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ABSTRACT

The method is developed for two speé.ific problems: (i) computation of
the structure of the primary component (assumed to consist of a polytropic gas)
in & synchronous cloge binary syst’.e}n and (ii) search for non-axisymmetric con-
figurations of diff.efentially rotating polytropes. In both cases the siructure
equations reduce to a mildly non-linear elliptic partial differential cquation in
three dimensions with boundary conditions at the centér, on a sphere containing
the star and involving a 'free' boundary. The present metﬁod has several advan-
tages over the 'standerd' methods (namely, improvements of Chandrasekhar's
perturbation analysis). The most important of these are consistency and easier
application to real stars. However, the method becomes computationally inef-
ficient when used for computing of configurations with sirong angular dependence.

In such cases (related) Galerkin methods offer significant advantages.
o
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USING THE METHOD OF ORTHOGONAL COLLOCATION
FOR CERTAIN THREL-DIMENSIONAL PROBLEMS OTF STELLAR STRUCTURE ?
M. T. Miketixlac+and S. V. Parter
1. Introduction

Several successful attempts at numerical solution of stellar structure problems have been made
in the past dozen years (see Strittmatter, 1969 and Papaloizou and Whelan, 1973). Perhaps the most
elegant of these methods has been the one devised by Stoeckly (1965), Most of thesé methods suifer
from serious limitations on the range of their applicability, or undue complexity and/or unproven con-
vergenceé properties. E';}en so, none of them has ever been applied to three-dimensional problems.

In this investigation, Stoeckly's formulation of the structure problem for rotating stars is
altered to include most of the other stellar structure problems (section 2), Then, his numerical method,
which is in fact a special form of the method of orthogonal collocation (used extensively in theoretical
chemistry; Finlayson, 1972), is improved and generalized to three dimcnsions (sections 3 and 4). The
method is developed for polytropic models of stars and in its present form it is applicable only to poly-
tropes with the polytropic index n>1. However, it would be fairly straightforward to modify the meth-
od in such a way that polytropes with n <1 and, also, matter more complicated than polytropecs
(Miketinac, 1976) could be treated. Convergence of the method is virtually assured throdgh the work of
Vainikko on perturbed Galerkin methods (197 2, 1967). The methoé produces results (secction 5) in satis-
factory agreement with the known results for uniformly rotating configurations of polytropes {which is
actually a two-dimensional problem). However, the method has an undesirable feature making its use
on the computer much more e.xpehsive than the 'perturbed’ Galerkin method. This last method is, there-
foré, the recommehded method for computations of three-dimensional stellar structure models. It is
shown in section 3 that the method of orthogonal ceollocation is in fact an equivalent - but computation-
ally less efficient (shown in section 4) - form of the 'perturbed' Galerkin method. It is likely that the
'perturbed' Galerkin method as formulated in sections 3 and 4 will have applications, also, outside
the stellar structure problems,

This report has also been issued by the Mathematics Research Center, University
of Wisconsin as T. R. No. 1752.
) On leave from Department of Applied Mathematics. University of Cape Town, : .
Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the O. N. R. under
Contract No. N00014-76-C-0341,




2. - Structure Equations for a Polytropic Model
It can be shown that equations describing the configuration of a self-gravitating, polytropic

fluid modelling a star in equilibrium under the influence of some disturbing force reduce to

= V - L4V
0 Y \/clll\D. (2.2)

All symbols in these equations - called the structure equations - represent dimensionless quantities.
The equations are formulated in the spherical polar coordinate system (x, 8, ¢) with the center coin-
ciding with the center of symmetry (usually the center of mass) and with the axes oriented along the

lines of symmetry of the star. In this coordinate system the Laplace operatar, Vz, is
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where = cosd . Symmetries of the star model depend on the given function

VD'—"VD(«\,X,.H;(P) (2.4)
which is the potential describing the disturbing force. It is assumed that the function VD vanishes
at x = 0, and that the positive, arbitrary parameter X - characterizing the strength of disturbance-
is such that for X\ =0, \/D‘:": 0 (in this case the star is undisturbed and assumes a spherical shape),
The func‘Lion -V(x,p,e) is essentially the gravitational potential of the model and VCE V{x=0, 1, ¢).

The parameter n - called the polytropic index - is arbitrary in the range 0<n <5 (it specifies the

chemical composition of the model). The equation (2.2) - known as the equation of hydrostatic sup-

port - is valid only inside (defined by 0 > 0) the star; the star's surface is defined as that surface on

which 0(x,u, ¢) =0 . Since 6 is not known in advance, this gives the structure problem & 'free
boundary' aspéct. The function 0 , where positive, is related to the density and is such that
0(x =0,p,0) = 1. (2.5)
For convenience, (2.2) will be taken to define 0 throughout, but then in equation (2.1) © can only
be positive, i.e, (2.1) is replaced by
2 n

vV o= -0, (2.1

where



8] when 0 >0
0, = (2.6)
0 when 0 <0

From this it follows that (k+2)~th derivative of the potential V with respect to X,u, or ¢ exists at
the star's surface only if k <n, otherwise (k+2)-th derivative is singular there.
The structure equations must be solved under the following conditions: (i) at the center,
x =0, VV is continuous, (ii) at the surface of the star VV is continuous and (iii) at the outside
VV- 0 as x--9, A solution Vc’ V,0 of the structure equations (2.1')and (2. 2) and the above
boundary conditions is a possible configuration of the model and is characterized by a specific value
of (n,\). All quantities of astrophysical interest can be computed from this solution., The most in-
teresting values of n are n =1.5 (neutron stars, Cowling model) and n = 3.0 (supermassive stars).
Examples of astrophysical systems whose structure can be modelled with equations (2.19,
(2.2) and the associated boundary conditions include (1) (uniformly or differentially) rotating stars,
(ii) magnetic stars (with or without rotation), and (iii) binary stars. In the case of uniform rotation,

the function VD is given by

2 2 2
X

Vp = 207 % (1-ph) (2.7)

