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1. Introduction

In the early 1950's as scientists became concerned with the numerical
solution of partial differential equations there were many papers concerned
with the questions of "stability" and "convergence" of solutions of difference
approximations to time dependent problems (now called "equations of evolution").*
"In 1951 M. A. Hyman, S. Kaplan and G. G. O'Brien [34] discussed this question
and described the von Neumann "stability criterion". In the same year
W. Leutert [32] gave an example of an Qunstable" scheme which, nevertheless,
was in same sense "convergent". These results were followed by many, many
convergence proofs. (See [12],[24],[25] , [26] for a few). In 1956 there
appeared a paper by Jim Douglas Jr. [11] "On the Relation Between Stability
and Convergence in the NMumerical Solution of Linear Parabolic and Hyperbolic
Differential Equations." However, Douglas was distracted by Leutert's ex-
ample and restricted his efforts to the proof that stability (under appropriate

"consistency” conditions) led to convergence. In the same year (1956) the

* No attempt at describing the history of this subject could possibly be complete.
I make no claim that the above discussion is a camplete description of the

early pioneering papers. At the same time, no discussion of this topic can

even begin without mentioning the fundamental paper by R. Courant, K. O.
Friedrichs and H. Iewy [ 9].



fundamental paper of P. Iax and R. D. Richtmyer [30] employed the
principle of uniform boundedness to show that if one demanded convergence
for a sufficiently broad class of problems, then stability and convergence
are indeed equivalent. This result is the famous "Lax Equivalence
Theorem." In 1958 H. F. Trotter* [43] returned to the questions raised
by Lax and Richtmyer and put the results (and theory) into the framework
of the theory of Linear Semi-groups.

During this time an effort was made to understand and clarify the
several possible definitions of "stability." In particular, in 1960

Strang [40] discussed "weak stability" in which the solution operator

becomes unbounded as At-+0 but at a rate which is O(At—P). He proved
the following beautiful theorem: If the solution u(x,t) is sufficiently

smooth, then the discrete solution u(x,t,At) of such a weakly stable

method is convergent to u(x,t) and the "rate of convergence" is that

predicted by the truncation error.. In 1962 H. O. Kreiss [29] wrote a

definitive paper on the relationship between various notions of stability,
the von Neumann Criterion and the concept of "Properly Posed in the Sense
of Petrowsky" (see Aronson [1], Wendroff [44] also).

But here we are, some twenty years later, and most research in mmerical

methods for partial differential equations is not concerned with difference

*This famous paper is particularly interesting. Most numerical analysts don't
realize that it is primarily devoted to the stability-convergence question,
and, most probabilists, who-if they have read the paper-must know, seldcm (if
ever) mention this fact.



methods. The interest is now on Ritz-Galerkin methods, collocation
methods, and in general "Projection Methods." And, as one reads the
present day literature one rarely sees the word " stability." There are
many, many "convergence" theorems (with appropriate smoothness assumptions).
Of course, there is a good reason for this state of affairs. Most
Ritz~Galerkin methods with a continuous time variable are automatically
stable. 1In fact, this observation is the beginning and the motivation
for the paper by B. Swartz and B. Wendroff [42]- one of the early "American®
papers on the subject of Galerkin methods for time dependent problems.
Moreover, much of the research of today is concerned with a host of

immediate questions- e. g. time discretization by multistep methods (see

[2], [6], [10], [52] for a few), replacement of integration by quadrature

methods (see [17], [37]), collocation (see [8], [15], [48]).

Nevertheless, particularly as we begin to look at more sophisticated
projection methods, e. g. collocation, it seems reasonable to look again
at this concept of "stability" and its relationship to "convergence."

In section 2 we formulate the problem of equations of evolution and
semidiscrete numerical methods based on a sequence of subspaces {Xn} and
related projection operators {P }.

In section 3 we discuss same examples. In section 4 we use a modification
of a now standard proof of the "Trotter Approximation Theorem" to discuss

the roles of stability and convergence in a general setting.



This discussion explicitly shows how the semigroup theory clarifies
much of the existing literature. In this connection, it is appropriate
to mention that Helfrich [21] and Fujita and Mizutani [16] make explicit
use of the theory of holomorphic semigroups in their treatment of parabolic
problems.

In section 5 we discuss a particular definition of "weak stability"
and show how one may obtain "convergence theorems" with such methods
provided one has some additional smoothness and makes a particular choice of
"initial values." The results of this section may be regarded as analogs
of the theorem of Strang.

These results of section 5 are also closely related to results of Beals

[ 3] for the partial differential equation.

In section 6 we discuss Parabolic problems in one space dimension.



2. The Problem
Let X bz a Banach Space and let A be a densely defined linear operator
from @) ¢ X intoX. We are concerned with "semidiscrete " mumerical

methods for the approximate solution of the initial-value problem

Qu(t) = Au(t) + £{t) , t>0
2.1) dt
u(0) = Ug € X

where f£(t) is an.X wvalued function of t. By a solution (see [22] page 619]:

[35, page 105] we mean an X-valued function u(t) which is

(1) continuous for t>0 ,

(ii) continuously differentiable (in t) for £t>0 ;
moreover,

(iid) for t>0, u(t)e P@),

and

(iv) equations (2.1) are satisfied.

We assume that equations (2.1) describe a “properly posed problem."

To be more precise; we assume:

H.1l: A is the infinitesimal generator of a CO semigroup T(t),



and, the unique solution of (2.1) is given by
t

2.2) u(t) = T(t) Uy + T(t-s) f(s)ds.

Moreover, the semigroup, T(t), satisfies

2.3) Il < met

—

where M > 0, w > 0 are fixed constants.

