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The main purpose of this work is to give some conditions which
are both necessary and sufficient that a solution to a linear pro-
gramming be unique. Dantzig [1] gives a sufficient condition which
is clearly not necessary for uniqueness. Dantzig's uniqueness
condition for a Tinear program in canonical form is that the optimal
reduced costs are positive. Fijacco and McCormick [2] give a second
order sufficiency condition for a nonlinear programming problem to
have an isolated local minimum. This condition can, as they point
out, be specialized to give a sufficient uniqueness condition for a
linear programming problem. It turns out that this condition is
also necessary for uniqueness in linear programming as we show below,
Theorem 2 (iv). Another interesting fact about this specific
characterization of uniqueness is that it implies the equivalent of
the LI (1inear independence) condition [4] or more generally
Robinson's regularity condition [5,6,7] for the dual Tinear program
constraints, which in turn ensures their stability in the sense of
Robinson [5,6,7].

Our principal results are contained in two theorems. The first
one, Theorem 1, is a particularly simple characterization of unique-
ness which states that a linear programming solution is unique if
and only if it remains a solution to each linear program obtained by
an arbitrary but sufficiently small perturbation of its cost row.
Theorem 2 gives a number of other characterizations of uniqueness

which are equivalent to the condition of Theorem 1. Among these



characterizations, (v) and (x) are probably the easiest to verify
computationally as indicated in Remark 2 following Theorem 2.
Uniqueness of the optimal dual variables can be characterized in a
similar way to that of the optimal primal variables. We state such
characterizations in Corollaries 1 and 2.

We shall consider the linear programming problem of finding an

X in the n-dimensional real Euclidean space R" that will

T
Minimize p 'x

]
o
—~

—l
~——

subject to Ax
Cx g:d

where p, b and d are given vectors in Rn, R and Rk

respectively, and A and C are given m x n and k x n matrices
respectively. Associated with (1) is the dual linear programming

problem [1,3] of finding u 1in R and ¥ in Rk that will

Maximize bTu + dTv

T

subject to A'u + cly = P (2)

v>0

The choice of the form of the Tinear program (1) is rather arbitrary
although it somewhat simplifies the statement of the results of

Theorem 2. Note that by appropriately partitioning the constituents
p,A,b,C,d of problem (1), a very general linear programming problem

can be obtained, that is one with equalities and inequalities which



involve both unrestricted and nonnegative variables. For forms other
than (1), Theorem 1 would not change in essence, that is we would
still consider arbitrary but small perturbations of the cost row.
However, the results of Theorem 2 would have to be modified appropri-

ately. Our first principal result is the following.

Theorem 1 A solution X of the linear program (1) is unique if and
only if it remains a solution to all linear programs obtained from
(1) by arbitrary but sufficiently small perturbation of its cost
vector p, or equivalently for each q in R"  there exists a real
positive number € such that X remains a solution of the perturbed
Tinear program

Minimize (p+eq)Tx

(3)

1]

subject to Ax =D

Cx;d

Proof <>'< is a unique solution of (1)>

quRn,é XsUsVah € pmHkHTy
Ax =-Dbrx =0
Cx =-drx2>0
T -
. -A'u - Cv +pr =0
b4
v 20
u + dTv - pTx >0

-q X+ qTiA >0

A >0



(The forward implication holds because otherwise A']x would be another
solution of (1). The backward implication becomes evident if we note

that qT(x—i) >0 forall q in R" is equivalent to x-X = 0.)

quRn, AXsYsUsV,oBsEsY €Rn+k+m+k+3:
-Ax + bg = 0
-Cx +y+dg =0 (By Motzkin's
- T . (4)
Alu+ C'v -pB=-qe =0 theorem [3])

by - dlv + pTx + qTia +v=0

VoYsBs€sY Z 0, e+vy >0

quRn, IX,UsV,B,€E éRn+m+k+2:

= Ax = gb, Cx > Bd, pTx = BpTi, B>10
ATu +cly = Bp + €q, blu + dly gz(Bp+eq)Ti, v>0,e>0
(The backward implication is evident once we substitute pTx = BpTi

in bTu + dTv:; (Bp+€q)T§. The forward implication follows from the

following considerations. Let (4) hold. The case of € =0 is excluded
because that would contradict the existence of an optimal solution Xx to

(1). So e >0,y >0, and it only remains to show that pTx = BpTR.