D
where the parameter N is now the (dimensionless) angular velocity @ . Differential (or non-uniform)

rotation can be described by (Stoekly, 1965)

&’22 ~2b xz(l - MZ)

V. = [1-e

D = b 1y (2.8)

where the constant b is a parameter of non-uniformity of rotation, ranging from b = 0, for uniform
rotation, to b= 1, which approximates spatial dependence of the centrifugal potential possibly
arising during contraction from a uniformly rotating mass of initially homogeneous density. Auchmuty
an& Beals (197la, 1971b) consider the question of existence and regularity of solutions for some models
of rotating stars and show, usging the variational method, that physically reasonable solutions exist
in most cases, However, their conditions are so stringent that the (physically interesting) polytrope
with n =3.0 is excluded and the uniform rotation is inadmissible. Auchmuty (1974, 1975) formulates
a numerical scheme based on the variational method for obtaining solutions of the structure problem

for rotating stars, He shows that the method converges, but results of his computations and compari -

sons with other methods have yet to appear.



For the primary in a synchronous binary system there are two versions of the disturbing poten-

tial, In the so called {irst-order theory (Chandrasekhar, 1933)

4 ,
- Mg X o
D = i 3‘—/:/7( X) Pj(sm 3 cose¢) 4

m(l+q)

L X2
4X 2(

\Y% ) sinzﬁ, (2.9)

Rix

where X is the separation between the centers of mass, m is the mass of the undisturbed primary

1 -
(i.e. the mass when X =0) and q = %: , m being the mass of the secondary, In the second-order
theory (Martin, 1970)
v mq \@\ 0 AN m(l+tq) |  x ,
D= ji:,z( X) lj(smv cos o) + anx 2 ( % ) sin 9 -
. (2.10)
b+c- X
- —;— a(bte-2a) ‘03 2a) ;—( Pl(sims cos @),
4wX

where the new symbols a,c,b are the moments of inertia of the primary about the axis pointing to the
secondary, the rotation axis and the third axis, rgspectively. All physical quantities in (2.9) and
(2.10) are dimensionless, and, m and (b+c-2a) in (2.10) are obtained from the first-order theory.
Expressions (2.9) and (2.10) are approximate models of the real system consisting of two deformable,
extended bodies interacting gravitationally while each body rotates uniformly at the same rate as it
revolves; the axes of rotation and revolution being all parallel. The first order expression (2.9) in-

cludes all effects of the secondary on structure of the primary up to the order of magnitude Of v5),

e
0 , . .
where v = 3 with 'XO being the radius of the undistorted primary. The second-order expression

Pl

-~

(2.10) includes effects of magnitude up to O v ). To these orders of magnitude structure of the
primary is independent of the details of structure of the secondary,
Both, Chandrasekhar and Martin, combine (2.1) and (2, 2) into an equation for 0, and then

seek a soluticn in the form of a perturbation expansion

_ Lok
O(x, |1,p) = OO(X) + L v Ok(X,H,fﬂ)
k=3

where the cutoff J is equal to 5 in the first-order theory, 7 in the second-order theory. This ex-
pansion can not be uniformly valid %hroughout the primary, because Oo(x) =0 at x= XO (the so
called Emden radius) inside the primary, Martin (1970) argues, however, that the expansion with
J =7 is vahd around x = 'XO if the polytropic index n > fz— ; 80 that his results for the polytrope

n = 3,0 should be quite accurate. But the same argument shows that even the J =5 expansion is

o
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valid around x = XO only if n > ~;— = 2 leaving out the other interesting polytrope (for which n=l.5).
This inability of the (regular) perturbation analysis (directly traceable to the non-uniformity of tine
above expansion) to cope with both n =1,5and n = 3,0 polytropes suggests that solution of the
structure problem should be sought either numerically or using techniques of the singular perturbation
analysis. The [irst alternative provides the major motivation for examining the method of orthogonal
collocation in this paper., TFor the second alternative in the case of uniform rotation see Smith (1975,
1976),

In all cases, (2.7) to (2.10) the following operations

R
(2.11)

@ - 2W-@
do not change the system as a consequence of symmetries built in the expressions for the disturbing
potential, This means that a (numerical) solution of the structure problem need to be found only in
one half of the space above the equatorial plane. A further restriction of the domain, in which a
solution is sought, can be obtained by a reformulation of the outside boundary condition,

For every physically interesting solution (such sclutions are assumed to exist) of the struc-

ture problem, there is a sphere of some finite radius completely containing the region where the func-
tion 0 is positive. Let XH be the greatest of these radii for a certain sequence of configurations,

Then outside this sphere the potential satisfies the Laplace's equation and it is expansible in the

form
S, (+)
W ! B .
Vet p,e) = ) ) V()Y (8, 0) (2.12)
=0 m=0
where
(+) _ 2ol (Emjn om
Yﬂm (b9} = 2w (04+m) Pﬁ (W) cos me

when m# 0 and for m =0

+ 2041
W0 = J:IE" P, (1)

and the summation in (2,12) is such that m+f{ is always even. This restriction and the fact that only
cosines of the angle ¢ appear are due to symmetries (2,11), The coefficients satisfy the following

differential equation
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There is only one solution which remains finite as x-w; this solution is
& ~(L+])
Vv xX) o x
Em( )

and on the sphere of radius, XII’ completely outside the star it can be expressecd as