A related problem is the "steady state" or time independent problem

2.4) Au + £, =0,

0

where £ 0 is a fixed element of X .,

We assume that this problem has a unique solution u for all

fO e X. In fact, we assune:

H.2: A_l exists as abounded linear operator defined on all of X . More-

over, the "resolvent condition" is satisfied, i.e., there is a constant
M such that, for all real A > 0, (A—)\I)_l exists as a bounded linear

operator defined on all of X and

2.5) I (a=A1) I < M) n

Remark: Assumption H.1 implies an estimate of the form of (2.5). Conversely,
under appropriate assumptions on £(t), assumption H.2 implies H.l. See L35,

page 21].



A large class of numerical methods for the approximate solution of
the steady state problem (2.4) are described in the following mamner.

Let {Xn}?f be a family of finite dimensional subspaces of X. (For

convenience, let dim X = nj. ILet {Pn}OO be an associated family of
et ] — = oL

uniformly bounded projections of X onto Xn with

2.6) e I <M, .

Let {An}oz be an associated family of nonsingular maps fram X =~ onto

Xn . The approximant u_ € Xn satisfies the eguation

2.7) Anu = -—.Pn fne

In fact, the Galerkin method (or , the direct projection method) is
obtained when

2.8a) X  chm ,
and

2.8b) An = PnA'

A typical theorem associated with the above type of approximation
scheme takes the following form.

N
Theorem T : There exists a Banach space X C X with

2.9a) Iyl < cllyll~
X

and a function F(n) + 0 as n -« such that: if u, the solution of

v

(2.4), is in X then

2.9b) lwu_ Il < Fe) lullv .
X



If we define 9 on D@) by
2.10a) Q =A P_A

we can restate Theorem T (T for "typical") as:

n
Iet ue D@ NX ; then

2,10b) HQn u-ull <F@n) llull~ .
X

Once one has developed this procedure for the steady state problem (1.4)
and obtained Theorem T, one is naturally led to consider the following

"continuous time, semidiscrete numerical method" for (2.1): Find a X -

valued function un(t) which is

(1) continuous for t > 0
(ii) continuously differentiable for t > 0

and satisfies the initial value problem

8%:" un(t) = A un(t) + P f(t), £t>0
2.11) 5
un(O) = UO,ne Xn
\
where U is chosen in scme prescribed way so that llu -U I is small.
EE Yon = =22 = o o,n"
In fact, there are two methods for choosing U which come to mind

at once. These are

2.12a) UO,n = Pn u

O r
and, if uge D@) ,

2.12b) U =Q u .



Since A is a linear map from X, to X , and since X is of

finite dimension, each An generates a C 0 semigroup Sn(t) P X X

given by
Ant
2.13a) S (t) =e .
n
Moreover, the solution of (2.11) is given by
t
2.13b) u, (t) = Sn (t) U 0,n + Sn(t—s) Pnf (s)ds.
0

Definition 2.1: The semi discrete method described by (2.11) is "stable"

if there exist constants M, ® (independent. of n) such that

—

2.14) Is )l <Me®t .

Remark: This definition of "stable" is classical and was introduced by
Lax and Richtmyer [30] and Trotter [43] . The "nom" used in (2.14) is

the norm of X restricted to Xn .

Applying the general theory of semigroups we find that the semi discrete

method is stable if and only if there is a constant M, such that, for all real

1

A> w0 we have
M
2.15) ha, - ™ < L, n=1,2, ... .

T (- 0™

Unfortunately, (2.15) is an infinite system of estimates and, in general,

not easy to verify. A much stronger result is: the semigroups Sn (t)

satisfy

2.16a) s (&) I <e®F



if and only if for every real X > w we have

2.16b) 1

-1
@ -A1) ~II < —== .
n (A=)

In many cases we find that the semigroup T(t) is not only &
v
semigroup in X, but also is a semigroup in X . For this reason

we will sametimes find it convenient to assume:

H.3: There are constants M 5 and o, such that:

ny [a¥)
if xeX then 7T(t)x € X and

2.17) IT@xl v < e lixliv
X X

We close this section with the observation that stable semidiscrete
methods are "stable" under bounded perturbation. Specifically we have
the following

Theorem 2.1:  Suppose the semidiscrete method described by (2.11) is

stable. Let {Bn} be a family of uniformly bounded linear operators

from X to X
n n

2.18a) B :X - X
n n n

and there is a constant B such that

< -
2.18b) B I < B

Consider the semidiscrete system

,

dvn
—~— = (A +B)v_ +P £ , t>0,
2.19) ] dt n n n n

OEXn r

vn(O) = Vn,

19
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Then this semidiscrete method is stable.

Proof: It suffices to consider the homogeneous case, i. e., £ = 0.

Since (2.19) is a linear system of ordinary differential equations
with constant coefficients, there is a solution v, (t). Moreover,
we may write

t

vn(t) = Sn(t) Vn,O + J Sn(t—s)Bn Vn(s)ds .
0

The theorem now follows fram Gronwall's Inequality, see [4]

and the basic estimate (2.14).
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3. Examples
Before proceeding to the development of the general theory, we present

some examples which are of particular interest.

Example 1: ILet Q be a smooth domain in R..

Iet
2

n 2
3.2a) A=A=1% 0 '

j=1 T2

BXJ
and
[o]

3.2b) Da) = {uex;ue H, (@) N H2 )17,

Iet X n c D(a) be chosen so as to satisfy certain approximation properties
(as in [2], [7], [14]). lLet P~ denote 1.2 projection onto X . Iet
3.3) A =P A,

n

In this case we are dealing with Galerkin's Method for the classical

Dirichlet problem. A typical result (Theorem T) takes the form:

let
v k
3.4a) x ={ueDENL

where k O> 1 is an integer. Let
2 %050
3.4b) Fall v= I IA“ulls
X =0
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N
Then, for ue X . we have
] a1
3.5) g, u-ull =1la " P Av-ul <F(n) hall,
X
see [7], [21], [51]. Turning to the parabolic problem

gﬂ:[\u = Au , t>0

3.6) t |
u(x,0) = Uy (%)

we see that it is relatively easy to show that the semidiscrete procedure

is stable. In fact, we have: if u, (t) e X n satisfies

n = P Au ’ t >0
n n
3.7n) 1

un(x,()) = Un,O(X) e X n

\

then after multiplication by u (t) we obtain

2 -
14 hu ()17 = (u, P Aw) = (u,Au) <0

Hence

lu (1 < v I

n,0
which implies that

Is (1 < 1.

e

Thus, one easily obtains results of the form: if u(x,t) and u, (x,t) €

then

3.8) la(.,t) = u (0 1 < CEOF @max [lul.,s) I v + ha, (,8) 1 1,
0<s<t X X



14

See [77,[13], [36].

