Construction of Generalized Capital Budgeting
Test Problems with Known Optimal Solutions

by
Jay M. Fleisher

Computer Sciences Technical Report #260

August 1975

+This research was supported by National Science Foundation Grant

MCS74-20584.

The University of Wisconsin
Computer Sciences Department
1210 West Dayton Street
Madison, Wisconsin 53706

Received: August 28, 1975

Construction of Generalized Capital Budgeting
Test Problems with Known Optimal Solutions

by

Jay M. F]eisher+

Technical Report #260

Abstract

This report presents a procedure for the construction of "generalized"
capital budgeting problems with known optimal solutions. Generalized
capital budgeting problems are pure integer programming problems with
upper bounded variables and nonnegative data and thus provide a source
of problems for testing integer programming codes. The data comprising
these problems will be selected in such a manner that sufficient optimality

conditions will be satisfied.

1. INTRODUCTION

1.1 Statement of the Problem

Generalized capital budgeting problems, as considered in this report,

have the following formT:

(GCB) Maximize ¢ x
subject to A x < b
0

A

x < d, x integer

HA

where A is an m x n matrix with all Aij 20, c,d, and x e Rz, and b € RT.
In addition, it is assumed throughout this report that the data for (GCB)
is integer valued.

Note that the problem data of (GCB) consists entirely of nonnegative
values and (GCB) necessarily has an optimal solution because x = 0 is
feasible and the objective value is bounded above by cd. It is usually
the case that n is larger than m: 1i.e., typically n > 2m.
| The usual type of capital budgeting problem [2, 3, 7] has the form
(GCB) with d = 1 (vector of 1's). It arises in the following context:

A firm has n projects which it may or may not undertake and the
jth i If xj = 1, project j is undertaken
and if Xj = 0, project j is not undertaken. Project j requires an

project has a net profit of c

expenditure of Aij units of the 1th resource and the availability

of the ith resource is bi units.

TVectors may be row vectors or column vectors. If A is an m x n matrix,
n
xand y ¢ Rn, and u ¢ Rm, then xy will denote z X.y. and uAx will
m n j=1 9
denote } } u, Aij X

i=1 91 3’

2

Problem (GCB) arises in a more general context where a firm may
undertake up to dj projects of type j, each with the same cost structure.

Problem (GCB) is equivalent to the ordinary capital budgeting problem
since integer programming problems with bounded variables can be reformulated
so that all integer variables are 0-1 variables, as is shown in references
[2]and [6]. However, this report considers the general case where
variables may be allowed to assume values other than 0 or 1. As is
discussed in reference [6], it is usually more efficient to solve

problems with d # 1 directly, without conversion to 0-1 problems.

1.2 Basic Idea

The sufficient optimality conditions derived in [1] form the basis
for construction of test problems of the form (GCB) with known optimal
solutions. The data comprising (GCB) will be generated in such a manner that
the optimality conditions will be satisfied at a specified solution x*.
Alternate optima are possible, however, the optimal value of (GCB) 1is
c x*, so it is possible to determine how close to optimality a feasible
solution obtained from a code actually is.

The sufficient optimality criterion, which is derived in reference
[1], is stated below for the case where problems are of the form (GCB).
The quantities A, b, ¢, d will refer to data for (GCB) and m and n

will denote respectively the number of constraints and the number of variables

for (GCB).

(s0C)

Sufficient Optimality Criteria:

*
Let x be an integer vector such that 0 ¢ x gd, s eR

(k)

c be an integer valued vector, k =1, 2,...,p,

U(k) € RT; k =]a 23' 2P
V(k), w(k) £ R_T_, k=1, 2, Ds
M 2 0, k=1, 2,...5p

If

) (o aT &) oG s e, e,
(Dual Feasibility)

P
(2) ¢ = kz] xkc(k), K =1, 2,.00sps
(Composition)

(3) b=AC +5s,
(Primal Feasibility)
(4) s, = 5" u(k) Fx v(k) + (d-x*) w(k) <Yy

k
where v, = Tgcd (c](k), cz(k),...,cn(k)), k=1, 2,.

(Quasicomplementarity)

..sp

*
then x solves (GCB).
* *
The quantities x and s will be referred to respectively as the

solution vector and the slack vector, u(k), v(k), and w(k) will be

referred to as u-, v-, and w-multipliers, the c(k) vectors will be

referred to as component cost vectors, the Xk scalars will be referred

+Greatest common divisor. A generalized greatest common divisor,
applicable when the arguments are rational numbers, is described 1in
reference [1] which also lists properties of the generalized greatest
common divisor.

4
to as component weights, & will be referred to as the index of
h

component, and Y will be referred
th

. t
quasicomplementarity for the k

to as the critical index for the k= component. In addition, the

quantities x*v(k) + (d-x*)w(k) and s*u(k) will be referred to

respectively as the solution quasicomplementarity index and the slack

quasicompliementarity index for the kth component.

The following theorem guarantees the existence of test problems
of the form (GCB) with integer data such that the (SOC) conditions
are satisfied at a solution x* and such that x* does not solve the

continuous relaxation of (GCB).

Theorem 1:
Let m, n > 1, xt d e R" be integer vectors such that 0 ¢ x* < d and
x* # d. Then there exists a nonnegative m x n integer matrix A and integer
vectors b ¢ RT and ¢ ¢ RZ such that (GCB) with the data A, b, ¢, and d
has the following properties:
(i) The conditions in (SOC) hold at x* and hence, x* solves (GCB).
(ii) The solution x* is not optimal if the integrality requirements of

(GCB) are removed.

Proof:

*
Since x # d, let r be an index such that Xr* <d. -1,
Set A = 21'fj=r,1’=],2,..,,m,
iJ 2k1j if j # r where kij > 0, integer, i =1, 2,...,m,

th

(A contains all even entries and the r~ column contains all 2's)

E *
b, = A.. x,. +1, i=1, 2, .M,
i 321 ij 7j
)

C: = A--sJ=]a 23 N

b Y
u (k) 1Tifi=k

i 0ifi1#k, k=1, 2,...,m,
ML RS R S T S A

(k) _ . _
Cj = akj’ j=1,2,....n, k=1, 2,...m,

s; = 1, i=1, 2,...m
Then vy, = gcd({c-(k)}) = 2 since c.(k) =a, . is even and a,_ = 2
mk i n NI k kr
*
and §, = } u (k) s; +) v.(k) x, +) w.(k) (di=x;) =1+0+0=
K is o3 =

1, k=1, 2,...,m

Hence, Sk < Yo k=1, 2,...,m, so (4) of (SOC) holds. Verification
that (1), (2) and (3) of (SOC) hold is straightforward and follows from the
(k)

choice of ¢'™’, ¢, and b.
*
To show x is not optimal if the integrality requirements are dropped,