. ,>[: <
v { m( \H) . {41 v:::
dx XH fm

e = 0 (2.
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For fixed n the solution of system of equations (2.1'), (2.2), and (2.13) depends only on the
parameter N . This sequence of configurations 'starts' with N =0, the spherically symmetric con-
figuration, and 'ends' with the critical configuration, when X\ = )\c. Tor n >1 (which includes the
two interesting cases) the critical configuration for uniformly rotating stars (James, 1964) and syn-
chronous binary systems (Martin, 1970) is characterized by the fact that the sum of all forces at the
equator just balances to zero, i, e,

S (x_,0,0) = 0 | (2.14)
Locating the critical configuration is the main purpose of this investigation. It will be done by
checking the left-hand side of (2.14) for every computed configuration of the sequence characterized
by fixed n and adjusting the value of \ in such a way as to make it as close to zero as possible
but keeping it negative,

In the case of non-uniform rotation, when the disturbing potential is given by (2. 8), the se-
quence of axisymmetric equilibrium configurations for polytropes with n >1 does not necessarily end
with a configuration in which the efiective gravity is zero at the equator (i, e. when the condition
(2.14) is satisfied), Stoeckly (1965) provides some evidence that for n =1.5 and b close to 1 a
point of bifurcation is reached and the sequence continues with non-axisymmetric configurations.
James (1964} has shown numerically that such bifurcation points exist for uniformly rotating polytropes
with the polytropic index n < 0,808, The Maclaurin and Jacobi ellipsoids (which can be thought of
as uniformly rotating polylropes with n = 0) are a famous example of hifurcation. A numerical search
for bifurcation points and continuation of the seguence of solutions along the new branches could be

mounted using the ideas of H. B, Keller (1976). This provides the gsecond major motivation forlooking

-



at the method of orthogonal collocation as a means of computing three-dimensional stellar configura -
tions,
3. The Method of Orthogonal Collocation as a 'Perturbed' Galerkin Method
The sequence of solutions of the system of non-linear equations (2, '), (2.2) and (2. 13),
characterized by fixed value of n and variable value of X, can be generated from the spherically
symmetric solution, \ = 0, (which can always be computed as an initial-value problem for a single
ordinary differential equation of second order, Miketinac, 1976) by using a combhination of the
Newlon's linearization and the trial free-boundary method (Cryer, 1976). This is possible because a
"quess' for the soluﬁon VC,V provides, because of (2, 2), also, a 'guess' for the free boundary. The
procedure consists of two steps
(1) approximating an unknown solution A, V.,V by X, \"/c,\7 where \7c,\7 is a known solution with
N=X-8\ and &\ is "small’,

(ii) improving this approximation by A, VC+ 6\10, V+ 8V where

VoV + 6(-): = -V .6
The second step is iterated with \7C,\7 replaced by \7C + 6VC,\7 + 6V until certain convergences

criteria are satisfied, In the second step

— RRY. 7 2
6 = V+ 1 VC+\D(>\) (3.1)
{(which defines and 'moves’ the boundary), and
n ~n-1
= - ]
60+ n0+ (6V G\C)
so that 'corrections’ SVF, 6V satisfy the linear equation
VPV + n é:'lwv -V ) = -V - 6, (3.2)

and corresponding (linearized) boundary conditions on fixed boundaries,
Equation (3. 2) is of the general form
Iu+4+ Qu =F (3.3)
where the solution u is a function of x and the polar angles of a point on the unit sphere,

u = u(x,P), the operator L consists of two parts



o2

2 .
with Lx = — + % 9% and Q = Q(x,P), T = F(x,P) are known functions, Since the outside bound-
ox

ary conditions take the form (2.13), a numerical solution of the problem (3. 3) must be sought as a

truncated expansion (2.12), i.e,

12

N N .
u(x,P) = C,(x) & (P), (3.4)
o 3
where N is a suitable cutoff and (I)k(P) stands (apart from a factor) for a (general) spherical harmon-
ic \*i: (p,9) with l+m being an even number; it is assumed that
> - [
LP djk(l) = xkcﬁk(P) (3.5)

where )xk specializes to -£(£+1) in the case of eq. (3.2). To formulate 'perturbed' Galerkin methods

N . . .
for obtaining coefficients Cll’ (x) in (3., 4), it will be assumed that the sequence of functions

{(I)k(P)}Ii—O build an orthonormal system with the 'discrete' inner product

M(N)

(8,8 ) Eﬂ}—Jl W, @ (P,) & (P,) =5 _, (3.0)

where M(N) points Pﬁ of the unit sphere and weights le are suitably chosen,

Existence of an inner product of the form (3. 6) for @ sequence of spherical harmonics,

Y(M(p,,gn) {+m an even number J o, can be established in the following way. It is known
fm ’ =0, m=0"
=0, m=
see, for example, Fox and Parker, 1968) that the cosines {cos m ¢ J build an orthogonal system
H ’ s m= 3
because
0 m # m'
s 1
L W cosme, cos mg, = ( 3] 0 < m=m' <]
%o ) j j
J m=m'=0,]J
with ¢ = }r—j and Wj =1 for 1<j<7-1, W, = 3= w] . For another possible choice of (Wj’goj)jjﬂo"

see Dahlquist and Bjérek (1974), Therefore,

jj
2\ , (+) (+) ~ m__m _m m
j:{O ‘Aj YL’m (“’g{/j) YE‘m‘w’('r)j) - Lr)mm‘ Zm Nﬂ Nﬂ' PE (1) Pﬁ'(“) ’
where
é—] 0 <m«<]
Zm - ?
LT m=0,7

-8



203 (C-m)T
2w (£4m)!

/ 2£+1
an m=0
m

m
Since the product Pl (1) Pﬂl(u) is an even polynomial in p of degree £+4{£' which is even and at

=~ 3

the most equal to 2], there is an exact Gaussian quadrature such that

M
J

- m m ! m m B 2 (myl
121 W, P () Py ) -fl d, Py (B Py (k) = 8,

2041 (£-m)!