Finally, in this case, the basic hypotheses H.l, H.2 and H.3 all hold.
Example 2: Choose X and A as in the previous example. However, we now
require only that the subspaces X n C X belong to Hl Q). et ( , )
denote the inner product in L2 (Q) and < , > denote the inner product
in L2 (39). The numerical method for the steady state problem
3.9a) AU+ £
takes the form: £find u € X 0 such that

o

3.9b) (Vun,an) + (f,vn) + n <un,vn >=0 for all v, € X ne

Here ¢ is a positive constant. In this case we are dealing with the "penalty"
method for the Dirichlet problem. The appropriate Pn is again the L2

projection onto X 0 However, the operator A is a perturbation of the

Galerkin operator. This problem has been analyzed under appropriate conditions

onX ., see [7].

V.Our next example is one of particular interest from the point of view of
the questions raised in this report. Convergence theorems have been proven
by J. Douglas and T. Dupont [15] and by J. H. Cerutti and S. V. Parter [8].
However, these authors have not touched on the questions of stability in the
appropriate norm.

Example 3: et X = C[0,1]1N{u; u(0)=u@)=0}
let

3.10a) a=23)2 4 aw .a%- + o)
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where
3.10b) c(x) <0

and a(x) is a smooth function. Iet0=x0<xl<...<xm==l and

let Ij = [Xj—-l’xj]' ILet k be a fixed positive integer and let

= l - R
3.11a) X, = {ux)e x Nc[0,1] ; u[Ij EP s d= 1,2..m}

where P, denotes the polynomials of degree < k+2,i.e.of "order"

k+2
k+2. Iet &, ... § De the Gaussian points on [0,1] (see [ 8] or
[15] for a more camplete discussion) and let

Eig = %51 * BBy 3=1 eeem s=1ek

be the local Gauss points. The collocation method for the steady
state problem studied by deBoor and Swartz [5] (their work is far more
general, but this is the case of interest here) is described by the

following procedure. Find u, € X n such that
3.11b) » (Aun)(gjs) =f(EjS) j=1, ...m, s=1, ...k.
For the parabolic problem

ou

3.12) 3 = pu + £(x,t)

u(x,0) = U, (%)
The collocation method takes the following form: £ind u, x,£) ¢ X n (for

each fixed t) such that

3.13a) ou, (ng’t) - (Aun)(gjs,t) "'f(gjs,t) r3=1,2,00.m, s=1, ...k,
ot



16

3.13b) un(x,O) = Un,O(X) e X a

Both Dupont and Douglas [15] and Cerutti and Parter [8] showed that one
Obtains the same kind of error estimates for the parabolic problem as
deBoor and Swartz [5] obtained for the elliptic (steady state problem)
when one used

Un,O(X) ‘= Qnuo.
Those results showed oonvergenée in the maximm norm. Yet none of these
authors established stability in the maximum norm. In terms of the dis~
cussion of this report, Dupont and Douglas established stability in the
H, norm and used the imbedding of Hy [0,1] in C[0,1] to establish
convergence in the presence of sufficient smoothness. On the other hand,
Cerutti and Parter established a certain "resolvent estimate": which (i)
came from the Hl stability and (ii) could be interpreted as a form
of weak stability and (iii) was good enough to allow the use of the

Laplace transform in the case of smooth solutions. As far as this author

knows, the question of "maximum norm stability" for this collocation scheme
is still an open problem.

Our next example shows that the validity of Theorem T (for the steady state
case) does not imply the stability or general convergence of the time dependent

numerical method. In this examp! emthe operator An is a perturbation of the Galerkin

operator. Moreover, in this case X = X.



Example 4: Iet X = L2 [0,7T] . Let

3.14a) A= (""(‘i“) ’
) dx
with
3.14b) D@ = {u€H2 (0,m) ; u(0) =u(m) = 0} .
Iet
3.15a) Xn = span { sin jx}n j=1 7
3.15b) | y, = span {sin nx}.
We write
3.16a) X _ =X__ @y
and let 5
3.16b) An=[(-£<—-> ]@[—(fc-?x——)z]-

Of course Pn is the L2 projection onto Xn'

If ueJ(a) and Au=f with

[e0)
3.17a) fo T £ sin gxel (0,m ,
1 j
]
then
>
3.17b) =3 ( j/j2 ) sin jx .
J=
Clearly
n
P £f= 2 £. sin jx
n s=1 J

and the solution of A u =P _£f
n n no .

17
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is given by

n-1 _£ £ )
3.18) u (x) =Z ( 'j/.2)sin jx+ n  sin nx .
n . j —
=1 2
n
We have the easy error estimate
2 2 2
lhu—u 12=41£ 1%+ = !fj | /54
—7— j=ntl
n
© 2
| £ 2
< 4 'E it < 4NEl” 0.
Jj=n .4 4

j n

On the other hand, let u, = sin nNXe.

Then

n2t
3.19) Sn(t)uO = & ug

Thus, the semidiscrete method for the initial value problem

u

3t - AU

3.20)

u(x,0) = U

is not stable in any norm !!

In example 4 we are dealing with a perturbation of Galerkin's method
(see (2.8a),(2.8b)). In our next example we have a direct projection method
which appears to be unstable.

