the
form of on-line documentation, varying 1in their protocols
and underlying data structures. The SPEAKEASY system
developed at Argonne National Laboratory, for example, 1is
similar in this respect to the HELP system at Project Genie,
in that a large body of on-line documentation is available
[CcOT76, CO771. On the SPEAKEASY system, however,
documentation is organized hierarchically, and is accessed
by entering HELP followed by a single keyword. A keyword

recognition scheme is also used in GUIDE, a program for

18

@help

TERMINATE QUESTIONS WITH A '?'. THIS VERSION OF HELP
WILL ANSWER QUESTIONS ABOUT MATERIAL IN R-21. TO LEARN
MORE ABOUT THE USE OF HELP, TYPE "HBLP?". (11/27/68)

?how can i read the length of a file?
USE BRS 143 WITH ATTRIBUTE NUMBER 2 TO READ THE
LENGTH OF A FILE.

?tell me about brs 1437

BRS 143: READ STATUS. THE CALLING SEQUENCE IS:

A: TABLE ADDRESS OR DATA (DEPENDS ON BO). IF A TABLE
ADDRESS, A IS INCREMENTED TO POINT TO ONE PAST THE
LAST WORD TRANSFERRED.

X: THINGY NUMBER

B: DECODES AS FOLLOWS
BIT O0: O IF A HAS DATA, 1 IF A POINTS TO A TABLE
BITS 1-11: 'TYPE' OF THINGY
BITS 12-23: 'ATTRIBUTE'

'TYPE' IS 1 FOR A DRUM FILE, 2 FOR A JOB, FOR DETAILS

SEE PAGE 9-2 IN R-21

?what is a thingy?
AT"THINGY", AS USED IN BRS143 AND 144, IS EITHER A FILE
OR A JOB.

Figure 2-1. Sample HELP session (Project Genie)

selecting computer science lessons on the PLATO system
[PR7U4]. Z0G, a system developed at Carnegie-Mellon
University, allows users to browse through a network of
displays by successively choosing from a list of available
actions [RO771]. The Z0G system allows wusers to mark
traversed nodes and return to them at a later time. Users
can also modify any display to obtain a more personalized

network. The THUMB system proposed by Price [PR78] includes

19

facilities for —constructing and accessing the structural
representation (strep) of a document. THUMB is designed to
1) organize the concepts comprising a document, 2) assist in
the generation of written manuals, 3) provide on-line access
to documentation, and 4) integrate written and on-line
documentation. INLAT, a system under development at Bolt,
Beranek, and Newman, operates on text segments, portions of
a document that can answer a class of questions [GR76].
INLAT is intended to eventually provide on-line

documentation through a Natural Language Front-End (NLF)

that recognizes questions posed in English [ASTTI].

The feature commonm to atl HEEP faciltities—is—an—attempt
to provide users with advice, instruction, or reference
information when they need it. The most general and fully
operational HELP facility is PLATO's; many forms of

assistance can be made available simultaneously, they can be

specified and tailored for any subsystem or situation, and
they can store and make use of user-specific information.
Unfortunately, not all systems 1include a CAI subsystem;
those that do generally lack a clear and uniform means of
integrating CAI capabilities with other portions of the
system. (Factors related to the implementation of HELP
facilities will be discussed in Chapter 5.) Despite the
differences that exist among HELP modes, it is possible to

identify several categories of assistance that users

20

require, and that systems can provide, in an interactive
setting:
1) further explanation of an error message
displayed by a system,

2) further explanation of a question or request
for data displayed by a system,

3) definition or description of a term pertaining
to a system,

4) examples of gorrect input or statement
sequences,

5) interactive instruction on the use of a system,
or one of its commands,

6) description of a command's format,

7) reference to (or display of) relevant portions
of documentation,

8) a 1list of available programs, commands, or
capabilities, and

9) general information about a system (e.g.,
operating schedules, system changes, reported
errors, announcements, and emergency phone
numbers) .

2.2 Language extensibility

To spare the wuser 1long or repetitious input and to
minimize keying and spelling errors, it 1is common for a
system to recognize abbreviations for commands. Most
systems recognize single-character abbreviations, such as P

for PRINT, M for MODIFY, and C for CHANGE. When more than

21

one command begins with the same character, two or more
characters may be required as an acceptable abbreviation.
Some systems recognize as a valid abbreviation any 1initial
substring of a command long enough to distinguish it from
any other command. When full duplex communication 1is
provided, the expanded command can be displayed while a user
enters only its abbreviation.

In addition to system-defined abbreviations, many
systems allow users to specify their own abbreviations. An

information retrieval system developed for the U. S. Patent

Office, for example, allows definitions of the form

let NAME be DEF

where NAME 1is the abbreviation or synonym, and DEF is the

string of characters that the system substitutes for NAME

when NAME 1is entered by a user [GL72]. Where such a

capability is provided, a user can define synonyms, terms

that are more meaningful to him than those provided by the
system, or abbreviations for command sequences that are used
often without variation.

Job control languages often provide such facilities,
but require some knowledge on the part of the user beyond
that of his particular application. A typical example 1is
the UNIVAC 1110 operating system, on which any number of
line images may be invoked by an @ADD command. The wuse of
this facility requires some familiarity with 1110 files,

their structure, and their management.

22

The definition and use of abbreviations for commands
(or a sequence of commands) are degenerate forms of a
general macro facility. Macro processors are seldom
available to all wusers; they are usually restricted to a
single subsystem (e.g., assemblers). Some operating systems
provide macro capabilities more consistently through a
special purpose system that must be used as a pre-processor
to any other system. In addition to one-for-one string
substitution, macro processors can provide the following

capabilities:

1) macro arguments: The definition may contain
parameters, suitably marked; at the time of
macro generation, user-specified arguments are
substituted for the parameters.

2) conditional string expansion: The substitution
of a definition 1is predicated on some set of
conditions specified in the definition.

3) repeated string expansion: Part or all of a
definition string may be generated several
times, based on some user-specified value.

4) transfer of control; Portions of a definition
may be labeled: together with conditional
statements, statements in the definition can
cause generation to proceed at non-adjacent
portions of the definition.

5) nested macros: Definitions may define or
invoke other macros.

6) macro libraries: The system allows users to
store macro definitions in a system 1library
(e.g., a file), so that they may be used in
other interactive sessions.

7) optional string -expansion: At the user's
option, the expanded definition is displayed
when it is invoked. 1In an interactive setting,

23

the user's approval may be required for the
displayed expansion to take effect.

8) missing argument specification: When arguments
are missing from the wuser's 1invocation of a
macro in an interactive setting, the system
requests the user to enter those arguments as
they are referenced in the definition. (The
U. S. Patent Office system mentioned above
allows user-specified messages to be displayed
when arguments must be entered.)

Like HELP commands, macro capabilities have existed in
many forms, and no system provides all of the capabilities

— —hove—in—a—consistent—and—convenient fashion. In most

S a_ single rudimentary capability (e.g., command

o W TR =}
e g

abbreviation, synonym definition, or the substitution of
many lines for one) has been provided and cited as evidence
of a system's ease of use. Such capabilities have usually
been described and implemented as fundamental features of a

———particular-language, hampering their uniformity throughout a

family of systems. Generally, only programming languages
have provided macro capabilities for argument substitution,
conditional string expansion, repeated string expansion, and
transfer of control.

Language extension should be provided consistently and
conveniently among the different systems comprising a larger
system. This will be discussed in Chapter 5. For now, we
may note that macros can enable a user to redefine the
language he must use, tailoring it to his own vocabulary,

application, or style of interaction. Macros can also be

24

used to minimize repetition on the part of a user. In
addition to aiding wusers in the construction and entry of
commands, macros can make commands more readable for
purposes of modification. Existing macro facilities,
however limited or inconsistent, are often associated with a

system's ease of use.

2.3 Alternative communication modes

In an interactive setting, the dialogue between a wuser
and a computer system requires the specification of a task
to be performed, some indication of the manner in which the
task 1is to be performed, or data to be used in performing
the task. This information may be communicated in several
ways. Martin, for example, has described no less than
eighteen categories of ‘man—machine dialogues, with their
respective advantages and disadvantages [MA73a, pp. 12-131].
The modes of communication used by all interactive systems
fall into two general categories: user-constructed commands
and system-initiated requests.

The earliest interactive systems were extensions of
existing batch systems, and it was therefore natural to use
the same mode of communication, viz., a command language.
This was not only true of job control languages designed for

programmers and generally experienced users; it also became

25

the primary means of communication provided for reservation
systems, banking systems, information retrieval systems, and
similar systems whose users were likely to be less
experienced with computers, or whose computer usage was less
frequent.

Despite the best efforts of system designers, many
command languages have been found to be difficult to learn
and use. This is so not only because of the many commands

and options it is necessary to remember, but because of the

constricting syntactic rules, maming conventions, and

réSérVé““erdsrwm$br_mbeg&n&iﬁg~AMLm4ﬂ£¥equentwuserq,fh@

complexity of a command language may preclude their
continued use of a system. In situations where a computer
system must be used, the continuous training of |users

requires a considerable investment in educational

facilities, staffing; and documentation. As the number and

sophistication of a system's capabilities increases, even
the most experienced user will occasionally forget the exact
syntax and restrictions of commands.

For these reasons, many systems have provided a
different form of communication, wusually called a prompt
mode. In this mode, the system asks the user what tasks he
wants performed or how they are to be performed. The user
does not have to remember what specifications he must make,
or their order, because the system asks for all necessary

information. A well-designed prompt mode can often enable

26

users to interact with a system with little or no previous
training. Complemented by HELP modes of the type described
above in Section 2.1, a prompt mode can perform a good part
of the training function.

A variation of prompting is represented by so-called
'form fill-in' modes, which display a form on a CRT and
allow the wuser to fill in appropriate parameters, and
'menu-selection' modes, which display a list of alternatives
selectable by a user. The form-oriented approach was
identified by the CODASYL End User Facility Task Group as
being best suited to a broad range of users, especially
those who are not data processing experts [FD761]. This
means of communication, it is claimed, is most natural for
users who are accustomed to filling out forms as part of
their normal work.

Systems often provide a combination of prompt modes and
command (language) modes. Some systems determine which
specifications are better suited to each mode and alternate
between those modes during interaction with the user. This
is a typical approach in systems that require the user to
specify his task by entering a single command, and then
prompt the user for additional specifications pertinent to
the task. Alternatively, a system can allow the user to
enter all specifications in the form of commands with (at
the user's option) related parameters. If the user omits

any parameter, the system switches to a prompt mode that

27

solicits those additional parameters. Several operating
systems have offered this feature when interpreting job
control statements. Finally, it is possible to leave mode
selection entirely at the discretion of the user. JPLDIS, a
database management system developed at Jet Propulsion
Laboratories, offers this option to a user when records are
being added to a database [JPT75]. When adding employee
records to a database, for example, a user may choose a
'free format mode,' in which records may be entered as

follows:

NAME=SJONES, SALARY=H-T
NAME=SMITH, SALARY=5.0
NAME=JOHNSON, SALARY=4

Alternatively, the wuser may select a prompt mode, in which

the system prompts the wuser for each item. This 1is

illustrated —in the following dialogue (system output is in

upper case, user input is underlined in lower case):

NAME: jones
SALARY:4.75
AGE:36

NAME:smith
SALARY:5.00
AGE:§§

28

When several items of data must be entered, such as a
command name and 1its qualifications or options, three
alternatives can be considered:

1) fixed fields, wherein each item must occur in

specified columns in an input image,

2) ordered fields, wherein items must occur in a
specific order, but are separated by blanks,
special characters, or reserved words,

3) labeled fields, wherein items may occur in any
order, are separated by any number of blanks,
and are identified by a name or other field
identification.

Although different systems often require one of these
formats, and claim that it provides a user-oriented (i.e.,
easy to use) means of interacting, there is no evidence that
any one method is superior to another. 1In a study by Root
and Sadacca [R0O67], no significant differences in number of
errors were observed among subjects who used the three forms
of data entry described above.

There are a few instances where a single mode of
communication is required by the very nature of a system. A
prompting mode, for example, is the only reasonable means of
communication for a drive-in automated bank teller system,
whose user audience is well-defined, and whose tasks are
very few and simple. A very terse command language, on the

other hand, is required on a system with time constraints

29

for message transmission and task completion, such as a
reservation system. Most systems must provide for
communication with a broad range of users. If command
languages can be an obstacle to inexperienced or infrequent
users, prompting modes can be just as annoying to the user
who knows exactly what needs to be specified and warts to
get about the task of making those specifications.

It seems necessary, therefore, that a system provide
alternative modes of communicating commands and data to a

system;—so—that—a-—user-may choose the mode that best suits

his needs As with other user aids, the provision of

alternative communication modes has been marked by
inconsistency and arbitrarily established protocols. In
most systems, only a single mode 1is initially made
available; later, other modes are implemented to cover

—anomalous-situations.

2.4 Defaults and options

Another method used to reduce user specifications is to
provide default values or conditions whenever parameters are
not specified by the user. Defaults become more necessary
as the number and kinds of options increase in a system.
Thus, it 1is common to find systems whose commands may be

qualified by a prodigious number of options; to make a

30

system more 'user-oriented', defaults are provided so that a
user does not have to remember or specify all available
options. The values chosen as defaults are intended to
satisfy the majority of a system's users, or to prevent
undesired results, such as very time-consuming or expensive
processing.

Few systems allow more than a single set of defaults:
the system's defaults. It is seldom possible to create a
set of defaults for individual wusers, groups of users,
individual subsystems, or combinations of these. One way to
provide such defaults is by a suitable redefinition of a
system (and its defaults) through the use of macros. The
Demand User's Monitor (DUM), developed at the University of
Maryland, is one example of this approach [HA72]. A set of
special-purpose programs and macros is provided for the user
in the form of a pseudo job control language. A user who 1is
told to use the resulting command language is wunaware that
the wunderlying macros and programs create a set of default
specifications tailored to his needs.

A multi-level default capability was adopted in the
design of LEXICO, a 1lexicographic text-processing system
developed at the University of Wisconsin [VE77a, VET7T7b,

VE77c]l. The user's database consists of a collection, which

is a group of texts. The user can maintain several
collections, and within each one he can add and perform

operations on several texts, e.g., editing, generating

31

concordances, and classifying concordance entries under
dictionary entries. The first level of defaults is at the
system level. A number of text characteri;tics are unlikely
to vary among most users, so when not otherwise specified),
system defaults for those parameters apply. However, a user
can specify that a different set of defaults is to be
associated with a collection. This is the second default
level; once specified, collection defaults are used for any

operations within that <collection. Finally, a set of

e fau T b S can—be-assoeiated-with-each-text-in.a.collection

Once specified, text defaults are used for any operations on

that text. Of course, a user can always override a default
by explicit declaration. This capability makes it possible
for a user to tailor the system to his requirements and, at

the same time, minimize the number of specifications that

must be entered each time a task is performed. In addition,

a user need not even know about the various default levels
if he is able to abide by the system defaults.

Although defaults are intended to facilitate a system's
use, their provision has generally been deficient in several
respects. First, the values chosen to serve as system
defaults are usually arrived at in an arbitrary fashion.
Users are seldom surveyed to determine which parameters,
when omitted, should assume system defaults, or what those
defaults should be. Computers have eminently suitable

facilities for monitoring a system's wuse to aid in the

32

selection of defaults, but these capabilities are seldom
exploited.

Second, defaults are sometimes inconsistent among
different subsystems of an operating system, or among
different tasks comprising a system. Under such conditions,
it is understandable that users will be reluctant to omit a
parameter and trust the resulting default.

Finally, wusers are seldom provided with a convenient
means of determining which parameters may be omitted for a
given task or command, and the results of such an omission.
This information is usually enmeshed in written
documentation or must be determined by a complex sequence of
rules. A default capability is of questionable value if a
user cannot easily determine (e.g., in conjunction with

appropriate on-line aids):

a) which parameters may be omitted;

b) what the result is of omitting a particular
parameter (for example, does the system assume
the value 1last specified by the user in a
similar task, in the same task, or the 1last
time it was ever specified? Or does a system
default apply?); and

c¢) what default values are in effect at any given
time, and whether or not they can be changed.
Can they be changed?

33

2.5 Miscellaneous user aids

Several other techniques have been wused to reduce a
system's apparent complexity, to simplify the interaction
that takes place between a user and a system, or to provide
for users with varying degrees of competency. Some of these
additional techniques that bear mentioning are: function
keys, data-dependent aids, 'brief' modes, and multi-level

(or 'layered') languages.

Function —keys —anmd—buttons—can—be—thought of—as—a

mechanized—form—of-macros~ By reducing a user's input to a

single keystroke for frequently wused functions, the
likelihood of a keying or spelling error can be all but
eliminated. Interaction 1is also simplified by the ability

to recognize valid requests, rather than having to recall

and construet them. The same simplification 1is often
provided by other input forms, such as light-pens, cursor
positioning, and touch-sensitive screens.

Many systems allow users to obtain auxiliary
information about their data. Database management systems,
for example, usually provide special commands for
determining the size of a database, the names of records and
fields, the last time of access or update, searchable
fields, displayable fields, and the time span covered by the

database [MAT75Db].

34

The amount of information communicated by a system canb
be varied by providing 'brief' and 'verbose' modes,
selectable by the user through appropriate user aids or
commands. These modes determine the nature of the dialogue
(e.g., the 1level of detail in system messages), the amount
of data displayed in response to a user's request, or both.
Marcus, for example, has described six such mode pairs in
CONIT, a common interface for accessing bibliographic

information retrieval systems [MA761]:

1) VERBOSE/TERSE: affecting the length and
comprehensiveness of the dialogue,

2) INSTRUCTIONAL/SERVICE: affecting how much
emphasis in the dialogue is placed on
instruction as opposed to the retrieval
service,

3) INTERPRETED/STRICT: determining whether a
user's search terms should be extended (e.g.,
to include related terms),

4) ASSISTED/AUTOMATIC: determining, for example,
whether any extensions should be applied
automatically or with the user's intervention,

5) HIDDEN/EXPOSITORY: affecting, for example, how
much the user is informed of underlying network
connection procedures, and

6) VIRTUAL/TRANSPARENT: affecting a user's

ability ¢to communicate directly with a
connected system in the network.

Bothersome complexity of a language is often alleviated
by revealing different subsets (or 'levels') to different

users, depending on their needs or levels of competency. As

35

Hoare has pointed out [HO73], this attempt at achieving
simplicity in a language has serious pitfalls. A user who
inadvertently invokes a capability which was hidden from him
will not understand corresponding error messages or, even
worse, may not realize the effect of his unintentional
declarations. Nonetheless, the categorization of language
constructs according to levels of complexity can serve as a
tool in learning the complete language. As a result of
experiments with SEQUEL, a database query language, Relsner
. concluded that the language's features should be partitioned =~ ==

into__layers of increasing difficulty [RETT]. The

experiments were also used to identify the relative

difficulty of the language's basic features.

2.6 _Summary

Many systems have provided supportive capabilities
under the rubric of wuser aids or user-oriented features.
These have generally been limited in scope, 1inconsistent
among sSimilar systems, or cumbersome to wuse. There is
little agreement as to how any single supportive capability
should be provided. The gathering of empirical evidence on
which to base a more effective design has neither preceded
nor resulted from the provision of user aids. Furthermore,

it is often difficult to ascertain which features of a

36

system are user aids and which are fundamental capabilities.
The taxonomy of user aids suggested 1in this chapter is
useful in making this distinction, and, as will be shown
later, provides a framework for 1issues related to
implementation and evaluation. Despite their shortcomings,

user aids have been aimed at

1) reducing the amount of data communicated
between a user and a system for a given task,.

2) improving a user's understanding of a system,

3) reducing the amount of information that must be
remembered by a user during interaction,

4) minimizing the likelihood of user errors, and

5) enabling users with widely differing levels of

competency to use the same system.

The common goal of these efforts 1s to improve user
effectiveness. The proper design and implementation of user
aids requires that we define more precisely what constitutes

user effectiveness; that is the subject of the next chapter.

37

3. User Performance and User Needs

User aids of the types described thus far do not come
without a price. They require not only additional computer

resources for their operation, but the resources that go

into their design, implementation, and maintenance. To

'W‘“__________—justffy—these—%ﬁves%men%sT—we must__consider the benefits

that derive from making a system more user-oriented. 1In
this chapter, the following questions are therefore

addressed:

—

e’

What—are the -cost=-benefit tradeoffs associated

with the provision of user-oriented facilities?

2) What are the functions of a user aid from the
user's standpoint? That is, what
performance—related user needs can be attended
to by the provision of on-line assistance,
default facilities, etec.?

3.1 Cost-benefit tradeoffs

Performance evaluation has traditionally been concerned
with the efficient use of computer resources. Several
studies have recently given greater attention to |user

performance, recognizing. as stated in one such study, that

38

... there may be qualities of service which are

not directly measurable in terms of cost or time

to run the job. Examples of such qualities are

accuracy, comprehensibility, ease of use,

dependability, and the like. Though possibly not
directly measurable in terms of time or cost, they

may be considered through their indirect effect on

either the <cost or benefit side of the analysis.

For example, an inaccurate system may increase

costs by requiring transactions (or entire jobs)

to be rerun when errors occur. Similarly, an easy

to use system is more beneficial than one that 1is

not so, because of the costs incurred as a result

of user errors or delay. [AB75]

In this more global view of a man-machine system, we
are interested - in those advantages and benefits that are
external to the computer. Several possible benefits may be
readily identified. We assume, for example, that a system
that is easy to use will enjoy greater wuse, and the
implication 1is <clear for systems whose revenue depends on
the number of wusers and their volume of wusage. The
provision of on-line aids may reduce the written
documentation, consulting, and educational facilities
required to support a system's existence. On systems with
large numbers of users, there is an advantage in the timely
(and 1less costly) reporting of errors, system changes, and
new capabilities. This is especially true where users are
geographically dispersed. Finally, we must include a
consideration of the wuser's effectiveness, that 1is, the

amount of time that a user must spend to solve a problem or

accomplish some task by interacting with a computing system.