(M] is the minimal number of points for which the above relationship is true). This shows that
M
Z] ZI & w. Y, eyt )=5,,,6 /A
L Y5 e ™M e M T P O P
i=l  j=0 .
where
2
-]F- m# ]
A =
m 7
i m =
T J
indicating that the symbol @k(P) actually stands for '\/Am' Y(ﬂig(“-’q)) The number of discrete
M.,]T
points (Mi,cpj)i_l §=0 always exceeds the number of functions in the sequence {Y(;n)j(p,rp), m+{
=], j=

an even integer}ej_o’i_ for a given cutoff J; see Table 1.
=0, m=

0

Coefficients of the 'perturbed’ Galerkin approximation of the form (3. 4) to the solution of(3.3)
are obtained by substituting (3. 4) into (3. 3) and taking 'discrete’ inner products of the resulting

equation and & (P) for k = 0,l,...,N. This gives the following system of N+l equations for the

k
» 3 . N r N
coefficients {Ck(h) }k=0

s N
k N N N N
L+ = cp+ ), Q) 00Nt = P, (.7)
® s=0
where
M(N)
FNx) = ) W, F(x,P,) @, (P) ’
R o
and similarly‘,
M(N)
Q () = ) W, Qx,P P F
ks =1 f G P ) 8 (R )@y (R -9

For the exact (i.e. 'unperturbed') Galerkin method the matrix QN and the vector FN are defined as

corresponding integrals over the sphere and may differ in value from the expressions given by (3.9)

and (3.8). The difference can be displayed by expanding the functions F and Q

-9-



7 Ny M(7)
0 1 1
1 2 2
2 4 6
3 6 8
4 9 15
5 12 18
6 16 28
7 20 32
8 2 45
9 30 50
10 36 66
14 64 120
20 121 231

Table 1. N. is the total number of coefficients in the expansion (2.12) with

J

£ <7. M(]) is the minimal number of guadrature points in the

‘discrete! inner product; M(J) = M](IH).

o0
F(x,P) = ) L(x) &.(P),

2o j
(o]
Qx,P) = ), a(x) & (P),
£ j
i=0
then
0 M(N)
N . :
Fo(x) = ) £(x) W e (P)a (P)
k T k' o
j=0 £ =1
and
W M
Q% = j—Oqj(X) 2 W, @(P) @ (P,) @ (P)

(3.11)

N
The value of vector T , as computed by (3.8) or (3.10), can be made arbitrarily close to its exact

value by choosging the cutoff N in such a way that fj(x) for j >N is sufficiently close to zero,

N
However, even if for this choice of N, qj(x) = 0 when j > N, the matriz Q as computed by (3.9)

or (3.11) will contain some 'aliasing' terms,

This can be shown by assuming that the 'coordinate' functions (I,»l(P) couple in the following

4
way

-10 -



e (P)@ (P) = & _(P) (3.12)

where

Cims = [ ap (P e (P) o (P).
(+)

Existence of such a coupling rule for the spherical harmonics {Yg 0

(1,0), £4m even} can be easily

demonstrated {see, M. E. Rose, 1957). Then, denoting by

M(N) |
= 7 G, 3
Cips g%l Wy @ (P) @ (P @ (P), (3.13)
. N .
the matrix Q is given by
N
N ~
Q) = 2 9,1%) G o
j=0
where using (3.12)
N 2N M'(‘N)
~ = > U] >
('jks F}isxu[zf V\ﬂq,‘(Pf)q (PI)]
0 £ =1
and
~ PZL\J\T I\%QN)
C, =C, + c, [ ), W, a(P)a (P)] (3.14)
jks jks SN+ ksn ia1 T N n £

In other words, the expressions (3.13) coincide with Cy

N

when 0<j <N and 0 <kt+s <N, but
when k+s >N there are extra terms. Practice shows (see, also, Orszag, 1974) that these aliasing
terms are not a serious error, It is always possible to choose M(N) so large that (3.6 will be true
for 0 <k,s <2N which would guarantee a].ks = Cjks for 0 <j,k,s <N. In that case equations (3.7)
would not be different from the exact Galerkin approximation to (3. 3); methods of this type, known as
spectral methods, have been successfully applied to numerical weather prediction (Bourke, 1972) and
other hydrodynamical fluid flow problems (Orszag, 1974).

Another useful form of 'perturbed! Galerkin equations is obtained by multiplying (3.7) with

& (Pm) and summing over k ; the result is

k
N A ;
N S e N, - Plse .
k/’io(LX{ ‘{Z)Ck(m) ,.Tgk(Pm)s Q(.({,Pm) u (>\,Pm) T()\,Pm) (3.15)

using the fact that

~13-
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3=0
The second term in (3.15) can be written as

N

N
YA Co(x) 8 (P ) =
Ho Tk Tk k' “m

N Mi N
) I 2 W_ @ (P)u (x,P )] @ (P ) =

k=0
M(N) N N
& }\ZO WA @ (P )@ (P )] u(x,P)

giving, finally, the following form to (3.15)

M(N)
L uN(x, + -15 Z Bgs WNix, p )+
s=1 5 (3.16)
+ P yuN(x,P )= F(x,P )
Q(x, m uo(x, m Xy m
N N
Bms = }20 Ws )\k ék(Ps) q)k(Pm) ) (3.17)

In this formulation the method is known as the orthogonal collocation method (see, Finlayson, 1972;
Miketinac, 1976) and its main advantage over (3.7) is that the matrix BN does not depend on x;
N M(N)

the disadvantage is that the number of unknowns, i.e. {u (x,P )}m_l y

- is increased to M(N).

