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This mpaper presents algorithms for five NP-hard problems:

the vertex set cover of an undirected graph, the set cover of a

collection of sets. the clique of an undirected graph, the set
pack of a collection of sets, and the k-dimensional matching of
an undirected graph. FEach algorithm has its worst case running
time bounded by a polynomial on the size of the problem instance.
Furthermore, we show that each algorithm gives an optimal or
near-optimal solution with probability one, as the size of the

corresponding nroblem instance increases.
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1. Introduction

Recent efforts in the design and analysis of algorithns
have bheen directed toward designing thz so-called "probabhilistic
algorithms®, i.e., fast algorithms which may give an incorrect or
a non-optimal solution with small probability, but which solve
otherwise intractable (i.e.; WP=complete or WP-hard) nproblens:
For example, [R] gives a fast algorithm for testing whether a
number is prime, [AV] and [P] give polynomial time algorithms to
find Hamiltonian «circuits in a graph, [GM] has an algorithm to
color a graph, and [HT] and [K] give fast algorithms to solve the
Buclidean Traveling Salesman Problem.

This approach has been successful even for problems for

which it seems to bhe hard to get a solution of some quaranteed
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accuracy. In this pnaper, we examine five WP-hard oroblems of
this type. Although these problems have distinct structures and
constraints, we have a uniform method to derive a fast proba-
bilistic algorithm to solve each of them.

Our main result is Theorem A in Section 2. 1In Section 3 we
consider two minimization NP-hard problems: the vertex set cover

of

a graph and the set cover of a collection of sets. 1In Section
A we consider three maximization NP-hard problems: the clique of
an undirected graph, the set pvack of a collection of sets, and
the k-dimensional matching of a graph. For each of these prob-
lems we present an algorithm, derived from the algorithm of
Theorem A, with its worst case running time bounded by a polyno-
mial on the size of the problem instance. Furthermore, as corol-
laries of Theorem A, we show that each algorithm gives an optimal
or near-optimal solution with probability one, as the size of the
corresponding nroblem instance increases.

For the problems studied in this »aper, we have been unable
to find in the literature any result stronger than our algorithms
and the corresponding theorems on their probabilistic perfor-
mances.

By designing and analyzing algorithms for different NP-hard
problems using our uniform method for all of them, we intend to
provide some insight on a uniform and general probhabilistic ap-
proach to solve all the NP-hard problems derived from NP-complete
problems, in spite of their different structural characteristics.
One can certainly expect to see additional applications of our
method to other NP-hard problems in the near future.

In the following sections, let I = 7,2,...,n}. For a

finite set R, let random (R) be a function which returns an ele-



ment of R chosen at random with equal probability among the ele-
ments of R Let log denote the natural logarithm function let
(%1% and [x]_ denote the smallest integer not less than x (i.e
the ceiling of x) and the largest integer not greater than x

(i.e., the floor of x). respectively.

2. Lemmas and Theorem A

Let A be a finite set, and let pC A x A be an irreflexive
and symmetric relation defined on A. Let us say that a subset S

of A has the pronerty Rﬁiff for any a, b € 5, a P b.

In this section we use the following condition.
Condition A: there is a fixed p, 0<p<l, such that for any a, b &
A, we have a P h with probability p, independent of other pairs

of elements in A bheing related by p-

To prove Theorem A, we need two lemmas as follows.

Lemma 1l: For 0<p<l, n>0, 0<e<1l, and b(n)=[(1-€) log n/llog »nl]_

we have that

(1—@)}[ n/b(m 1t -1 .

b(n) {1 -1/ n =0 (1/n 7).

Proof:

We want to show that
+
- [ n/b(n)]" -1
n? b{n) {1 - l/n(1 G)} > 0, as n=> 9, (2.1)

Consider the log of the left-hand side of (2.1) =

2 log n + log b(n) + {fn/b() 1% =1} log (1 - 1/n(178)

<2 1og n + log b(n) + fin/bm 1% -1} ( -1/n(17%)

n® [log »l
~ 2 log n + log[(l-€)log n/llog »nl] -

(1-€)Ylog n

+ 1/n(1-€) (2
since log(l-x) < -x, for 0<x<1.

[3]



The last expression in (2.2) tends to = ®, as n > O (the
third term increases faster than the other terms), so that (2.1)
is true.