39

A comprehensive analysis of total system efficiency
requires that we consider all of the tasks and resources
that comprise man-machine interaction. In the process of
using a system to perform some task, a user will expend
various resources to

1) learn how to use the system, or those aspects
of the system that pertain to his task,

2) recognize, understand, and correct errors made
in the course of performing the task, and

3) complete a number of steps (in conjunction with
the computer) until the desired result 1is
achieved.

These activities are present in any system, regardless of

whether it is interactive or batch, and Tfor any user:
programmer or non-programmer, experienced or not.

In addition to the time spent in using and learning how
to wuse a system, several resources are required to assist a

user, namely: computer resources, other people's time

(instructors and consultants), written materials, and
education-related expenses such as classrooms, equipment,
travel, and lodging. The most wuseful common measure of
these resources is, of course, cost. The costs represented
in Table 3-1 have heretofore not been included 1in
performance evaluation, and merit investigation because of
their increasing role in total system efficiency. We would
like to investigate, for example, the cost-benefit tradeoffs
that result from providing on-line aids, alternative modes

of communication, or language extension capabilities.

40

Learning to Recognizing and Communicating

use system correcting errors with system in
performance of
task(s)

User's time C C C
UL UE uc

Computer C C C
Resources GL CE CcC

Time spent C C
by others TL TE
to train or

consult

Written C C C
material WL WE WC

Misc. C C
(travel, ML ME

classrooms,
etc.)

Table 3-1. Costs of using and learning to use a system

We shall return to the question of cost-benefit
evaluation in Chapter 6. For the moment, we may observe
that not all of the costs in Table 3-1 lend themselves to
practical methods of measurement. Some costs are readily
attainable by suitable system monitoring. We can obtain,
with no appreciable disturbance to user or system, accurate
measures of those activities that take place during
interaction. But we cannot always determine for a given
system the costs associated with consultants and training

personnel, written materials, classrooms, and equipment.

41

These costs are generally shared by many systems and users,
and are not easily apportioned on a system-by-system basis.
Much of the time spent 1in 1learning about a system and
diagnosing errors does not take place during interaction,
and therefore cannot be easily monitored. For measures of
these factors, as well as measures of a user's general
ability to wuse a system effectively, we must rely on
subjective instruments or inferential statistics.

Despite the difficulty of measuring precisely the

cconomic—benefits—of a3 user-oriented system it is clear

that such benefits exist. The Dbenefit we are most

interested in is improved user effectiveness. When the use
of a system entails long periods of wuse, such as 1in the
writing and debugging of a program, the time required to

complete the task may be more significant (in terms of cost)

than any other single resource. When the performance of a

task 1is brief, as in the requesting of a report or updating
of a database, the user (or the ultimate recipient of the
service) 1is 1interested in obtaining correct results in as
short a time as possible. In either case, it is the user's

performance that we are interested in improving.

u2

3.2 User needs

User effectiveness can be defined as a measure of a
user's ability to solve a problem or accomplish some task by
interacting with a computing system. The efficiency with
which a wuser can perform tasks depends largely on the time
that must be spent in the three activities described above:
learning, correcting errors, and communicating with the
system, By identifying the needs of a user as they pertain
to each of these activities, we provide a framework within

which effective user aids may be designed,

3.2.1 Learning about a system

The first and most continuing need of a user is to know
what tasks a system can perform and how to request that they
be performed., In addition to needing an 1initial awareness
of a system's capabilities, users will always be subject to
the human frailty of forgetting, and will therefore require
brief retraining. Users also need to be informed of new
system capabilities and changes in existing capabilities;
the frequency of modifications is a significant factor in
determining the need for such awareness,

Tt is also desirable that a user be required ¢to learn
as little as possible about a system before beginning to
interact with it. This is so because additional (perhaps

more effective) learning takes place in the process of using

N3

a system, and learning will be more effective the sooner it
is put into practice. New users will be less reluctant to
use a system if the training initially required 1is
minimized. This is especially true when the system will be

used only once for a short period of time.

3.2.2 Correcting errors
When an error occurs, a user must be informed of tne
error, he must understand the nature of the error and its

cause, and he must be able to correct the error easily and

efficiently (e.g., with as 1little respecification as

possible).

These requirements imply several corollary features of
a system. If a user is to understand errors, error messages
must be at his level of discourse; a system must prevent the

display of lower-level error mesSages, and express error

conditions in the user's ‘terms. Error messages must bhe
appropriate to the user-system environment. In an on-line
system, for example, messages should be brief, but offer the
possibility of obtaining more detailed explanation or
references to documentation. Systems that attempt to
correct a user's errors must inform the user of any such
corrections.

The detection and correction of errors comprise a major
part of man-machine interaction. A user's performance

depends not only on the ability to recognize and correct

4y

errors efficiently, but on the ability to avoid those errors
in the first place. This has several implications. First,
the 1language and protocols used to communicate with the
system must be designed in such a way that the likelihood of
user errors is minimized, and that such errors may be easily
recognized when they do occur. Secondly, when a system
requires information from a user, the user must understand
how that infprmation should be entered. Finally, facilities
must be provided that eliminate repetitious specification by
a user, especially since repetition increases the frequency

of errors for a given task.

3.2.3 Communicating with a system

A user must understand several types of information
obtained from a system: error messages, warnings, messages
that solicit a response, and messages of an informative
nature (e.g., file status, program status, data description,
and availability of facilities). All of these messages must
have the characteristies described above for error messages.
They must be c¢lear and concise, and they must provide
further explication when required by a user. That so many
systems sacrifice intelligibility of messages for greater
tefficiency’ has often been cited as an example of
misdirected design priorities [GI77, KE74, KL73]. Even when
transmission rates, system response times, and memory

considerations are a limiting factor on message lengths, it

45

must be recognized that repeated user errors will adversely
affect a system's performance.

During interaction, a user must be able to communicate
his needs to a system in an efficient manner. The time and
effort required to perform tasks depends on the number of
specifications that must be made, how 1long it takes to
compose those specifications, and how much effort 1is
required to enter the specifications. The most effective
means of entering commands, options, and data depends on

user-related conditions. A beginning or infrequent user

needs assistance in making acceptable requests, while other

users requires more concise protocols and Tanguage
constructs. A system must therefore provide alternative
means of communication and enable a user to select those
appropriate to his needs at any given time.

One of the most pervasive needs of a user is the

ability to concentrate on his immediate problem. A user
must be able to formulate problems in terms that correspond,
as closely as possible, to those used in his own problem
domain. This characteristic of systems is sometimes
referred to as transparency; the underlying programs and
data structures that interpret commands, effect system
actions, and provide suitable responses may (and should) be
made transparent to a user. During interaction, a user must
be able to enter requests with minimal digression from the

vocabulary and conceptual framework appropriate to his

u6

immediate problem. A user should not need to know about a
system's internal data structures and procedures in order to
use a system; he should be able to alter the vocabulary of
his interactive language to suit his needs, and facilities
that are not directly related to the immediate task should

be usable in an unobtrusive manner.

ur

4, Supportive Facilities that Improve User Performance

The user needs identified in the previous chapter may
be met, and associated efficiencies realized, by providing

1) on-line assistance,

2) alternative modes of communication,

3) default facilities,

4) language extension facilities, and
5) user-oriented language design.
This chapter proposes a user's view of the first three of

these features. No single one of these capabilities or

features is claimed to ~be sufficient —for —achieving—

significant improvements in user performance. Some require
or may be more effective in the presence of another of the
facilities.

While the capabilities and principles described in this
chapter are applicable in any man-machine environment, they
are particularly well-suited to interactive task
specification systems, or their respective command
languages. Warshall has described several characteristics

of this class of languages [WAT2]:

48
1) they have a broad syntax, with many rules and
few common phrases,

2) there are many reserved identifiers, even when
some of them are logically identical,

3) they have rigid format requirements,

4) they are usually easy to read but difficult to
write, and

5) they are difficult to extend.

Such languages are usually devoid of control statements;
problem descriptions are not algorithmic or self-modifying.
Rather, each statement corresponds to a single task or
operation, and consists of a command together with
parameters that specify how the task is to be performed or
on what objects it is to operate. One example of such a
language 1is PROPHET, a system for handling information in
pharmacology research [RA72]. Part of the grammar for the

PROPHET language is represented below:

ADD COLUMN[S]} TO tablename [FROM tablenamel
ROW[S]

ENTER COLUMN[S]}{names } OF tablename
ROW[S] numbers

FILLIN tablename FROM tablename

DISPLAY} {?OLUMN[S] {names WS OF tablename
{PRINT ROW[S] numbers

LIST)JOTHER } TABLES
log-in-id

SORT tablename BY COLUMN[S] (names
numbers

49

There are many such languages, but perhaps the most
common is the job control language for an operating system.
The capabilities described in this chapter are therefore not
intended only for the naive user, the infrequent user, or
the user whose sole means of communication is a command
language. These capabilities benefit experienced users and
programmers who must edit, compile, and test their programs,
and manage attending resources, through a job control
language.

Many non=-interactive systems (those that do not require

user intervention, or whose processing and output precludes

their use in an interactive setting) can and should provide
interactive 1interfaces. A concordance-generating system,
for example, may provide an interactive specification system
for declaring concordance parameters, and check for the

validity and consistency of those parameters. This approach

was taken in the design of LEXICO [VE7Tb], and together with
a set of on-line aids demonstrated the feasibility and
usefulness of providing an interactive specification system

for a set of non-interactive tasks.

4.1 Goals of the design

Before describing in detail the user-oriented

facilities proposed in this chapter, it is useful to recall

50

the performance-related user needs that those facilities are

intended to meet:

reducing the amount of time that must be spent
learning how to use a system, prior to its initial
use;

reducing the amount of information that must be
remembered by a user during interaction; e.g., by
enabling a user to learn during interaction what
tasks may be performed and how they may be
requested;

minimizing the likelihood of user errors;

making messages from the system understandable by
a user;

minimizing the amount of information that a user
must communicate to a system to effect each task;

minimizing the amount of information communicated
by a system to a user;

facilitating _the use of a system by an
inexperienced user, while not sacrificing “the
efficiency of more experienced users;

facilitating the use of a system after long
periods of inactivity;

enabling a user to concentrate on the task or
problem at hand;

enabling a user to interact in a manner that suits

his subject matter or stylistic preferences.

To be used effectively, user aids must themselves
gxhibit these same features. They must be easy to use and
they must not 1interfere with the user's main task.
Furthermore, they must be consistent; that is, they must be

sufficiently general that their use can be the same among

51

the different subsystems that comprise a larger system.
Finally, a user must be able to learn easily what user aids

exist and how they may be used.

4,2 On-line aids

In an interactive environment, many user needs are met

by the on-line aids described in this section. Each

Hear
¥

.~ provides the indicated information. One

oy P
vy a o<

important characteristic of the aids described in this

section 1is that they are unobtrusive; that is, they are

invocable in a simple and consistent manner that does not
interrupt the immediate task. The aids described in this

_section-are not-intended to comprise an exhaustive list;

other types of aids will be described in chapter 5.

While a single key 1is a very convenient means of
invoking a user aid, few terminals have any function keys at
all, let alone those described below. Furthermore, the cost
of providing more sophisticated terminal hardware is not
always justifiable for on-line aids; this depends on their
expected frequency of use for any given system and group of
users. On most systems, a special character in combination
with a meaningful abbreviation might serve the same function

as a key, to accommodate any type of terminal. In the

52

descriptions that follow, boldface 1letters are wused to
represent user aids, regardless of whether they are provided
in the form of special commands, function keys, light-pen

input, or a touch-sensitive screen.

EXPLAIN
ERROR

When entered after the display of an error message,
this aid provides successively more detailed explanations of
the error, including 1its possible causes, corrective
actions, examples of correct input, or references ¢to
documentation. Use of this on-line aid 1s 1illustrated in
the hypothetical interaction in Figure 4-1. Note that the
user may, at any time, continue the task that was being

performed at the time the error was made.

EXPLAIN
QUESTION

When entered after the system solicits information by
way of a question or prompt, this aid provides successively
more detailed descriptions of valid wuser responses,
including (for example) the format of the input, current
default - values, default conventions, examples of valid
responses, and references to documentation. A question 1is

often implied 1in the display of a single prompt character,

53

>sort master into author by author-name
NON-EXISTENT FILE: AUTHOR

>EXPLAIN ERROR

THE OUTPUT FILE OF A SORT MUST BE CREATED
PRIOR TO ITS REFERENCE IN A SORT COMMAND.

>EXPLAIN ERROR

TO CREATE A FILE CALLED 'AUTHOR'
ENTER ONE OF THE FOLLOWING COMMANDS:
CREATE (TEMPORARY) AUTHOR
CREATE (PERMANENT) AUTHOR

NOTE: THE NAME OF A PERMANENT FILE MAY
CONTAIN READ/WRITE KEYS

Sereate (temporary) author

TEMPORARY FILE '"AUTHOR' CREATED.

>sort master into author by author-name

Figure 4-1. Use of the EXPLAIN ERROR aid

to avoid 1long questioms that ©become bothersome after
frequent use. The existence of this aid makes it possible
for prompts to be terse without sacrificing the needs of the

less frequent user.

EXAMPLE
When entered after the display of a system question or
prompt, this aid provides examples of valid user responses
or commands; when entered after the display of an error

message, examples of correct responses are given.

54

The need for several independent user aids 1is
demonstrated by the aids described thus far. Many systems
have a single aid or command to serve several functions; but
because it is possible to have both a question and an error
message concurrently displayed, a user must be able to
select an explanation for either. There are many instances
when the user must determine what type of explication is
required. The separation of aids makes it possible to
obtain further information in the most concise and
unobtrusive manner. It is true that a single‘HELP command
could provide, in some pre-determined order, more detailed
error messages, prompts, examples, and definitions. But a
user will be reluctant to use such a facility if a lengthy
protocol or sequence of displays is required. On-line aids

should be function-specific; that is, a user should be able

to choose from several different aids, depending on the type

of assistance desired.

HELP
When entered at any time, this aid provides a more
detailed explanation of an error or question. In the
absence of an error condition, system prompt, or any other
condition that unambiguously identifies what kind of help

the wuser 1is seeking, a message is displayed that describes

55

all other on-line aids available to the user. The HELP aid

is illustrated in Figure 4-2.

>HELP

YOU MAY ENTER ONE OF THE FOLLOWING:

EXPLAIN ERROR FOR FURTHER EXPLANATION OF AN ERROR
EXPLAIN QUESTION FOR FURTHER EXPLANATION OF A QUESTION
EXAMPLE FOR AN EXAMPLE OF CORRECT INPUT

....... R
1\

MENU R—A—LIST OF VALID COMMANDS

T V1dor et L2

Figure 4-2. Use of the HELP aid

EXPLAIN
TERM

When entered together with a single term, this aid
provides a definition of the specified term with respect to
the system being wused. The definition of a term may also
include its relationship to other terms and commands, and
references to documentation. Figure 4-3 illustrates use of
the EXPLAIN TERM aid. Aids similar to EXPLAIN TERM can
include descriptions of a command's format (e.g., EXPLAIN
FORMAT command, EXPLAIN OPTION option, or EXPLAIN OPTIONS

command) .

56

>find author=zsmith

AUTHOR FIELD NOT INVERTED

>EXPLAIN ERROR

ONLY INVERTED FIELDS MAY BE ACCESSED
WITHIN THE FIND COMMAND.

>EXPLAIN TERM inverted

A FIELD IS SAID TO BE INVERTED (OR INDEXED)
WHEN ALL RECORDS CONTAINING THAT FIELD HAVE
BEEN PROCESSED BY THE INDEX COMMAND.

FOR LARGE AMOUNTS OF DATA, USE DEFINDEX.

SEE ALSO SECTION 3.6 OF THE REFERENCE MANUAL.

>EXPLAIN TERM defindex

DEFINDEX MAY BE USED TO DEFER INDEXING UNTIL A
LATER TIME, RATHER THAN PROCESSING ALL RECORDS
IMMEDIATELY.

RELATED TERMS: INDEX, CONCORD, DEFINDEX, FIND

Figure 4-3., Use of EXPLAIN TERM

MENU

This aid, which may be entered at any point, provides

successive displays of all commands that may be entered at

that

time. Many systems have command languages wherein a

command (or selection of a task) may be followed by a

limited set of other commands and specifications. Such

systems are particularly well-suited to a MENU facility,

which

valid

may serve as a reminder of what specifications are

or required for a given -task, and how those

specifications may be made (i.e., the format of valid

57

commands). Furthermore, the MENU facility may be wused in
conjunction with other on-line aids (EXPLAIN TERM, EXAMPLE,
and DOCUMENTATION) to learn ab initio the capabilities of a

system.

DOCUMENTATION
When entered together with an identification of a
portion of documentation (e.g., chapter, section,

subsection, or page number) this aid displays one of the

following:

a) a description of the desired portion of

documentation,

b) a partial table of contents of the desired
documentation, or

c¢) the section of documentation

The use of the DOCUMENTATION aid is illustrated in the

hypothetical interaction in Figure 4-4.

4.3 Alternative communication modes

We are concerned with systems whose wuse may be
represented as a set of tasks, T, a set of parameters, P,
and a sequence of user requests, R. Each task, Ti, may have
several parameters required for 1its operation, and any

parameter in P may be required by more than one task. Each

58

>print,cjr
INVALID OPTION(S).

>EXPLAIN ERROR

THE FOLLOWING OPTIONS ARE NOT VALID: R
SEE SECTION 19.3

>DOCUMENTATION 19.3
19,3 PRINT OPTIONS

19.3.1 C: CONTINUOUS FORMS
19.3.2 I: IMMEDIATE START

19.3.3 J: JUSTIFIED FORMAT
19.3.4 M: LEFT MARGIN NUMBERING
19.3.5 N: RIGHT MARGIN NUMBERING
19.3.6 P: PERIPHERAL PRINT
19.3.7 X: IGNORE ERRORS

>DOCUMENTATION 19.3.5

THE LINE NUMBER OF EACH FORMATTED LINE IS PRINTED
IN THE RIGHT MARGIN, PRECEDING THE LINE, AS
DISCUSSED IN THE PRECEDING SECTION.

>print,cjn

Figure 4-4, Use of the DOCUMENTATION aid

task request, Ri, must identify a task and assign values to
its corresponding parameters. We shall say that a
parameter, Pi, has a corresponding name, Ni. Each Ti is the
task identifier (a command or its abbreviation), and each Pi
is a task-related qualifier, that is, any user-specified
option or parameter that designates how the task 1is to be
performed or on what objects the task is to be performed.

This is depicted in the following diagram:

59

(Tasks and their parameters)

T (P P eeo)
(User requests) 1 i1 i2
R
1
T (P P eee)
2 j1 j2
R
2
T (P P » o)
m k1 k2
(Parametersz:) P P P P

For example, a sorting task may require qualifiers that
specify
1) the file containing records to be sorted,

2) those parts of a record to be used as sort keys,

3) whether the sort is to be ascending or descending,
4) whether the sorted records are to be printed, and

5) a file in which to store the sorted records.

A task request 1is constructed by entering the task
identifier followed by qualifiers that may be specified in
one of three ways. First, each parameter may be specified
in an order prescribed by the system. If the
system-prescribed order of parameters for a given task

request is

60

where Ti is a command name that identifies the desired task,
and each Vi is the user-specified value assigned to the
corresponding parameter, Pi. For purposes of illustration,
we will assume that commands are preceded by a slash (/) and
followed by a blank; qualifiers are separated by commas, and
a semicolon may be used to continue a task request on more
than one 1line. If, in our example of a sorting task, the
order of required parameters is the same as that given above
(items 1 through 5), the following is an example of a wvalid

sort request.

/SORT MASTERFILE,AUTHOR,ASCENDING,NO,AUTHFILE

This command requests a sort to be performed on the file
called MASTERFILE; the AUTHOR field is used as a sort Kkey,
the sort 1is to be performed in ASCENDING order, NO printed
output is desired, and the sorted records are to be stored

in a file called AUTHFILE.

61

Secondly, parameters may be specified in any order, and
are identified by their respective parameter names. This
method of specifying parameters is commonly called keyword

parameter specification. Task requests are of the form

where each N is the name of a parameter and V is the value

assigned to that parameter. In the following examples of a

sort task request, keywords (parameter names) are

represented by boldface characters:

/SORT INFILE=MASTERFILE,KEY=AUTHOR,ORDER=ASCENDING, ;
QUTFILE=SORTAUTH,PRINT=NO

/SORT KEY=AUTHOR,ORDER=ASCENDING,PRINT=YES,;

INFILE=MAST,OUTFILE=AUTHFILE

Finally, a parameter may be omitted from a task
request, in which case the system prompts the user by
displaying the parameter name, Ni, and requiring the user to
enter a corresponding value. This method of establishing
parameter values, which we shall call prompting, may be used
for ordered parameter specification or keyword parameter
specification. In the following examples, user input 1is
underlined and is 1in 1lower case; system messages are in

upper case.