T T

From Ax = b, Cx >d, v > 0 we have that uTAi =bu, VTC§ >d'v and

consequently

T T

pTx + eqTx_ ;:bTu +dv ;:RT(ATu+C v) = BpTi + eqTi

Hence pTx:; BpTi. But BX s a solution of the linear program:

Min {p'x: Ax = 8b, Cx > gd}, for B >0, and x is feasible for this

Tinear program, SO pTx = BpTi.)
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quRn, Ju,v,B,e eRm+k+2:

= ATu + CTv = Bp + €q, bTu + dTv = (Bp+€q)T§ (5)

v>0,8>0,¢e>0

(Because x = Bx satisfies the conditions Ax = b, Cx > Bd,

pTx = BpTi and (Bp+eq)T§ = AR + vicx ;:bTu + dTv.)
quRn, du,v,e eRm+k+]:
= ATy + cly = p + €q, blu + dly = (p+eq)T§ (6)

v>0,¢e> 0

(The backward implication is evident if we set B = 1. The forward
implication is again evident for the case of g8 > 0 upon normaliz-
ing the relations of (5) with respect to B. Suppose now that for

some q the relations of (5) hold with 8 = 0. Then X is a

solution of the linear program: Min {eqTx: Ax = b, Cx > d}. But
since X 1is also a solution of the linear program (1), it follows
that X 1is a solution of the linear program: Min {(p+€q)Tx: Ax = b,
Cx > d}., Conditions (6) are the necessary optimality conditions for

X to solve this last linear program.)

= <&qeR", JeeR, € > 0 such that x solves (32>

(Because x is feasible for problem (3), the pair (u,v) s

T T

feasible for the dual of problem (3) and b'u +dv = (p+eq)T§.) O



By similar arguments we can characterize the uniqueness of the

dual optimal variables as follows.

Corollary 1 (Uniqueness of optimal dual variables) The optimal
dual solution (u,v) of (2) associated with a primal optimal
solution X of (1) is unique if and only if it remains an optimal
dual solution to all Tinear programs obtained from (1) by arbitrary
but sufficiently small perturbation of the right hand side vector
[3], or equivalently for each g,heRm+k there exists a real number
é > 0 such that (u,v) remains dual optimal for the perturbed

linear program

Minimize pTx

subject to Ax = b + g (7)

Cx > d + ¢h

We proceed now to our second principal result which gives other
equivalent characterizations of uniqueness of a linear programming
solution. For this purpose we introduce some notation. Let x be
a solution of (1) and let (u,v) be any solution of (2). Let C,

denote the ith row of C. Define

J = {i]C;x=d.}
K= {i]v,>0} = {i]C;x=d,, v;>0}
L = {i|C;x=d;, v4=0}

Note that J = KuL, and that any of these three sets may be empty.
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let C Ck and CL be matrices whose rows are Ci’ ied, ieK and

J’

. o . n
el respectively. For x in R

we shall use in addition to the
notation x > 0, which denotes x, >0, 1 = 1,..., n, the notation
x >0 and x >0 which denote respectively 0 # x>0 and x, >0,
i=1,..., n. To simplify notation in the sequel we shall not
explicitly state the dimensionality of some vectors, it being obvious

from the context. The vector e will denote a vector of ones of

appropriate dimension.

Theorem 2 Let X be a solution of the linear program (1). The
following statements are equivalent:
(i) X s unique
(ii) For each g 1in R" there exists a positive real number &

such that x solves (3).

(ii1) There exists no x satisfying

Ax = 0, C.x > 0, pTx <0, x#0

J

(iv) There exists no x satisfying

Ax =0, C,x =0, C, x>0, x#0

K L

T

K C[] are linearly independent and there is

(v) The rows of [AT C

no x satisfying

Ax = 0, C,x = 0, CLx >0

K
(vi) For each a, c, h, the set {x]|Ax=a, Cyx=c, C\ X > h} s

empty or bounded.

n

(vii) For each q in R" there exists a positive number e such

that the system

T T, _ _
Alu + CJVJ =p teq, vy2 0

has a solution (u,vJ).



(viii) For each s in R"  the system

T T T, -
Alu+ Cvp +Clvp =55 v 2 0

has a solution (u,vK,vL).

n

(ix) For each s 1in R’ the system
T T T _
Alu + CKvK + CLvL =S, V| > 0

has a solution (u,vK,vL).

(x) The rows of [AT C; C[] are linearly independent and
the system

Alu+clv +clv, =0, v

Kk T L >0

L

has a solution (u,vK,vL).

Proof (i) <> (ii1): This is Theorem 1.