N.E5.D.

The following lemma is proved in [M].

Lemma 2: Under Condition A, if M, denotes the 1largest existing

n

subset of A with property P
lim M /log n = 2/11og »nl, with probability one.
n = 00
(By convergence “with probability one" we mean "almost sure® con-

vergence as defined , e.g., in [F]).

Theorem A: Under Condition A, if IAl = n, there is an algorithm
whose worst case running time is O(q(n)nz) (i.e., reguiring at
most 0(g(n) nz) computational steps) , where q(.) is a polynomi-
al, such that

A 1

1> > ,a35 n> %, wyith nrobability one,
M 2

where A, denotes a subset of A with the property p computed by

the algorithm, and M_ denotes the largest existing subset of A

n

with the property P

Proof:

Let us consider the following algorithm.

(41



Algorithm A
(Let 8 and T be sets. S is the output)

(1) 8 := enpty; T := A\

(2) while T is not empty do

(3) a := random (T); T := T - {a};

(4) if (for all bES, apb) or (S = empty)
(5) then s := 3 |J {a} fi

(5) od

P

Assuming that there is an integer wvalued vpolynomial q(.)
such that it takes at most g(n) number of steps to check whether
an on line (4) above, the worst case running time of Algorithm A
is O(g(n) nz), since in each iteration of the statements on lines
(2)-(5) the cardinality of T decreases by one and the cardinality
of S increases at most by one. In each iteration also, it is
clear that S has the property P

Let S(A”P) denote the output 8 when Algorithm A is applied
on p C A x A. As in the statement of this theorem, let A =
ISQﬁ,p)l if IAl = m. Our probabilistic model will be assumed to

he 1incremental in the sense that the seguence AO,Al,A,,.,. of

random variables is sampled as follows: 11 we increase IA! by
one by augmenting A to get, say, A' = A|J {al where a is not in
/A, and a is the element chosen by the function random (at line
(3) of Algorithm A above) ; [2] the relation P is also augmented
to get I:)' CA x Ay P' =p U por where pj c A x {a} and Po is
sampled according to Condition A; 31 if SQQ,P)(J {a} has proper-

ty p, then by Algorithm A S(QQ,P') = S(AyP) J fal. Ntherwise,

SQQ’,P’) = S(Ayp). Therefore, Ael A, <1 for m=0,1,2,ce. =
Let s; = ain{IAl : lSQﬁ,P)I = i} = nain{m : A =i}, for
i=1,2,3,... , and let sp = 0. Since the sequence {Am : mzo} is

[5]



non-decreasing, the sequence {s; : i>0} is also non-decreasing.

We now ohserve that if Algorithm A, at some iteration of

i

the statements on lines (2)-(5) has |S]| i (i.e., so far it has

found i elements of A with property P) then pi is the probability
that the next element to bhe examined by the algorithm is related
to all elements in 5. Hence, (l—pi)j'l for j=1,2,3,... is the
probability that each of the next (j-1) elements to be examined
is not related to at least one element in 8. Thus we have, for
all integers i,j>1,
Pri{sjy; -s; = 3} = (1—pi)j"lpi, and sy -sp = 1 (2.3)
From (2.3). for any positive integer value k we have

E Pr {(Si+l "Si) = j}

1<j<k-1

2 (1- plyd=1pt

1<3<k=1

i

it

I

]
pa—y
|
=
J
3
[S
~—
~
|
p—

(2.4)
In the following, we want to show that. for any € > 0,
}i Pria, < (1-€) log n/llog ol} is finite.
0<ng ®

For any real x, A, < x implies A <[x]_, since Aj is an in-

n
teger value. Thus, for any arbitrary € > 0 we have

Pr{An < (1-€) log n/llog ol b o< Pr{An < b(n)} (2.5)
where b(n) = [(1-€) log n/ llog »| ]_ (2.5)

For any positive integer i, Ay < i implies s; > n (as we
noted hefore, the sequence {si : i>0} is non-decreasing). Thus

we have

Pri{a, < b(n)} < prf Sb(n) > n} (2.7)

[5]



Since s = zg { Si+1 —si) for b(n) > 1, we have

b((n)
0<i<b(n)-1

Pr{sb(n) > n} < pr{ U ( sij+1 —S3) > n/b(n) 1}

N<i<b (n) =1
i Z Pr-{ (Si+l "Si) 2_ n/h(n)}
0<i<h (n)-1

For any real x, (sj,.q —5;) > x implies (541

._.Si)