62

/sort master,author

ORDER? ascending
PRINT? no

OUTFILE? authfile

/sort infile=master ,key=zauthor,order=ascending,;
outfile=xyz '

PRINT? no

These three forms of parameter specification are
mutually unambiguous; a user may select any one of the forms
to request a single task. It is unnecessary to provide
different modes, wherein a user must enter each request in
the same form until a different mode is selected. A user
may, therefore, request each task in a manner that suits his
level of experience, frequency of use, or stylistic
preference. For example, the novice user, as well as the
experienced user who is performing an infrequently requested
task, may enter only the name of the task, and be prompted
for all required parameters.

In addition to the convenience afforded by providing
all three methods simultaneously, it is possible for a user
to 1learn, in the process of interacting with a system, what
parameters are required for each task, what their names are,
and how commands may be constructed more efficiently. The

most that a user must know is the name of each task, and

63

even this may be determined if other user aids (e.g., the
MENU aid described above) are available.

If omission of a parameter necessarily and always
results in a prompt, it would seem that each time a task 1is
requested, all of its associated parameters must be
specified by the user, in one form or another. For most
systems, this 1is an unacceptable requirement; a system's
generality often depends on having many options associated
with each task. It is clear that defaults must be provided

. nf’ly

The _mechanism _proposed _in the next section provides a

general default facility without sacrificing benefits of the

prompt mode just described.

L.4 Default facilities

Defaults are intended to reduce the number of
specifications a user must enter to perform a task. They
are usually provided 1in only two ways: by assigning
predetermined values (system defaults) to unspecified
parameters, or by allowing a user to choose default values
to be associated with the tasks and parameters that he uses.
A complete and effective default facility must provide more
general default structures, and must be easy to use.

Furthermore, it must enable a user to determine in a simple

64

and consistent manner what defaults are in effect at any
time, when they may be changed, and how they may be changed.

We represent a user task request as

where Ti is the task identifier (a command) and each Qi is a
task-related qualifier that associates a value with one of
the parameters required by the task. Henceforth, we will
assume that any of the communication modes described in the
preceding section may be used to specify the qualifiers for
a task. We would like to associate a default value, Vi,
with any qualifier that is omitted. But for any omitted
qualifier. a default could be 1) determined by the system,
2) dependent on the task, 3) associated with the user, or
4) associated with other (declared) qualifiers. For
example, let wus say that a sort command requires four
qualifiers: the name of the file to be sorted, an output
file, a sort key, and the ordering to be used (ascending or
descending). If the ordering qualifier is omitted from a
sort command, we could assign
1) a system-wide default that 1is always used
whenever ordering is not specified,

2) a default associated with the sort task only,

65

3) a default specified by the wuser, to be used
whenever he omits an ordering specification
from any command, or

4) a default associated with the specified file.

T Q Q .o Q
1 2 n
t q q .
1 i1 i2
kY q q .
2 i1 j2
T q q .o
m k1 k2

Figure U4-5. Task hierarchy

A more general treatment of defaults, then, requires
that we consider the contexts in which tasks are requested.
A task is requested in the context of some other task, as
represented in Figure 4-5. Each t represents a sub-task (or
command) of the parent task, T, and may likewise have its
own sub-tasks and data. This task hierarchy is reflected in
many systems, most notably in operating systems, wherein the
outermost task is a job or run; within a run, commands may

be entered to initiate interaction with any one of several

66

systems, each of which may in turn have 1its own set of

commands.

4.4,1 Task-related defaults

The first type of default that may be provided is one
that is associated with all tasks of a currently active
parent task. By declaring a qualifier outside of any
sub-command, a default is established for that qualifier for
the duration of the parent task. If a task, T,‘ is active

and any of its sub-tasks, t, may be requested, the statement

=
"
<

establishes the value V as the default for parameter Pi
(whose name is Ni). This has the effect of saying: "so
long as task T is active, whenever a command requiring
parameter Pi is entered without specifying Pi, use V for
that parameter." The parameter name 'COMMAND' may be used

to establish a default command.

Figure 4-6 represents an 1interactive session with a
hypothetical text editor, many of whose commands require a
parameter specifying how many lines are to be affected by
the command. In statement 6, a default is established for
this parameter, called LINES. In all subsequent commands in

which this parameter is required but omitted, the specified

67

/edit docfile.preface
EDIT VERSION %.1, 15 MAR 77, 10:45:30

(1) >gotoline 5
were administered to thirtty subjects.

(2) >change old=thirtty,new=thirty,lines=1

(3) >find pattern=subjects,lines=30
LINES: 8, 12, 25

(4) >gotoline 8§
whether all subjects were adequately covered by

(5) >change old:subjects,new:topics,lines=1
(6) >lines=1

(7) >command=gotoline

(8) >12
——————————————fyecause—subjects—were—given—time—to—prepare—for

(9) »25
additional subjects were tested.

Figure 4-6. Illustrated use of defaults

value (1) is used. In like manner, a default may be changed
any number of times within a parent task.

In statement 7, a default command is established, so
that whenever a command is not entered, the default command
is used. In the example, the user chooses to establish
GOTOLINE as the default command, presumably because this
command 1is entered frequently. This is 1illustrated in

statements 8 and 9, where the command name 1is omitted.

68

Several additional types of default declarations may be

made in an interactive setting. The statement

Ni
(that is, the name of a parameter) may be entered to
determine what the current default value, Vi, is for any
parameter, Pi. The statement

Ni = ?
may be entered to indicate that any existing default for
parameter Pi should be rescinded. In all subsequent
commands where Pi is omitted, the system should prompt for
it, as was done before a default was established. The
statement

Ni = ?userprompt

may be entered to indicate that whenever Pi is required in a
command but omitted, the user-constructed prompt,

userprompt, should be displayed, and the value entered by

the user at that time should be used for Pi. Finally, a
user must be allowed to <choose when the system should
indicate that a default has been applied. Each time a
default is established, the system asks whether the
specified name-value pair should be displayed whenever the
corresponding parameter is omitted and a default applied.
The default capabilities described thus far, together
with a command interpreter that recognizes both keyword
parameter specification and ordered parameter specification,

enable a user to construct his own protocols for commands.

69

For example, the WISE bibliographic retrieval system at the
University of Wisconsin includes a LIST command, whose
function is to list citations from a subset of the database.
The form of the LIST command is
/LIST s/n/xx-yy/k-h

where s is a set number, n is the maximum number of
citations to be listed, xx and yy identify a range of years,
and k and h identify a range of citation numbers. Any of

the parameters n, xx, yy, k, or h may be omitted, in which

“““—““““—-““m-vase~a~sys%em—ée%aa%%—%swaseé7-An~addiLianalMcammaadmmaywbgwwmmﬂW__ﬂw

entered to specify other LIST-related parameters; its form

/OPTIONS a/t/p
where a 1is YES or NO, depending on whether citations are to
be 1listed 1in their entirety, t is YES or NO, depending on

whether the listing is to be produced on the terminal, and

P identifies a remote printer if the user chooses to have
citations printed there.
The assumption implicit in this design is that the LIST

parameters s, n, XX, yy, K, and h are different each time

the LIST command 1is entered, while the parameters of the
OPTIONS command are less likely to vary during interaction.
In practice this 1s not always true; furthermore, new and
infrequent users have had considerable difficulty

remembering which parameters are associated with which

command, in what order they must be specified, when they

70

must be changed, and what system defaults apply when a
parameter is omitted.

A more adaptable design would be afforded by a command
of the form

/LIST set,maxcit,loyr,hiyr,locit,hicit,ai,terminal,printer
where set 1is a set number, numcit is the maximum number of
citations to be listed, lowyr and hiyr specify a range of
years, locit and hicit specify a range of citation numbers,
ai is YES or NO, indicating whether so-called 'additional
information' is to be 1listed, terminal 1is YES or NO,
indicating whether a terminal listing is to be produced, and
printer identifies a remote printer to which the 1listing
should be directed. Alternatively, parameters could be
entered by keyword parameter specification or prompting, as
described in the previous section.

While this may appear to be a formidable set of
parameters, the default capabilities described above would
enable a user to construct his own protocol and defaults for
the LIST command. He may choose those parameters that are
required in a command, those that are to be prompted for,
and those that may be omitted (and their defaults). For

example, the declarations

MAXCIT=ALL
AI=YES
TERMINAL=YES
LOCIT=0
HICIT=9999999

71

LOYR=?LOW YEAR:

HIYR=?HIGH YEAR:
would enable a user to enter all subsequent LIST commands
specifying only a set number and an indication as to whether
additional information should be listed. All other
parameters would take on the specified defaults if omitted,
and in the case of the range-of-years parameters (LOYR and
HIYR) cause the indicated prompts to be displayed instead of

the system prompts.

4l 2—-Generalized-defaults

A single level of defaults will soon prove inadequate
to the user who must declare those defaults each time a task
is initiated. We will therefore allow a user to establish a
sequence of declarations, called a preamble, with any task.
Whenever the indicated task. is initiated, the associated
task preamble will take effect, as if the user had entered
its constituent declarations. The sequence shown in Figure
4.7 declares statements S1 through Sn as comprising the
preamble for task T, where each Si 1is either a valid
sub-task of T or a default declaration for all sub-tasks of
T. Whenever the task T is initiated, statements S1 through
Sn are applied, as if the user had entered them immediately

after requesting T.

72

PREAMBLE (T)

S
1

S

END
Figure 4-7. Form of a PREAMBLE

As each statement of a preamble 1is applied on task
initiation, it is displayed to remind the wuser that a
default has been established for the task. To prevent this
display, a statement may be enclosed in parentheses in the
preamble declaration. A statement enclosed 1in Dbrackets
requires the wuser's confirmation to take effect (e.g., the
statement is displayed and the user is asked to enter 'Y' or
'YES' to accept that default). These features of a preamble
make it possible for a user (or a wuser's intermediary) to
define the defaults and protocols that are best suited to
his use of a task.

In addition to task-related preambles, we must allow
defaults to Dbe associated with the objects on which a task
operates. For example, in a text editing system that

operates on a file, a user may need to establish different

73

file-related defaults (preambles) for such parameters as
page width, tab settings, and word delimiters. In general,

we represent a task and its required parameters as

PREAMBLE (T , N =V , N =V cee)
i J J J J

1 1 2 2
1 ¥ =5 1=

END

As with the degenerate form described earlier for
task-related preambles, a statement Si may be enclosed in
parentheses to inhibit its display on task initiation. The
effect of this more general preamble declaration is to apply
the specified defaults whenever task Ti is initiated with
the specified qualifications. The preamble for a
user-task-qualifiers combination may be declared either by

the user himself or by an intermediary whose function is to

T4

construct a suitable set of defaults and protocols for
users.

Let us say, for example, that a text editing system
operates on portions of a file, called segments. Editing is
initiated by a statement of the form

/EDIT FILE=filename,SEG=segmentname
and among the parameters that may be specified within an

EDIT task are:

PGWDTH (page width)
TABST (tab settings)
WDELIM (word delimiters)

To establish page width and word delimiter defaults for all
segments within a file called 'DOCUMENT', and a default for
the tab settings within a segment of +the file called
'CHAPTER3,' the following PREAMBLE declarations may be

entered:

PREAMBLE (EDIT,FILE=DOCUMENT)
PGWDTH=85
WDELIM=BLANK, COMMA, HYPHEN

END |

PREAMBLE (EDIT,FILE=DOCUMENT,SEG=CHAPTER3)
TABST=6,11,25

END

This generalized means of establishing defaults has one

apparent drawback: the default capabilities are somewhat

complex, and are not readily wusable by the novice or

75

infrequent wuser. However, we must keep in mind that
defaults are generally provided for two situations. First,
defaults are intended for the frequent wuser who would
otherwise repeat task requests with the same parameters.
For such a user, the preamble facility described above is
reasonably straightforward and within his grasp. Second,
defaults are often intended for the less experienced user of
a system, and allow such a user to interact with the system
by entering a minimum of specifications. For such a

situation, preambles are intended to be established and

maintained by an experienced intermediary acting on the

user's benalf.

Similar default structures can be created and used
through a suitable definition of macros. However, the use
of preambles offers three significant advantages over macro

definition and invocation. First, they may be used without

creating and remembering the names of individual macros.
Second, they are applied automatically on task initiation,
without requiring explicit invocation by the wuser. Third,
by identifying a task with which defaults are to be
associated, the user may, in some cases, he informed of
errors or inconsistencies when the defaults are specified,

rather than at a later time when they are applied.

76

5. The Implementation of User Aids

If we want systems to include wuser aids similar to
those described 1in the previous chapter, we must make it
easy for designers and programmers to implement them. We
would also 1like +to ensure that their implementation is
efficient and that a high degree of consistency is
maintained across different systems. These implementation
goals may be realized by providing a set of primitive and
suitably general capabilities 1in the form of a front-end
facility. The absence of such a facility is one reason that
user aids have previously been implemented in an ad hoce
fashion, 1if at all. To see why this 1is so, it 1is
instructive to 1look at the development of interactive

systems and the concomitant development of user aids.

5.1 A software architecture for user gids

"The first computing systems provided the simplest form

of user services. Each user had only one system or language

T

at his disposal: assembly language. Aside from rudimentary
start-up facilities (e.g., bootstrapping, switch setting,
and tape mounting), a system could be viewed by user and
system implementer alike as a single-service system. The
simplicity of this structure accounts for the popularity of
some 'single language' systems to this day. As the number
of services offered by a computer increased, a monitor
(operating system) became necessary. The resulting software

architecture, represented in Figure 5-1, predominates in

PO PP R R PR .. . I -2 W)

SYSTEM

Translator 1 (assembler)
Translator 2 (compiler)
Translator 3 (loader)
statistical package
information retrieval program

USER

concordance generator
report generator

WOHHZ0XE

°

Service
i

Service
m

Figure 5-1. Structure of early computing services

78

SYSTEM
M Service 1 g MACRO generator 1
0 i
N Service 2 «+—MACRO generator 2
I]
T Service 3<E§;EDITOR
O L] '
USER R . i
<+ HELP system
On-line i
documentation i

PROMPT mode
General info
about system

< PROMPT mode

On-=line

Consultant Service n

Figure 5-2. Existing structure of supportive services

Most user-oriented aids and features have Dbeen
implemented within individual services of a system,
preventing general availability and consistency throughout a
system. Many systems reflect this patchwork of supportive
services, represented in Figure 5-2. The duplication 1in
such configurations has obvious economic drawbacks in
designing and maintaining user aids among several systems.
The benefits derived by wusers are further offset by the
difficulty of using and learning about different services
whose aiding features are inconsistent, redundant, or

totally lacking.

79

SYSTEM
M Service 1
0 Service 2
N Service 3
USER I .
T .
0 EDITOR
R MACRO generator

(g}

Al —system

"

n-o
P W -

o

dooeium
G-Oe-u

P

1
L& Sl N

Service n

s > 2o o o e b o e ot - —— i — o "]

Figure 5-3. General purpose supportive services

Another approach taken in many systems 1is to provide
user aids as separate supporting services available through
the operating system, as illustrated 1in Figure 5-3.
Unfortunately, some user-oriented features do not 1lend
themselves to such a structure, e.g., prompt modes and
defaults. A more serious drawback is that in order to
invoke a particular user aid, many systems require that a
user interrupt his task, return to the operating system,

invoke the supporting service, return to the operating

80

system, and then resume the original task. In addition to
the inconvenience posed by this procedure, it often requires
an understanding of the operating system, its data
structures, and 1its job control language. Under the UNIX
operating system, a running program can invoke another
process. This mechanism allows a user to access a separate
on-line documentation program, for instance, without
interrupting a current task. However, this can be done only
if the programmer has taken appropriate steps to provide for
such interruption; in addition, the code required to do this

is cumbersome.

MACRO generator

Service n

SYSTEM
i User I " Service 1 |
i Support oMo i
! Facilities: ' 0 | Service 2 |
i i N i
| P I H
i HELP services i T | Service 3 |
USER ! On-line documen- | 0O | |
! tation R S . |
| default facility | i . i
i CAI system i ! i
i i i i
]] i [}
| i § 1
]] I]
]] I !
] 1 1 I
] 1] 1
i i i i

Figure 5-4. Integration of supportive capabilities

User aids must be consistent, efficient, and convenient

to use both from the standpoint of system implementation and

81

from the user's conceptualization of those aids. The
software architecture that best 1lends 1itself to such
implementation (by the programmer) and conceptualization (by
the user) is depicted in Figure 5-4. The collection of user
aids may be thought of as a front-end facility, whose
function 1is to provide various types of assistance at any

time and with minimal digression from a wuser's main task.

This 1is not unlike having a human consultant at one's side
while interacting with a system. By integrating user aids

e e R G- f g ShE O R We AP e—able—to-—meet—the —user-needs

identified in Chapter 3 consistently and efficiently.

Beyond our concern for efficiency, this uniform
approach to user aids can provide a degree of
'user-independence.' If the nature of supportive
facilities were more similar among different systems, users

could have a common language of interaction, namely: that

set of aids, instructions and facilities that allows a user
to learn on any system what can be done and how. A common
interface of user aids would make interactive systems more
portable from one user to another.

The remaining sections of this chapter describe such a
front-end facility that acts as an interface between a user
and a system. This facility 1is called the UI (User
Interface) and consists of 1) programs that respond
appropriately to a user's request for a user aid, 2) a set

of primitive functions for communicating between the UI and

82

a system, and 3) data structures required by the UI to
provide user aids. These components are represented in

Figure 5-5.

User Interface

User Aids

On-line aids
Command Constructor
Default Handler
Macro Facility

User

Host
System

Facilities for defining on-line
aids, soliciting input,
identifying message files, etc.

Message User Command Log
File Profiles Language File
File

Figure 5-5. The User Interface

The host system is any application program (or the

operating system itself) that communicates with a user

through the UI. The message file contains all messages that

can be displayed to a user to provide assistance or
additional information. The structure of the message file

is described below in section 5.2. The wuser profiles

portion of the UI maintains information about users, their
usage patterns, modes of communication, frequency of wuse,

defaults (preambles), etec. The command language file

83

contains command language representations that are wused ¢to
provide alternative modes of communication. The log file is
used to record information on the usage of aids. Programs
comprising the on-line aids portion of the UI have been
implemented on a UNIVAC 1110 at the University of Wisconsin.
The remainder of this chapter describes the FORTRAN
functions used to communicate between a host system and the
ul. With slight variations in calling sequences, argument

transfer, and string handling, the same functions can be

implemented in another 1language or on another machine. A

similar interface, programmed in C, has been developed on a

PDP 11/70 at the NASA-Ames Research Center.

5.2 Structure of the message file

Several on-line aids were proposed in section 4.2:
EXPLAIN ERROR, EXPLAIN QUESTION, EXPLAIN TERM, HELP, MENU,
and DOCUMENTATION. To provide these and similar aids, a

system must establish an associated message file. The

messages contained in this file are organized into scripts;
the messages of a script correspond, for example, to the
successively more detailed explanations of an error.
Instead of (or in addition to) displaying a single message,
a system may cause a script to be activated by the UI. An

example of a script is:

84

File?

élease enter the name of the file you want to use.

If you don't have such a file, enter a valid file

name, and the system will create it for you.

A file name should be twelve characters or less.

Any of the following forms are valid:

name. name/readkey. name/readkey/writekey.

The first message of this script consists of the single line
'File?'. A period in column one is used to mark the end of
a message, and each successive message is displayed whenever
the user invokes an appropriate wuser aid (in this case,
perhaps EXPLAIN QUESTION).

On the UNIVAC 1110, any file may be partitioned into
elements, each of which has a unique name. The 1110
operating system provides utility programs for handling such
files; e.g., creating, finding, editing, or deleting any
named element. Each script is stored and edited as such an
element. A host system may activate any script by providing

its element name to the UI. The UI wuses the operating

system's utility programs to access required scripts.

5.3 Primitive functions of the UI

The following primitive functions of the UI can be used

to provide on-line aids:

UIOPEN: establishes communication between a host system

85

and the UI

UIDEF: defines a user aid, its invocation code, and the
manner in which it is used

UICODE: establishes more than one invocation code for
an aid

UISET: sets up a script to be associated with an
on-line aid

UISHOW: sets up a script and displays its first message
UINPUT: solicits input from a user

UINDEX: establishes an indexed script for key-directed
aids (e.g., EXPLAIN TERM)

3 OG records—on—the—tog—file—data—regardinguseof—
the aids

UILMSG: —records—on-the log file an arbitrary log message
created by the host system

5.3.1 Initiating communication: UIOPEN

When interaction with a host system is initiated, that

host system must 1identify 1its message file to the UI by
calling the primitive function

UIOPEN (msgfile, errmsg, logfile)

where msgfile is the name of the message file that will be
accessed by the Uf during subsequent interaction with the
user.

There are many errors that may be made by a host system
in calling the UI's primitive functions. We would 1like to
preclude the display of a meaningless message to a user,

e.g.:

86

/list 3,211,1967,9178
#¥INSUFFICIENT NUMBER OF SCRIPT PARAMETERS ¥#
REQUIRED IN 'NOREC' CALLED FROM
SEQUENCE NUMBER 07716 OF RANGETEST
For this reason, a system must provide a message to be
displayed in case of a system error. The second parameter
of the UIOPEN function, errmsg, identifies a script
containing the desired "system error" message. The third
parameter, logfile identifies a file wherg system errors are
reported, for later inspection by the system's maintainers.
For example, such a system error would appear to the user as

follows:

/list 3,all1,1967,9178
AN INTERNAL SYSTEM ERROR HAS BEEN ENCOUNTERED. THIS
SHOULD NOT PREVENT YOU FROM CONTINUING. PLEASE CHECK

YOUR COMMAND AND TRY AGAIN, OR CALL A CONSULTANT AT
262-6886.