Example 5: ILet 0 <V <1l and let

v 1
3.21) A= .
1 v



19

Let ulx,t) = [y (x,8) , u, (x,t)] T .nd consider the mixed initial

value-boundary value problem

3.22a) ut=AuX ’ 0_<_x__l
3.22b) u(x,0) = Uy (%)
3.22c) Uy (0,t) = uy a,ty=0 , t>0

In [20] Max D. Gunzburger considered the following semidiscrete
Galerkin approach to this problem.
Let X be determined by using cubic B-splines on a uniform mesh with
uI; (0) = uT (1) = 0 and uxg (0), ug (1) unspecified. The semi discrete
equations are obtained by requiring

m
t

m

m m
3.23) (ug —Au, , Vv ) = 0 for every Vv an .

In his interesting report [20] Gunzburger asserts that computational re-
sults indicate instability. He discusses the possible reasons for these
difficulties.

If there is instability, as the computations suggest, we have here

an example of a direct projection method which is unstable.
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4, The Basic Results

In this section we prove the general theorems which are essentially
restatements of the Lax-Richtmyer-Trotter results in our present context.
The main result is that for stable semi discrete numerical methods of the
form described by (2.11) we can "1lift" the results of Theorem T.

Our first result is a modification and interpretation of a basic identity

which is usually used in the proof of the Trotter Approximation Theorem

(see Pazy [35]).

ILemma 4.1: For every X € X we have (t > 0)

t
-1 -1
-1 - - _ _.1 _ _ _
4.1) A_ [P T(t) s (£) P A "x= s (t-s) [An P -P_A JT(s) x ds.

0
Proof: Iet t > 0 be fixed and let

1
n

G_(s)=5_(t-s) &1 P _T(s) Al x .

Then Gn (s) is a differentiable function of s, 0<s:< t.

Using the basic relations
T()Az =AT({)z , for ze D@A)

g

dt'l‘(t)zr:AT(t)z, forzeX, t>0,

Ansn (t) = Sn(t)Ar1 in Xn

d Sn(t)z = AnSn(t)z ' forzexn,
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we find that

- - -l - -1 i
Zil;«-l_gc,n(s)— s, (t=s) [An P, -P, A 1T (s) x.

Integrating this last relationship fram 0 to t yields (4.1).

lemma 4.2: For every u € D(Az) we have

T
4.2) QnT(t) u - Sn (t)Qnu = J Sn (t-s) Pn[QnT(S) Au-T(s) Aulds.
0

Proof: ILet x = A2u and apply (4.1).

For the moment, we restrict our attention to the case f£(t) = 0.

Theorem 4.1: Suppose f£(t) =0. Suppose H.l and H.2 hold. Suppose

that Theorem T holds and the semidiscrete method is stable, i.e. (2,14)

holds. ILet u(t) be the solution of (2.1). ILet u (t) be the solution of

(2.11) with U given by (2.12b). Let u(t) and Au(t) = a:%- u(t)

/0
n
belong to D(a) N X . Then
t
4,3a) !lQnu(t) -u, w1 <M MO F(n) ew(t—-s) lau (s)llv ds
- X
0
and t
4,3b) a(t) - u I < ro)llu@iliv + M M, e[[)(t-—s) lau (s)ll ~vds].
X X

0
Proof: Apply lemma 4.2 and Theorem T (under the integral sign) to obtain

(4.3a). Then (4.3b) follows from the triangle inequality and Theorem T.
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Theorem 4.2 : Suppose £(t)=0. Suppose H.l, H.2 and H.3 hold and the

semidiscrete method is stable. Suppose Theorem T holds.

Let u(t) be the solution of (2.1) and u (t) be the solution of (2.11)
n

withUO’n given by (2.12b). I_@Euo and Auo MQEQD(A)HX .
Then o
t.4a) o _u(o)-u (i <HMy M, FO) [ e (F78) %8s |l au i v
X
0
< MMy M) C(t) F(n) IIAuOH;
where
t G(t-s) os
4.4b) C(t) = PV Mg |,
0
Moreover:,
4.4c) I (e)-u (@©)l < Fn) [Mzeo‘t ”“o“g’( +(MM M) C(E) I\Auoﬂ'g 1.

Proof: Apply H.3 to (4.3a) and (4.3b) in Theorem 4.1 .

\

Remark: Note the differences in the hypotheses of Theorems 4.1 and 4.2.
AV}

In Theorem 4.2 we assume U g and A u o € D@y x , ® which is the hypothesis

of Theorem 4.1 .

Definition 4.1: The semidiscrete method described by (2.11) is “convergent"

if: for all ug e X and all T > 0 we have

4,5a) mx{llsn(t) UOn-—T(t)uOII ; 0<t< T1}2>0 as n—>w,

ny
® hence by H.3 u(t) and Au (t) belong to J@A)NX ,



whenever

4.5b) ”UO,n—uO I -0 as n-—>ow,
Theorem 4.3: Let

4.6) ve{uel®Nx ; Aued@NX} .

Suppose H.1l, H.2, H.3 hold. Suppose Theorem T holds and the

semidiscrete method is stable. Suppose V is dense in X . Then, the

semidiscrete method is convergent.

Proof: Iet uje X . ILet {v (k)} k=1 be a sequence satisfying

(1) For every k, v(k)e \Y,

(ii) v a0 as ke,
Then for every k we have
IS, (00, |, = T®u gl <ls vy = oy Tl +
is_ @ov® - rev®i v ire ™ - I
Given € > 0 we may choose k, so large that
Q+M+fiedT) la, - v < %/10 .

Then

¢ (kn) -
0 = ot

I Sn(t)[UO'n"QnV 1 < Me I u n-u

4.7) A

23
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Thus, employing Theorem 4.2 with ko fixed we have

(k)

. 0 —
n1_:1;111Oo HSn(t) Qn \'4 - T(t) v I =0
and
. e/
Lim swp WIS (£)U, = T(B)uy il < 10 .