(2.8)

>

rx1t

Since (sj47 —Si) is an integer value. Thus from (2.4) and (2.R8)
25 Pr{ (541 —S3) 2 n/b(n) 1}
0<i<b (n) -1
hY 2 Pr { (sj,; -s;) > [n/b(m)1% }
0<i<b(n)-1
) [ 1 - Pri (554 -5p) < [n/b(m)1% ]
0<i<b(n)-1
. zg (1< ol )[ n/b(n)1t -1
N<i<b(n) -1
< bm 1 - pPmy! A/o(m T -1
~ b {1 - 1in(1=8)y ! n/b(m17 -1 (2.9)
since pP(n) w~ p(l-e) log n/llog pl _ 1/n(17€)
By Lemma 1, the last expression in (2.9) is o (l/n2 Y  so
that there exists a positive integer Ng such that
}Z Pr{ A, £ (1-€) log n/llog ol }
0<{ng oo
< e opb(my (/21T -1
Oingno—l
+ jg 1/n > ¢ o (2.10)
nping ®

17}



By the Borel-Cantelli lemma, (2.10) implies that, with pro-
bability one, for any choice of € > 0,

An

lim inf > (1-2)/1log nl (2.11)
n > log n

Since € is arbitrary, (2.11) implies that

An

lim inf > 1/|log pl (2.12)

n-=> o0 log n
with probability one.

On the other hand, by Lemma 2, M, is such that

il
lim - = 2/1log pl , with probability one. (2.13)

n = 0 log n
From (2.12) and (2.13) we have

A 1
lim inf > ,.with nrobability one. (2.14)

n-=> o M 2

Since we know that An/Mn.i 1, the theorem follows.

NaloDy
3. Minimization Problems
3.1 Vertex Set Cover Problenm
Let G = (V, E) be an undirected graph (V is the set of ver-

tices, F is the set of edges). A vertex cover of G is a subset §

of V such that each edge of G is incident upon some vertex in S.

The vertex cover problem (VC) is to find the smallest vertex cov-

er of G. This nroblem is known to bhe WP-hard [AHU].

(el



Algorithm VC

(Let Vv = I,, and let S, S', and T be sets. S is the output)

S = V; S' 1= V;
T := empty;

while 5' is not empty do

v := random (S');
S' 1= 38' - (v};
if v is not connected to all vertices in T

then T := T ) {v}; 8 := 3 - (v} fi

od

Clearly, the worst case running time of Algorithm VC is
O(nz), and § is a vertex cover of G.

For the probabilistic analysis of Algorithm VC we assune
the following (as in [AV], [GM], M1, and [P]).

Condition VC: there is a fixed p, 0<p<l, such that any
pair of vertices {v,v'} has probability p of being a member of E,
independent of other pairs of vertices being members of E.

Corollary VC: Under Condition VC, let VC(n) denote the
cardinality of S computed by Algorithm vC, and let m, denote the
cardinality of the minimal vertex cover of G. Then

VC(n)

~1l, as n > 00, with nrobability one.

n

Proof:

For the vertex cover problem, the set A of Theorem A is in-
terpreted to be the set V, the statement a P b to mean a "not
connected to" b. Then Condition VC is equivalent to Condition A,
and the set T in Algorithm V{ has the property P Therefore,

from (2.12), since |V} = n, we have

9}



Tl
> 1/llog pl, as n> o,
log n with probability one. (3.1)

In Algorithm v¢, S UT =V, and S and T are disjoint. Then

ISl = n - IT|, and (3.1) implies that, as n > 00,

sl n I
log n log n log n
n 1
i —
log n [log n]
n
£ — » with probability one. (3.2)
log n

On the other hand, if M, denotes the largest existing sub-

set of V with property P then Lemma 2 says that

M
n
— ™~  2/l|log nl , as n > 0,
log n with nrobability one, (3+3)
Since My My = n, (3.3) implies that
m n
~ - 2/llog »l, as n > o,
log n log n with probability one. (3.4)

Then (3.2) and (3.4) imply that

sl

< 1 +0 (1) , as n=> 9, wyith nrobahility one. (3.5)

.';1n

Since we know IS1/m, > 1, the corollary follows.