The log file would contain the message

#%*INSUFFICIENT NUMBER OF SCRIPT PARAMETERS REQUIRED IN
'NOREC' CALLED FROM SEQUENCE 07716 OF RANGETEST.

In addition to reporting internal system errors. the
log file is used by the UL to record statistics on user aid
invocations. This allows a system's maintainers to identify
frequent user errors, frequently used aids, frequently

referenced messages, and scripts with an insufficient number

87

of messages. This information may result in changes to the

system, its documentation, or its message file.

5.3.2 Defining aids: UIDEF and UICODE

Corresponding to each aid (EXPLAIN ERROR, EXPLAIN
QUESTION, etc.) the following information must be provided
to the UI by a host system:

1) a message to be displayed when no script has
been established for an aid, but a wuser has

invokedthat—=aid;

2)—a—message—bo—be—displayed-when-a-script has
been exhausted, ey when successive
invocations of an aid have caused all of a

script's messages to be displayed;

3) an invocation code that, when entered by a
user, causes the next message of a script to be
displayed;

4) the type of aid being defined.

These four components of an aid are defined once;
thereafter, any script may be associated with that aid. An
aid is defined in the UI by calling the primitive function

UIDEF (empty, exhstd, code, type)

where empty, exhstd, code, and type correspond,

respectively, to the four components described above. The

value returned by this function 1is called the aid

identifier, and is subsequently used to identify the aid

with which a script is to be associated.

88

The type parameter of UIDEF specifies how a script
should be treated when something other than an aid's
invocation code is entered. Three types of aids may be
defined. If type is 1, this indicates that the script is to
be removed from the user aid; wunless another script is
established by a call to UISET, any request for that aid
will result in the EMPTY message. This is used in aids like
EXPLAIN ERROR and EXPLAIN QUESTION, where not requesting the
aid indicates that the previous error message or question
has been understood.

If type is 2, the script 1is re-established when the
user enters something that is not a request for a user aid.
This is used in aids like MENU or HELP, wherein a long 1list
of valid commands may be divided into several messages.
Such scripts are generally established once, but remain
available for the duration of a task.

If type is 3, the user's position in the script remains
unchanged when the wuser enters something other than a
request for a user aid. Any subsequent request for that aid
will cause the next message of the script (if one exists) to
be displayed. For instance, this may be wused for the
EXAMPLE aid, to provide a new example each time one is
requested. Another type of aid that may be provided with
this feature is INSTRUCT. By establishing such an aid, and
a corresponding seript, a host system can provide

instructions to a user. These instructions are displayable

89

in conjunction with normal system use, and behave 1like the
page-turner of an on-line introduction to using the system.
A user may alternate Dbetween requesting instruction (by
invoking the INSTRUCT aid) and entering valid commands as
suggested by the given instructions. Similarly, a NEWS aid
can be established to provide information about recent
enhancements, discovered errors, and scheduled modifications
in the host system.

For example, let us say that the following scripts

exist in the message file:

seript contents

ERREMP No error to explain.

ERREXH No further explanation is available.
QEMP No question to explain.

QEXH No further--explanation of this

question is avallable.

The creation of aids for explaining errors and questions is

effected by the following statements:

ERRAID UIDEF ('ERREMP', 'ERREXH', '?ERR', 1)

EXQAID

UIDEF ('QEMP', 'QEXH', '?EXQ', 1)

The variables ERRAID and EXQAID are the aid identifiers that

are subsequently used to refer to these aids; their
existence in the UI is represented in Figure 5-6. Aliases

for an aid are established by calling the function

90

UICODE(aidid, alias)

where aidid is the aid identifier of an existing aid and
alias 1is another invocation code associated with that aid.
This function is used, for example, so that an aid can be

invoked by several different codes or function keys.

Invocation
ERRAID —wwwaa > Codes EMPTY: No error to explain.
i | EXHSTD: No further explanation
i ?ERR i is available.
i ?ERROR '
i { SCRIPT:
Invocation
EXQAID ==w=e- > Codes EMPTY: No question to explain.
i | EXHSTD: No further explanation
| ?EXQ | of this question is
E 7EQU i available.
1
1 |

SCRIPT:

Figure 5-6. Representation of two defined aids

5.3.3 Activating a script: UISET and UINPUT
A script is established for a user aid by the primitive
function UISET, whose calling sequence is

UISET (aid-id, scriptname, pl, p2, ...)

where aid-id is an aid identifier (e.g., ERRAID or EXQAID in

the example above) and scriptname is the name of the desired

script. Before describing the other arguments of this

91

function, we must describe the primitive function
responsible for soliciting user input. The function
UINPUT (image)
is called to read in a user's input. If the input is one of
the invocation codes established in the UI, the next message
of that aid's current script is displayed. When the user
enters something other than a request for a wuser aid, the
input 1is transferred to the specified area, image, and the
length of that input 1is returned as the value of the
- tion T FThevatue returned—is negative—if-the—user—enters—m———

n-d
o

an—end=of-file-

The parameters pl, 23' ... pn of the function UISET
are arguments that may be used in conjunction with a script.
By supplying such arguments, it is possible to vary the
contents of a script's messages according to values known by
the—host—-system For example, the system may wish to
include as part of a message the user's name, the value that
caused an error, the anticipated cost of a task, or a

reference to relevant sections of documentation.

5.3.4 Script parameters, references, and special characters
In a script, parameters are denoted by an asterisk

followed by a parameter number. For example, 1let wus say

that a script called NOREC consists of the following

messages:

a2
NO SUCH RECORD.

There is no record whose number is ¥1,
Valid record numbers in this database
must be between *2 and ¥*3,

This script is activated by the UISET primitive as follows:

CALL UISET (ERRAID, 'NOREC', RNUM, MINREC, MAXREC)

where RNUM contains the incorrect value entered by the user;
this is substituted for ¥1 in the script if the user invokes
the user aid identified by ERRAID. The values of MINREC and
MAXREC are similarly substituted for ¥*2 and *¥3 in the same
scripta.

Messages may refer to other scripts in the message file
in one of two ways. A plus sign (+) in column one, followed
by a script name, indicates that the currently active script
should be suspended, Subsequent messages will Dhe
constructed from the named script, and when that script is
exhausted, the current script will be reactivated. This is
comparable to a subroutine facility among scripts. The UI
behaves exactly as though the named script appeared in place
of the referencing plus sign and script name. A
"greater-than sign" (>) in column one, followed by a script
name, indicates that the named script should be activated in

place of the currently active script,

Script
NOTTHERE

MISSDELIM

CHANGEDOC

Cont

ents

String not found.

"%¥1" does not appear in this line,

which begins with "#*2

>CHA

NGEDOC

Missing Delimiter.

The string you wish to change should be

separated from its replacement by the
change delimiter, for which you have used *1

>CHA

For a detailed description of the change

NGEDOC

s EDTT

93

comm

and‘, Se€ bCUtiUH 2.3 of—the

reference manual.

Y W T N

MANUAL

DELETELINE

The EDIT manual is available from the
documentation center for $3.U45

Delete? (Y or N)

+YES

line *1 to be deleted.

L NO

YES
NO
DELETEDOC

Three

iy

SDEL

ETEDOC

Enter "Y" if you wish &

Othe

For a detailed description of the delete

command, see section 2.5 of the EDIT

rwise, enter "N"

reference manual.

+MAN

Fig

other

UAL

ure 5-T7.

characters

Sample scripts

have

special

meaning

in

g4

script. An ampersand (&) aﬁ the end of a line causes the
following line (which may be in another secript) to be
concatenated with the current line before being displayed.
A hash mark (#) in column one causes a line to be ignored;
this allows comments to be included in scripts for purposes
of maintaining a message file. A single quote (') preceding
any special character (., *, +, >, &, or #) indicates that
the character should be treated as a displayable character,
rather than serving as a message delimiter, parameter
marker, script reference, 1line concatenator, or comment
delimiter, respectively. Figure 5-7 shows several scripts
from a message file that wuse the capabilities just
described. Figure 5-8 represents a hypothetical session in
which the UI provides assistance as prescribed by these

scripts.

5.3.5 Initial display of a message: UISHOW

When a script is established by calling UISET, no
message is displayed. To establish a script and display its
first message, the host system must call the primitive

function

UISHOW (aid-id, scriptname, pl1, p2, ... pn)

where aid-id, scriptname, and pl through pn are the same as

for the primitive function UISET.

95

change #*theire#*there
String not found.

?ERR
Ttheire" does not appear in this line,
which begins with "if their are none ..."

?ERR

For a detailed description of the change
command, see section 2.3 of the EDIT
reference manual.

change *their*there
ok. ‘

delete 157
Delete? (Y or N)

2E04U
iR

Enter "Y" if you wish line 157 to be deleted.
Otherwise, enter "N"

?EQU

For a detailed description of the delete
command, see section 2.5 of the EDIT
reference manual.

Figure 5-8. Sample session using scripts in Figure 5-7

5.3.6 Key-directed aids: UINDEX

Several types of on-line aids require that a user
specify a term or number together with the aid's invocation.
The DOCUMENTATION aid, for example, requires specification
of a section number. In like fashion, EXPLAIN TERM requires
the term for which the wuser wants a definition or

explanation. We shall call such alds key-directed aids,

indicating that the information obtained is determined by a

key provided by the user, e.g., a word, phrase, or number . -

96

Key-directed aids are provided in the UI through the message
file, but with a different script structure and primitive
function for defining the aid.

A key-directed aid requires an 1index that associates
scripts with user-specifiable keys. This index is a script

in the message file, whose format is

key1l
key?2
key3
+scriptnamel

keym

+scriptnamen
Each index entry consists of a set of keys followed by the
name of a script to be associated with any one of those
keys. A one-to-one correspondence between keys and scripts
would be too restrictive. An index allows the host system's
implementer to provide for synonyms, variant forms, or

phrases that would not be valid script names.

Figure 5-9 includes a portion of the index script for
the DOCUMENTATION aids? Also shown are some of the scripts
referenced by that index. The documentation is taken, in
part, from the reference manual of a text-editing system at
the University of Wisconsin. As with any other script, an

index script may include comments (designated by a period in

Script

Contents

DOCX

9

9.

CHAPTER 9
CHAPTER NINE
HEADINGS
FOOTINGS
+CHAPQ

9.1

9-1

HEADING SPECIFICATIONS
+3EC9-1

9.2

9-2
TERMINATOR

HEADING-TERMINATOR

97

SN

+SEC9-2

TABLE OF CONTENTS

CHAP9

CONTENTS
+CONTENTS

INDEX
+INDEX

hapter 9: Headings and Footings
1 _Heading Specifications

SEC9-2

Figure 5-9.

C

9

9.2 Terminator
9.3 Heading Text
9

9

.4 Heading Placement in a Text

.5 Page Numbering

g.2 Terminator

A heading specification is terminated by an dtend

format command. This command marks the end of the
heading begun by the preceding heading command; it

may be followed by another heading command or by

lines of the main text.

Sample scripts for a key-directed aid

98

Script Contents

CONTENTS 1. INTRODUCTION
2. Using the MACC Computer
3. Getting Started in TEXT
4, TEXT Format Commands
5. TEXT Editing Commands

INDEX abbreviate add alert backspacing
backscore break change clear
codes copy crashes continuous forms

BADDOC There is no documentation available for the section
or term you specified.

NODOC You must provide a section number or term
immediately after ?DOC. For more information,
enter ?DOC again.

To obtain a list of valid chapter numbers, you may
enter ?DOC CONTENTS. For a list of valid terms,
you may enter ?DOC INDEX.

BADTRM No explanation available for this term or command.

NOTERM You must provide a term or command. For a list
of valid terms, enter ?TERM VOCAB.

Figure 5-9 (continued)
column one). In the index script of Figure 5-9, a period is

used to separate each group of keys.

A key-directed aid is established in the UI by calling

the primitive function

99

UINDEX(aidid, indexseript, noinfo, nokey)

Aidid identifies the aid that, together with a key, causes
the UI to provide the requested information. Noinfo is the
name of a script that contains a message to be displayed to
the user in case the key entered has no information
associated with it. The argument nokey identifies a script
(with possibly several messages) that should be used when a
user enters an invocation code without a key. This script

may suggest, for examble, valid terms or the correct way of

using the aid. For example, the DOCUMENTATION aid, in

h 4 3

conjunctionm with—the scripts—in—Figure 5~9—is—established

as follows:

CALL UINDEX(DOCAID, 'DOCINDEX', 'BADDOC', 'NODOC')

5.3.7 Monitoring system usage: UILOG and UILMSG

The funection UILOG writes a usage summary on the log
file associated with a host system. The summary includes
the number of times each aid was established and requested,
how many times it was empty or exhausted, and what terms
were requested for key-directed aids. These data <can be
used to identify aids or scripts that should be improved, as
well as host system features that are unclear to users. The
form of the function 1s

UILOG(logid)

100

where logid 1is a character string associated with the
recorded date. The logid can be wused, for example, to
identify different program modules or classes of users. The
function UILMSG can be called by the host system to record

an arbitrary message on the log file.

5.4 Summary

This chapter has described the implementation of a user
interface that is adaptable to a wide range of operating
systems. The primitives comprising the wuser interface
enable any interactive system to provide aids that are
unobtrusive and situation-dependent. The choice of an
appropriate aid and the depth of corresponding explanations
may be left to the user. In addition to encouraging greater
consistency among the subsystems that make up a larger
system, the primitives make it possible to 1) easily vary
the protocols and content of on-line aids, and 2) monitor

the use of on-line aids.

101

6. Evaluating the Effectiveness of User Aids

The front-end facilities described in the pkevious
chapter provide the wuniformity lacking in other systems'

aids. The on-line aids portion of the front-end was readily

incorporated 1into two 1interactive applications at the

Hndve
Un-v-e

i

sity—of Wisconsin: a__database management system

pertaining to state elections, and a software distribution
system used by the computing center. However, several
questions remained unanswered regarding the effectiveness

and benefits of on-line aids, the cost of providing on-line

aids in a system, and the manner in which aids should be
provided for a given application. This chapter describes an
experiment that was conducted with a third system to
investigate the relationship between on-line aids and ease
of use, as measured by user performance and satisfaction.
Development of the experimental system also provided a
setting for studying the effort and computing resources
required to incorporate on-line aids into a program.

The empirical study of wuser behavior in an on-line

computing environment has received relatively 1little

102

attention. 1In one of the earliest studies of programmer
performance, Grant and Sackman found that time-sharing was
more effective than batch facilities for debugging purposes
[GR671]. In their study, as well as others [AD69, SC67,
SM67], time-sharing was found to be generally superior with
respect to programming time and programmer preferences,
while batch use was 1less costly in terms of computing
resources. In an often cited study by Miller, the
reasonableness of system response times was found to depend
on what users perceived as task closure [MI68].

While these studies were primarily concerned with
programming activities, controlled experiments have also
been conducted in more general interactive environments.
Walther and O'Neill studied the effects of wuser, terminal,
and language characteristics on user performance with a text
editor [WATUT. They found that performance was
significantly affected by the interaction of these factors,
rather than any single factor. Hansen compared the
performance of non-programmers solving complex problems 1in
on-line vs. Dbatch enQironments, and concluded that on-line
use exhibited some advantages [HAT76]. Miller 1investigated
the effects of output display characteristics on user
performance and user satisfaction [MI771]. Changes in
display rates (1200 baud vs. 2400 Dbaud) did not have

significant effects on user performance and attitudes of

103

users, while significant effects did result from changes in
output display variability.

The experiment described in this chapter, like the
studies above, was concerned with user performance in an
on-line environment. Although no particular emphasis was
placed on programming activities per se, the questions
addressed by this study apply to any interactive task,

including programming.

The _purpose of the experiment was not to define an

all-encompassing model of man-machine interaction, but to
focus on one important aspect thereof: the effects of
differing supportive capabilities on ease of use. The ease
with which a system can be learned and used depends on many

factors, e.g., how frequently it is used, experience levels

of its users, the language and protocols used to communicate
with the system, including terminal characteristies, and the
methods used for training and support. To study all of
these factors and their interaction in a single experiment
would be prohibitively complex and unwieldy. The approach
taken, therefore, was to design an experimental setting 1in
which a single 1independent variable would be varied while
all other factors would remain as fixed as possible. A
one-way analysis of variance was used to determine whether

any differences in the dependent variables representing ease

104

of use could be attributed to the different treatments. A
detailed discussion of the statistical methods used in the
experiment can be found 1in the 1literature [C057, HAT3b,
KI681].

The system used in the experiment had to be simple
enough to be learned and used by subjects in a short period
of time. In addition, it had to be sufficiently
representative of other systems that any conclusions of the
study could be extended to a broader category of interactive
systems. Finally, its implementation had to provide the
ability to vary the properties of the independent variable
under study. Because no available system met these
requirements, a simple bank account management system,
called TELLER, was implemented specifically for the
experiment. A 37-page user manual was written for this
system (see Appendix A for an overview). The system was
designed to represent existing transaction-oriented systems:
reservation systems, text-processing systems, special-
purpose database management systems, home computing systems,
and the like. In addition, its command language and task
hierarchy were conceptually similar to most operating
systems' job control 1languages. This similarity was
deliberately 1increased by adding a few anomalies,

inconsistencies, and syntactic restrictions.

6.1.1 Hypotheses

The

of use is affected by the provision of on-line aids and

105

general hypothesis of the experiment was that ease

the

manner in which those aids are provided. As a result of the

research described in previous chapters, it was deemed

important that on-line aids should be

1)

unobtrusive -- making it possible for users to
obtain assistance with minimal digression from
the task at hand,

2) multi-level - allowing users to obtain
additional or successively more detailed
information,

3) situation-dependent -- providing information

appropriate to_the context in which the user

seeks_assistance, and

4)

function-specific -- enabling a user to select
exactly that type of assistance required (e.g.,
format descriptions, examples, or explanations of
an error).

It is common to find systems whose facilities

for

on-line _assistance receive very little use [MA75b, BOT4al.

One reason for this phenomenon is, perhaps, that

such

facilities are inadequate or cumbersome to use. The first

hypothesis of the experiment was:

On-line aids that are unobtrusive, multi-level.

situation-dependent, and function-specific are more

likely to be used than on-line aids that do not have

these properties.

Henceforth, the term on-line aids will be used to refer

aids

that have the four properties described above.

second hypothesis of the experiment was:

to

The

106

A system that includes on-line aids is easier to use

than one that does not.

6.1.2 The independent variable

The independent variable chosen for the experiment was
assistance during use of a system, in the form of tutorial
information, command descriptions, explanations of messages,
and examples. These categories of assistance can be easily
provided by the on-line aids portion of the user interface,
described in chapter 5. It should be noted that modes of
communication, default structures, and language extension
facilities were not varied or formally investigated in the
experiment. However, these and other factors were fixed at
levels representing a broad class of systems. Four
treatment groups were planned for the experiment:

1) the NA (no aids) group; subjects who would have
no access to (or knowledge of) any on-line aids
for the system;

2) the H (HELP) group; subjects who would have
access to a HELP mode, similar in design to the
HELP facilities of most existing systems;

3) the OA (on-line aids) group; subjects who would
have access to a set of on-line aids that were
unobtrusive, multi-level, situation-dependent,
and function-specific

4) the NM (no manual) group; subjects who would have
access to the same on-line aids as the OA group,

but would be required to use the system without a
manual.

107

Except for these different treatments, all subjects first
learned about the system from the manual, used the same
system, and performed the same set of tasks. Only the NA,
H, and OA groups were allowed to use the manual while
interacting with the system. The HELP mode and on-line aids
designed for the H and OA groups, respectively, are

described in Appendix B.

6.1.3 The dependent variables
‘"““““““““”_—““‘““Severaiudepeﬂdeﬁ%—vaF%abkeswpeppesenLLng__ease_JlﬁanyLm"Wmm_w_n

were—investigated. The desire to make systems easy to use

is largely motivated by an economic concern: making the
most effective use of human and computer resources.
Cost-related measures of user performance were therefore
included as dependent variables. Objective measures alone

~do-not necessarily reflect long-term effects (e.g., how

likely it is that users will continue to use a system) or
effects on human factors (e.g., stress, confidence and
performance degradation). Several researchers have
reflected these concerns in calling for more thumanized' or
'user-friendly' systems [Dz78, GI77, KET4, KL73, LI60,
ST747. To represent these aspects of ease of use,
therefore, a subjective measure of user satisfaction was
also included as a dependent variable.

Objective measures of ease of use were obtained by

monitoring user performance. The following 1items were

108

recorded: computing costs incurred in completing all tasks,
the number of lines entered by a user, the number of 1lines
displayed by the system, the total time required to complete
all tasks, and the number of errors made. These items
reflected the effectiveness of subjects in wusing computing
resources and human resources (principally, time). The
billing system used at the University of Wisconsin applies
separate charges for central processor time, mass storage
I/0, executive requests, and other computing resources. It
was felt that total computing costs incurred would provide a
cumulative measure of computer resource utilization. Errors
were divided into two <categories: unique errors and
repeated errors. An error was recorded as unique the first
time it was made in a session. Each time the same error was
made in the session it was recorded as a repeated error.
For example, if a subject made three errors in performing
some single task, this was recorded as one unique error with
two repetitions.

A subjective measure of ease of use was provided in the
form of a questionnaire filled out by subjects after they
used the system. The questionnaire, shown in Appendix C,
included ten questions pertaining to characteristics of the
system and its use; e.g., how easy it was to enter commands,
the clarity of system messages, and how easily the system
could be used without human assistance. Each question had

five possible responses, ranging between 1 (for very hard to

109

learn, use, or understand) and 5 (for very clear or easy to
use). The questions were given equal weight, and the sum of
all ten responses was taken to represent a subject's overall

evaluation of ease of use.