Equations (3.16) can be derived in a different way starting with the standard collocation method.
The question of convergence of methods of the type {3.7) is not considered here, because
there is already an extensive amount of information about it through the work of G. M. Vainikko (1972,

1967). The question is also considered by Orszag (1974).

4. Numerical Procedure

The solution of structure equations is, therefore, sought in the form

J !
Voome) = 2 0 vy o v ()
£=0 m=0

(£+m even)

and as a limit of an iterative process each step of which is a two-point boundary value problem,

consisting of a system of linear ordinary differential equations. For the 'perturbed' Galerkin method

~12-



the unknowns are

a !
5 V(I)O(O) =NZT 6V, {‘Svlm(x)’ 0 <X < Xp, f4m even }1 :O: m=o ¢ (&1

the equations are for 0 <x < XH

2
4,2 4 _ L ]
[=+t% & - 518V, (x) +
dx <
bord r
* 1T=0 m,gonm,f'm'(x) 6Vf'1n‘(x) - (4.2)
(£'4m' even)
J ] |
“Qpm, 000 8Vpl0) = F (%)
where M :
] ul -4 -l'l-l (+)
Qﬂm,flml = 121 JZ/ Hi’(pj)e+ (,x,p.i,(pj) R‘m‘(P ’(/, ), (4.3)
J a2 a4 2004, o]
P = - ot s e~ 2 1 Yim
dx X
(4. 4)
I i ( )
Z + Xy M, :9°J) (H ,<P).
The boundary conditions are, in their linearized form,
J 57
dé VOO(O) . d voo(o)
- o (4.5)
] ]
and
dﬁvT (x..) d\-,I (x.)
dx Xy B N U dx *XH o FH 6

An eguation determining 6V<~ is obtained by integrating (2.1') over the sphere and then letting x~ 0.

Since
2w 2
1 9 2 1
dp [ de [5—(1-p7) 5=+ V(x,1,0) = 0
‘1 5 o o 1‘HZ 90
and
2T

1
[ran [ oV = B v e0
-1 0

the resulting equation is

d ng(O)
3““*““"2‘*‘— = -«[-ZT B (4~7)
dx

-13-



which in the linearized form is

d esvI ol0 o 'oTo
3"_""2“""" = NZJ -3 (4.7")
dx dx

For the method of orthogonal collocation the unknowns are

J
]’J
< H .
SVC,{5V(X,;Li,cpj), 0 <x<x }1 o, =0 (4.8)
the equations are for 0 <x <x
~ H
My g
d 2 d 1 i)
(=5 + T=57) 8Vix,p,0,) + “’i Z B, V(X 1,0 ) +
dxz x dx i’ sz:l =l ij, pq P g
{4.9)
6 (%, 1,01 6V, 1,00 - V.1 = RX,u,0.)
n + ,li;‘Pj] ~*>)¥'i:¢j - ol = -:l*i:‘PJ- )
where
!
) i (4) (+
= 2(L+) A Y Y L, @, 4.10
B3, pa Ho mZJO (LAY By W Yy (b 00) Yy (g 0)), (4.10)
(m-+£ even)
2-7 =-n
R(x,p.,0.})E -(V V +0 (4.11)
Cotiys05) = + )H=Mi,<0=¢j
The boundary conditions are, in their unlinearized form,
M
j 213 (0,9,
W, W, et = () (4.12)
3 s
i=l j=0 L X
M
av’(x s, e)) J
H 1 &
H p=l g=0 ’
where
i S () (+)
(£+1) w Y . )Y . 4.14
U’pq P H{YO o Yoy 095) Yy () (4.14)
To determine Vc* one more equation must be supplied; it is given as another form of equation (4. 7)
M 2
Z zJ Wi W] 2 = -2]. (4.15)
i: j:o dX

These two boundary value problems are singular, but there is a variety of methods forobtaining
their numerical solution (see, de Hoogand Weiss, 1975; also, Parter, 1965), Perhaps, the simplest

method is to use central finite differences on an equidistant grid x, = hAx, h =0,1,2,...,H; this

h

approach is adopted in this investigation, To improve the accuracy differential operators involving

the corrections (4.1) on the left-hand side of equations (4. 2), (4.7%), (4.5) and (4. 6) are written out
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using the simplest central finite difference formulas, while the same differential operators involving

the previous iterate

7, ¢

3 o] =
VC s {Vﬁm(xh), h "1;2)°")HJ £ +m even}[:o’n’):o

on the right-hand side of these equations are represented by more accurate approximations in terms

of central differences, This amounts to a fusion of Newton corrections (4.1) and deferred corrections
into a single iterative procedure, In this way one obtains the following systefn of simultaneous linear
algebraic equations

2 .J

J J
8 Vyo(0) - 6V Fool®) (4.16)

oot = (AX)

and for h=1,2,...,H-1

2
-(AX) Qim 0ol%) 8 véo(ou (1 -%) avim(xh_l) - [z+£(—g—;—u]5vzm(xh) +
b (4.17)
L] 2 L L 3 2.7
FLEE OV, e ) (AT )T ) QO )8V, ) = (AX) TR, (xy);
‘ £7=0 m'=0 ’
(£'+m' even)
the final equation is
7 2(2+1) 241 ] _
26V, (xy S[2+ 5+ 2 =S (HH D]V, (k) =
H H
= (A2 P (x4 20+ 2) &G (4.18)
- [ H H fm”’ :
where -7
dv’ (x.)
_ fm"H 4] =T
Gﬂm - dx k Xy vﬁm(hH) ’ (4.19)

The right-hand sides are derived in the appendix. A similar process can be used to obtain a numerical
solution of equations (4.9), (4.12), (4.13) and (4. 15).