(i) <= (vii): From the proof of Theorem 1 we have that (i) is

equivalent to (6) which in turn is equivalent to this: For

n

each g 1in R there exists a positive number e such that

ATu + CTv = p+eq, v (Ck-d) = 0, v > 0

m+k

has a solution (u,v)eR This is equivalent to (vii) because

it follows from Cx -d >0 and v >0 that v, =0 for

i4d, ie{l,2,....,k}.

(vii) = (iv): Let x # 0 satisfy Ax =0, C,x =0, C,x >0 and

K L
we shall exhibit a contradition. Let g = -x in (vii) and let
(u,v) be any solution to (2). Then (vii)and p = ATG + CTV =
- T- .
Alu + CJvJ give

T N T-
Alu + CJVJ = Au + CJvJ - EX, Vy >0



Premultiplication by xT and rearranging gives the contradition

0> —axTx

1]

T .
(u=u) Ax + (vJ—vJ) C 4

0

1]

)T V)T

T
vK-vK C, x + VLCLX:=

Ax + ( K

(u-u

=  (4): We shall assume that (i) does not hold and shall
exhibit a contradition. Let X # X be another solution of (1).
Because the solution set of (1) is convex it follows that for
0<a<1, (T-1)x + Ax also solves (1). Hence for 0 < A <1

pT% = pl ((T-0)%AX)s A((1-A)%#2X) = b = AX,

CJ((1—x)x+Ax) >dy = C %

Consequently

N

T(%-%) = 0, A(X-%) = 0, C

If CK(Q-R) =0, or if K 1is empty we have a contradition to
(iv).  Suppose now that K is nonempty, that 61(2—2) > 0 for
at least one i in K and that (u,v) dis a solution of (2).

Then we have the contradition

0= pl(3-5) = (@A+770) (3-%) = T, (3-5) > 0.

= (v): We shall prove the contrapositive implication.

If the rows of [AT CE CE] are linearly dependent, then there

exists an x # 0 such that Ax =0, C,x = 0, C,x = 0 which

K* L
is a negation of (iv). If there exists an x satisfying

Ax = 0, C,x = 0, C,x >0, then x # 0, and again we have a

K
negation of (iv).

L
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(v) = (x): This follows from Tucker's theorem of the
alternative [3].

(x) = (ix): Let (x) be satisfied and Tet s be any point

T CT

M Since the rows of [AT CK L] are linearly

in R,
independent, there exist u(s), vK(s), vL(s) such that

T T T _
Au(s) + CKVK(S) + CLVL(s) =5

By using the u, vy, v of (x) we have that for a

sufficiently large positive number A(s)

and

T

AT(u(s)*A(s)u) + CR(v (s)A(s)v,) + € (v (s)¥(s)v ) = s

L)
Hence (ix) is satisfied.
(ix) = (viii): Obvious.
(viii) = (iv): If (iv) does not hold then for some x # O,
Ax = 0, CKx = 0 and CLx > 0. By picking s in (viii) equal
to -x and premultiplying the equality of (viii) by xT we

get the contradiction

T _ T,T T-T T.T
0>-xx=xAu+xCuv +xCv 20
(viii) <= (vi):
(viii) <= {u,vy,v lATu+CTv +Clv, =s,v, >0} # @ for each seR”
sV L K'K'VL'L PV =
0T T T, ~T T, _
= Max {autc vgthiv [ATusCpv 4y, =s,v) >0}

U,VK,VL
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has a solution for each seR" and for each a, c, h
for which the set {x|Ax=a, CKx=c, Cinh} # 0. (By

linear programming duality [1,3])

< Min {sTxle=a, C
X

KX=C> Cinh} has a solution for each

seR" and for each a, c, h for which the set

{x|Ax=a, C,x=c, CLx;b} # @. (By linear programming

K
duality [1,3])

<= {x|Ax=a, Cyx=c, CLx;b} is bounded if it is nonempty
<= (vi).,

< (vii): Condition (iii) is equivalent to this: For each

. n
s 1in R

there exists no x satisfying
Ax =0, Cjx > 0, —pTx:; 0, sk > 0
which in turn is equivalent, by Motzkin's Theorem [3], to the

existence of u, Ve £, n satisfying

T
ATU'*'CJVJ"F’E'ST]:Oa VJa g:n;05n>0

Normalization with respect to n and letting s =q + p

gives that for all q in R" there exists u, Vy> £

satisfying
T T
A'u + CJVJ - p(1+£) +q, VJa g _>__=O
Normalization with respect to 1 + & and defining ¢ = T}E~> 0,

gives (vii). 0O
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Remark 1 Just as conditions (v), (vi), (viii), (ix) and (x)
are all derivable from condition (iv), which utilizes the index
sets K and L, similar conditions can also be derived from
(iii) which utilizes the index set J only. Because of this
similarity and to avoid repitition of the obvious we refrain from

Tisting or deriving these conditions.