6.2 The pilot study

The experiment was preceded by a pilot study, whose

purpose was to identify énd correct problems that might

arise in the experiment or its attending analyses.

6.2.1 Objectives
The pilot study had four main objectives: 1) to
evaluate the suitability of the manual, system, and

prescribed tasks to the experiment, 2) to determine how many

subjects would be required in the experiment, 3) to identify
areas bearing closer study in the experiment, and 4) to gain
familiarity with the mechanics of conducting the experiment.

The experiment was intended to last about 75 minutes
per subject. Within that time, each subject was expected to
learn about the system from the manual, gain some experience
with the system, and deal with any errors that might be
encountered. The pilot study addressed several related
questions: Were there any errors in the manual, the system,

or the on-line aids? Were there any inconsistencies among

110

the manual, the system, the on-line aids, or the written
description of tasks to be performed? Was it reasonable to
expect subjects to complete the designated tasks in the time
allotted? The answers to these questions would determine
whether any modifications would be required for the actual
experiment.

The goal of the experiment was to study the effects of
four different treatments on perceived ease of use and wuser
performance. When differences between experimental
treatments exist, their detection requires an adequate
sample size. If too small a sample is used, any effects of
the different treatments may be obscured by differences
between individuals. Standard statistical procedures can be
used to determine required sample size, given a population
error variance and desired degree of confidence. A goal of
the pilot study, therefore, was to provide estimates of the
treatment means and error variance for each of the dependent

variables to be studied in the experiment.

6.2.2 Subjects

Subjects were drawn from an introductory computer
science course at the University of Wisconsin. This course
is intended for non-computer science majors, and provides a
one-semester introduction to how computers work,

communicating with computers, areas of application, and

simple BASIC programming. Students in this course have

111

typically not had any previous programming experience. 1t
was felt that subjects from this course would be
representative of so-called naive users, and that this
homogeneity would minimize variations due to prior
experience. To 1limit further extraneous variation, all
subjects were processed during the second week of class
(after three to six lectures). Subjects were randomly
assigned to the four treatments: the NA (no aids), H (HELP
mode), OA (on-line aids), and NM (no manual) groups. Each

group had six subjects.

Although participation 1in the experiment was not a

course requirement, subjects were told that they would gain
some familiarity with interactive use of a computer and an
exposure to some of the concepts and problems related to
such use. One purpose of the pilot study was to see whether

this would be sufficient motivation for completing the

experiment in a reasonable fashion.

6.2.3 Procedure

Each subject was tested individually. The instructions
(shown in Appendix D) were read to a subject, who was then
given a manual describing the TELLER system. Subjects were
asked to spend about 30 minutes reading the manual to 1learn
about the system. When a subject had finished reading the
manual, he was seated at a terminal and asked to perform the

tasks shown in Appendix E. A1l subjects wused the same

112

terminal, a DECWRITERu operating at thirty characters per
second. When a subject had completed the designated tasks
or had takeq so much time that he no longer wanted to
continue, he was asked to fill out a questionnaire (shown in

Appendix C).

6.2.4 Results and interpretation

The results of the pilot study are summarized in
Appendix F. The fourth group was excluded from the
experiment when it became obvious that subjects in this
group could not wuse the system without a manual. These
subjects spent their entire time on the first few tasks and
required continual help from the experimenter. With little
variation, all other subjects read the manual in about
thirty minutes, and required human assistance two or three
times while performing tasks. The fourth group did spend
the same initial thirty minutes reading the manual, and knew
that they would be asked to perform the tasks without the
manual.

Perceived ease of use was measured by the sum of
responses to the questionnaire (see Appendix F, column TQS).
A one-way analysis of variance on total questionnaire scores
(see Table 6-1) indicated that the differences between
groups were not statistically significant. That is,
differences in group means could not be attributed to

treatment effects.

113

Source daf SS M3 F-ratio

Treatments 2 76.8 38.4 1.53
(between groups)

Error 15 375.5 25.0
(within groups)

Totals 17 452.3

number of

Group subjects Mean St. dev.
NA (no aids) 6 42.33 1.97
H (HELP mode) 6 39.17 6.55
OA (on-line aids) 6 37.33 5.32
Pooled—st+—dev 5.0

Table 6-1. Analysis of variance
for perceived ease of use

Comparisons based on performance-related statistics

could not be made, because no one in the third group (OA),

which had on-line aids available, completed all the tasks.
All of the subjects in group 1 (no on-line aids available)
and all but one in group 2 (HELP mode available) completed
the tasks in times ranging between 36 and 68 minutes.
Because the tasks completed were different among subjects,
it was not possible to normalize performance data on a
per-task basis.

It had already been observed in the course éf the
experiment that subjects in the OA group preferred to use

the manual rather than the aids. Even when human assistance

114

was requested and the experimenter suggested using the aids,
subjects were reluctant to do so. At least three subjects
said that they viewed the aids as "a last
resort."” Furthermore, subjects in the OA group appeared to
be having more trouble using the system than those in other
groups.

To understand why subjects in the OA group had so wmuch
difficulty, the protocols from their sessions were examined.
In the few cases where an aid was wused, it was used
incorrectly or the wrong aid was selected. However, a more
serious cause of errors was the haphazard use of the system
in a trial-and-error mode. A command would be entered; 1if
an error resulted, a slightly different syntax or a
different command was entered; after several repeated
errors, the manual was consulted. In some cases, commands
were entered that had no resemblance to anything described
in the manual. Thus, it was not surprising that no one in
the 0OA group completed all the tasks.

Drawing conclusions from only six subjects is
questionable, but it seems that the following conditions in
combination contributed to the exceptionally poor
performance of subjects in the 0A group:

1) subjects relied heavily on the manual for
assistance,

2) subjects were unable to use the alds
effectively,

115

3) the existence of the aids distracted subjects
from the system's basic capabilities, or made
it more difficult to learn those capabilities,
and

4) the existence of the aids gave subjects the
impression that they could enter almost
anything and the system would guide them
through successful completion of a task.

If users were so dependent on the manual, but given to

pelieve that the system would help them out of any problem,

what differences might result in their evaluation of the

system with respect to the manual? Question 8 of the

questionnaire provided some measure of this possible

relationship:

Can you use the system without referring to the
manual?

1. I can't use the system without constantly
referring to the manual.

2. I would need to refer to the manual
frequently.

3.1 would need to refer to the manual

occasionally.
4, I can use the system with very little
reference to the manual.
5. I can use the system without the manual.
This question also stood out because in all three groups its
mean response value was lower than any other question's. An
analysis of varilance, summarized in Table 6-2, showed a
significant treatment effect (p<.05) for responses to this
question. The existence of on-~line aids (or their effect on
user performance) caused subjects in the OA group to have

less confidence in their ability to use the system without a

manual.

116

Source daf SS MS F-ratio

Treatments 2 5.444 2.722 4,54 *
(between groups)

Error 15 9.000 . 600
(within groups)

Totals 17 14,444

number of

Group subjects Mean St. dev.
NA (no aids) 6 3.167 .753
H (HELP mode) 6 2.667 .516
OA (on-line aids) 6 1.833 .983
Pooled st. dev.: LT75
* p<.05

Table 6-2. Analysis of variance
for response to question 8

6.2.5 Summary

All the goals of the pilot study were met except one:
determining by statistical procedure how many subjects would
be required in the experiment. The manual was found to be
clear and consistent with the system, the instructions, and
the on-line aids. However, subjects from the introductory
computer science course could not be expected to learn about
the TELLER system and then use it to perform the designated

tasks, all within about seventy-five minutes. Furthermore,

17

subjects from this population relied heavily on the manual,
and even when provided with on-line aids could not use the
system without the manual.

No significant difference was observed 1in subjects'
perceived ease of use between the three experimental
treatments. The provision of on-line aids did have an
adverse effect on user performance, and subjects who used
the aids had significantly less confidence in their ability
to use the system without a manual. It appeared that at the

very least, subjects in the OA group would require a

demonstration of the on-line aids, in order to Dbecome

familiar with their correct use.

6.3 The experiment
6.3.1 Hypotheses and subjects

The objectives of the experiment remained the same: to

determine whether any differences in perceived ease of use
or user performance would result from the provision of
on-line aids. The most significant change resulting from
the pilot study was in the choice of subjects. The pilot
study demonstrated that completely inexperienced subjects
were too dependent on a manual while using the system, were
confused by the provision of on-line aids and could not
complete the prescribed tasks in a reasonable time. In
addition, it was felt that their lack of exposure to other

systems contributed to their invariant view that the system

118

was easy to use. Subjects for the experiment were therefore
drawn from a different population: computer science
students who had had some previous experience with
interactive systems on the UNIVAC 1110 at the University of
Wisconsin.

Because the pilot study had revealed significant
differences between treatments in response to question 8,
and because those differences were thought to be a result of
subjects' inexperience, a third hypothesis was addressed by
the experiment:

For wusers with prior computing experience, the

provision of on-line aids increases confidence in

the ability to use a system without a manual.

To provide adequate motivation and ensure that all
subjects would complete the experiment in a reasonable
fashion, subjects were paid five dollars to participate.
Volunteers were drawn from intermediate and advanced
computer science courses, with the requirement that they had
used the UNIVAC 1110 interactively. Thirty subjects
participated in the experiment; all but two were computer
science majors; fourteen were graduate students and sixteen
were undergraduates. Subjects were randomly assigned to the
three treatments remaining after the pilot study: the NA

(no aids), H (HELP mode), and OA (on-line aids) groups. All

119

subjects were allowed to use the manual; the NM (no manual)

group originally intended for the experiment was not tested.

6.3.2 Procedure

Each subject was tested individually and the system
used was the same as that in the pilot study. The
questionnaire also remained unchanged. The following
procedural changes were made as a result of the pilot
study's findings:

1) _Subjects were asked to spend about twenty

minutes reading the manual to learn about the

system, rather than the thirty minutes allotted
in the pilot study.

2) There were slightly fewer tasks than in the
pilot study, and instructions for using the

terminal were removed (see Appendix G).

3) In the case of the H and OA groups, the HELP
mode or on-line aids, respectively, were
demonstrated before a subject was allowed to

begin performing the tasks.

Because of these differences in procedure, a rigid
statistical comparison between results of the experiment and
those of the pilot study is not possible. At best, general
differences between the two experimental settings may be

identified. In the following discussion, any conjectures

120

regarding such differences are intended solely as questions
deserving further study in a more controlled setting.
Indeed, the overall difference in results between the pilot
study and the actual experiment suggests that previous
experience is an important independent variable whose

interaction with on-line aids bears closer investigation.

6.3.3 Results and interpretation

The results of the experiment are summarized in
Appendix H. Four subjects in the OA group did not use the
manual at all. For this reason, question 6 ("How effective
is the manual while using the system?") had to be discarded.
Perceived ease of use was measured by the sum of responses
to questions 1 through 5 and 7 through 10, Only three
subjects in the H group used the HELP mode, so no formal
statistical comparison was made between the HELP mode's ease
of use and that of the on-line aids (as represented by
questions 11 and 12). All subjects completed the tasks;
even those who took longer than the intended 75 minutes
finished.

The remainder of this section analyzes the effects of
the three treatments on

1) user confidence, as represented by responses to

question 8,
2) overall perceived ease of use, as represented

by the sum of responses to the first ten
questions,

121

3) effectiveness and ease of using the aids, as
represented by responses to questions 11 and
12, and

4) user performance, as represented by
a) the total cost of performing tasks,
b) total connect time, and
c¢) the number of unique and repeated errors.

Source df 33 M3 F-ratio

no

Treatments 12.6 6.3 10.25 *

(between groups)

Error 27 "16.6 .615
(a3 dolnd v wwmsryn e)
VWU LTLRVY BTy
Totals 29 29.2
number of
Group subjects Mean St. dev.
NA (no aids) 10 3.0 LUT71
H (HELP mode) 10 3.3 1.059
OA (on-line aids) 10 4.5 . 707
Pooled st. dev.: . 784
* p<,01

Table 6-3. Analysis of variance
for response to question 8

The relationship between on-line aids and confidence in
an ability to wuse the system without a manual (as
represented by question 8) was exactly opposite of that
observed in the pilot study. An analysis of variance on

mean scores for question 8 (see Table 6-3) showed a

122

significant treatment effect (p<.01). This time, however,
those who used the on-line aids were more confident than
those who did not use them, A post-hoc comparison of means,
using Tukey's HSD test, showed that significant differences
existed between the NA and OA groups (p<.01) and between the
H and OA groups (p<.01).

It is worth noting that for the NA and H groups, the
mean of responses to question 8 was lower than that of any
other gquestion, as was the case in the pilot study for all
three groups. We can only offer the conjecture that
beginning users of a system are generally not confident that
they can use the system without a manual. The effectiveness
of on-line aids in gaining that confidence seems to depend
on the nature of the aids and how much previous experience a
user has had with interactive systems,

Perceived ease of wuse, as measured by the sum of
responses to the first ten questions (except question 6),
did not differ significantly across the three groups. The
énalysis of variance on total questionnaire scores is shown
in Table 6-4, The fact that on-line aids were not observed
to affect perceived ease of use may reflect the 1inadequacy
of the questionnaire as a measurement tool. In addition,
user perception of a system's ease of use generally evolves
over a much longer period of wusage than that of the
experiments., Finally, if on-line aids actually have an

effect on perceived ease of use (and this experiment failed

123

Source df SS M3 F-ratio

Treatments
(between groups)

N

39.5 19.7 1.90
Error 27 279.9 10.4
(within groups)

Totals 29 319.4

number of

Group subjects Mean St. dev.
NA (no aids) 10 38.10 2.64
H (HELP mode) 10 36.90 3.84
OA (on-=line aids) 10 39.70 3.06
Pooled st. dev.: 3.22

Table 6-4, Analysis of variance
for perceived ease of use

to detect such an effect), we must consider how strong-that
effect is. If the effect is small with respect to other
factors' effects, detecting the effect requires a larger
sample size. The TELLER system in particular had several
other features that undoubtedly contributed to variations in
perceived ease of use, e.g., command abbreviations, prompts,
alternative command formats, and abbreviated 'menus' of
valid responses. For such a subjective attribute as ease of

use, more precise instruments and quantitative measures must

124

be developed. The work of Dzida et al [DZ78] is a promising

step in this direction.

o
—
—

Q12

Group H
(HELP mode)

EgE~ O IR B B O O S
AU ROk R K XK T oW W

Group OA
(on-line aids)

(O RGIRG RO REIRGI RV NG R) BN =)
(G EO RS RG R RS RO RC IR]

% indicates that HELP mode was not used at all

Table 6-5. Perceived effectiveness of aids

Responses to questions 11 and 12, regarding the
perceived effectiveness of the HELP mode and on-line aids,
give every indication that the on-line aids were more useful
(see Table 6-5). Only three subjects in the H group used
the HELP mode; every subject in the OA gfoup used the aids,

albeit to varying degrees and in different ways. No subject

125

in the H group tried to use the system without the manual;
four of the ten OA subjects were able to use the systen
without the manual. Although the responses to questions 11
and 12 were generally high (4 or 5) in both groups, all
three subjects who used the HELP mode judged it to Dbe
musually helpful" (4), while all but one of the OA subjects
felt that the on-line aids were "very helpful” (5).
Similarly, two of the three H subjects indicated that the
HELP mode was "usually easy to use", while all of the OA

i S @ O S FR L SR A S bheadd s sere. uery. easy Lo uSe.”

These data give some support to one of the hypotheses

of the experiment: that the degree to which on-line aids
are used depends on the manner in which they are provided.
Specifically, the content of the messages was generally the

same in the HELP mode and the on-line aids; the fact that

the on-line aids were unobtrusive, multi-level, situation-

dependent, and function-specific appears to have increased
their usage and their perceived effectiveness.

The differences in total computing costs between groups
were found to be small and not statistically significant.
The analysis of variance for total costs is summarized in
Table 6=6. These cost differences reflect, in part,
peculiarities of the TELLER system's implementation and the
rate structure of the University of Wisconsin's computing
center. To the extent that the computing center's rates and

the system's implementation represent a broader category of

126

systems, it can be concluded that using on-line aids does
not significantly affect computing costs. Cost-related
factors of the TELLER system's implementation are summarized

below in section 6.4,

Source df 33 M3 F-ratio

no

Treatments .2205 .1102 1.85

(between groups)

Error 27 1.6102 .0596
(within groups)

Totals 29 1.8306

number of

Group subjects Mean St. dev.
NA (no aids) 10 1.500 . 149
H (HELP mode) 10 1.688 .220
0OA (on-line aids) 10 1.513 . 329
Pooled st. dev.: .24y

Table 6-6. Analysis of variance
for total cost of performing tasks

The most dramatic difference in user performance was in
the time required to perform the designated tasks. The mean
connect time for the NA group was about 42 minutes, that for
the H group was about 38 minutes, and that for the OA group
was about 30 minutes. An analysis of variance on mean
connect time (see Table 6-T7) indicates that these

differences were due to treatment effects (p<.05). A

127

post-hoc comparison of means using Tukey's HSD test showed
that differences 1in connect time were significant between
the NA and OA groups. The provision and use of on-line aids
enabled subjects to complete all the tasks in significantly
less time. What is not known from the data is how much of
this time difference was due to learning and how much was a
result of speedier access to material through on-line
documentation as opposed to the written manual, its 1index,
and appendices. Furthermore, faster performance by itself
__““““““““"““““fﬁ“aﬁ“iﬁﬁﬁﬁﬁﬂﬁﬁﬁ?ﬂﬁ&&%ﬁ%ﬁ—94L4HM93%¥L~GS&L—mpéﬁixdmuﬂuuiu__ﬁihEMMM____”MH

ime—to complete —a task or set of tasks must be weighed

against the number of errors that are made, their
persistence, and their seriousness.
In an experiment where errors are treated as a

dependent variable, it 1is important to consider how errors

should be categorized and which categories should be

included in the analysis. Studies of programmer behavior or
program correctness have generally classified errors as
syntactic or semantic, minor or major logical errors, and
coding-related or debugging-related errors [(BOT4b, GOT4,
LOT77b, RET7, YOT417. For this experiment, only obvious
keying errors and data errors (e.g., entering the wrong
date) were excluded from the analysis. Separate tallies
were kept for unique and repeated errors; for example, if a
command was incorrectly entered three times, 1t was

considered as one unique error with two repetitions.

128

Source df SS MS F-ratio

n

Treatments 902.1 451.0 4,85 *

(between groups)

Error 27 2509.1 92.9
(within groups)

Totals 29 3411.2

number of

Group subjects Mean St. dev.
NA (no aids) 10 42.28 11.67
H (HELP mode) 10 38.02 10.36
OA (on-line aids) 10 29.12 5.94
Pooled st. dev.: 9.64
*# p<.05

Table 6-7. Analysis of variance for
mean connect time (in minutes)

The analyses of variance for total errors, unique
errors, and repeated errors are summarized in Table 6-8. No
significant differences were observed for total number of
errors or unique errors, but a significant treatment effect
was found for repeated errors (p<.05). A post-hoc
comparison indicated a significant difference in repeated
errors between the H and OA groups (p<.05). This finding
provides some evidence that the use of on-line aids is more

effective than a manual. alone in reducing repeated errors.

129

(Total number of errors)

Source df SS MS F-ratio
Treatments 2 90.6 05.3 2.19
Error 27 558.9 20.7
Total 29 649.5
Group subjects Mean St. dev.
NA (no aids) —i0 5,60 —2.27
H (HELP mode) 10 9.80 6.76
0OA (on-line aids) 10 7.10 3.35

(Unique errors)

Source df 33 MS F-ratio
Treatments 2 06.87 2343 2.85
Error 2F 22186 821
Total 29 268.67
Group subjects Mean St. dev.,
NA (no aids) 10 3.90 7.10
H (HELP mode) 10 6.60 3.78
OA (on-line aids) 10 6.50 3.03

(Repeated errors)

Source daf SS MS F-ratio
Treatments 2 34,07 17.03 3.89 (p<.05)
Error 27 118.10 4,37
Total 29 152.17

Group .subjects Mean St. dev.

NA (no aids) 70 T.70 T.549

H (HELP mode) 10 3.20 3.19

OA (on-line aids) 10 .60 .84

Table 6~8. Analyses of variance for errors

Error rates -- e.g., total number of errors per minute
and unique errors per minute -- could have been derived from
the data and analyzed in the same manner as the unnormalized

errors. However, these measures were sSseen as inadequate

130

reflections of learning. More useful (but unfortunately not
available from this experiment) would be a time-series
analysis, reflecting how errors or error rates change over
the course of sustained system wusage. In addition, the
experimental nature of the TELLER system precluded any
weighting of errors with respect to their seriousness.
While the experiment provides some indication that on-line
aids affect error-related measures, it is clear that a more
comprehensive taxonomy of errors must be developed.

In applying Tukey's HSD test to the dependent variables
that exhibited treatment effects, no significant difference
was found between the NA and H groups. In general,
providing the HELP mode had no effect on wuser performance.
Given the fact that seven of the H subjects did not use the
HELP mode, they could be considered NA subjects.
Accordingly, these seven subjects were pooled with the NA
subjects, and the dependent variables representing ease of
use were compared between this group (called the NA' group)
and the OA group. The results, summarized in Appendix I,
produced only one change: a significant difference due to
treatment effects was indicated in the number of unique
errors (p<.05). That 1is, although OA subjects generally
repeated errors less often, they made more unique errors.
This finding suggests that when on-line aids are provided
and used, new users are more likely to make an error, but

less likely to repeat it. We would caution again that the

131

really important implications of this finding depend on data
not investigated in this experiment: long-term persistence

of errors, their seriousness, and their effect on learning.