N.H.D.
3.2 Set Cover Problen
Let n and k be positive integers such that k = max(3,n),
and let C = {51,97, .. ,Sn} be a collection of sets of, let us

say, positive integers such that Is;1 <k for 1<i<n. A set cover

r1o1
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1
U. Si_ = U Sj .
1<3¢h ] <gn

of C is a subcollection S5 S: } aeas Sih such that

-]

The set cover nroblem(SC) is to find the smallest set cover of C.

This problem is known to he NP-hard even 1if (i) 1831 < m, for a

fixed m>3, and for 1<i<n (see e.qg. [GJ)); and (ii) if s € S; for
some i, 1<i<n, then there is at least one j#i, 1<j<n, such that s

e Sj (see e.g. [A%MU]). Throughout this section, we assume (ii).

Algorithm SC

(Let S, S', and T be collections of sets. S is the outnut)

S

:= C; 8 := C

-
[4

T = enmpty ;

while S' is not enptv do
5; := random (8'); S' := 3' - {Si};

if 53 dis-disjoint from all sets in T
then T := T L){Si}7 S 1= 8§ - {Si}
£i

od

Clearly, the worst case running time of Algorithm 8C 1is
e 2 2 a3
0(k“n*), and S5 is a set cover of C.
For the probabilistic analysis of Algorithm SC we assune
the following:
Condition SC: there is a fixed p, 0<p<l, such that given
any pair of sets S, and 55 in ¢, we have that Pr{ Sy and 5, are

disjoint } = p, indenendent of other pairs of sets in C.

Corollary SC: Under Condition 3¢, let SC(n) denote the
cardinality of the set S computed by Algorithm SC, and let m,

denote the cardinality of the minimal set cover of C. Then

fim



SC(n)
~ 1, as n=> 9, with probability one.

Proof:

This proof is very similar to the proof of Corollary VC.

For the set cover problem, the set A of Theorem A is inter-
preted to be the collection €, the statement a P b to mean a
‘disjoint from" b, Then Condition 5C is equivalent to Condition
A, and the <collection T in Algorithm SC has the property P
Moreover, an incremental sampling of an SC-instance, as described
in the proof of Theorem A, is feasible. Therefore, fronm (2.12),
since |C! = n, we have

Tl
> 1/1llog pl, as n > o,

log n with orohability one. (3.5)

In Algorithm SC, S|J T = ¢, and S and T are disjoint. Then

I6}-=mn -7, and (3.5) implies that, as n > 00,
S| n Il
log n log n log n
n
£ - - 1/1log pl
log n
n
< ————— . with nrobability one. (3.7)
log n

On the other hand, if M, denotes the largest existing sub-
collection of C with property P then Lemma 2 savys that

I

n
— ™ 2/llog p| , as n > o0,
log n with probability one. (3.8)
Since n, + My = n, (3.8) implies that
m n
~ - 2/1log pl, as n > o0,
log n log n with probahility one. (3.9)

Then (3.7) and (3.9) imply that

riz]



s

<1+ o (1), as n> 9, with probability one. (3.10)

My

S5ince we know lSl/mn > 1, the corollary follows.

D.8.D.

4. Maximization Problemns

4.1 Clique Problemn.

Let G = (V, E) be an undirected graph. A clique of G is a
complete suhgraph of G (i.e., any pair of vertices in the sub-

graph is connected to each other by an edge). The clique problem

(CL) is to find the largest clique of 6. This problem is known

to be NP-hard [AHU].

Algorithm CL
(Let -n-he a positive integer, let vl = ny, o and let STUaAd T bhe
sets. S is the output)

S 1= empty; T := V;

while T is not empty do
vi= random (T); T := T - {v}:
if.s U {v}l is a clique

then 8 := SJJ {v} £i

od

Ly

Clearly, the worst case running time of Algorithm CL is
O(nz), and S is a clique of G. (Ry duality, Algorithm CL may be
changed to find a feasible solution to the maximunm indenendent
set problem, i.e., the problem of finding the largest set S of
vertices in G such that no two vertices in § are connected. For
the maximum independent set problem, an algorithm which does not
select the vertices at random was independently studied in [6M],

131



assuming a sampling model which is not incremental).
For the orobabilistic analysis of Algorithm CL, we assume

Condition VC for the gqgraph ¢ = (v, R).

gorollary.ggz Under Condition v, let <¢L(n) denote the

cardinality of the set 35 conputed by Algorithm CL, and let w,

denote the cardinality of the maximal clique in G. Then

CL{(n) 1
1> > -as n > O, with orohahility one.