. 0
consider the vector x where

* + 1 F i =
NI M B
J xj if j#r.
L * L o _.
Then b, = jZ] Aij X; +1 = jz] A].j x; since a; . = 2 and

X -cx =5c, =m> 0 since Cp = 2m. Thus x° is feasible for (GCB)
with the integrality requirements removed and yields a higher objective

*
value than x . |

6

Theorem 1 settles the question of existence of problems (GCB)
with a solution x" such that (S0C) holds at x* and x does not solve
the continuous relaxation of (GCB). However, the problems exhibited
in Theorem 1 have the undesirable property that the rows can be simplified:
i.e., since Aij =0 (mod 2), bi could be replaced by jg1 Aij Xj* without
removing any integer lattice points from the feasible region of (GCB).
For this reason, Theorem 1 does not provide a source of good test problems,
and, in fact, has not been used for problem generation.

The test problem generator to be described in Section 2 is a procedure
for generating data and other quantities appearing in (S0C) for problems
of the form (GCB) such that (SOC) holds at a solution vector x*. The
quantities x* and d are specified at the beginning. For each component k,

k =1 ..>p, a subset of the rows of A and s* as well as the vectors

923
u(k), v(k), w(k), and c(k) are generated in such a manner that (1) and

(4) will hold for the kth component. Finally, the component weights
Ak are generated and ¢ and b are set according to (2) and (3). With
(s0C) satisfied, it is guaranteed that x* is optimal for (GCB).

A numbér of heuristic rules have been incorporated into the
construction procedure in an attempt to prevent the generation of

"trivial® problems. Judging from the difficulty of the problems

obtained, these heuristic rules have been successful.

2. GENERATION OF TEST PROBLEMS

2.1 Properties of Test Problem Generators

The generator to be described guarantees that the conditions in
(SOC) are satisfied. In addition, the following considerations have
also been taken into account:

(5) The data for (GCB) are integer valued. This will eliminate
rounding errors in the data which could possibly result in the generation
of a test problem with the conditions in (SOC) not satisfied and x*

being non-optimal. Furthermore, source data for test problems generally
requires less space when the data values are all integer valued.

(6) The test problem generator should be able to produce problems

which are fairly difficult to solve. In particular, the solution to

the continuous relaxation of (GCB) should not solve (GCB).

(7) The test problems should not contain rows such that (GCB) can be

n

readily simplified by inspection. For example, a row) o xj
J=1

should not have any o > B, since this would imply xj can be eliminated

< 8B

from (GCB) because X5 2 1 is infeasible, and B should be an integral
multiple of v = gcd(u], uz,...,an) since otherwise, the row could be
replaced by the tighter row (in the continuous sense)

'E] g%uxj < L%-J, where |{x] denotes the largest integer which does not
g;ceed X.

(8) There should be at least two components in the generation of the test
problems. If there were only one component, then, as shown in reference
[1], the gap between the objective values of (GCB) and its continuous

relaxation would have to be less than y = gcd(c], CZ""Cn)f Since the

8
objective value of (GCB) must be an integral multiple of vy, an
optimal solution to (GCB) could be recognized by a code without
continuing the search if an optimality test based on the gcd were
incorporated in the code. Such a test appears in the ENUMER8 code
[5, 6] of Trotter and Shetty.

2.2 Procedure for Generating Test Problems

The procedure to be described below is a systematic way of generating
data and the other quantities appearing in (SOC) for problems of the
form (GCB) such that (SOC) holds at a solution vector x*. The procedure
generates at least 5 rows (m > 5), but there is theoretically no upper
1imit on the number of rows or columns. (At least two components are
needed for generating good test problems and the procedure to be described
requires at least 3 rows for the first component plus 2 rows for each
subsequent component.) All data generated for (GCB) will be integer
valued and the A matrix coefficients will be roughly uniformly distributed
on {0, 1, 2,...,a0—1} where a, is a specified parameter.

In what follows, Latin letters will refer to quantities which
assume integer values and Greek letters refer to quantities which may
assume any real values. The expression e(a) will denote [ot+0.5]: i.e.,
the value of o "rounded" to the nearest integer.

Input Parameters

5.

fl

m = number of constraints; m

v

A\
()]

is recommended.

n = number of variables; n 2

p

u

o

9

parameter determining range of A matrix coefficients; 0 g Aij s a,-hs

a, 2 10 is recommended. The critical index for every component
will be an integral multiple of a, and usually be equal to a,-
parameter determining relation of a, to the approximate average

- = o
Tue for c;3 ¢ vc -A.. v - ; < <1 s .
valu rCys €5V CytAg vy a,/2; 2 gcy <10 seem reasonable

vector of upper bounds; d > 0.

*
vector which will be a solution to the problem generated. 0 g x £ d.

ratio of the index of quasicomplementarity of each component to

its maximum allowed value of a0~1. The index of quasicomplementarity
for every component will be e(a(ao-l)) ; 0sa <1 (Larger values

of otend to generate more difficult test problems.)

maximum ratio of the solution quasicomplementarity index to the

total index; 0 < B <1 (For a fixed o, smaller values of B tend

to result in more slack in the rows of A.) If 8 = 0, the

algorithm sets the v and w multipliers to 0.

number of components; 2 < p £ Lm%l .

maximum allowed u-multiplier value; 3 g u £ 7 is recommended.

Procedure P1: (see Figure 1)

1.

[Initializations]

Set Ki’ i=1,2,...mto 0 (Ki will indicate the component corresponding

to row i). Set Rt’ t=1, 2,...m to a random permutation of

*
Td and x may be input explicitly or generated according to prespecified
parameters. See the appendix.

2.1

2.2

2.3

2.4

10
{1, 2,...,m} (used to indicate the order in which the rows will

be generated). For the first component, ry rows of A are generated
and for the other components, ro rOWS of A are generated where
ry = L{m-1)/p]) and ry=m- rz(p—1). Note that (r1, rz) > (3, 2).

*
[Generation of A, s , multipliers, and component cost vectors].

Set t = 1.
For k = 1, 2,...,p do steps 2.1 through 2.8.
[Initializations]

Ifk=1, set r= res otherwise, set r = ro (r is the number of rows

generated). Set Ki =k, i = Rt’ Rt+1""’ Rt+r-1 and Q = e(a-(ao—l)).
[Generate v and w multipliers for component k] If B8 = 0, set v(k)
and w(k) to 0 and go to step 2.3; otherwise generate v(k) and w(k)

such that Q] = x*v(k) + (d~x*)w(k) < |B-Q] and 0 < vj(k), wj(k) < a0—1

(see the Appendix). Set Q = Q—Q].
[Generate u multipliers for rows not corresponding to component k].