6.4 Incorporating on-line aids: the programmer's view

A peripheral objective of the experiment was to study
the effectiveness of the on-line aids facility (henceforth
called AIDS) in terms of programming flexibility and
resource requirements. While the AIDS facility was

—**Wmm——weﬂfﬁwwnfi”g the types of aids

ed—in-the experiment, ad hoc techniques could have Dbeen

EW-1
U

used to provide similar aids. Use of the AIDS facility was

therefore observed with respect to

1) resource requirements: how much primary storage

(for—supporting programs) and mass storage (for

messages) were required to provide on-line aids,

2) programmer's ease of use: how much effort was
required to incorporate on-line aids into a
program, and

3) facility limitations: what capabilities were
required, but not provided by the AIDS facility.

Although the following observations pertain to the
implementation of the TELLER system, it is felt that they

apply to other systems of similar size and complexity.

132

The TELLER system was implemented 1in FORTRAN on a
UNIVAC 1110. Database capabilities were incorporated
through a FORTRAN interface to MISER, a general-purpose
hierarchical database management system available at the
University of Wisconsin. The entire system required 62,009

words of storage, broken down as follows:

TELLER main programs: 18,288 words
FORTRAN-MISER interface: 37,982 words
AIDS facility: 5,739 words

The messages for the on-line aids consisted of 171 scripts
totalling 1813 1lines; approximately 57,000 characters of
disk storage were required for these messages and attending
directories. Although the memory requirements of the AIDS
facility are not excessive with respect to the TELLER
program, they can be restrictive on some systems. For
example, on-line aids 1like those of the TELLER system
certainly cannot be provided on a ‘'personal' computer
without some form of rapid-access mass storage (e.g., a
floppy disk).

The effort required to incorporate on-line aids was
reflected, 1in part, by the time spent on different
implementation tasks. Approximately 61 hours were devoted
to designing, coding, and debugging the programs comprising
the TELLER systemn. Because the AIDS facility allows
programs to be developed 1independently of specifying the
content of on-line aids, very few messages were composed in

conjunction with program development and testing.

133

Approximately 33 hours were devoted to composing, entering,
and revising all messages: prompts, error messages, format
descriptions, etc.

The flexibility of the AIDS facility was further
demonstrated by the ease with which the rudimentary HELP
mode was implemented. Program changes to provide the HELP
mode required one hour; revising the messages required an
additional hour.

Use of the AIDS facility revealed two limitations.

First, references to the aids themselves in the messages
were fixed. For example, several messages ended with the
line

For more information, enter ?FMT again.
When the HELP mode was implemented, all these messages had
to be changed. This could have been accomplished through

seript transfers or script parameters, but a more general

feature should have been provided to display invocation
codes known to the AIDS facility. A second 1limitation
concerned the inter-relationship of aids as they were
invoked. Because many aids shared the same messages, but
were independent of one another, a user could have obtained
the same message twice by invoking two seemingly different
aids. No one actually encountered this situation in the
experiments. However, the AIDS facility <could eliminate
redundant messages if the message for one aid were allowed

to affect the status of another aid.

134

One final characteristic of the AIDS facility bears
mentioning. The implied presence of the on-line aids during
program implementation resulted in greater attention on the
programmer's part to possible errors, their causes, and the
content of messages in general. For example, 1in
constructing lengthy explanations for some errors,
inconsistencies 1in the command formats were more readily
identified and, in some cases, corrected. The content of
messages was also affected by a consideration of their
underlying explanations. In many cases, it was found that
'lower-level' information <could be included in an initial
prompt or error message without unduly 1lengthening that
message. These and other observations led to a set of

guidelines for message composition, shown in Appendix J.

6.5 Conclusions

The pilot study demonstrated that for completely
inexperienced users, the provision of on-line aids can
adversely affect ease of use. It was observed that 1) users
depended heavily on the manual, 2) users were reluctant to
explicitly request on-line assistance, and 3) the presence
of on-line aids confused users, resulting in poor
performance. The following conclusions were derived by a
one-way analysis of variance:

1) Differences in subjects' confidence that they

could use the system without a manual were due to
treatment effects (p<.05). The provision of

135

on-line aids (or the poor performance that
resulted) caused subjects to have less
confidence.

2) Differences in perceived ease of use could not be
attributed to treatment effects.

The ensuing experiment assessed the influence of
different types of assistance on ease of use by experienced
programmers. The results, summarized in Table 6-9,
indicated no significant differences due to treatment
effects for overall perceived ease of use (TQS), computing

costs incurred (COST), or total number of errors (TOT).

On-line aids were found to significantly affect wusers'

——————————onfidence—that—=they—eould-use the system without a manual

(Q8, p<.01). Subjects who used the on-line aids required
significantly 1less time (CNCT) to perform tasks than those
who had no aids and those who had access to a HELP mode but

did not use it (p<.05). The provision and use of on-line

aids resulted in subjects making more unique errors (p<.05).
but fewer repetitions of those errors (p<.05).

The provision of on-line aids through the AIDS facility
was found to Dbe straightforward from a programming
standpoint. The facility also proved to be an effective
tool for experimenting with on-line aids: usage was
automatically monitored Dby the facility, and the nature of
the aids was easily varied. However, the composition of
messages required considerable effort. The version of the

AIDS facility used in the experiment exhibited only one

136

Test Between Q8 TQS COST CNCT TOT UNQ RPT

One-way NA:H:0A .01 - - .05 - -- .05

ANOVA :

HSD NA:H - - -
NA:0A .01 .05 -
H:0A .01 - .05

One-way NA':0A .01 - - .05 -- .05 .05

ANOVA

Table 6-9. Summary of significant differences

limitation: the inability of an aid's invocation to affect
the status of another aid. This limitation has been removed
in a subsequent implementation. Finally, use of the AIDS
facility- helped to identify inconsistencies in the language
and protocols, and resulted in clearer prompts and error

messages.

137

7. Summary and Future Research

7.1 Summary

This dissertation has examined features and

capabilities that comprise a user-oriénted systen.

User-oriented features of —a system —are—those—supportive———r

capabilities that improve user performance and satisfaction
by 1) reducing the amount of data communicated between a
user and a system for a given task, 2) improving a user's

understanding of a system, 3) reducing the amount of

information that must be remembered— by —a- user-—during
interaction, 4) minimizing the likelihood of user errors,
and 5) enabling users with widely differing levels of
experience to use the same system.

Four categories of user-oriented capabilities were
identified: on-line aids, alternative communication modes,
language extensibility, and defaults. Existing systems do
not provide all of these forms of assistance consistently,
for all wusers, and in a manner that facilitates their

incorporation into programs. A consistent and suitably

138

general set of capabilities was described for each of the
"identified categories of wuser aids. To provide these
capabilities, a software user interface (UI) was designed,
and portions thereof were implemented on a UNIVAC 1110.

The on-line aids provided by the UI are wunobtrusive,
situation-dependent, function-specific, and multi-level.
The relationship between these properties and ease of use
was 1investigated in an experiment. In a pilot study with
inexperienced programmers, four groups were tested: a group
with no on-line aids available, a group that had access to a
rudimentary HELP mode, a group that had on-line aids with
the properties under study, and a group that had the same
on-line aids as the third group but was required to work
without a manual. No significant differences were observed
among the four treatments with respect to overall perceived
ease of use. However, the on-line aids were observed to
have a detrimental effect on user performance. In addition,
subjects exposed to the on-line aids were significantly less
confident than other subjects that they could use the system
without a manual. The pilot study also revealed that
inexperienced users were very dependent on written
documentation and were reluctant to use the on-line aids.
Other studies have also observed that facilities aimed at
assisting users or improving productivity often go unused

[(BO74a, MA75b., S0791].

139

A subsequent experiment was conducted with more
experienced programmers. On-line assistance and the nature
of that assistance were not found to have a significant
effect on overall perceived ease of use. However,
significant differences between treatments were observed in
several other measures of ease of use. Subjects who wused
the on-line aids were more confident that they could use the
system without a manual, and required significantly less
time to perform tasks. The provision and wuse of on-line

aids resulted in subjects making more unique errors, but

repeating those errors less often.

7.2 Future research

Several areas related to user-oriented <capabilities

need further study. The first area concerns the
relationship between user aids and user experience. On-line
aids appear to be especially useful to the experienced but
infrequent user, or the user who 1is trying a system for the
first time but has had experience with other systems.
Empirical studies have lacked a well-defined notion of user
experience. A more formal categorization of types of
experience would make 1t possible to study what aids are
best suited for a given user population. Some

experience-related concepts that need analysis and further

140

study are: measures of programming experience, measures of
interactive experience, classifications of usage frequency,
and concepts that are transferable from one system or
language to another. The experiment described in this
dissertation demonstrated the " usefulness of the UI for
studying such questions. The integration of user aids in a
front-end facility makes it possible to easily vary their
properties for purposes of a controlled study.

More generally, it is necessary to study user
characteristics that that can be used to assist the user in
an 'intelligent' manner. Some research in this area has
already been conducted [HE74a]. The aids described in this
dissertation are, for the most part, passive. Their
effectiveness depends on the wuser's ability to recognize
what type of assistance is required, and his willingness to
use those assisting features. However, the study of wuser
behavior in such a passive environment is a necessary first
step in determining what forms of assistance are needed and
how they can Dbest be provided. For example, a tentative
conclusion of this research 1is that 1inexperienced users
require more system-directed assistance than experienced
users. An extension of the aids described here would allow
a host system to vary the form and content of communication
according to the user profiles maintained by the UI.

A third area needing study is the degree to which wuser

aids can be isolated from a program. As more systems rely

141

on parsing techniques to interpret their command languages),
it will be convenient to embed aid specifications in the
grammars of these languages. It is not unreasonable to
expect that a grammar could contain a specification similar
to
<column> ::= integer [COLUMN/QCOL/ECOL/DCOL]

where COLUMN is the name usable for keyword parameter
specification, and QCOL, ECOL, and DCOL identify scripts

used for prompting, error messages, and references to

——————documentation;—respectively+—Suech—ecapabilities—are—of————
course—limited by the nature of semantic errors

Furthermore, the more removed aids are from a program, the
harder it is to make those aids situation-dependent. These
conflicting goals are reflected 1in the attempts of some
researchers to make dialogue specifications less procedural

[BL77, HET74b], while —others have proposed embedding those

specifications in a programming language [LA78].

Finally, it is necessary to explore more effective
methods for composing and organizing assisting messages and
integrating them with written forms of documentation. The
development of on-line aids will undoubtedly exhibit the
same limitation encountered by proponents of computer-
assisted instruction. Although the general software for
each can be readily provided, the effort required to author
the 'databases' for particular applications is considerable.

Already, the maintenance of on-line documentation requires

142

full-time personnel at several installations. Robertson,
Newell, and Ramakrishna report that the 35,000 frame library
for PROMIS required about 70 man-years to generate [RO77].
Such cost factors strongly suggest the need for automated
assistance in constructing and maintaining on-line aids. In
some cases, much of the material that goes into on-line aids
duplicates that which is already available for
computer-generated documentation. The THUMB system proposed
by Price [PR78] is suggestive of how some of these materials

and tasks can be integrated.

[AB75]

[AD69]

[ASTT]

143

References

Abrams, M. D., and Cotton, I. W., "The Service
Concept Applied to Computer Networks", National
Bureau of Standards Technical Note 880, August,
1975.

Adams, J., and Cohen, L., "Time-sharing vs. Batch
Processing"”, in Computers and Automation, Vol. 18,
March, 1969, pp. 30-34.

Ash, W., Bobrow, R., Grignetti, M., and Hartley. A.,

1"

Technical Report No. 3607, Bolt Beranek and Newman,
Inc., January, 1977

[BE721]

[BETO0]

mm
w
-

~
=
et

Bennett, J. L., "The User Interface in Interactive
Systems", in Annual Review of Information Science
and Technology, Volume 7, (ed. C. A, Cuadra),
79725 pp. 159-1396. -

Bennick, F., and Frye, C. H., "PLANIT Reference
Manual", CDC No. 97401700, October, 1970.

Black, J L., "A General Purpose Dialogue

[BO75]

[BOT4a]

[BOT74b]

Processor", in Proceedings, 1977 National Computer
Conference, pp. 397-408. '

Boehm, B. W., McClean, R. K., and Ufrig, D. B.,
"Some Experience with Automated Aids to the Design
of Large-Scale Reliable Software", in Proceedings,
International Conference on Reliable Software, 1975,
pp. 105-113. "—

Boies, 3. J., "User Behavior on an Interactive
Computer System", IBM Systems Journal, Vol. 13, No.
1, 1974, pp. 2-18.

Boies, S. J., and Gould, J. D., "Syntactic Errors
in Computer Programming", in Human Factors, Vol.
16, No. 3, June, 1974, pp. 253-25T7.

(BUT8]

[CAT2]

[CD73]

[CO57]

[CO76]

[COTT]

[Co751]

[co62]

(DO701

(DZ78]

[ENT5]

[FD76]

144

Burton, R. R., and J. S. Brown, "An Investigation
of Computer Coaching for Informal Learning
Activities," Technical Report No. 3914, Bolt,
Beranek, and Newman, Inc., August, 1978.

Carlisle, dJ. H., "Interactive Man-Machine
Communication," NTIS Document No. AD-740 101,
March, 1972.

Control Data Corporation, "CYBERNET/KRONOS 2.1
Time-Sharing Tutorial", Publication No. 86615800,
1973.

Cochran, W. G., and Cox, G., Experimental Designs,
Second Edition, John Wiley and Sons, Inc., 1957.

Cohen, S., and Pieper, 3. C., "The SPEAKEASY-3
Reference Manual", Argonne National Laboratory, May,
1976.

Cohen, S., and Pieper, S. C., "The SPEAKEASY HELP

Documents", Argonne National Laboratory, January,
1977.
Cooke, J. E., and Bunt, R. B., "Human Error in

Programming: The Need to Study the Individual
Programmer", University of Saskatchewan Department
of Computational Science Technical Report T75-3,
February, 1975.

Coulson, J. (ed.), Programmed Learning and Computer
Based Instruction, John Wiley and Sons, 1962.

Dolotta, T. A., M"Functional Specifications for
Typewriter-1like Time Sharing Terminals", in
Computing Surveys, Vol. 2, No. 1, March, 1970, pp.
5-31.

Dzida, W., Herda, S., and Itzfeldt, W. D., "User
Perceived Quality of Interactive Systems", 1in
Proceedings of the Third International Conference on
Software Engineering, August, 1978, pp. 188-195.

Endres, A., "An Analysis of Errors and Their Causes
in System Programs", in Proceedings, International
Conference on Reliable Software, 1975, pp. 327-336

A Progress Report on the Activities of the CODASYL
End=User Facility Task Group, FDT Bulletin of ACM
SIGMOD, Vol. 3, No. 1, 1976.

[FI74]

[GAT75]

[GAT6]

[GATT]

145

Fife, D. W., "Research Considerations 1in Computer
Networking to Expand Resource Sharing", National
Bureau of Standards Technical Note 801, June, 197H.

Gannon, J. D., and Horning, J. J., "Language
Design for Programming Reliability", in IEEE
Transactions on Software Engineering, Vol. SE-1,
No. 2, June, 1975, pp. 179-191. (also in
Proceedings, International Conference on Reliable
Software, 1975, pp. 10-22). -

Gannon, J. D., "An Experiment for the Evaluation of
Language Features", in International Journal of
Man-Machine Studies, Vol. 8, 1976, pp. 61-73.

Gannon, J. D., "An Experimental Evaluation of Data
Type Conventions", in Communications of the ACM,
Vol. 20, No. 8, August, 1977, pp. 584-595.

(GIT7]

Gilb, T., and Weinberg, G. M., Humanized Input,
Winthrop Publishers, Inc., 1977.

[GL72]

[GOT4]

[GO75a]..

[(GOT75b]

[GR67]

[(GRTH]

Glantz, R. S., "Design of an On-Line Query Language
for Full Text Patent Search", Report M72-97, Mitre
Corporation, December, 1972.

Gould, J. D., and Drongowski, P., "An Exploratory
Study of Computer Program Debugging”, in Human
Factors, Vol. 16, No. 3, June, 1974, pp. 258-277.

Gould, J. D., and Ascher, R., "Use of an IQF-1like

Query Language by Non-programmers'", IBM Research
Report RC 5279, February 20, 1975.

Gould, J. D., Lewis, C., and Ascher, R., "Some
Psychological Evidence on How People Debug Computer
Programs", in International Journal of Man-Machine
Studies, Vol. 7, No. 2, 1975, pp. 151-182.

Grant, E. E., and Sackman, H., "An Exploratory
Investigation of Programmer Performance Under
On-1line and Off-1line Conditions", in IEEE
Transactions on Human Factors, Vol. HFE-8, 1967.

Greenberger, M., et al (eds.). "Networks for
Research and Education: Sharing Computer and
Information Resources Nationwide", MIT press, 1974.

[GR76]

[(HAT2]

[(HAT73al

[HAT6]

[HAT1]

[HA73b]

[HETU4a]

[HET74b]

[HOT73]

[(JP75]

[(KA75]

146

Grignetti, M. C., Ash, W. L., Bobrow, R. J.,
Gould, L., and Hartley, A. K., "Intelligent On-Line
Assistant and Tutor System", Technical Report Number
3365, Bolt Beranek and Newman, Inc., June, 1976.

Hagerty, P. E., "The University of Maryland DUM
(Demand User's Monitor) System", in Proceedings, USE
Fall Conference, 1972, pp. 29-80.

Halstead, M. H., "Language Selection for
Applications", in Proceedings, 1973 National
Computer Conference, pp. 211-214. ‘

Hansen, J. V., "Man-Machine Communication: An
Experimental Analysis of Heuristic Problem-Solving
Under On-Line and Batch-Processing Conditions", in
IEEE Transactions on Systems, Man, and Cybernetics,
Vol. SMC-6, No. 11, November, 1976, pp. TU6-752.

Hansen, W. J., "User Engineering Principles for
Interactive Systems", in Proceedings, 1971 Fall
Joint Computer Conference, pp. 523-532.

Hays, W. L., Statistics for the Social Sciences,
Second Edition, Holt, Rinehart, and Winston, Inc.,

1973.

Heafner, J. F., "A Methodology for Selecting and
Refining Man-Computer Languages to Improve Users'
Performance", University of Southern California
Technical Report ISI/RR-74-21. September, 19TH.

Heindel, L. E., and Roberto, J. T., "LANG-PAK: An
Interactive Language Design System",
American-Elsevier Series Monograph, March, 19T74.

Hoare, C. A. R., "Hints on Programming Language
Design", Stanford University Computer Science
Department Technical Report CS-403, December, 1973.

"Introduction to JPLDIS", Jet Propulsion Laboratory,
California Institute of Technology, June, 1975.

Kamman, R., "The Comprehensibility of Printed
Instructions and the Flowchart Alternative”, in
Human Factors, Vol. 17, No. 2, April, 1975. pp.
183-191.

[KET4]

[KI68]

[KL73]

[KN71]

[KR76]

147

Kennedy, To. C. S., "The Design of 1Interactive
Procedures for Man-Machine Communication”, in
International Journal of Man-Machine Studies, Vol.
6, No. 3, May, 1974, pp. 309-334,

Kirk, R. E., Experimental Design: Procedures for
the Behavioral Sciences, Wadsworth Publishing Co.,

1968,

Kling, R., "Who Needs a Person-Centered Computer
Technology?", University of Wisconsin Computer
Science Department Technical Report 169, July, 1973.

Knuth, D. E., "An Empirical Study of FORTRAN
Programs", in Software Practice and Experience, Vol.
1, No. 2, April-June, 1977, pp. 105-133.

Kriloff, He Z., "Human Factor Considerations for
Interactive Display Systems", in User-Oriented

Design of Interactive firaphics Systems (ed. S
Treu), ACM/SIGGRAPH Workshop, October, 1976.

1 WV -CF3-1-23-CF

LLATG]

[LI60]

—/
r—!
o]
-3
(@)
[

i

i

[LO77al

[LO7Tb]

[LOT7Tec]

Cafuente, J% M ard Gries;— P
Facilities for Programming User-Computer Nialogues",
IBM Journal of Research and Development, Vol. 22,
No. 2, March, 1978, pp. 145-158,

Licklider, J. C. R., "Man-Computer Symbiosis™, in
IRE (IEEE) Transactions on Human Factors in
Electronies, Vol. 1, No. 1, March, 1960,

—itecky;—Cv—Rey—and—Davis;—Ge— By "A-Study-of

Errors, Error-Proneness, and Error Diagnosis in
COBOL", in Communications of the ACM, Vol. 19, No,
1, January, 1976, pp. 33-37.

Lochovsky, F. H., Data Base Management Systems User
Performance, Ph, D, Thesis, University of Toronto,
1977,

Lochovsky, | H., and Tsichritzis, "User
Performance Considerations in DBMS Selection", in
Proceedings, SIGMOD International Conference on
Management of Data, 1977, pp. 128-134. ”_

Love, T., "An Experimental Investigation of the
Effect of Program Structure on Program
Understanding", in Proceedings of the ACM Conference
on Language Design for Reliable Software, March,
977, pp. 105-113.

[MA75a]

[(MAT6]

[MA73]

(MA75b]

(MIT74]

[MI75]

[MIT7]

[MI68]

[MO79]

[NE73]

[NI68]

[POT77]

148

Mann, W. C., "Why Things Are So Bad for the
Computer-Naive User", in Proceedings, 1975 National
Computer Conference, pp. (85-7187. '

Marcus, S., and Reintjes, J. F., "The Networking of
Interactive Bibliographic Retrieval Systems", MIT
Electronic Systems Laboratory, March, 1976.