Hence the Theorem is proven.
Frploying the "Principle of Uniform Boundedness" in what is now a

familiar argument (see [30] ,[38]) we obtain the converse result.

Theorem 4.4: Suppose H.1 and H.2 hold. Suppose the semidiscrete

method is convergent. Then the method is stable.

Returning to the general case when £(t)# 0 we recall that H.1
includes the assumption that (2.1) has a solution u(t) and this solution

is given by (2.2).

Theorem 4.5: Assume that H.I, H.2, H.3 hold. Assume that Theorem

T holds and the semidiscrete method is stable. Iet u(t) be the solution

of (2.1) while u_(t) is the solution of (2.11). et y =1U =0 .
- — e — 0 n,0
Suppose that
ny
f(t) e D@Nx
n

Af(t) e D@) NX .

Let C(t) be given by (4.4b). Then
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t
4.8)  lou®-u ®I < (M My M) F() Clt=s) I Af(s) [l v as
0 P
t
| e (g - £ I as
0 X
Proof: We have
t
Qnu(t) - un(t) = [QnT(t-S) - Sn(t—s) Pn] f(s) ds .
70
That is , t
Qnu(t) - un(t) = [QnT(t—s) - Sn(t—s) Qn ] £(s)ds +
)0
(t
s (t=s) [Qn -Pn] f(s) ds .
0

Thus the theorem follows from Theorem 4.2 .
Of ocourse, one can now go on to assume that f is approximated by
functions £ (k) eV. In this way one obtains gerneral convergence proofs

similar to Theorem 4.3 for the general case.
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5. Weak Stability and the Laplace Transform

In the finite difference case-where the approximate solution is defined

only at times

tk=kAt

— one sametimes defines "weak stability" by the condition (see [19],[29])
_ Wty -p

5.1) s, ()l < Me (At) k=1, 2...

where P is a fixed positive number. In analogy to this one might consider

in the semidiscrete case a definition of weak stability by the condition

Is @l < Be®tn” ,  £>0
where we remember that
n=dim X .
n

Unfortunately, at this time we have not seen how to effectively study
condition (5.1). Thus, for our purposes it is useful to work with the resolvent
conditions (2.15), (2.16b) as the basis of stability and a corresponding concept

of "weak stability".

Definition 5.1: The semidiscrete method described by (2,11) is "weakly

stable" if there exists a function Ml(cy) > 0, and two constants w, 9 such

that: for all A with Re A > w we have (An—kl)"l exists as a linear map
taking Xn onto Xn and

-1 -4
5.2) h@a =AD" < M Red) |[r-w |
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Remark: Stability implies weak stability because of the equivalent forms
(2.15), (2.16a).

Once one has introduced such a "Resolvent Condition" for stability
or weak stability one naturally turns to the Laplace transform (see Hille-
Phillips [22]) as a tool of analysis (see Strang and Fix [41], Cerutti and
Parter [8] for applied examples). Unfortunately this approach seems to
demand deeper results for the steady state problems. On the other hand,
we are able to obtain "convergence theorems" for the time dependent
problem in this weaker setting.

In particular we consider an extension of Theorem T to the case of
systems. We shall sametimes require the validity of a theorem of the following

form,

Theorem S,N: Consider the steady state system of equations

5.3)
m=0, l' ...N—l

and the related discrete system

i

nq)N Pn fN

5.4)

i
-
|

n%m = Fn wmﬁ'+fm)=¢

"
There is a Banach space Y C X with

ol + lefln' m=0, 1,...N-1

Iyl < cqlivlly



28

5.5) o =0 Il < Cyrmlle I :

Remark: It is perhaps worth noting that the example 4 of section 3 has
the following properties:
(1) if n > 2 N then Theorem S,N is valid
(i) the semidiscrete method is not weakly stable.

Before proceeding with the technical details of the arguments to cane,
it is perhaps worthwhile to sketch our approach.

ILet u(t) and un(t) be the solution of (2.1) and (2.11l) respectively.

Consider their Laplace. Transforms
g OO

A

u(s) = eSSt uw)at

5.6) ‘0

>

B -st
u_(s) = e u (t)ydt .

‘0
These functions then satisfy

~ A~ Pal

5.7a) su(s) = Au + f(s) + U

~

5,7b) su_ (s)

It

”~ A A
Anun +Pn f(s) +U0,n, .

If we imagine s fixed then (5.7a) is a steady state problem similar to
(2.4) which is solvable by virtue of the resolvent condition (2.5). More-

over, (5.7b) is a discretization of this problem based on the same subspaces



X n and the projections Pn . Thus, if an appropriate Theorem T (s)

holds we would have an estimate of the form (for sufficiently smooth

a(s) )

5.8) lla(s) - Cln (s) I < C(s) F(n) Il a(s)ll'\f .
X

Applying the well known integral inversion formula [50] we have, with

s=Yy+1i0a
ytie
5.9a) u(t) - u (t) = —2—7%1— St [G(s) -—an(s)] ds ’
Y- i
or ‘Y-{»-ioo
5. 9b) lu) -u_ @ < oF lc(s)| F) lu(s) i 1ds]
n prow. et
2T X
- joo

Unfortunately one must worry abdut a few technical details. In

particular, there is the question of the convergence of the integrals

in (5.9a), (5.9b). At this point it is worth noting that this question is

29

really very different in these two cases. The integral appearing in (5.9a)

is the usual integral of camplex variable theory - the Cauchy limit as

ioct

the interval of integration tends to «. Moreover, the term .e enables

one to employ (directly or indirectly) the Riemann-Lebesgue Lerma to aid in

this convergence. The integral appearing in (5.9b) is a Lebesgue integral

and its absolute convergence is required.
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We require one technical lemma concerning the inversion formula

(5.9a).

Lemma 5.1 : Let v(t) satisfy the appropriate growth conditions so that its

Laplace transform

vis) =" et v at

exists for Re s >w . Iet k be an integer > 0 and let vy >uw .