Set ui(k) =0 for K; =0 (rows corresponding to subsequent components).

(k)

If k =1 go to step 2.4; otherwise generate uj

*
(1 < Ky < k) such that Q, = Y a, (K s,

previously generated

A

L%—QJ and 0 g ui(k) < g

(See the Appendix).

Set Q = Q—Qz.
*

[Generate u multipliers and s components for rows corresponding to
component kJ.

Generate (k) ds ¥ for i = R_, R R such that

r U_i an i £ N1t M-l

¥ ui(k) Si* =Q, 1 ¢ ui(k) < Uy and uﬁia_] = 1 (See the Appendix).
K.=k -

1

This completes generation of u(k), v(k), and w(k) such that the index

A

2.5

2.6

2.7

2.8

11

th

of quasicomplementarity for the k™ component will be e(a-(a0—1)).

[Generate r-1 free rows of A corresponding to component k]

Generate rows i = R, R R such that A_ij is a random

(A £ N 2 4

number uniformly distributed on {0, 1, 2,...,a0-1} for j =1, 2,...,n.

These rows will be referred to as free rows since they may be

generated freely.

(k)7

[Determine component cost vector ¢

set ¢, (K = 1A (k) _y () ()51, 2,0

. ij i j j
and ¢ (k) lf:thzé (k) +a -1)/a], j=1,2 n. Then
; o i o od> J s 25...sl.
cj(k) is an integral multiple of a,> and thus gcd (c1(k), cz(k),...,c
. (k) (k) } (k)
> a,. Since Aij >20and 0 g Vi, Wy <~ <5 > 0.

[Generate fixed row of A corresponding to component k] Generate

row i =R such that Aij = c.(k) - 6.(k), j=1,2,...,n.

t+r-1 J J

This row is referred to as a fixed row because the constraint
- (k) A (k) . L.

Aij cj cj determines Aij' It may be verified that

0 5 Ay J J J

[End of loop in step 2]

< a,-1 and c.(k) = .§] Aij v1.(k)—v.(k> + w.(k) = 0(mod a,).
“I:

Set t = t+r.
[Generate b and c]

* *
Set b=Ax + s .
For k = 1, 2,...,p, generate xk‘s which are nonnegative integral
multiples oanl and set ¢ = E xkc(k). The xk's should be

0 n k=1
generated so that ¢ = § cj/n ~ %— a, ¢, (see the Appendix).
J=1

Set z* = cx*, the optimal value of the problem. This completes

the generation process.

(k)

n

Start

12
Ki:=0, i=1,2,5...,m k: =0 | ves
R;:=0, i=1,2,....,m g (TR N TP k+l—%l>-<2'ilﬂ@>
ry:=[(m-1)/p] no
r]:=m—r2(p—1) - rz
> v
K1 =k, i = Rt,' Rt+1" "Rt+r—1 o cx(ao-1)
no
(Dap: = 0y
yes 0 yes
e v, =0 for k=0
no
Y o Q: = 0Q-Q, > +
Aij: = yniform random number on {0, 1, 2,...,a0—1};
i = Ry RyqoeesRpgpipe 3 = 15 25005m.
' | 4
6-(k): =y A, . u.(k) - v.(k) + w.(k); 3 =1, 25...50
J i#R LV J J
t+r-1
y
Koo res +a-1)/al, §=1, 25...0n
J 0 J 0 0
- o o k) oA (k)
For 1 = Ryip 12 Aij' c; éj »Jd=1s2,...5n
D= tir 4.}—————j
p
* 4 c: =) Akc(k)
yes k=1

Figure 1: Flow Chart for the Test Problem Generator

13

Key to Procedures in Flowchart:

1. Generate v(k) and w(k) such that

* *

Qq = x vk (d-x) wlk) < [B-Q] and 0 ¢ vj(k), wj(k) < a-l
2. Generate ui(k) for 1 ¢ K, < k such that

Q2 = 7 u.(k) s.” < L%QJ and 0 g u.(k) < u._.

].-_<-Ki<k1 1 1 = 0
3. Generate u (k) and s * for i = R, R R such that
' i i LA 23 A
*
) a, s ¥ = q, 1 < o, (K < uy»> and u = 1.

i t+r-1

K-=k 1 1

4. Generate AB'S which are nonnegative integral multiples of 51- such
QETINN °
2

n
that })} A c %o

31 k=1 J

2.3 -Validity of Procedure:

In steps 2.2-2.4, we generate u(k), v(k), and w(k) multipliers, as
well a; si**for(;;ws l cor:espﬁ?dingnto the kih component, such that
(9) Z s; uy o F jZ] X vj() jzl (dj—xj) wj(k) = G,
where G < a0-1. (This may be verified by summing the quasicomplementarity
relations in steps 2.2-2.4.) In steps 2.5-2.7, we generate rows of
A as well as c(k) such that

m
(10) cj(k) = i-zil Aij ui(k)— vj(k)+ wj(k) = tj a,»

where tj is a nonnegative integer.

(Note that if row i corresponds to component k', where k'>k, corresponding

terms in (9) and (10) are O because u¥k) = 0.) From (10) we have

gcd (c](k), cz(k),...,cn(k)) 23, > G where the first inequality holds

14

as equality whenever the tj‘s are relatively prime. Thus, from (9)
and (10) it follows that each time steps 2.2-2.7 are executed
conditions (1) and (4) of (SOC) are satisfied for a fixed component
k so that upon completion of step 2, (1) and (4) are satisfied.

In step 3, we generate nonnegative component weights Ak and set
b = Ax* + s* and ¢ = E kkc(k) which are, respectively, conditions
(3) and (2) of (SOC).k-}hus, at the conclusion of the procedure, (SOC)
is satisfied. |

From (SOC), an upper bound on the differential between the optimal
objective values of (GCB) and its continuous relaxation is given by
g Kk Gk since the gap between the optimal objective values of (GCBk)
%glob1em (GCB) with ¢ = c(k)) and its continuous relaxation is bounded
above by 6k [1]. Since 6k = e(a-(ao~1)) in Procedure P1, it is suggested
that the parameter o should be set at or near 1 for constructing
difficult test problems, although a large gap needn't imply a difficult
problem or vice-versa.