Mo

A

Proof:

For the cligque problem, the set A of Theorem & is inter-
preted to be the set Vv, the statement a P b to mean a "connected
to" b. Then Condition CL is equivalent to Condition A, and the
set S8 in Algorithm CL has property P-

Then Theorem A directly implies this corollary.

N.E.D.

i
{0

Set Packing Prohlem

Let k and n bhe positive integers such that k = mnax (3,n).
and let ©C = {51' 87, .o Sn} be a collection of sets of, let us
say, positive integers such that Is;1 < k for 1<i<n. A set npack

of € is a subcollection 5; ,S mee s S: of pairwise disjoint

Ty ih
sets. The set packing problen (5P) is to find the largest set

pack of C. This problem is known to be NP-hard, even if ISiI <

m, for a fixed m > 3 and for Liiin. (see, e.qg., [GI1).

[14]



Algorithm Sp

(Let S and T be sets. S is the output)

P

5 o= empty; T := C;
while T is not empty do

S; = random (T); T := T - {S;}:

if S, is disjoint from all sets in §

e |

then 8 := s |) {s;} £i

od
Clearly, the worst case running time of Algorithm 8P is
2.2 . ;
0(k“n®), and S is a set pack of C.

For the probabilistic analysis of Algorithm SP, we assume

Condition BC for the collection 7.

Corollary SP: Under Condition S5C, let SP(n) denote the

cardinality of the set g computed by Algorithm SP, and let M

denote the cardinality of the maximal set pack of C. Then

SP{(n) 1
1.3 e > ——  ,as n > 00, wyith nrobability one.
M 2
n ?

Proof:

For the set packing problem, the set A of Theorem A is in-
terpreted to be the collection T, the statement a P b to mean a
"disjoint from" h. Then Condition 5C (as in the proof of Corol-
lary s0) is equivalent to Condition A, and the collection S in
Algorithm SP has the property p. MMoreover, an incremental sam-
pling of an SP-instance, as described in the proof of Theorenm A,
is feasible.

Then Theorem A directly implies this corollary.

QOE.DC
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4.3 k-Dimensional Matching Problem

Let k and n bhe positive inteqgers such that k = max(3,n),

and let Ay = {all’al2"°°'a1n}' Ay = {a21,a22,...,a2n},

seer A= {akl'ak7"“'akn} be pairwise disjoint sets, and let T
be a subset of Ay X Ay X .. % A, with |T| = n. a matching of T

is a subset S of T such that no two elements of S aqree 1in any

coordinate. The k-dimensional matching problem (DM) is to find

the largest matching of T. This problem is known to be WNP-hard
even if we have a fixed k = 3 G171,
Algorithnm D
(Let S and U be sets. S is the output)
S 1= empty; U := Ts
while U is not empty do
u = random (U); U := 1y = ful;
ii S |J fu} is a matching of T

t@gg S = S |J {u} fi

od

Clearly, the worst case running time of Algorithm DM is
0(k n2), and the set S is a matching of T.

For the probabhilistic analysis of Algorithm DM we assume
the following:

Condition DM: there is a fixed P, 0<p<1, such that, given
any pair of elements t1 andad o in T, we have that Pr {tl and t2
disagree in all k coordinates} = p, independent of other pairs of

elements in T.

Corollary DM: Under Condition nM, let DM(n) denote the
cardinality of s computed by Algorithm DM, and let M, denote the
cardinality of the maximal matching of T. Then

[151]



DM (n) 1
1 > > p88 NS> 00, ywith probability one.

i 2
/In 2

Proof:

For the matching problem, the set A of Theorem A is inter-
breted to bhe the set T, the statement 3 P b to mean a "disaqree
in all k coordinates with®" b. Then Condition DM is equivalent to
Condition A, and the set S5 in Algorithm DM has the property p.
Moreover, an incremental sanpling of a DM-instance, as described
in the proof of Theorenm A, is feasible.

Then Theorem A directly implies this corollary.

(171
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