Iet 17> 0 be fixed and suppose that t < T

Then
Y+ie hd
-S0
eSt —Jf—}z e v(o)do ds =0.
S
Y =i T
Proof: This result is an immediate consequence of the usual formal formulae

for the Laplace transform and its inverse - see [50]. Intuitively it asserts

that the future cannot affect the present.

Remark: The growth conditions required in this lemma are easily verified in
the applications to follow. For example, if v(t) satisfies an equation of
the form (2.1) then the appropriate estimates follow from the representation

formula (2.2) and estimates on £(s).
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Instead of using equations (5.7a), (5.7b), (5.9a), (5.9b) directly,

we proceed as follows. Assume that UO n € Xn has been chosen so that we
14

need only consider a related function v(t) which satisfies

5.10a) Vg = vO,n =0
and,
5.10b) v (e, s)ll < ——

- |s|N+l

for an appropriate choice of N.

Iet

5.11) Wn(s) =0, v(s) .
Then, using (5.7a) (with Vg = 0) we have, for an appropriate c}(s) '

5.12a) AW =P A(s) = P [s¥(s) - g(s)] .

We rewrite (5.12a) as

5.12b) (S-A)W_ Pn[<§ (s) +s(_-v(s)]

Fram (5.7b) we have

5.12c) (s--An)vn = Pn[g(s)]
Thus
5.13a) (s-A) [Wn—x?n] = SPn(Wn—-\'}(s)) .

We may rewrite (5.13a) as



32

1

5.13b) [Wn(s) —-Gn(s)] = S(S-—An)—‘ Pn(Qn-I)\,}(s) .

Our first result is a special case in which the "mild instability"

is truly mild.

Theorem 5.1: Suppose H.1 and H.2. Suppose the semi-discrete method is

weakly stable with

5.14) -1 <g<0o0.

n,
Suppose Theorem T 1ds, u, eD@ANX and

Yo,n~= %%

Furthermore, if

v(t)

u(t) - Ug #

we suppose that v(t), v'(t), v"(t) e'D(A)ﬂ },\f and satisfy the approximate

conditions so that lemma 5.1 applies. Then, there is a constant K such

that
5.15a) Ilan(t)—vn(t)ll <
)t | Qv ) L L oy
F(n) - K I == Oy + max ——= v(o)lly
8 © dt X O<o<t d’t:2 X
5.15b) lv(t) -v, (D) < Fl)llve) iy + g v(t) - v (B)l

5.15c) la(t) u @) < liv(t) ~v, )+ Fmllugly



Proof: Let v _=u_ =-1U ;  then
n n n,0

ut) - u (t) = vit) - v_(t) + (uo-QnuOS.

Thus, since Theorem T holds, we need only study v(t)-—vn (t). We have

dv _ —

& = Ay +f(t)+Au0, v({0) =0

dvn

™ =A v + Pn[f(t) +Auo] . vn(O) =0

Applying the Laplace transform to these equations we have

A A "N

sv=Av+g ,

Svn=An vn+Png ’
where

~ A AUO

g(s) = £(s) + 45— .
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Applying the inversion formula [50] we have, with s = (w+l) + io

(0+1) +ieo

=

5T eiSt[Wn (%) —Gn(s)]ds .

Qv (t) - v (t) =
(w+1) =i

Applying (5.13b) and (5.2) we have

0=+
5.16) g v(t) -~vn(t)|l_ge(‘*’+l)t F(n) M1(5+1) ls-w|2 |s] IIG(S)II§d0
g = =00
Since v(0) = 0 we have
2
Sy oL & oL ~st [ d .
5.17) v(s) = 52 T (0) + 52 e EEE}] v(t) dt.
0

Tet

5.18a) o= (1+]g|)/2

and let
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5.18b) K= -

Then, applying lemma 5.1 and (5.9b) we have (5.15a). The estimates (5.15b),
(5.15¢c) follow fram theorem T and the triangle inequality together with

the identities

u(t) - un(t) = v(t) - vn(t) + (uo—%uo) '

(a%)k ult) = (a%)kvw) :
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Ramark: The error estimate (5.15a) should be compared with (4.3b) of
Theorem 4.1. If £(t) = 0 the estimate (4.3b) depends only on |lu(t)llA,
X
d2u
while (5.12) also includes a tem [l= i, .
at® X

du
and ”a'E“;(
This last term is (apparently) not introduced because of the weak stability
(as opposed to stability) but is rather due to the Laplace transform approach-
see the remarks following (5.9a), (5.9b). However, the resolvent estimate
with -1 <g< 0 is a very strong estimate - a sort of "weak holomorphic
semigroup stability." Such an estimate should not be expected unless T(t)
is itself a holamorphic semigroup. This would occur if (2.1) were a para-
bolic problem. In fact, it is this estimate that was exploited by Cerutti

and Parter [8].

Remark: While the results of section 4 also seem to be based on the choice

of UO,n = Qnuo ’

and the result above. The stability assumption of section 4 allows for an

there is a significant difference between those results

immediate result for any UO n close to Uy In the Theorem above we are
14

definitely limited to a restricted choice of U This aspect of the

O,n°
theory will be very clearly emphasized in the more general result which

follows.
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Definition 5.2: Suppose Theorem S,N holds. Suppose

j ny
5.19) 6. = LU 0y ¢ Dm)n XNY, §=0,1, ...N.
5T e
Then
Ao =g,
5.20)
_ _,d m - -
Ao =0, - )M, m=0,1, ... N1

Let d)j (n), 3=0,1, ...N Dbe the solution of the corresponding

discrete system

— A ) =P E o
.21) s m
Byby (M= ¢ (n) - By [‘a'{e‘) f(O_)] , m=0,1,... N-1.
v ’
Then we let Qn be the operator which maps u- ¢ O(n) ; le.€.
V)
5.22) Q u= ¢4(n) -

Theorem 5.2: Suppose H.l and H.2 hold. Suppose the semdiscrete

method is weakly stable with g > 0. Suppose Theorem T holds and Theorem S,N

holds with

5.23) N> g+l

Suppose (5.19) holds and

n,
5.24) UO,n = Qpu = d’o(n) '
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Suppose
dju i
5.24a) . = —— (0) ¢ D)y NXny, =0, 1, ...N
J at’
and
dN+lu v
5.24Db) e X
dtN+l‘

and satisfies the necessary growth conditions so that lemma 5.1

applies.