For a variety of test problems constructed using Procedure P1,
the actual gap was usually greater than 70% of this upper bound (see
Section 3). A sufficient condition for the gap to be positive and hence,
for the solution to the continuous relaxation of (GCB) to not solve
(GCB), is s* >0 and for some r, c > 0 and Xr* <d. If these

o

¥ X
conditions hold, 8 = min-&iﬂair[a >0, d, - Xr} > 0. Then x

ir

is feasible for the continuous relaxation of (GCB) where
*

0 xj + 8 ifj=r

j ok e s
) X ifj#r

15

and cx - cx = ecr > 0. Thus, x° is feasible for the continuous

*
relaxation of (GCB) and yields a higher objective value than x .

3. COMPUTATIONAL EXPERIENCE

3.1 Generation of Test Problems

16

A variety of integer programming problems of the form (GCB) were

generated using Procedure P1 described in Section 2.2 and the Appendix.

The parameters used in generating the problems are given in Table I

ana are as described in Section 2.2 except that dO and Eo’ used to

*
generate d and x , are described in the Appendix.

Parameters For Test Problems Generated

Table I

Problem m n a, o d0 go ol B p o
1 7 12 50 3 -3 .500 1.000 .100 3 7
2 7 15 100 6 3 .000 1.000 .500 3 3
3 7 10 60 3 10 .500 1.000 .250 3 6
4 11 15 120 5 2 .600 1.000 .200 3 6
5 11 15 120 5 2 .600 1.000 .200 5 6
6 10 20 100 4 1 .500 1.000 .150 4 5
7 7 30 100 5 1 .333 1.000 .400 3 5
8 9 30 100 5 -3 .333 1.000 .400 4 5
9 15 50 100 5 1 .250 1.000 .250 4 5

10 15 50 100 5 1 .250 1.000 .250 7 5

The test problems generated, along with the solution and slack

vectors, are listed in the Appendix.

Brief characteristics of the test

problems generated are listed in Table II where

Nodes = an upper bound on the number of integer solutions

n
il (dj+1),

=1

N
i

the optimal objective value of the GCB problem,

17

2° = the optimal objective value of the corresponding
continuous relaxation,
0 *
Gap =2 -2,
Bound = a priori upper bound on 2° - z* based on results from the
generator,
. 0 * *
% Gap = 100 times (z -z)/z ,
% Bound = 100 times (zo - z*)/Bound.
Table II
Characteristics of Test Problems Generated
*
Problem} m n Nodes z 2° Gap Bound % Gap % Bound
1 7 12 3.32x108 722 752.50 30.50 31.36 4.22 97.3
2 7 15 1.07x10‘]0 5305 5438.74 133.74 199.98 2.52 66.9
3 7 10 1.35x107 2375 2414.44 39.44 51.13 1.66 77.1
4 11 15 1.43x]07 3990 4057.01 67.01 82.31 1.68 81.4
5 11 15 1.43x106 4222 4275.52 53.52 80.33 1.27 66.6
6 10 20 1.05x109 2139 2221.82 82.82 96.03 3.87 86.2
7 7 30 1.07x1013 2460 2539.99 79.99 120.78 3.25 66.2
8 9 30 6.34x10]5 3615 3681.62 66.62 95.04 1.84 70.1
9 15 50 1.13x10]5 3046 3087.06 41.06 49.55 1.35 82.9
10 15 50 1.13x10°~ 3082 3177.65 95.65 112.86 3.10 84.8

3.2 Testing the Problems

The test problems generated were run on the integer programming codes
IPMIXD and IPDNUM available at the Madison Academic Computing Center using
a Univac 1110 computer. IPMIXD is a linear programming based branch and bound
algorithm based on the method of Land and Doig [4] for solving pure and
mixed integer programming problems. IPDNUM is a pure integer programming
code developed from ENUMERS [5,6] which uses an implicit enumeration

algorithm with an assortment of fathoming tests. Only Problem 6

18

was tested with Univac's FMPS Tevel 6.0 branch and bound 0-1 code, since
the code is unsatisfactory in its current state for these test problems
due to excessive output generated.

Table IIT 1lists computational results where

Code 1 for IPMIXD, 2 for IPDNUM, 3 for FMPS,

explanation of how run terminated,

Terminated

Best Objective = objective value of best feasible solution obtained,

* * *
% Error = 100 x (z - Best Objective)/z , where z is the optimal
objective value (see Table II),

Iterations = number of nodes explicitly analyzed,

Time = solution time in seconds,

Best Node # = node number at which best solution was found,

Incumbents = number of successive feasible solutions found with strictly

increasing objective value.
*
(For many of the problems, optimal solutions other than x were found,
as alternate optima may exist for problems of the form (GCB). No

attempt has been made to collect data on these alternate optima.)

19

Table III
Computational Results
Best % Iter- Best
Problem Code-Terminated Objective Error ations Time Node # Incumbents

1 1 Optimal 722 .00 1333 8.2 13 2
2 1 Time Limit* 5305 .00 30315 18C.0+ 346 3
2 2 Time Limit* 5305 .00 33576 180.0+ 14803 13
3 1 Optimal 2375 .00 4422 25.2 179 4
3 2 Optimal 2375 .00 20544 51.4 12904 36
4 1 Optimal 3990 .00 1052 10.9 988 10
5 1 Optimal 4222 .00 107 2.0 16 1

6 1 Optimal 2139 .00 1675 21.8 20
6 2 Time Limit 2096 2.01 4226 60.0+ 2690 8
6 3 Page Limit** — —_ 104 61.6 —_ 0
7 1 Time Limit* 2460 .00 19633 180.0+ 166 3
8 1 Time Limit 3598 .47 18383 180.0+ 11152 9
9 1 Time Limit 2862 6.04 8283 180.0+ 3282 7
10 1 Time Limit 3031 1.65 9002 180.0+ 7717 12

These results indicate that Procedure P1 constructs difficult
test problems of the form (GCB). Even moderate sized problems have
required examinat%on of several thousand nodes to verify optimality,
although the IPMIXD code usually arrives at a good solution early in

the search for this problem class.

*Best feasible solution found is optimal, but optimality not verified
within time limit.

**The FMPS code did not find a feasible solution before generating 100
pages of unsuppressabie output.

20

Appendix

Procedures For Generating u-, v-, and w-Multipliers, and Component Weights

Listed here are some procedures required by Procedure P1 of
Section 2.2 for generating u-, v-, and w-multipliers, and component
weights. These procedures were used in conjunction with Procedure Pl
for generating the problems discussed in Section 3. The same conventions
used in Section 2.2 will apply here, and urn(p, q) will denote a random
integer uniformly distributed on {p, p+1, p+2,...,q}.
Al. Generation of v(k) and w(k) such that x* v(k) + (d—x*)w(k) <g

and 0 g v(§), wj(k) s 3,1

This procedure is used in step 2.2 of Procedure P1, where g = [BQ].
1. [Initialization]

Set Mj =urn(0, 1), J =1, 2,...,n

k)g 0 and w.(k) = 03

(1f M, = 0, v. ;
(k)

J
. - (k)
if Mj T, Yj

of (SOC) can be satisfied, they can be satisfied with v(k) w(k) = 0).