The coefficient matrix for the algebraic system is block-tridiagonal except for the full first
column when natural ordering of unknowns is used (see Figure 1), Such systems can be inverted
directly by either treating the coefficient matrix as a band matrix or by exploiting the block-tridiag-.
onal structure, However, the standard methods such as those described by Martin and Wilkinson

(1967) or Isaacson and Keller (1966) must be modified to take into account the full first column, These
modifications are particularly simple, if the ordering of unknowns is reversed. Both algorithms have
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using the simplest central finite difference formulas, while the same differential operators invelving
the previous iterate

\7], {]l;’{ (x)), h=14,2,.,.,H £+m cven}

C —0 m=0

oh the right-hand side of these equations are represented by more accurate approximations in terms
of central differences, This amounts to a fusion of Newton corrections (4.1) and deferred corrections
into a single iterative procedure. In this way one obtains the following system of simultaneous linear

algebraic equations

J J _ 2 I
6 Vol - 6 \’OO(I) = (Ax) Fool0) s (4.10)
and for h=1,2,...,H-1
% o) J 100 (ﬂ_f_l__
~(Ax) Qﬁm ()O( ) & \7 ( N+ (1 - h) évﬁm(xh_l) - [2+ h ]6 Xh) +
(4.17)
1T 2 & & 7 27
e B 6v£m<xh+1) *t(Ax) Z/ Z Qﬁm,ﬁ‘ln‘( h)6V£ m(Xi ) = (ax) FL’ m(Xh);
£'=0 m'=0
(£'+m' even)
the final equation is
N . €0, 0 ) IO 2 Yy Ty -
Zﬁvﬂm(XH—l) [2 + HZ Fo2 HZ(IH 1}sv m(>\H) =
= ()T (x4 z<1+-l~) A G , ' 4.18)
T {mH “tm’ (4.1
where 7
dVv’ (x_)
~ fm H ril =7,
fm " dx P i (4.19)

H

The right-hand sides are deriVed in the appendix., A similar process can be used to obtain a numerical
solution of equations (4.9), (4.12), (4.13) and (4.15),

The coefficient matrix for the algebraic system is block-iridiagonal except for the full first
column when natural ordering of unknowns is used (see Tigure 1), Such systems can be inverted
directly by either treating the coefficient matrix as a band malrix or by exploiting the block-tridiag-.
onal structure, However, the standard methods such as those described by Martin and Wilkinson
(1967) or Isaacson and Keller (1966) must be modified to take into account the full first column. These
modifications are particularly simple, if the ordering of unknowns is reversed. Both algorithms have
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been used in actual computations on the computer t‘aking about the same amount of computing time to
invert a given coefficient matrix; the results have been practically identical with the Issacson-Keller
algorithm being more efficient because the amount of data necessary to tran sfer to and from the
maszive storage is halved. In spite of this the Martin-Wilkingon algorithm is to be preferred be-
cause it has not been possible to show that the condition guaranteeing numerical stability of the
Isaacson-Keller algorithim (see, Varah, 1972) is satisfied; in fact, a simple application of the

Gerschgorin theorem shows that the condition is not satisfied, but it is very close to it,

f A
Al Cl

B2 AZ CZ

c3 B3 A3 C3

04 B4 A4_ C4
L BH AH
. ~ed

Figure 1. The coefficient matrix for equations (4.16), (4.17)

and (4.18). All blocks are square matrices of order

N] (A1 has one additional row and column) except
B2 and Cl. The order of the coefficient matrix is
form the column vector in

H-NI+I; 03,04, cesChy
(4.17). Blocks Bi (i >2) and Ci (i >1) are diagonal
matrices,

When considering the computer implementation of the two methods described above, it is nec-
essary to take into account the cost of the fellowing major operations; (i) setting up the coefficient
matrix, (ii) solving the linear system, and (iii) storing and retrieving data from the massive storage.
There are H -+ Z(N'])ZI\/[].(]'+ 1) multiplications involved in setting up the coefficient matrix for the

tperturbed' Galerkin method and H(N]A) ° multiplications needed to solve the corresponding linear

2

system using the Martin~Wilkinson algorithm; the total is

~16-



H(NI)Z[ZI\'I]‘(HU + N],] . (4.20)

For the method of orthogonal collocation the number of multiplications is of the order of magnitude

H[M (T + ny?, (4. 21)
since setting up the coefficient matrix is not a major contribution in this case,  Although the number
(4.21) is greater than (4.20) for T7=7 and J =10, which were actually used on the computer, the
method of orthogonal collocation should not be used for stellar structure computations in three dimen-
sions, because the cost of the third major operation mentioned above becomes prohibitively expen-
sive very rapidly with increasing 7, Also, as J increases it becomes necessary to use double
precisioning when solving the linear system much sooner for the method of orthogonal collocation
bringing a further setback to the method.

Even for two-dimensional calculations (Stoeckly, 1965), where the number of coefficients
equals the number of quadrature points, the 'perturbed' Galerkin method is an almost equally effi-
cient alternative to the method of orthogonal collocation. This is because the cost of the major oper-
ations (i) and (ii) is about equal (the factor is about 1. 5 if symmetry of the matrix QN is taken into
account), while the cost of the third major operation does not have to he considered (even though it

is the same),

5. Results of Numerical Experiments

A computer implementation of the method of orthogonal collocation and the 'perturhed' Galerkin
method has been developed for the problem of uniform rotation with the disturbing function given by
{(2.7). This is very convenient for twc reasons. The rotating configurations should be axially sym-
metric, because of the form of VD (at least for small §2, see James , 1964), so that the problem is
actually two~dimensional and as such its numerjcal solu.tion is well-known, So the present methods
will be thoroughly tested in providing a close agreement with the known solution, And, finally, the
treatiment of the binary problem using the same program is equivalent to a simple replacement of the
formula (2.7) by (2, 9) or (2.10) in addition to some other (minor) complications, However, for reasons