Then, there is a constant K so that

,

- 4 _
la(e) —u (&) I < K e(+)E GO u(e) Il v F(n)
- Oi0_<_t X
5.25) 4
N
+ C,F(n) 2 el £,
( 3=0 Y Ji
Proof: Let
N ¢
5.26a) v(t) = u(t) - 2 o . : '
3=0 J 91
N 3
5.26b) v (t) =1 &) - = ¢ (n) ——
n =g 3 3l
J=0 :
Then a direct calculation shows that
5.27a) dv_=av+thyt) , & ,Pv(0)=0, 3=0,1, ... N
dt at
5.27b) vy =av +p Ny (0)) a I3 v (0)=0, 5=0, 1,...N
° _a n'n n \l) 7 (___a_E' ) n r ’ '

dt
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where Y (t) 1is determined from the Taylor series expansion of

f(t) and u(t) and A@N .

Since Theorem S,N holds we have

( N .

- - y +3 tj _ - )
fu(t) un(t) Il < v (t) -v, (£) ll’rj=0 S I cbj (n) ) ; I
5.28) .
N

SUv(e) = vy (o) I+ CF ) 2 eyl —=—
J= Y J-

Therefore we need only study | v-v .

The theorem now follows from (5.13b) as in Theorem 5.1.

Remark: Perhaps it seems very artificial to suggest such special initial

values. However, such choices have already appeared in the literature.

For example, in Cerutti and Parter [8] just this choice was made in order
to assure the "superconvergence" at the knots. Working on the same problem
Dupont and Douglas [15] employed an even more complicated algorithm to ob-

tain an appropriate initial value. See [14],[32] also.
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6. Parabolic Problems in One Dimension

Iet X =C[0,1] and let A be given by

6.1) domain () = {vec?[0,1]; v(0) = v(1) = 0}
6.2) Au = é%-a(x)%%—— b(x)%%-— c(x)u

where a(x), b(x) e €'[0,1], c(x) e C[0,1] and there exist constants

ao, al, cO, cl such that

6.3) 0 <a, <a® < ay 0 < ¢ < c(x) e
Iet
6.4) B=max {|bx) ]|, 0<x<1}.

We consider the parabolic partial differential equation

ou
p(X)=zr = BAu + r(x,t)
6.5 { T

u(x,0) = uo(x)
where p(x) € c[0,1] and there are constants Por Py such that

6.6) 0<py =2 p(x) < py

Remark: The introduction of p(x) has almost no effect on the analysis

of secticn 5. However, since the problems naturally arise in the form

(6.5), we choose to include it in our work of this section.

Consider a Ritz-Galerkin approach to this problem. That is, let

)
MN be a sequence of subspaces of Hl such that
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6.7) dimension MN =N.

The Ritz-Galerkin approach to the numerical soluytion of the

steady-state problem

6.8) Ay + r(x) =0

is: find Y(x) € MN such that

6.9a) (ay',v) + (by',v) + (c¥Y,v) = (r,V)

for every v e MN , where we use the notation
1

6.9p) (09 = | 06 Peaax, ||<1>le_2 = ($:9).
0

Our concern here is the establishment of the estimate (5.2) with

q=1/2 and Ml(Re)\) = Ml' a constant.

We first obtain some estimates for the special case when b(x) = 0.

Lema 6.1: Consider the eigenvalue problem: Find @(x,N) € MN and A,

a complex mumber, with &(x,N) Z 0 such that
6.10) (@a®',v') + (c®,v) = A(pd,V)

for every vV e MN . Then the eigenvalues Kj’ j=1,2,...N are real

and satisfy

6.11a) AL
J
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Moreover, the corresponding eigenfunctions (I)j (x,N) may be chosen
to satisfy the modified orthogonality condition
6.11b)  (pby, ) = by

Proof: The inequality (6.1la) follows from the variational character-
ization of the eigenvalues and the mini-max principle. The relationship

(6.11b) follows from a standard argument about self-adjoint operators.
Lemma 6.2: ILet £(x) e 12(0,1) and let

6.12) D={s=a+iB; |B| > 1-a}.

Iet s e D. Then there is a unique function Y(x;s) € MN which satisfies
6.13) (aY',v') + (c¥,v) + s{pY,v) = (f,Vv)

for every v e M . Moreover

6.14a) ¥ (.,s) ”L2 < % 'I"é‘l‘ I “2
!

6.14b) || ¥'(.,8) HL2 SR I£]] 2

where

pr]1”
2 1
6 . l4C) = l + °

Proof: Since (6.6) holds we may write



6.15a) f(x) = Fx)px) =p
where
6.15b) fk = (f,@k) .
We write
N
6.16) Y = ] v.0.(x)
521733
and find that
N
.(A.+s o.,v
j-zlyj( ; ) (p 5 )
i.e
f.
6.17) yj = j/(>\j+s)

Consider two cases. If s =

Hence 282_>_|s|2 or 1/[8[

1 1

N
x) ) £.0 (x,N)
k=1 KK

I§
= £ (p®, ,V)
kel k' k

o + iB° and ocf_O we have

< /i/lsl . Thus

2

< <
s = TRl =

J
On the other hand, if o > 0

1, 2
Pyts] = s

14

(¥,Y) _<_§"— (pY,Y) =

0 Po

]SI ’ OL_<_O .
then, since )\j >0

o >0

1 .o
o (ZYjp(Djf kaq)k) .