= 0 and W > 0. If conditions (1) and (4)

2. [Compute trial multipliers]

For J = 1, 2400.5n,
if M, =0, set v“vj(k) = 0 and Gj(k) = urn(0, g),
if Mj =1, set Qj(k) = 0 and Gj(k) = urn(0, g).

3. [Scale the trial multipliers]

"3 b (g,

Compute § = x v If § = 0 go to step 4, otherwise set

(k) _ g o (k) ; -
vj(k) = max(Lg vj(k)J, a, 1), =1, 2,...,n,
Wy = max(L%‘wj IR ao-l), i=1,2,...,n.

*
(This guarantees x* v(k) + (d-x)w(k) g.)

A

21

4. [Increase quasicomplementarity where possible]
*

Set h =g - x* v(k) + (d-x)w(k).

For j =1, 2,...,n, do steps 4.1 through 4.4.

4.1 [v or w multiplier?]

If Mj 0 go to step 4.2, otherwise go to step 4.3.

4.2 [Check v-multiplier]

TIe 1 < xj* < h, set vj(k) = vj(k) +1and h = h - xj* (v-multiplier

increased by 1 only if it increases quasicomplementarity, but not
above g). If h =0 go to step 5, otherwise go to step 4.4.
4.3 [Check w-multiplier]

* (k) = (k) = h+ X -
j dj < h, set Wy W Tand h =h X5 dj

(w-multiplier increased by 1 only if it increases quasicomplementarity,

I 1 < x

but not above g). If h = 0 go to step 5, otherwise go to step 4.4.

4.4 [End of loop]
(k)

(This completes generation of vj and wj

5. [Compute actual solution quasicomplementarity]

(k).

Set Qy = X v(k) + (d-x*)w(k) (Ql < g and is usually close to g). B

A2. Generation of ui(k) for rows already generated (1 < Ki < k) such

*
uj' 's; £9and 0 g ui(k) <u

that < Uy

+The contribution to the index of quasicomplementarity for this column

alone is a positive integral multiple of vj(k) (or wj(k)) so the

multiplier value can never exceed ag - 1.

22

This procedure is used in step 2.3 of Procedure P1.

1. [Compute trial multipliers]
(k) _

For i =1, 2,...,m, if 1< Ki <k, sety = urn(0, uo).

2. [Scale trial multipliers]

~ * N
Compute g = } lﬁ(k) s; . If g =0 go to step 3, otherwise
T<k.<k
=" N
compute ui(k) = min. (vo, L%-ui(k)lk 1< K1 < k (This guarantees
(k) =
Loouy Tse $9).
1<K, <k

i

3. [Increase quasicomplementarity where possible].
(k) _ *

) . ..

Set h =g ~
1<K, <k ! 1

*

For 1gK,<k, if sj < h and uék) < u, set u*k)
*

h=h-s; (u-multiplier increased by 1 if possible)

ui(k) + 1 and

4. [Compute actual quasicomplementarity]

Set Qo =} u#k) 5. n

The u-multipliers for rows already generated will generally be
smaller than the u-multipliers for rows currently being generated (see

Procedure A3) because of the allowable quasicomplementarity factor

of %Q in step 2.3 of Procedure P1.

*
A3. Generation of ui(k) and S, for the r rows currently being generated

*
such that } ui(k) s; =gandlg ui(k) < Uy
K;=k

3
This procedure is used in step 2.4 of Procedure P1.

23

[Determine products of u-multipliers and slacks so the qth product

is roughly proportional to r - q + 1].

= 1 2(r-g+1) - -
Set y, L“"?T%§1 1, qg=1, 2,...,r-1
and y,. = ¢ - oy

[Split products for the r-1 free rows.] For q =1, 2,...,r-1, do
steps 2.1 through 2.6.
[Get row index]

Set 1 = Ryyq

[Test for zero product]

(k)

If yq = (0, set ui

go to step 2.3.

[Generate trial multiplier which won't exceed slack or uo]
set §; () = min(LF1, un(1, u)).

[Find multiplier which will make slack integer valued]

Set ui(k) = max. (h: 1§h§u1(k) and Yq = 9 (mod h))

[Determine slack for row]

* (k)
Set s; = yq/ui .

[End of step 2]

(This completes generation of ui(k) and Si*')

[Make sure all of the ui(k)s for every row but the fixed row are

relatively prime]. If gcd ({ui(k)l i#R # 1, set u1_(k) =]

t+r—1})

*
and Si T Yoy for i = Rt+r-2'

*
= 1 and sy T 0 and go to step 2.6, otherwise

24
4. [Fixed row has u-multiplier of 1]

(k)

For i = R set u.

tr-1 i = 1 and 51* = Yy B
Procedures A2 and A3 usually generate u-multiplier values which

are mostly O or 1 with a few values in the range 2 to Ug> for 3 < Ug s 7.

A good assortment of u-multiplier values usually results in a better

assortment of objective coefficients generated. On the other hand,

large u-multiplier values result in large component cost vectors which

would result in a small relative gap between the optimal objective

values of (GCB) and its continuous relaxation.

(k)

Procedure A3 guarantees that the value of U where i ranges over
all of the rows except the fixed row corresponding to component k be
relatively prime. Such prevents the coefficients Aij of the fixed
row i from being forced to an integral multiple of g = gcq(ao,{ut(k)}) 22
when no positive v or w multipliers are generated. Sucﬁ#lou1d result
is a row which could be simplified as is discussed in (7) of Section
2.1.

Procedure A3 usually generates s* > 0. Then for any column j,
c; > 0 and x*j < dj will guarantee that the solution to the continuous

relaxation of (GCB) won't solve (GCB). Positive slack values will

usually be generated for all rows unless Q = ao-a-(1-8) is small.

Ad. Generation of component weight values, xk, such that the objective
value coefficients will be about o times the A matrix coefficients,

as well as integer valued. This procedure is used in step 3 of Procedure P1.