Martin, J., Design of Man-Computer Dialogues,
Prentice Hall, 1973.

3

Martin, T. H., and Parker, E. B., "Comparative
Analysis of Interactive Retrieval Systems", in
SIGPLAN Notices, Vol. 10, No. 1, January, 1975,
pp. 75-85.

Miller, L. A., "Programming by Non-Programmers", in
International Journal of Man-Machine Studies, Vol.
6, No. 2, March, 1974, pp. 237-260.

Miller, L. A., "Naive Programmer Problems with
Specification of Transfer of Control", in
Proceedings, 1975 National Computer Conference, pp.

057-0063.

Miller, L. H., "A Study in Man-Machine
Interaction", in Proceedings, 1977 National Computer
Conference, pp. 409-421.

Miller, R. B., "Response Time 1in Man-Computer
Conversational Transactions", in Proceedings, 1968
Fall Joint Computer Conference, pp. 207=277.

Moher, T., and Schneider, G. M., "Methodology for
Experimental Research in Software Engineering",
University of Minnesota Computer Science Department,
Technical Report 79-2, January, 1979.

Neumann, A. J., "Network User Information Support",
National Bureau of Standards Technical Note 802,
December, 1973.

Nickerson, R. S., Elkind, J. I., and Carbonell, J.
R., "Human Factors and the Design of Time-sharing
Computer Systems", in Human Factors, Vol. 10, No.
2, March, 1968, pp. 127-134.

Poorbaugh, H. J., "OLDS: An On-Line Documentation
System", in Proceedings, ACM SIGUCC User Services
Conference, Kansas City, 1977.

[PRT4]

[PR78]

[PUT73]

[RAT2]

149

Pradels, J. L., "The Guide: An Information
System", University of Illinois at Urbana-Champaign
Department of Computer Science, Technical Report
UIUCDCS-R-T4-626, March, 1974.

Price, L. A., Representing Text Structure for
Automatic Processing, Pn. D. Thesis, Unilversity of
Wisconsin, May 1978, (also available as University
of Wisconsin Computer Science Department Technical
Report No. 324).

Puerling, B. W., and Roberto, J. T., "The Natural
Dialogue System", Bell System Technical Journal,
Vol. 652, No. 10, December, 1973, pp. 1725=-1T742.

Raub, W. F., "Automated Information Handling 1in
Pharmacology Research", in Proceedings, 1972 Spring
Joint Computer Conference, pp. T160=-1T161.

[RET51

Reisner, P., Boyce, R. F., and Chamberlin, D. D.,
"Human Factors Evaluation of Two Data Base Query

Languages -- SQUARE and SEQUEL", in Proceedings,

[RE7T]

[ROT70]

1975 National Computer Conference, Dp. nn7-452,

Reisner, P., "Use of Psychological Experimentation
as an Aid to Development of a Query Language”, in
IEEE Transactions on Software Engineering, Vol.
SE-3, No. 3, May, 1977, pp. 218-229.

Roberts, R., "HELP == A Question Answering System",
in_ Proceedings, 1970 Fall Joint Computer Conference,

[ROT7]

[RO6T]

[SA70]1

[SAT3]

pp. BSUT=554.

Robertson, G., Newell, A., and Ramakrishna, K.,
"Z0G: A Man-Machine Communication Philosophy",
Carnegie-Mellon University Department of Computer
Science, Interim Report, August, 1977.

Root, R. T., and Sadacca, R., "Man-Computer
Communication Techniques: Two Experiments", in
Human Factors, Vol. 9, No. ©6, December, 1967, ©pp.
521-528.

Sackman, H., "Experimental Analysis of Man-Computer
Problem-Solving", in Human Factors, Vol. 12, No.
2, 1970, pp. 187-201.

Sackman, H., "Some Exploratory Experience with Easy
Computer Systems", in Proceedings, 1973 National
Computer Conference, pp. M30-M33. -

[SC671]

[SH75a]

[SHT74]

[SH75b]

[SH76a]

[SH76Db]

{SHT77al

[SH77b]

[SH7Tec]

150

Schatzoff, M., Tsao, R., and Wiig, R., "An
Experimental Comparison of Time-sharing and Batch
Processing", in Communications of the ACM, Vol. 10,
May, 1967, pp. 261-272.

Shapiro, S. C., and S. C. Kwasny, "Interactive
Consulting Via Natural Language," in Communications
of the ACM, Vol. 18, No. 8, August, 1975, pp.
459-462.

Shneiderman, B., "Experimental Testing in
Programming Languages, Stylistic Considerations and
Design Techniques", in Proceedings, 1975 National
Computer Conference, pp. 653-656 (also available as

University of Indiana Computer Science Department
Technical Report No. 16).

Shneiderman, B., and Mayer, R., "Towards a Cognitive
Model of Programmer Behavior", University of Indiana
Computer Science Department Technical Report No.
37, August, 1975.

Shneiderman, B., and McKay, D., "Experimental
Investigations of Computer Program Debugging and
Modification", Proceedings of the Sixth
International Congress of the International

Ergonomics Association, July, 1976.

Shneiderman, B., "Exploratory Experiments in
Programmer Behavior", in International Journal of
Computer and Information Sciences, Vol. 5, June,
1976, pp. 123-143 (also available as University of
Indiana Computer Science Department Technical Report
No. 17).

Shneiderman, B., "Improving the Human Factors Aspect
of Database Interactions", University of Maryland
Department of Information Systems Management
Technical Report No. 26, September, 1977.

Shneiderman, B., "Measuring Computer Program Quality
and Comprehension™, International Journal of
Man-Machine Studies, Vol. 9, 1977, pp. 1-14.

Shneiderman, B., Mayer, R., McKay, D., and Heller,
P., "Experimental Investigations of the Utility of
Detailed Flowcharts in Programming", in
Communications of the ACM, Vol. 20, No. 6, June,
1977, pp. 373-381.

[SI73]

[SM6T]

[s0791

(STT74]

151

Sime, M. E., Green, T. R., and Guest, D. Jo,
"Psychological Evaluation of Two Conditional
Constructs Used in Computer Languages", in
International Journal of Man-Machine Studies, Vol.
5, No. 1, 1973, pp. 105-113.

Smith, L. B., "A Comparison of Batch Processing and
Instant Turnaround", in Communications of the ACM,
Vol. 10, August, 1967, pp. 495-500.

Sondheimer, N. K., "On the Fate of Software
Enhancements", in Proceedings, 1979 National
Computer Conference, pp. 1043-T049.

Sterling, T. D., "Guidelines for Humanizing
Computerized Information Systems: A Report from
Stanley House", in Communications of the ACM, Vol.
17, No. 11, November, 1974, pp. 609-613.

[TAT75]

[
3 O

E., Treu, S., and Nehnevajsa, J., "User
n— Networkingh, Proceedings, 1975

j-on
e I

s

a
r

3 ¢t D

e e

oM

=2z 0O
o -
W oo
bt Gt e

[eXcNe]

in
ter—Conference, pp- b3 7=Hdl

ot
o]
Ol

o
[

[TET72]

[TET8]

Nl

G

<t A~ A= a ¥ ey 3

Teitelman, W., "Do What I Mean: The Programmer's
Assistant", in Computers and Automation, Vol. 21,
No. 4, April 1972, pp. 8-11.

Teitelman, W., "A Display Oriented Programmer's
Assistant", in Proceedings, Fifth International
Joint Conference” on Artificial Intelligence, Vol.

[TH75]

[TR75]

[TR7T]

[UNT2]

Z Rugusty 19— ppv—905-915.

Thomas, J. C., and Gould, J. D., "A Psychological
Study of Query by Example", in Proceedings, 1975
National Computer Conference, pp. 439-445

Treu, S., "Interactive Command Language Design Based
on Required Mental Work", in International Journal
of Man-Machine Studies, Vol. 7, No. 1, 1975, pp.
135-149.

Truitt, T. D., and Emery, J. C., "Provision of
User Services in a Network Environment," ACM SIGUCC
Newsletter, Vol. 7, No. 1, pp. 5-13.

UNIVAC, division of Sperry Rand, "Conversational
Time Sharing (CTS) System, Programmer's Reference
Manual'", UP=7940, 1972.

[VE77al

[VET77b]

[VETTc]

(WAT2]

(WATH]

[WET1]

[WETHa]

[WETH4D]

[YOT74]

152

Venezky, R. L., Relles, N., and Price, L. A.,
"Man-Machine Integration in a Lexical Processing
System", in Cahiers de Lexicologie, Vol. 30, 1977,
pp. 17=46. - '

Venezky, R. L., Relles, N., and Price, L. A.,
"User Aids in a Lexical Processing System", in
Proceedings of the Third International Conference on
Computing in the Humanities (eds. J. S. North and
S. Lusignan), August, 1977, pp. 317-325.

Venezky, R. L., Relles, N., and Price, L. A.,
"LEXICO: A System for Lexicographic Processing", in
Computers and the Humanities, Vol. 11, 1977, pp.
127-137.

Warshall, S., "AMBUSH - A Case History in Language
Design", Proceedings, 1972 3pring Joint Computer
Conference, pp. 321-332. ‘

Walther, G., and 0O'Neil, H., "On-line User-Computer
Interface - The Effects of Interface Flexibility,
Terminal Type, and Experience on Performance", in
Proceedings, 1974 National Computer Conference, DpDD.

379-334.

Weinberg, G. M., The Psychology of Computer
Programming, 1971, Van Nostrand Reinhold PubIishing
Company.

Weissman, L., "Psychological Complexity of Computer
Programs: An Initial Experiment", University of
Toronto Technical Report CSRG-26.

Weissman, L., A Methodology for Studying the
Psychological Complexity of Computer Programs, Ph.
D. Thesis, University of Toronto, 1974.

Youngs, E. A., "Human Errors in Programming", in
International Journal of Man-Machine Studies, Vol.
6, No. 3, May, 1974, pp. 361-376.

153

Appendix A

This appendix provides an overview of the TELLER
system, used in the experiment described in chapter 6. This
overview is taken from the first chapter of the TELLER
manual given to subjects.

1.1 Overview

TELLER 1is an interactive computer system for maintaining
several bank accounts. The system allows you to - establish
new accounts, enter information about those accounts (e.g.,
deposits and withdrawals), and receive information about any
account (e.g., periodic statements). You can maintain any
number of accounts representing actual accounts at any
number of banks. Each account is a savings, checking, or
mortgage (loan) account. For example, you might use the
TELLER system to maintain information about

two savings accounts and one checking account

at bank X,

a savings account and a loan account at bank
Y, and

a savings account and checking account at bank
z.

By maintaining a record of your accounts through the
TELLER system, you can check your bank's monthly statements,

keep an up-to-date record of your accounts' balances, or
perhaps analyze your banking practices. To begin using the
TELLER system, you must enter

@TELLER

at your terminal. You may then enter commands to perform
any of the following tasks:

1) open an account of any type (savings, checking,
or loan),

2) review an existing account -- adding new
entries, changing entries, or requesting
summary statements,

3) close out an account, and

4) display a summary of your accounts maintained
by the TELLER system.

154

1.2 Opening an account

When you enter the OPEN command, the system displays
several questions. For example, when opening a checking
account, the following questions are displayed, to which you
would respond as indicated:

TELLER system displays You should enter

bank name? the name of the bank
at which you are opening
the new account

acct# ? the account number of the
newly opened account

depositor? the name(s) of the
account's owner(s)

date opened? the date that the
account was opened

minimum? the minimum balance that
must be maintained in the
account without incurring
a service charge

check charge? the amount charged by the
bank for each check written

The following interaction illustrates how a new checking
account is opened. Commands and data entered by the user
are underlined.

@TELLER
TELLER system; 09/10/78 10:35

Task? OPEN C

bank name? FIDELITY NATIONAL BANK
acet# ? 1357-239

depositor? BILL AND MARY

date opened? 09/01/738

minimum? 100

check charge? 0

Account successfully opened.

155

1.3 Reviewing an existing account

Any existing account may be reviewed for a number of
purposes, including

a) adding new entries (e.g., deposits and
withdrawals)

b) changing entries (e.g., changing the amount of
a check), or

¢) displaying information regarding the account
(e.g., a monthly statement).

To begin reviewing an account, you can enter one of the
following task commands:

SEE C to access a checking account
SEE L to access a loan account
SEE S to access a savings account

If you enter just the command SEE, the system will ask you
for—the —type —of account to be accessed. If you have more
than—one—sueh—account—the system will ask you to identify
the account you want to SEE.

1.4 Transactions

After you have 1initiated an OPEN or SEE task, you may
enter commands to view or change the designated account.
These commands are called transactions, e.g.: depositing
some amount in a savings account, changing the amount of a
eheeky——o0r requesting the monthly statement for an account.

For example, to record a deposit, the following transaction
command might be entered:

DEPOSIT 10/15/77 $100.00
Transactions are described in detail in chapter 3. After
all transactions have been entered for an account, a task is
terminated by entering the command

END
Another task may then be initiated (e.g., reviewing another

account).

1.5 Obtaining directories

The DIRECTORY command allows you to obtain a summary of
your TELLER system accounts. Several types of directories
may be requested. For example, by entering

DIRECTORY ALL

you can obtain a complete
grouped by their type (first checking accounts,
accounts, and finally savings accounts). Within

accounts will be listed in alphabetical order by
An example of such a directory appears below.

*%¥% CHECKING ACCOUNTS *%#

BANK NAME ACCOUNT # DEPOSITOR
SECOND NATIONAL BANK 201-85668 LEE
SECOND NATIONAL BANK 201-85665 TERRY
SECURITY SAVINGS & LOAN 1-96-222 TERRY
(TOTAL
#%% LOAN ACCOUNTS #*##
BANK NAME ACCOUNT # DEPOSITOR
UNION TRUST BANK 369-2835 LEE
UNION TRUST BANK 369-5113 LEE & TERRY
(TOTAL:
*%% SAVINGS ACCOUNTS #%#
BANK NAME ACCOUNT # DEPOSITOR
UNION TRUST BANK 520-3114 TERRY
SECOND NATIONAL BANK 839-01456 LEE & TERRY
SECURITY SAVINGS & LOAN 1-05-339 JENNIFER
SECURITY SAVINGS & LOAN 1-09-521 TOMMY
(TOTAL:

1.6 Terminating a session

After all accounts have been accessed,
session by entering the command

QUIT

you have made many mistakes, or if
you

However, 1if
rescind all your tasks for any other reason,
the command

you should end

156

listing of all your accounts,

then 1loan
each group,
bank names.

BALANCE

$ 306.54
$ 305.94)

BALANCE

$ u443.00
$26579.00
$27022.00)

BALANCE

the

you want to
may enter

157

FORGET

The FORGET command rescinds everything you did after
starting the session. All your accounts will appear exactly
as they did at the start of the session (when you originally
entered @TELLER).

1.7 Summary

Three types of accounts are maintained by the TELLER
system: savings, checking, and loan accounts. A session
consists of several tasks =-- e.g., opening an account,
viewing accounts, and displaying directories. Each task 1is
initiated by entering a task command when the system
displays

Task?

The OPEN and SEE tasks consist of individual
transactions, and must be terminated by an END command

before proceeding to the next task. When all tasks have

been completed, a session is terminated by either a QUIT or
FORGET command . The following example of a session
illustrates several tasks within a session. Commands and
data entered by the user are underlined.

@TELLER
TELLER system; 09/10/78 10:35

Task? DIRECTORY ALL

[system displays directory of all accounts]

Task? OPEN S

transaction
transaction

. [transactions are entered

. to open new savings account]
END

Task? SEE C PRUDENTIAL S&L

transaction
transaction

[checking account is updated;
new checks and deposits are
recorded, monthly statement

158

END printed, etec.]
Task? SEE L

transaction
transaction

[loan account is reviewed, deposits
recorded, etc.]

END
Task? QUIT [The session is ended; all accounts

are updated according to the tasks
performed in this session.]

1.8 Command formats

Some task and transaction commands are followed by
information such as a date, a dollar amount, or a bank name.
Any number of blanks (but at least one) may separate parts
of a command. For example, all of the following commands
are equivalent:

SEE C 159-334

SEE C 159-334
SEE C 159-334
SEE C 159-334

The following rules must also be followed regarding parts of
a command:

Blanks must not be included as part of an account
number, a date, a dollar amount, or a percentage
(i.e., interest).

Dates are specified in the form
MM/DD/YY

where MM is the number of the month (1 for January,
2 for February, etc.), DD is the day, and YY is two
digits representing the year (e.g., 78 for 1973).
All three portions must be specified, and they must
be separated by a slash (/). Blanks are not allowed
within a date; however, for days and months less
than 10, a preceding zero is optional. Thus, the
following date formats are equivalent, all
representing March 7, 1978:

3/7/78
03/7/78
3/07/78

.

03/07/78

Dollar amounts are represented as a decimal number
(e.g., 5.75) or integer (e.g., 100) optionally
preceded by a dollar sign ($). Commas and blanks
are not allowed within a dollar amount. Thus, the
following are equivalent forms for representing one
hundred dollars:

$100
$100.00
100
100.00
$100.

Interest is expressed as a decimal number (e.g.,
5.5) or an integer (e.g., 5). The percent sign (%)
must not be used when representing interest.

159

Bank names, depositors, and memoes may include
blanks However, two or more consecutive blanks are

treated as a single blank.

160

Appendix B

This appendix describes the HELP mode and on-line aids
used by the H and OA groups, respectively, in the experiment
described in chapter 6. The descriptions are taken from the
manuals given to subjects.

1.9 System aids (HELP mode)

The TELLER system can also provide information about 1its

use. The HELP command may be entered to obtain information
about task commands, transaction commands, their formats,
and how they are used. The HELP command may be entered

whenever the system is expecting a command, i.e., when any
of the following questions is displayed:

Task?

transaction (D, W, C, R, 3, or L) ?
transaction (D, W, I, C, R, or 8) ?
transaction (P, 3, C, or M) ?

By wusing the HELP command, you can minimize the need to
refer to this manual. After you enter the HELP command, you
will be in HELP mode. The system will ask you to enter the
terms or commands for which you want information. Each time
the system prompts you by displaying

-

you may enter any of the following:

1. a command or term for which you want an
explanation;

2. the word TERMS, for a list of wvalid commands
and terms that the system can explain;

3. a blank line (just pressing the RETURN key) for
further explanation of the material just
displayed;

4, the word END, indicating that you have obtained
the desired information and want to return to
the TELLER system.

161

When you have obtained information for all the commands
and terms of interest to you, enter END. You will thereby

leave HELP mode and return to the TELLER system. You can
switeh to HELP mode as often as you want.

162

1.9 System aids (on-line aids)

The TELLER system can also provide information about its
use. Several special keys may be wused to obtain
explanations of errors or questions, descriptions of
commands, or examples of correct input. These keys may be
used at any time and do not affect whatever task or
transaction you are in the midst of performing.

By wusing the special requests for assistance described
below, you can minimize the need to refer to this manual.
You can enter any of the requests any time you want and as
many times as you want.

?QUESTION: Whenever the system asks a question or is
waiting for you to supply a command or data, if you do
not understand the question, press the key marked
EXPLAIN QUESTION, or enter

7QUESTION

This entry represents a request to explain the
question. If you still don't understand the question,
you may enter ?QUESTION again, and do this repeatedly
to obtain successively more detailed explanations and
examples. You can also use ?QU in place of 7QUESTION.
Use 7?QUESTION or ?QU whenever you don't understand
what you should enter next.

?ERROR: Whenever the system displays an error
message, 1f you don't understand the error, press the
key marked EXPLAIN ERROR, or enter

?ERROR

This entry represents a request to explain the error.
If you still don't understand the error, you may enter
?ERROR again, and do this repeatedly to obtain
successively more detailed explanations and examples.
You can also use ?ERR in place of ?ERROR. Use ?ERROR
or ?ERR whenever the system has displayed an error
message you don't understand.

?EXAMPLE: Whenever the system displays an error
message, if you would like examples of correct input,
press the key marked EXAMPLE, or enter

?EXAMPLE

To obtain further examples, you may enter ?EXAMPLE as
many times as you want. You can also use ?EG in place
of ?EXAMPLE.

?FORMAT: Anytime you want to know the format of a
command (or part of a command), you may press the key
marked EXPLAIN FORMAT, or enter

163

?FORMAT
followed by the command or item whose format you are
interested 1in. As always, after entering this aid,
you may repeatedly enter it again to obtain

successively more detailed descriptions. For example,

to obtain a description of the SEE command, you may
enter at any time

?FORMAT SEE

Similarly, to obtain a description of the date portion
of commands, you may enter at any time

7FORMAT DATE

You can use ?FMT in place of ?FORMAT. Any number of
blanks may be used between ?FORMAT (or ?FMT) and the
command or item of interest. The ?FORMAT request 1is
especially wuseful when you know what command to use,
but aren't sure of its format.

You can also enter ?2FORMAT (or ?7FMT) by itself when
the system displays an error message. This is a way
of asking the system "What is the correct format of
the command or data just entered incorrectly?"

?HELP: To obtain a description of all these aids and
their use, press the key marked HELP, or enter

7HELP

any time. You can enter this

successively

more

aids avallable.

detailed

repeatedly
descriptions

to obtain
of all the

165
Appendix C

This appendix contains the questionnaire filled 1in by
subjects in the pilot study and the experiment. Subjects in
the NA (no aids) group were given this questionnaire without
questions Q11 and Q12. Questions Q11 and Q12 differed for
the H (HELP mode) and OA (on-line aids) groups, as indicated
by the bracketed portions.