already mentioned only the "perturbed' Galerkin method has been used for actual computations in the
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binary problem, In fact, the method of orthogonal collocation has been programmed for, mostly,
sentimental reasons generated by its superb performance in two dimensions (Miketinac, 1976), dlnxe in
part to the fact that there the number of coefficients in the expansion (3.4) equals the number of
quadrature (or collocation) points in (3.6). TFor both methods the basic computations can be organized
as in the flow chart in Figure 2, The possibility of using Ax as the parameler p in the flow chart
can be exploited in two ways: (i) the mesh could be refined (with all other paramelers kept fixed)
giving an idea about the accuracy of an obtained solution, and (ii) the mesh could be coarsened to
ensure that the maximal radius of a particular solution is smaller than H A x,

All numerical experiments reported here have been performed for the polytropic index n = 3,0,
with H equal to 60, and J has been chosen to be equal to 7 except for a few experiments when T
has been equal to 10. Table 2 contains some pertinent information about the storage requirements
and computing times involved in an iteration cycle for the 'perturbed' Galerkin method, In the case
of the method of orthogonal collocation it has been necessary to use double precisioning even for J=7;
the computing time per iteration cycle has been about | minute. From the Table 2 it is clear that fre-
quent use of the massive storage must be made. This is achieved by modifying the Martin-Wilkinson
algorithm (for which the coefficient matrix is a band matrix of band width ZI\)’I~l«l and having 60- NTH
rows) in such a way that: (i) the coefficient matris is set up in consecutive blocks containing N

J

rows each {except the first block which contains N_4+1 rows), (ii) the fast core contains only two

J

such blocks at any one time and (iii) results of the elimination are transferred to and from the massive

storage in blocks, too., For all values of the parameter p in Figure 2 that have been tried, the num-

ber of iterations necessary for convergence (convergence criteria are that imax} [RBm(Xr')I <0,000 001
C,m,h v
s 3

and max ]5 (x )] < 0,000 5),seldom exceeded three,

\Y
2,m,h LM h

Computation of uniformly rotating configurations has served (as indicated at the beginning) as
a test problem in two ways. The accuracy of a method can be judged by (i) looking for dependence
of the results on the angle ¢ , and (ii) agreement with the corresponding two-dimensional resulis.
For the 'perturbed' Galerkin method no dependence on ¢ is found to»seven decimal digits and the

results agreed with the two-dimensional results (obtained by the method of orthogonal collocation
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initialize: p,V, (x.,p), 6p

%

p—=ptésp

set me(xh,pﬁ- 6p)=VEm(Xl,1,p)

Y

calculate the right~hand sides Rfm(xh)

set up the coefficient matrix and

obtain the corrections SV, {(x.)
Im'™h

18 W ")'7 b'd
<:;\ as well “Slé\ﬁm('h)l ves

. °'l‘.
<5x10 9

improve the approximation by

Vﬁ‘m( s pt &p) — Yy m( Xy s Pt 6P )+ SVQ m( Xh)

me(xh,p+ 6p) is an acceptable approximation;
i

physical properties are calculated next

Figure 2: The flow chart contains only the basic portions of the iteration procedure.
The symbol p could be the parameter X, but it could, also, be Ax or

n changed by a *small' amount &p,
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N N T

I J D S TR T
7 20 50 360 32 8 40
10 36 159 768 158 29 187

Table 2. The new symbols ND’TS’TR’ and T have the following meanings:

ND is the number of non-zero elements for the Martin-Wilkinson

algorithm, T, is the time taken for setting up the coefficient

S
matrix and solving for the corrections, TR is the time taken for

calculating the right-hand sides, and T 1is the total time per

iteration cycle; all times are in seconds (the machine is UNIVAC 1110).

formulated for two-dimensional computations, Miketinac and Barton, 1972) to four decimal digits.
These resulis have been slightly bettered by the method of orthogonal collocation but with the Gauss
elimination done in double precision, Both computations have been performed for J =7 made possible
by the fact that the magnitude of the coefficient; Vﬂ m(xh) becomes very small for £ >5, Martin
(1970), also, tested his perturbation expansion on the example of uniformly rotating polytropes. His
results for n = 3.0 agreed very well with the results obtained by Miketinac and Barton (1972) using

the method of orthogonal collocation; the results are shown in Table 3.

3

0 4,070X10° 4,076 % 107>

e 10,05 10,065

Table 3, ELguatorial radius, Xe , for the polytrope of index
n =m3. 0 rotating uniformly with the critical angular
velocity, QC. The second column contains results
obtained by Miketinac and Barton, while the third

column contains Martin's results.
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Computation of the structure of the primary in a close binary system has been performed, so
far, for only one value of the ratio of masses, g = 0.5 (with n = 3,0). The first-order theory hés
been used, T being equal to 7 and the critical separation XC is found by testing (2.14). The re-
sults are collected in the second column of Table 4, which contains (in the third column) the corre-
sponding results obtained by P, G. Martin (1970) using the second-order theory and the perturbation
method. The fact that results do not agree much more closely can probably be accounted for by the
difference between the first-order theory and the second-order theory. For the oritical configuration
the absolute magnitude of coefficients Vﬁ m(xh) becomes smaller than 0.000 002 for £ >6 showing
that the cutoff T =7 is reasonable. An intermediate configuration, belonging to X—l = 0.03, has
been compuied, also, with J =10 (and still using the first-order theory), the results agreed to five
decimal digits. Another intermediate configuration, belonging to X"] = 0,06, has been obtained in
two different ways: (i) as an end of a sequence of configurations with X—l making ‘small jumps'
0.00-» 0,03— 0,04~ 0,05~ 0,06, and (ii) directly from )(—l = 0,00 to X—l = 0,06; the results
agreed again to five decimal digits.