25
1. [Generate trial multipliers]

~ k(k-1 -
L () D R SRS NP S
Set A = 1+ Ty (BT, k=1, 02 P

(This will generate p weights, the ratio of the smallest to the

largest being about vp, and the spacings between them being

about in the ratios 1: 2:...:p-1. The objective here is to
p
generate a rich set of c, values inc =)} A c(k)).
k=1
2. [Scale the weights]
. R nea -c,
Set A, = A - s k=1, 2,....p.
k k n (k)
2 E Lo Ay 4
k=1 j=1 J

3. [Round to multiplies of El].
0

Set A = e(ao-xk)/ao, k=1, 2,...,p.
4. [Make sure at least 2 Ak's are positive].
p-1 = Xp = 0, stop and trigger an error condition. (Such would
not result in a good test problem being generated with effectively

If X

less than 2 components. Only small values of 3, and <o could

cause this problem. Note X < A, g...gxp at this point.)

5. [Make Atag values relatively prime].

.

If gcd ({Xk-ao}) = 1 terminate, otherwise, set xp_] = Ap_1 T >

0

Ap = xp + El" and repeat this step. (This must terminate because
0

Ap_]oao is reduced to 1 in a finite number of iterations.) |

It is desirable to have the values of A d, relatively prime so
that the values of c. won't be forced to assume an integral multiple

J
of g = gcd({kk-ao}) > 2. In practice, it is more convenient to work

26

k)

with relative component cost vectors, C(=1

3 ¢{k) ang relative

0

c = E L(k) C(k) and
k=1

both L(k) and C(k) are integer valued which circumvents rounding

component weights, L(k) = a, x(k). Then

problems in steps 3-5 of the above procedure.

27

Extensions to the Test Problem Generator

When using Procedure P1 to generate test problems of the form
(GCB), it is convenient to be able to specify an upper bounds vector d

*
and a solution vector x via single parameters, d0 and go. For the

test problem generator used to generate the problems in Section 3,
the parameters dO and &O were used as follows:
d0 >0 - set all upper bounds to do.
do =0 - input the d vector explicitly.
d0 <0 - create mixed upper bounds from 1, 2,...,--d0 in
nondecreasing order with about an equal number of
each. Specifically, dj =1+ L(0.5-j)-d0/nJ
*
go > 1 - set each X; to urn(0, dj).
0 < Eo <1 - set the fraction of nonzero solution vector values to
about &y such that the nonzero values alternate among
2+d.; 1+2d,
1, ef 3 3y, ef 3 J), and dj. Specifically,
*
X3 = 0 for j#e(gk), j, k integer, 1 ¢ j < n, the Kt
*
nonzero x; = e(?dj - 1)(k mod 4)/3).
*
go <0 input the x vector explicitly.
*
It is desirable to generate d and x in such away as to avoid
problems caused by most solution vector values being 0 or most solution

vector values being at upper bound. Values of 50 which Tlie in
(0.0, 0.1) or (0.9, 1.0) are not recommended.
* *
If very few xj* > 0, the right hand side values, b = Ax + s ,

may be so small that some Aij > bi would occur, making X5 # 0 infeasible.
n
If ‘Z

* *
X; = 10, bi has an expected value of 5(a0-1) s, and it is
J

1

28

highly unlikely that b, will be Tess than some Aij since Aij s a -l

*
If very few xj < dj, any solution of the continuous relaxation of (GCB)
couldn't differ much from a solution of (GCB), with most variables
being at their upper bounds.

After a problem of the form (GCB) has been generated, it is

_ _ d. if j=r, r=1, 2,...,n
desirable for the solutions xj V0 if ir to be feasible
since otherwise, the problem could be somewhat simplified by reducing
some upper bounds dj. The largest value xj can assume in a feasible
solution is given by d. = min. Lbs/A. -1, d =1, 2,...n.
J ;. 1)
i: A,.#0
1J

For the test problem generation used to generate the problems

i)

j=1,2,...,n, so that the problem generated will have upper bounds

~

in Section 3, an option is provided to reset dj = min.(dj, d

on the variables which cannot be reduced by inspection of the data.
If dj is reduced to 0, however, an error message is triggered because
the variable xj would be superfluous with xj # 0 infeasible. Choosing
& (or x*) such that the expected sum of the xj*‘s is at least 10

will make this undesirable phenomena highly unlikely.

29

Data For the Test Problems

The data generated for the problems described in Section 3 along
with solution and slack vectors is as follows where A, B, C, D, X, S,
denote respectively the constraint matrix, right hand side vector,

objective function vector, upper bounds vector, solution vector, and

slack vector for the problem.

>

NONCO-SONC - M-=0

72
89
47
81
112
72
49
72
72
88
63
80

<

NN NN IR = e b«

30

Problem 1
8 11
224 195

11

205

A-TRANSPOSE

7
48
8
48
34
13
16
8
46
22
1
21

25
13
35

6
32
11

8

31
11
14
30
43

31
34

47
39

17

29
16

32

21

282

31
49
2b
2¢
33
44
49
26
16
2é

1n

11

259

25
46

43
10
15
16
19
45
13
34

21

194

37
20
bé
18
41
37

25
21
16
28

335

31
20
12
29
43
39
18
37
22
L6
41
37

b4

WOOWIWWWDN @O0 -0 C

202
494
202
341
290
367
316
202
404
290
367
202
404
316
202

o

N NN N NN W W W

31

Problem 2

23

12

630 1013

24

914

A-TRANSPOSE

2
90
18
86
48
17

8
45
23
93

8
29
57
31

9

47
45
70
72
88

6
26
42
99
83
10
32
63
31
61

15

917

53
69
13
46
59

63
15
7¢
28
82

80
3e
32

8 29

610 1036
14 39
74 57
6 84
52 0
14 24
64 62
71 65
29 54
3C 96
13 60
88 30
20 42
42 80
66 95
9 59

10

887

44
93

98
29
44
9C
10
66
26
95
31
12

>
(@]

106
117
52
65
88
88
75
104
94
117

-
SO0 0O00O~NO O

10
10
10
10
10
10
10

10

32

Problem 3
11 25
1026 3290

876

A-TRANSPOSE

55
50
14
47
32
23
27
32
36
56

26
10
12

7

3

1
11
52
28
36

49

10
20
49

56
24

22 12
697 1026
18 46
44 26
2 38
4 9
32 56
39 58
40 53
53 35
7 17
7 58

13

793

39
59
34

25
36
22
37
56
28

15

711

31
29
15
26
25

41
52
L4

SO NONORDONONSD »

140
404
337
415
321
620
347
166
228
311
270
2546
342
259
285

<

NNNNNNNNION NN ON O

33

Problem 4

767 763 738 884

A=-TRANSPOSE

17 81 89 3
102 107 26 80
57 69 29 99
111 86 110 59
29 Sq 70 49
115 115 105 113
57 50 56 93
27 66 80 4
103 42 16 61
34 55 32 103
95 37 92 24
106 &0 91 74
91 57 90 30
16 103 10 7