Please answer the following questions. Under each question,
circle the number that corresponds to your answer.

(Q1) How easy is it to choose which command to use
in a given situation?

very hard to choose right command

Most commands are hrard—to remember

some commands are hard to remember;—others—are
easy

most commands are easy to remember

very easy to choose right command

Ul = LN —
.

(Q2) How easy is it to enter commands?

. all commands are very difficult to enter correctly

-4

most eommands are difficult—toenter—correctly
some commands are difficult; others are easy

. most commands are easy to enter correctly

all the commands are very easy to enter correctly

Ul =Ny —

(Q3) How well did you understand questions asked by the
system?

all the questions are very hard to understand
most questions are hard to understand

some questions are hard; others are easy

. most questions are easy to understand

all questions are very easy to understand

Ul I N) -

166

(Q4) How well did you understand any errors you made?

all errors are hard to understand
most errors are hard to understand
some errors are hard; others are easy
most errors are easy to understand
all errors are very easy to understand

Ul =2 N~
e o o &

(Q5) How effective 1is the manual when learning how to use
the system (before using the system)?

The manual is very confusing

Most of the manual is hard to understand

Some parts of the manual are confusing; other
parts are clear.

Most of the manual is clear.

The manual is very clear and easy to understand.

Ul = WM -
.

(Q6) How useful is the manual while using the system?

‘The manual is very hard to use and understand.

Most of the manual is hard to use.

Some parts of the manual are hard to use; other parts
are clear.

Most of the manual is clear.

The manual is very clear and useful.

Ul 4= w Ny —

(Q7) Can you use the system without someone to help you?

1. I can't use the system without constant help
from someone.

would need help frequently from someone.

would need occasional help from someone.

can get by with very little help from someone.

can use the system without anyone's help.

2
3
4
5

» * o
[am B o B o B o |

167

(Q8) Can you use the system without referring to the manual?

1.

2.
3.
4.

5.

I can't use the system without constantly
referring to the manual.

I would need to refer to the manual frequently.

I would need to refer to the manual occasionally.
I can use the system with very little reference to
the manual.

I can use the system without the manual.

(Q9) How reasonable is the time required to perform tasks?

1.

Almost all tasks take too much time to complete
correctly.

2. Most tasks take too long.

3. Some tasks take too longy otherstake=a reasonmable
amount of time.

}—Most—tasks—take—areasonable—amount—of-time-

5~—Atmost—all—tasks—take—a—very—reasonable—amount—of
time.

(Q10) Overall, how hard is it to use the system?

1. The whole system is very hard to use.

2. Most of the system is hard to use.

3. Some parts of the system are hard to use;
others—are-easy.

4, Most of the system is easy to use.

5. The whole system is very easy to use.

(Q11) Was the information obtained from the system (by
entering <?HELP, ?ERROR, ?QUESTION, etc.) [by entering
HELP]

1. no help at all

2. not so helpful

3. sometimes helpful

4, usually helpful

5. very helpful

6. I didn't use ?HELP, ?ERROR, ?QUESTION, etc. (Please

explain briefly why you didn't use the on-line aids.)

[I didn't wuse HELP. (Please explain briefly why you
didn't use the HELP feature.)]

(Q12) How difficult is it to

system (by entering
[by entering HELP]

1. on-line aids are [HELP
use

2. on-line aids are [HELP

use

on-line aids are [HELP

sometimes easy to use

on-line aids are [HELP

on-line aids are [HELP

Ul = W)
. ° .

168

obtain assistance from the
?HELP, ?ERROR, ?QUESTION, etc.)

mode

mode

mode

mode
mode

is] very difficult to
is] somewhat hard to
is] sometimes hard to use,

is] usually easy to use
is] very easy to use

(Q13) Is anything in the manual incorrect or misleading? If

so, please explain.

(Q14) Do you have any suggested improvements in the system?

If so, what are they?

(Q15) Is anything displayed
?ERROR, 7?QU, etec.) [by

by

misleading? If so, what?

the on-line aids (?HELP,

HELP mode] incorrect or

169
Appendix D

This appendix contains the instructions read to each
subject before and after reading the manual. The same
instructions were used in the pilot study and in the
experiment.

"please read this manual, which describes an interactive
computer system for managing bank accounts. When you are
finished, you will be asked to perform a few simple tasks
using the system, as if you were managing a set of your own
personal accounts. You will be able to use the manual as
you perform these Tasks. # You may TakKe as much time as
you like to read the manual, but try to keep it around 30
minutes, so that you have adequate time to perform all the

tasks. Please tell me when you have finished reading the

manual."

[subject reads manual]

"These pages [hand instructions to subject] describe a few
simple tasks for the TELLER system; please perform the tasks
in the same order that they appear. To perform the tasks,
you may use any of the commands described in the manual.
[H, OA, and NM subjects: You may also use any of the system
aids described in the manual.]"

* In the pilot study, subjects in the NM (no manual) group
were told that they would be asked to use the system
without a manual.

170

Appendix E

This appendix describes the tasks given to subjects in
the pilot study. Subjects in all four groups were given
sheets with the following instructions.

Remember that to transmit a line you must depress the
RETURN key at the end of that line.

If you make a mistake while entering a line, use the
backspace key and enter the correct character, or use
CTRL=-X (hold down the CTRL key and press X) and
re-enter the entire line.

Al]l dates in these instructions are for 1978.

1. Display a directory of all accounts in the system.

2. Fidelity Savings and Loan has changed its name to First
Fidelity Savings. Change both accounts at this bank to
reflect this name change. (Use the CHANGE task command.)

3. Close out Fran & Jerry's savings account at the Sic
Semper Savings Bank.

4, Using the SHOW transaction, display a statement for the
last month (September 1, 1978, through the end) 1in
Jerry's checking account at the Sic Semper Savings Bank
(account number 2-60-333).

Close out the account (using the CLOSE task command.

5. Make the following changes to Fran's checking account at
Prudential Bank & Trust:

A deposit of one hundred dollars ($100), made on August
29th, was not recorded. Record the deposit.

Check # 432, made out Aug. 20, should be in the amount
of $25.40, rather than $24.50. Correct the entry (using
the CORRECT transaction).

Remove check number 427 ($85 for day care; 8/10/78).
(Use the REMOVE transaction.)

171

Two checks were not recorded in the account; enter them
now, using the WITHDRAW (or W) transaction. The checks
are

421, August 3; $8 for gas
438, August 31; $15 for play tickets
List all checks for gas in August and September (between

8/1 and 9/30) using the LIST (or L) transaction.

A deposit made on August 20 was incorrectly recorded as
$230. It should be for $250.00; make this correction.

Display a directory of all checking accounts.

Enter the following checks, deposits, and service charges
in Jerry's ch i i Trust

(account # 357-21001):

check deposit

check no. date check issued to amount amount
863 9/5 . newspaper 6.50
goéu 9/12 ASL dues 17.00
865 9/14 gas 5.00
9/15 service charge .20
866 9/15 watch repair 9.83

9/15 DEPOSIT 200.00

(Remember that you can use the CORRECT (C) transaction to
correct any entries if you make a mistake.)

Display an account statement for the period covered by
the entries you have Jjust made. (Use the SHOW or S
transaction.)

Open a savings account at Lake City Bank. The account
number is 345-1101, interest is 6.5% compounded
guarterly, and the account is to be in Fran's name. The

account was opened on June 1, 1978. Record the following
entries:

10.

172

a deposit of $1,250 when the account was opened on June

a deposit of $500.00 on August 15;

a withdrawal of 50 dollars on September 10;

a withdrawal of $630.00 on September 20;

a deposit of $200 on September 25;

a withdrawal of fifty dollars ($50) on October 15.
Display an account statement for the month of September

(from 9/1 through 9/30) using the SHOW <(or S)
transaction.

Display a directory of all savings accounts.

Display a directory of all accounts at Sic Semper
Savings.

173

Appendix F

responses of pilot

summarize

The tables shown below
study subjects to the questionnaire.

Q2 Q3 Ql 05 06 Q7 08 Q9 010 TOS3

Q1

by
40

41
o

n3
us

S~ < i T N T

(KR = e S T I

B~ aRaUN e aN e o)

[KQIE - g FR T~ g U

O WD I O I W

W I W0

ESEA S B~ =~ NS

[KQ I = i e S Ko

=S nn

Mo o3 0N

NO
ATIDS

4,5 3,2 4,3 4,3 Uu42,3
55 W75 B2 B2 1.97

4.3
o U1

4.5
+55

81’
o =

b,5
.55

4,0
.6H3

mean
Sedo

u7
37
un
4o

39
28

Tonar = NN

= ar o F M

s o N

g NI e mMm

S InNE NI ™M

MM M

i Mn T ™M

[KQ T e B~ b i g Q]

TN TN

HELP
MODE

39.2

3.8

986455

h,0
B3

3.8

mean
sods

g~ g EQ W~ = g S

— = onar

-— I e o 0\

N T MM

T N

WO onar =

N == N Ao

=R NN

MM N

Mg M

ON-LINE
AIDS

3.8
75

mean
S.de

the
she

174

Appendix G

This appendix describes the tasks given to subjects 1in
experiment. Subjects in all four groups were given
ets with the following instructions.

All dates in these instructions are for 1978.

Display a directory of all 1loan (L) accounts in the
system.

Display a directory of all checking accounts in the
system.

Fidelity Savings and Loan has changed its name to First
Fidelity Savings. Change both accounts at this bank to
reflect this name change. (Use the CHANGE command.)

Close out Fran & Jerry's savings account at the Sic
Semper Savings Bank.

Using the SHOW transaction, display a statement for the
last month (September 1, 1978, through the end) in
Jerry's checking account at the Sic Semper Savings Bank
(account number 2-60-333).

Close out the account (using the CLOSE task command).

Make the following changes to Fran's checking account at
Prudential Bank & Trust:

A deposit of one hundred dollars ($100), made on August
29th, was not recorded. Record the deposit.

Check # 432, made out Aug. 20, should be in the amount
of $25.40, rather than $24.50. Correct the entry (using
the CORRECT transaction).

Remove check number 427 ($85 for day care; 8/10/78).
(Use the REMOVE transaction.)

175

Two checks were not recorded in the account; enter them
now, using the WITHDRAW (or W) transaction. The checks
are

421, August 3; $8 for gas
438, August 31; $15 for play tickets

List all checks for gas in August and September (between
8/1 and 9/30) using the LIST (or L) transaction.

Display a directory of all checking accounts.

Enter the following checks, deposits, and service charges
in Jerry's checking account at Prudential Bank & Trust
(account # 357-21001):

check deposit
eheek-no date check issued to amount amount
863 9/5 newspaper 5.50
g6l 9/12 ASL dues 17.00
865 g9/14 gas 5.00
9/15 service charge .20
866 9/15 watch repair 9.83
9/15 DEPOSIT 200.00

(Remember that you can use the CORRECT (C) transaction to
correct any entries if you make a mistake.)

Display an account statement for the period covered by
the entries you have just made. (Use the SHOW or S
transaction.)

Open a savings account at Lake City Bank. The account
number is 345-1101, interest is 6.5% compounded
quarterly, and the account is to be in Fran's name. The
account was opened on June 1, 1978. Record the following
entries:

a deposit of $1,250 when the account was opened on June
13

176

a deposit of $500.00 on August 15;

a withdrawal of $630.00 on September 20;

a deposit of $200 on September 25;

a withdrawal of fifty dollars ($50) on October 15.

9. Display a directory of all savings accounts.

10. Display a directory of all accounts at Sic Semper
Savings.

177
the
Q10 TQS

in
performance
Q8 Q9

collected

Q7

data
first page summarizes subjects' responses

Q6

Q5

Appendix H
The next page summarizes

summarizes

Ql

The
Q3

to the questionnaire.

measures.

appendix
Q2

This
experiment.
Q1

O OO NN
ST oM onomnar

NS 0N g

nonNgT Nt Nn o3

Mmoo Mt M N A

[ToRTaNTa W~ JRTaRTioR- SRTaRIQ

[To R TaRTaRTa Nl i~ IoRIaRiaRes)
*

NIt N nmng Ny
L

[TaR= Tl di Ta T~ g~ Rl g R T R RYO RN

(Ta P~ TaRTaRTa Tk~ JR TR o B~ gRVe Y

bl i i S S TR R B = Bt
° v

NS T OT TOTE

NO
AIDS

g
oo

L i “ou

e

e T L))

4,
83—

mean

oo MmNy QO
MmN MM ™M
g T oM oY
MmN D O W
MM MO ONQLN WD 0N N0
(TaRToNTaNTaRiaRIaRTIaNIa R SRTaR R Ye)
NN OIS O

LR =)
T rMaTnnaad

° (N
MO NN = NN

[ag]
nmiin=r NN g o

M NI TN
L]

NI TNT OO

HELP

41
39.7

OO MMANAIOO Q-
MmNt M

3.06

[TaRTaR Tt i TaRIa B~ g~ gp= g 1g}

4.6
.516

S o = R TR Ta R Ta R T QR i s g o
= 0

.

S TeNTa N aRTal- i TaRIoRIal- g el oy
= =

[TaRToNTaR= i iaNiaRiaRiaRTiaRigRe R o)

-

= ™M

LNk %k ook I DLWk N

TN oN O
*\O

= O

.

NN NS o IO

.
=T 0N
IO WD NN0O0
.
= Wi
=SSN TN I oNm
e
= =
N IOMNINO -
*\O
=T \O
n .
[{ o]
Q .
g v

USER
AIDS

* indicates manual was not used at all

NO
AIDS

mean
s.d.

HELP
MODE

mean
s.d.

ON-LINE
AIDS

mean
s.d.

COST: computing costs for entire session

COST INPT

1.36 1243
1.28 1155
1.45 1309
1.69 1299
1.61 1188
1.56 1144
1.72 1342
1.34 1145
1.45 1199
1.54 1166
1.50 1219
. 149 4.2
1.67 1266
1.481 1034
1.73 2090
1.44 1232
2.04 1453
1.65 1936
1.58 1375
1.51 1265
2.01 1991
1.84 2487
1.69 1613
.220 476
1.50 1850
1.85 1243
1.09 1596
1.90 1958
1.79 1783
1.56 1155
1.68 1463
1.52 1310
1.36 1684

.88 924
1.51 1496
329 335

CNCT

1795
2188
2274
2360
3965
3434
2816
1822
2090
2622
2537

700

3388
2175
2328
1363
2497
1724
2130
1652
2530
3028
2281

622

1840
1656
1101
1934
1350
2235
1906
1436
1901
2111
1747

356

PRNT

858
990
990
1122
1056
990
1254
858
990
1056
1016
117

1056
858
1452
858
1320
1584
990
990
1386
1848
1234
335

1188
1056
1452
1386
1320
990
1518
990
1716
858
1247
276

TOT UNQ

N OIUIN) 0O N coUtovn
SO EENDAUIND & & 820

n
« N
N e
-—

m—

—

= O
¢ PO -
¢ Oh
[G Y

—

- —

(@)
-t -3
U= U110 —= =0 VOV~ WOWO O E—
w
~3
WUl e ~JUTOVON = = OV 2 00 OO = ENIJO NN O

. =3
w
o

(VL)
W
¢ O

——

w

(@]
=

178

RPT

©
Iz 0

e W
e

WO OO 00 --MNDON WO EWOOoOMMOW O~NJW-20DWWoE-NO

INPT: approximate number of lines (commands & data) entered
CNCT: connect time (in seconds) to perform all tasks
PRNT: approximate number of lines printed by system
number of logical and syntax errors

ERRORS:

TOT: total number of errors
UNQ: unique errors

RPT: repeated errors

179

Appendix I

This appendix summarizes data collected 1in the
experiment by grouping the NA (no aids) subjects with H
(HELP mode) subjects who did not use the HELP mode.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 TQS

419
36
39
39
u1
35
35
42
37
36

NO
AIDS

EEEUVEEEE&SEE
SEUITUVIE UV EWUN
EFUITULESW SO E S0
S0 EUTU ETUTU
EoviwEVIUVTLEWU
EUiUViE = E0UEU

35
39

DIDN'T 38

43
35
29
34

37.29
.50

USE
HELP

NEEsREE EEUEEREFOE
== Eojuioiw ot & S EnEd
= EUvTiuiul & IO Ul & ROt Ul
Urhw HFwinw Whwww FWwwww

W EUlEEW
£ Uit
W eEUEEE
(G RCIRG RO R0) RO RE)]
WW Ul Ul

3.88 4.53 u,71 4.82

.624 .

mean
s.d.

Ui oo ZEoEviuuuniw
o

. =
o
—w
e xes)

g
h e
D —
—~ N
°
(o)}
O
-~3J

4=
Oh o
N =
==
(o))
) —a
g
-3
o
L)
e}
(U
e W
-J
= O
o O

4=
-3 e
QO w
n Ui
W

5.0

bRe)
39
43
33
42
42
40
42
37
41

4=

ON-LINE
AIDS

S EUIEVIULEU ST
FWEUEESWUEE
Ul &UTUT 4T % &= %k UL
EUTUTU S UTW U UL I
eI E ERFEFE

.4 4.0
.516 .667

39.7
3.06

mean

~3 O VIwUl I &= Fw & &

ww JEEsU U EF
[e)W @)) UIUIUL EFUTU EUl =&
OO JIUJTUI U Ul = ot Ul
OOy Ul & = EUl Ul Ul

Ul =
—

.516 .

n
Q.
o =
O
= =
oo
Ul =
——
w =
—
- =
O .
Ul

Q1 through Q10: responses to questions 1 through 10
TQS: total of Q1 through Q10, except for Q6

%# indicates manual was not used at all

NO
AIDS

DIDN'T
USE
HELP

ON-LIN
AIDS

COST:
INPT:
CNCT:
PRNT:
ERRORS

—_ e O) e e

—

I1

E

—t e) i w3) A 3

.50
.85
.09
.90
.79
.56
.68
.52
.36

.88

1

computing costs for entire session

.329

51

INPT

1243
1155
1309
1299
1188
1144
1342
1145
1199
1166

1266
1034
1232
1453
1936
1375
1265

1279
197

1850
1243
1596
1958
1783
1155
1463
1310
1684

924

1496
335

CNCT

1795
2188
2274
2360
3965

T 3434

2816
1822
2090
2622

3388
2175
1363
2497
1724
2130
1652

2370
698

1840
1656
1101
1934
1350
2235
1906
1436
1901
2111

1747
356

PRNT

858
990
990
1122
1056
990
1254
858
990
1056

1056
858
858

1320

1584
990
990

1048
189

1188
1056
1452
1386
1320

990
1518

990
1716

858

1247
276

TOT

~NUViNDoo oo N U ovn

(o))
¢ 3 — -
s AV OO = -

N e

—
=~ U~ A= 0EO

180

ERRORS

UNQ RPT
5 0

4 2

y 1

4 4

2 0

5 3

5 3

2 0

4 1

4 3

6 5

4 0

2 0

6 0

7 3

5 4

Yy 2
4.29 1.82
1.4 1.7
8 2

4 0

6 2
11 1
11 0
6 0

6 1

5 0

7 0

1 0
6.5 .6
3.03 843

approximate number of lines (commands & data) entered

connect time (in seconds) to perform all tasks
approximate number of lines printed by system

: number of logical and syntax errors
total number of errors

TOT:

UNQ: unique errors

RPT:

repeated errors

181

Appendix J

The following guidelines for message construction were

developed in the course of implementing and wusing the
on=line aids portion of the User Interface.

1)

Empty messages should be carefully worded. It may not be
entirely correct to tell a wuser that ™"no error has
occurred" when the EXPLAIN ERROR aid is empty. Perhaps
the empty condition represents an oversight on the part

of the programmer who omitted a call to UISET, or the

inability of a wuser to distinguish between prompts and

2)

error—messages——These—possibilitiescan, of —course, be

described in successive messages of the empty script.
which can also refer the user to other aids.
Whenever possible, a message should end with an

indication of what the user may do next. If a question

3)

was asked, the question should be repeated. Messages
should indicate when additional messages in a script are
available. For example, all but the last example in a
series might end with "ENTER *eg FOR ADDITIONAL
EXAMPLES."

User aids should not be used as an opportunity to make
messages as short as possible. Even when an initial
message must be brief, it can contain useful information.
Messages should be specific (e.g., "FILE NAME MORE THAN

14 CHARACTERS" rather than "FILE NAME TOO :LONG"); they

4)

5)

6)

182

should indicate when input 1is 1ignored (e.g., "INVALID
FIELD NAME:; COMMAND IGNORED" instead of "INVALID FIELD
NAME"), and they should indicate the form of the expected
response (e.g., "DELETE? (Y or N)™ rather than
"DELETE?").

The user aid routines are designed to provide several
different aids simultaneously, rather than a single HELP
command. This design does not preclude having a command
that explains the function and use of all the other user
aids. Nor does it preclude the ability to associate a
seript with more than one aid. There may be situations,
for example, when a request for EXPLAIN ERROR, EXPLAIN
QUESTION, and EXPLAIN FORMAT can be satisfied with the
same information.

Messages should be polite. They should not be
anthropomorphized (e.g., "MY MEMORY BANKS ARE
OVERLOADED") . Whenever possible, error messages should
reflect system limitations rather than the user's
inadequacy (e.g., "FILE XYZ CANNOT BE FOUND" instead of
"NON-EXISTENT FILE: XYZ").

When several aids are provided, there should be a
general-purpose aid that describes all other aids; the

sign-on message should identify this aid. For example:

SYSTEM X VERSION Y

For available user aids, enter HELP.