42

18] > 1~0> |a].
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l.e
N N
6.18) (Y,v) < 51._ b lelz < 2__2_ y ,ijZ
0 =1 pO]sl =1
However
fj = (£,9.) = (QFI(I)J)
Hence
Hel? < @m = wim < el
j > p r- /4 p — po L2 .

Thus (6.14a) is established. From this estimate we see that Y{x) exists
and is unique because Y(x) is obtained as the solution of N equations
in N unknowns.

In (6.13) we let v =Y. We have

(ay',¥") + (c¥Y,Y) + s{pY,Y) = (f,Y)

Thus

2 2
agll ' 17, < MEN 5 1Yl 5 + Isleq Y117, -
ot F1 02 2 2 1l 2

Using (6.14a) we have

2 /2 1 2 1 2 2
Y! < = f 4 -l E
ag |l IIL2 < By TsT | IILZ poz Ts] I HL2

which proves (6.14b).



lemma 6.3: Iet

6.19a) M2 = 2BM1 '

and let

_ 2
6.19b) D, = DN {s; |s|] > M} .

Suppose r(x,s) 1is given and for every s € D], as a function of
x, r(x,s) e L2[0,l]. let s € D]. Then there is a unique solution

Y (x,8) € MN of the Ritz-Galerkin equations
6.20) (ay',v') + ®Y',v) + (c¥,v) + s(pY,v) = (r,v)

for every v e MN

Moreover
2V 2
6.21a) hel < l|lr (.,s)
L2 = —‘[ET | ”L2
2l
som Vel , £ —% el
: L |s|™ L
6.210 el < —FMl—l—- I ol
oo s|™ w

Proof: We assume that we have a solution Y(x,s) and write
2.22a) G(x,8) = r(x,8) - b(x)Y' (x,8).
Then, since s e D c Dl’ we have

M.
Ivr sl , < = lle s,
L |s|™ L
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M
1 1
Ny ool , < —glleCell , + —5 [Y 9]
2 Mk 1? || 12

Since s € Dl’ we have (6.21b). Applying (6.1l4a) we have

o1 |, By
2.22b) Il Y(.,s)| < = 1+ —= | lr (.,9)
12 = Pg sl 5| “L2

which implies (6.2la). Finally (6.21c) follows from a standard in-

equality.

Corollary: ILet w=1+ 3 . Then the resolvent inequality (5.2)

is satisfied with

2.23a) q

il
i
X

and
2.23b) Ml(ReX) = 2N11 .
Proof: See (6.21c).

Remark: Of course, the estimates of lemma 6.3 imply stability in the
L2 norm. The force of this corollary is that we are obtaining the

desired estimate in the maximum norm.
Application: In [47] and [48] M. F. Wheeler studied these problems.
Essentially following her notation we let A = {Xj }1_?:0 where

0 1
Iet d be a fixed integer. ILet

0 =x. <x, <.. <xM:l. Iet Ij= (xj_l,xj),h.:xj —Xj—l’ h = max h..

J

J
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M3 = (vec®l0,1]; vePg(L), 3=1,2..0

where P 4 (

an interval I ¢ R. Ilet

I) the set of polynamials of degree less than d + 1 on

MCOM = valr, v(0) = (v(1) = 0}.

The dimension of Md’A is Md-l. Iet

0
N = Md-1
and set
_ L4,A
My =M"
. o G+l
A major result of [47] is: if y e W [0,1], then
-1 d+1
2 gyl = lyategall < af Tl

where PN denotes L2 projection onto MN .
Thus, with X = Wd.’rvl’m[o,l] we may apply Theorem 5.1 (If p * 1
we merely repeat the argument of Theorem 5.1. There is no difficulty

with this modification.) to obtain the following result for the para-

bolic problem (6.5).

Theorem 6.1: Iet U(x,t) € MN’ for each fixed t, be that function

which satisfies
6.25a) (pUt,v) + (aUX,VX) + (bUX,v) + (cU,v) = (r,v)
for every V ¢ MN, with

6.250) U(x,0) = 0°(x) e M,
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chosen as the solution of .

0 0 0 -, -0
(aUX,vX) + (bUX,v) + (cU ,v) + w(pU " ,v) = (
6.25¢c)

@0v) + v + (cudw) +@ou’,v)

for every v e MN Iet u(x,t) be the solution (6.5). Then,

[
o w-uw], < ™). +

6.26) 4

ol By || 2 ||~ + Max H 5 11-3

{ 0<g<t 0 o<t dt X

We observe that the result given in [48] is stronger because the

2%
32

error estimate given there does not depend on However, we have
already discussed the occurence of this term.

On the other hand, because we have obtained the estimate (5.2) (with
Ml (Red) =M, a constant) in a region which reaches into the left half

plane we easily obtain the next result.

Theorem 6.2: With the same hypothesis as in Theorem 6.1, there is a con-

stant C(t) depending only on 7T, such that if 0 < 1 <t then

o @ -umll, < . +

6.27)

el @WHDEL yo ) g‘é ll }.
0<0<L

Proof: We turn to the proof of Theorem (5.1).
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The estimate (5.17) is now replaced by the estimate
[o0]
Sy = Ll oSt e
vis) = = e EtV(tz[dt .
0
Moreover, the contour of integration in the inversion formula (5.9a)

is shifted from the vertical line Real(s) =y to the curve T

given by: let s =a + if then we have three straight lines

B = a-2(w+l), —o < g < (wHl)
6.28) o = wHl, - (w+l) < B < (wtl)
B = -o42 (wtl), - < o < (w+l)

As we see, the integrals now converge absolutely for 0 <1 < t. See
[8], [41] where similar camputations are carried out.

Finally, this contour can be used to obtain convergence 0 < T < t,

when UO = PNuO, see [8]. Indeed, A-stability results are obtained by

further shifts of the contour, see [8].
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