Remark 2 The easiest way to verify computationally the uniqueness
of the linear programming solution x is probably to paraphrase
conditions (v) or (x) of Theorem 2 above as another linear program
as follows:
' T T T . .
(v') The rows of [A CK CL] are linearly independent and

the Tinear program
- T _ _
Maximize {e'C x|Ax=0, Cyx=0, C x>0}
has a zero maximum.
) T AT AT . .
(x'") The rows of [A CK CL] are linearly independent and

the linear program

Ev +Clv, =0, v >ed}

< T
Maximize {8[A u+Cyv+C v

is unbounded above.
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e state now a similar uniqueness result for the dual problem

(2) but omit its proof.

Corollary 2 Let

(u,v)

be a solution of the dual problem (2).

The following statements are equivalent:

(vii)

(u,v)

For each g,heR

is unique.

such that

There exists no

where K

T

m+k

(usv)

A'u +CTv =

(u,v)

O, bu+dv>0, vy

there exists a positive real number

remains dual optimal for (7).

T

T

is the complement of K

satisfying

K

>0, (u,v) # 0
in {1,2,....,k}.

There exists no (u,vK,vL) satisfying

T

T

A'u + Cov

K'K

T

+ C, v

Lvp = 0 v

>0, (

“’VK’VL) 0

€

(
The rows of té ] are linearly independent and there is no
K

(u’VK’VL) satisfying

A

T

u+C

T
K'K

For each qeRn

T

v, + CLvL

the set

T
{u,vp,v, |ATutC

TV

K'K

is empty or bounded.

For each g,heR

m+k

that the system

Ax = b + eg, C

K

X:

T

there exists a positive number

dK+€h

=0, v 20

K9

+C v =q, v, >0}

%

x >d

g+ ehy

€

such

has a solution x, where K is the complement of K in

{1,2’..-

.k},
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(viii) For each r,s,t the system
Ax = r, CKx =3, CLx >t
has a solution x.
(ix) For each r,s the system

Ax =r, C,x=5s, C,x >0

KX L

has a solution x.

(x) The rows of [é ) are linearly independent and the system
K

Ax =0, C,x = 0, CLx > 0

KX

has a solution x.

Remark 3 It is easy to verify that any of the conditions of Theorem 1
imply regularity of the constraints of the dual problem (2) in the
sense of Robinson [5,6] and that any of the conditions of Corollary 2
imply regularity of the constraints of the primal problem (1). It
thus follows that if any of the conditions of Theorem 2 holds and
that if any of the conditions of Corollary 2 holds then both problems
(1) and (2) are stable in the sense of Robinson [7, Theorem 1] for

sufficiently small perturbation of p,A,b,C.d.
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Remark 4 When Theorem 1 holds then for each gq in Rn, x solves the
Tinear program (3) for both e set to zero and to some positive value
€, say, which depends on q. It is easy to show that for a given q,

x also solves (3) for all values of € in the closed interval [0,e].
For if we Tet X denote the feasible region of (3) then for & in
[O,E],-a solution to the Tinear program (3) exists because for all x

in X the objective function of (3) is bounded below as follows

(1-e/E) p'x + (/) (p+Eq) x
;

(P+€q)Tx

> (1-e/2) p'x + (e/8)(p+eq) '

= (pteq) Tk
Consequently

Min (peq)'x > (pteq)'x
xeX

But because X is in X

T) x > Min (p+eq)Tx

XeX

(p+eq

These Tast inequalities give the desired result that

(p+eqT) X = Min (p+€q)Tx for all ee[0,€e]
XeX

By taking q = VFf(X) where f is any numerical function on R" which
is differentiable at x it follows from the above that if X is a
unique solution of (1) then there exists a positive e such that for
all ¢ in [0,e], X satisfies the Karush-Kuhn-Tucker conditions [3]

for: Min pTx + ef(x). If in addition f 1is pseudoconvex or convex at
xeX

X (or on R") then X solves: Min pTx + ef(x) for all e 1in [0,e].
XeX
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