7 26 30 18

858

7
77
88

112
110
82
73
13

6
44
59
11
78
37

105

12

948

45
107
67
78
83
16
72
51
18
118
6
25
45
92
75

14

808

43
45
69
90
59
99

91
65
50
106
?5
64
119
81

18

738

18
112
38
27
89
77

89

69
15
39
16
111
112
85

e5

803

33
81
47
70
32
31
95
52
76
108
117
17
102
52
40

19

640

94
40
13
112

53
16
69

75
114
57
73
113
79

40

808

A ORBNONOL=20NON=20

34

Problem 5

s = 16 8 22 12 26 24 8 24 42 24 48

6 = 985 1058 909 1114 668 853 1026 782 B8U5 0904 752

c] A-TRANSPOSE
i58 2 i3 5 41 33 93 113 39 106 22 115 86
353 2 i1 97 102 118 116 74 112 39 16 86 59
318 2 68 L4 85 100 85 8 91 63 746 111 113
384 2 38 97 119 89 106 80 116 10 108 66 52
338 2 95 96 57 70 11 $3 77 71 39 106 13
330 2 22 104 47 41 73 97 106 76 81 39 45
318 2 24 80 195 118 25 2h a7 92 62 86 14
218 2 18 72 51 104 93 63 7 109 93 23 52
222 2 88 105 16 20 85 32 2 35 29 103 91
333 2 109 112 72 73 85 sS4 48 92 19 30 43
249 2 71 52 9 96 92 97 36 22 71 41 81
381 2 113 82 80 7 2 105 106 9 100 76 38
337 2 10 119 30 82 26 102 96 15 106 25 113
2B5 2 33 65 66 27 36 83 103 3 93 94 67
256 2 36 98 1 52 i8 66 72 33 22 14 52

=

B OO D OO D= DO = -b D

245
177
291
237
114
237
194
211
231
21

97
168
174
134
308
271
131
211

97
282

<

P N NI G QI W i S S N i I e e

39

463

39

451

35

Problem 6
17 9
623 493

A-TRANSPOSE

77
12
57

21
85
87
g2
26
61
36

1
14
19
74
26
85
24
56
63

0
12

1
39

76
14
86
37
12
48

58
32
15

54
32
32
71
61
29
92
29
72

20

551

11
62
93
56
80
52
93
38
89
33
17
32
35
76
51
31
40
73
42
78

17

647

28
85

31
93
44
93
73
35
28
11
37
99
73

67

95
15
97

20

624

32

42
54
90
59
o8
94
88
59
R6
10

59
15
76
Q7
55
R7
76

20

51

77
18
87
61
64
37
41
39

18
20
55
50
30
51
92
88
55
60
86

25

595

53
83
68
50
86
20
19
58
48
99
57
67
21
36
41
13
34
94
50
50

39

526

41
68
47
16

35
52
88
73
64
96

62
79
27
16
24
30
60

>

160
268
191
306
153
237
244
359
282
213
366
153
153
275
299
275
344
160
275
153
313
251
237
359
237
275
275
184
275
191

<

—t D o v wd D D d P wd wd D b o o ad ah ek wd - d wd) D wd o wd ok o

u

36

Problem 7

10 14 190
483 418 411

A=-TRANSPOSE
48 14 16
12 62 71
75 2 6
65 61 75
5 56 11
13 57 32
70 49 29
79 83 87
99 51 27
41 70 14
96 5¢ 56
5 6 51
2 13 54
71 42 74
15 55 98
34 76 65
94 s0 48
3 72 28
46 Bé 28
14 28 60
87 6 19
84 99 7
5 g7 G2
87 53]R8
25 20 é1
20 98 32
20 75 L6
6 11 57
6 30 94
69 26 6

14

544

95
65

53
59
69
14

84
95
5%
36
51
57
63
73
56
91
16
1C
71
78
59

11
74
65
37
96
34

26

414

10

522

89
54
52
83
93
22
30
11

17

19
21

95
36
81
84

80
o

24
90

74
63

57

26

440

>

314
4«02
348
367
285
175
291
190
155
293
187
224
263
274
305
161
305
141
235
198
328
138
328
176
263
204
178
269
286
305

o

N NN NN RN N W RN N NN N N NN od b ok wd od d b bk b

37

Problem 8
15 13
718 363

749

A-TRANSPOSE

78
66
75
35
65

6
49
54

1
59
48
12
90
72
57
86
76
65
97
18
75
25
54

5
g4
38
17
98
76
79

94
55
46
50
33
20
13

45

10
66
12
L6
69
40
69

2
59
N
50
14

8

2
97
37
78
10

9
35
14
40

70

14

572

16
32
91
68
81
12
51
52
24
52

53
52
13
21

49
31

51
17
33

16
1?
92
47

25
67

10

650

85
60
18

32
89

28

54
76
90
31
36

41
52
81
L6
31

13
55
97
48
93
92
67

15

13 30
653 1017
51
37 62
44 55
92 95
63 27
45 97
75 31
2 85
65 79
95 34
38
2 65
13 74
93 66
47 47
24 29
71 69
25 38
16 44
83 o8
22 78
66 16
92 61
41 66
161
o4
75 B8
2 9%
25 16
65 46

14

789

97
70
92
81
20
61
33
39
14
89

36
48

68
58
15
80
71
13
89

19

69
11
16
68

19

629

»

O=000-000~2000<-2000=000=2000=000=2200022R000=-000=00C-4000

196
249
255
279
342
224
259
237
281
333
248
306
180
239
210
262
266
244
360
204
267
271
260
263
154
283
e92
218
209
204
259
313
257
279
247
259
220
318
c38
276
163
eed
260
147
229
153
267
282
27
248

L~

—ﬂd—b-‘dd-—.-&dJddd.‘—l-‘dddd-&-‘-‘d-ﬂ—h-‘;—hdd—.-‘-b-‘ddd—h-bdﬂ-ﬂ—.d—l-l-&—ld-&

#

10

38

Problem 9

5

10

10 -

7

26

17

12

6U9 672 616 565 620 4B8 527 634 592 501 680 581 688 541 468

A~-TRANSPOSE

2
29
45
88
91
85
49
65
33
63
2
97
80
3
33
36
15
8
68
24
16
7
89
51
9
83
70
10
17
23
52
83
9
91
51
6
81
93
5
19
13
56
93
49
47
1
92
85
75
88

13
73
39
94
77
37
89
46
76
a8
20
79

5
a8

3
69
65
96
92
75
70
25
36
21
17

9
93
61
49
56
33

3
77
85
54
86

7
42
63
15
34
49
16

0
33
19
77
47
87
18

1
92
36
"

15

T4
22

73
53
80
10

35
62
43
70
34
68
70

32
71
57
21

27
25
24
90
63
78
94
14

76
1
70

23
69
16
10
48
72

48
67

63
69

61
53
50
39
54

82
12
67
19
55

64
78
8é
18
62

20
8%
30
85
33
58
11
44
48
51
65
14
38
41
56
79
32
74
22
35
12
89
92
16

61
85

92
74
97

67
50
12
36
52
20
67
53
81

64
60

65
11
69
80

56
89

10

14
63
98
86
&89
29
5%
76
80
43

24
14
33
91

90
34
29
85
32
76
46
47
58
49
68

40

»

OO-’OOO-‘OOO‘OOO-‘OQO-‘DDO-‘OOQ-"OOO-‘OOO-‘ OO00=LDOO=000=000C

286

286 .