The immediate future work on the binary problem should have the following two objectives.
First, critical configurations for a range of values of the mass ratio, q (including g = 0.5) should
be obtained using both the first-order and the second-order theory with J = 10 and the results should
then be compared with those obtained by Martin (1970); a close agreement of the results is expected,
In these computations the polytropic index would have to be equal to n = 3.0, since Martin's method
can not be extended to the other interesting polytrope for which n =1.5. The second objective should
be computation of critical configurations for this other polytrope using again both the first-order and
the second-order theory with J =10, The results could then be compared with the first-order results
of Naylor and Anand (1970), but large discrepancy of the results would not be surprising on account
of remarks made in Section 2, It is expected that H = 6C will have to be replaced by, probably,

H =100 in order to maintain A x < 0,2 and yet accommodate the configurations for the n =1.5

polytrope, which is known to be less centrally condensed than the n = 3,0 polytrope. This change

in H will make the computations more expensive and an increased efficiency will have to be

achieved, TFor example, the cost of computing critical configurations using the second-~order theory
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Xt 0.064 0,062
C

x 0,583 0.571
e

X, 0.459 0,439

X 0,497 0,468
n

¥ 0,428 0,414
)

g 1.092 1,094
p

9, 0,756 0.780

g, 0.533 0,601

v, 2,291 2.961

Table 4. A comparison of results for the primary of a close binary
system, The symbols ORE IR and xp are the radii
in the following (1, ¢)-directions: (0,0), (0,w/2), (0,7),

and (1,¢). The gradient of the (total) potential (i.e. V+VD)

at the surface is denoted by g; the quantities gt and gn
are expressed in the units of gp and gp is itself normal-
ized by the gravity, go, on the undistorted Emden sphere.
The {total) potential \/S at the surface is the potential

normalized by Gm/R.

with T =10 can be lowered considerably by first locating the critical configuration in the first-order
theory with J =7 and then refining the results using the second-order theory and J =10,

The future work on the 'perturbed' Galerkin method should include the proof of convergence,
Cryér (1976) repAor'ts that no proof of convergence of a trial free~-boundary method has been given.
From the applications point of view the most important future prohlems would be the bifurcation prob-~
lem for the disturbing potential (2. 8) and the possibility of computing the critical configurations of

more realistic models of stars,
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Appendix

From equations (4. 5) and (4.7') it follows that the right-hand side in (4.16) is given by

257 ]
]'?] (0) = l,\/“;'r + LEM + ...1._. OVOO(»(_)E.“
00 67 2 2 Ax dx

The right-hand side for (4.17) is defined in (4. 4), and the final right-hand side in (4.18) is a combina-

tion of (4. 4) and (4.19).

Differential operators in these right-hand sides are approximated using the following formulas

dy 1
dx * Tonaw Vi V8V m 8 v YL)
X=3,
and !
2
dy 1 _
e = ——=(-y,,, + 16y, . =30y +16y, . -y, ).
dxz IZ(AX)Z i+2 i+l i i-1 i-2
x=x,

Then one can show that the right-hand sides are given by

' 1 - - ) )
(Ax)2 F%O(O) = E(Ax)z NZT —,ZIZ[-_% vgo(xz) + 32 véo(xl_) - 30 ng(O) + vgo(x_z)] .
2y S N N | _
(4x) rﬁm(xh) B 12[(14 h) Vﬂ m(:}\h+2) 16(1 4 h)vf m(XhH) !
7! Lyt el L0 _
+ 30V (%)) - 161 -1V, CNE (1- h)vﬁ m(kh-z)] 1
My
ﬂ(,ﬂ"}-l) "I 2 N “o=n ,(+)
+ h 2 ﬂl‘ﬂ(xh) - (AX) = JZ:J() WlW] O’*'(}\h’ “‘iJ (/’)) Xﬂm(hi,q)j)

for h=1,2,...,H-l, and

2 T o e Ly Ax N S R 30 (x =] .
(Ax) 12m(XH) + 2{1+ H)Ax Gﬁm =1 ['Vﬁm(kH—x—z) + 30V£m(>\H) - 32,V£m(an1) }
=7 £ 4] =7
! 7 - LS NI TR & B
43\EHKXH-8]+ HZH4ZUH1H%HJXH),

These expressions can be used only if a prescription is given for computing \/‘OO(x 2), i‘fﬁm(x l) and

Vf m(XHH)’ \/ﬂ m ). The last two quantities are obtained from the outside boundary condition by

X2

setling in
=] -]
r - / »
e T Vi) n 7

2A% " MAx  Im ) =0

X
M

M =H and M = H+l, An expression for \7£ (x 2) is obtained by putting h = -1 in the eqguation
-
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o I LosT Ly o
Vo) = (1 -R) Yooy, 4 =

I
_ 2% N - ) -n
= (a7 ) ) wow Yol e) B (% skye)),

1

sy @) - QC + 1+ VD()\,‘X_I;IJ';({") ’

1.-7
(] +3W (x -
(1 ‘h)\OO(‘\hH)% 2
M
i=l j=0
where
6(X l’fl:@) = V(X
giving
=] sl
Vool*_2) = Vool* ) -

It follows from (4.1) that when !

M
L (A%) ZI %\ W, W Gn(x )
R /A S Sl

= 0 one can set

vi IR O R
Vﬂm(x-l) = () Vﬂ m(kl) )
The validity of this formula for f# 0 follows from the known solution (Weinherger, 19565) of
2 -
d Vﬁm . 2 dvﬂm £(8+1) T -
2 X dx 2 fm
dx b
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