231
299
264
172
265
273
180
310
214
227
276
272
1466
216
209
298
272
243
213
313
231
276
258
214
286
251
361
231
312
243
222
247
217
220
246
217
294
224
273
239
202
306
165
302
168
304
261
335

39

Problem 10
§ = 41 21 18 13 18 41 17 21 i8 25 9 18 18 9 18

690 664 683 626 434 587 616 662 721 636 596 510 752 &C7 475

o

A~TRANSPOSE

38 81 86 B4 44 34 63 7B 23 S2 44 11 4 483 73
18 65 32 79 39 56 65 4 9 56 74 82 7?7 51 16
23 11 94 47 50 40 5 29, 87 48 60 54 18 74 16
90 53 7 18 53 28 83 94 4 99 99 99 24 85 40
11 15 91 33 31 50 39 54 13 28 63 6 90 98 58
29 26 36 67 46 7?7 94 2 9 40 7 91 41 34 56
51 46 75 68 2% B8 52 79 8 80 83 24 16 45 40
88 93 3 69 48 37 16 42 90 16 65 S8 75 1 28
0 0 9 31 87 70 35 69 26 33 3 9 46 98 49
38 97 56 45 86 56 37 17 53 19 29 96 54 62 97
80 60 6 25 26 13 45 96 49 28 3 46 96 34 40
26 33 74 41 80 25 61 33 83 98 22 30 68 48 1
6 95 29 60 16. 45 1 34 76 38 97 40 32 19 53
B4 98 68 23 7 80 76 94 9 2 99 85 8 8 85
51 28 95 364 30 40 71 14 20 94 10 37 17 19 30
13 11 65 43 89 48: 9 46 45 S50 75 54 68 31 1
& 28 21 12 20 59 60 84 82 27 88 77 48 13 I4
B0 79 96 32 58 89 78 86 31 B89 16 93 63 56 S8
96 56 87 49 46 92 B8 53 32 61 24 74 35 64 79
73 29 42 55 19 18 22 73 89 24 38 10 80 57 94
1 74 14 48 65 79 66 51 38 86 15 20 2 53 48
19 90 79 68 15 44 15 16 22 17 74 55 77 58 66
28 21 54 28 1B 51 27 44 85 44 65 30 24 81 8
69 97 95 15 11 89 91 17 86 94 23 10 47 52 31
28 86 79 54 81 61 86 19 61 60 9 97 60 9 95
93 62 59 & 10 33 6 2 98 90 7 2 67 45 43
70 54 0 63 43 83 91 67 64 45 76 1 73 62 17
47 87 39 74 37 39 12 79 T 13 19 30 92 43 11
83 69 91 37 8 94 39 81 84 24 81 43 94 85 64
13 90 12 3 86 7 16 84 25 81 56 3 53 24 60
75 43 39 17 97 41 63 9 80 19 90 71 93 54 96
72 22 91 77 23 1 14 51 25 9 16 B4 97 72 28
64 91 24 14 5 94 62 21 17 23 1 8 1 71 55§
5 9 39 80 63 25 1T 15 18 19 36 26 40 42 69
64 83 80 29 17 90 80 8 40 92 25 56 30 9 37
18 18 67 91 14 91 65 91 45 &4 67 44 19 29 92
33 88 41 74 51 38 43 92 15 84 40 14 49 18 82
2 26 %0 0 54 74 86 98 51 14 5 19 27 96 72
97 68 41 89 68 43 64 13 27 46 41 55 89 48 77
B5 59 62 73 18 68 76 42 66 51 31 11 15 45 9
51 85 79 48 40 68 15 2 46 36 19 21 47 84 24
50 82 7T 68 89 49 91 82 77 40 32 8 55 3 &5
77 43 21 46 29 11 16 77 78 38 32 25 16 59 0
1 81 43 38 12 81 39 60 75 22 77 28 96 44 69
55 0 92 24 31 76 78 20 55 97 17 36 82 2 %0
5 77 50 28 87 95 52 66 83 20 59 92 16 6B 57
72 10 42 67 43 23 S5 61 66 7?7 37 27 31 12 58
67 60 77 19 12 21 91 13 94 91 57 34 53 91 53
49 65 79 7 19 27 53 45 46 40 5S4 86 75 39 42
77 71 76 82 21 47 87 41 94 31 27 74 77 89 41

- md wod wd od h wd od wd

’

d-‘-.-b—b—l-.d-a-.d-b—ld-b-l.l—l—l-ld-b-l-a-i—l-b-b,-l—l.‘—ldd—l.td-h-l-b-i

40

REFERENCES

. M. Fleisher and R. R. Meyer, A New Class of Sufficient Optimality
Conditions for Integer Programming, Computer Sciences Technical
Report No. 248, University of Wisconsin, Madison, April, 1975.

. Garfinkel and G. Nemhauser, Integer Programming, John Wiley & Sons,
N.Y., 1972.

. G. Jeroslow and T. H. Smith, Experimental Results on Hillier's
Search Imbedded in a Branch and Bound Algorithm, Management
Sciences Research Report No. 326, Graduate School of Industrial
Administration, Carnegie-Mellon University, November, 1973.

. Shareshain, Branch and Bound Mixed Integer Programming - BBMIP,
IBM, New York Scientific Center, Share Program Library,
360D-15.2.005, 1967.

. Trotter, Jr., User's Instructions for the Integer Programming
Code ENUMER8, MRC Technical Summary Report No. 1347,
Mathematics Research Center, University of Wisconsin, Madison,
December, 1973.

. Trotter, Jr. and C. Shetty, An Algorithm for the Bounded Variable
Integer Programming Problem, MRC Technical Summary Report No.
1355, Mathematics Research Center, University of Wisconsin,
Madison, December, 1973.

. Wagner, Principles of Operations Research, Prentice Hall,
Inc., N. J., 1969.

